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Deep Learning-Based Super-Resolution Applied

to Dental Computed Tomography
Janka Hatvani , András Horváth, Jérôme Michetti, Adrian Basarab, Denis Kouamé, and Miklós Gyöngy

Abstract—The resolution of dental computed tomography
(CT) images is limited by detector geometry, sensitivity, patient
movement, the reconstruction technique and the need to minimize
radiation dose. Recently, the use of convolutional neural network
(CNN) architectures has shown promise as a resolution enhance-
ment method. In the current work, two CNN architectures—a
subpixel network and the so called U-net—have been considered
for the resolution enhancement of 2-D cone-beam CT image slices
of ex vivo teeth. To do so, a training set of 5680 cross-sectional
slices of 13 teeth and a test set of 1824 slices of 4 structurally
different teeth were used. Two existing reconstruction-based
super-resolution methods using ℓ2-norm and total variation reg-
ularization were used for comparison. The results were evaluated
with different metrics (peak signal-to-noise ratio, structure sim-
ilarity index, and other objective measures estimating human
perception) and subsequent image-segmentation-based analysis.
In the evaluation, micro-CT images were used as ground truth.
The results suggest the superiority of the proposed CNN-based
approaches over reconstruction-based methods in the case of
dental CT images, allowing better detection of medically salient
features, such as the size, shape, or curvature of the root canal.

Index Terms—Computed tomography (CT), convolutional neu-
ral networks (CNNs), deconvolution, dental applications, image
analysis, super-resolution (SR), U-net.

I. INTRODUCTION

E
NDODONTICS is the dental specialty concerned with the

maintenance of the dental pulp (formed by nerves, blood

vessels, and connective tissues) in healthy state and with the
treatment of the pulp cavity, i.e., pulp chamber and root canal
(the internal part of the tooth). A good knowledge of the root
canal anatomy is an indispensable prerequisite for ensuring
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the success of pulp cavity treatment. According to [1], three

guidelines are important and must be followed during such

treatment: 1) identifying and preparing the root main canals

using endodontic instruments; 2) establishing and respect-

ing working length; and 3) assessing the initial apical canal

diameter to allow an adequate preparation size. Even though

endodontic treatment is one of the most common procedures,

epidemiological studies show success rates of only 60%–85%

for general practice [2], [3]. The reduction of endodontic thera-

peutic failures, i.e., periapical diseases, and their consequences

on health, such as the future of the treated teeth, the prosthetic

replacement of the extracted tooth on the jaw or the impact on

cardiovascular and diabetic diseases, require new techniques

for improving the quality of endodontic treatments [4]–[8].

In dentistry the 3-D structure of the tooth is visualized using

cone beam computed tomography (CBCT), where the typical

resolution is around 500 µm because of partial volume effect,

noise, and beam hardening [9]. When the exact position of

the dental canal has to be determined for root canal treatment,

these images are difficult to work with, since the diameter of

the canal is usually in the range of 0.16–1.6 mm [10]. The

European Commission on Radiation Protection concluded in

2012 that further research to establish the diagnostic accuracy

of dental CBCT devices in identifying root canal anatomy

is necessary to justify their indication in endodontic treat-

ment [11]. Micro-CT (µCT) gives a sufficient resolution for

precise segmentation of the pulp cavity but can be used only

ex vivo (on extracted teeth) due to size limitations, long acqui-

sition time, and high radiation dose. An algorithmic solution

for approximating the resolution of µCT images from CBCT

acquisitions would therefore be advantageous.

Super resolution (SR)—finding the high resolution (HR)

image from a single or multiple low resolution (LR)

image(s)—is a well-known problem in image process-

ing. The main groups of methods use interpolation with

edge preservation, deconvolution-based reconstruction with

Bayesian predictions or regularization, and example- or patch-

dictionaries [12]. In the last group the LR and HR patches are

mapped nonlinearly onto each other after feature extraction,

reconstructing the final solution from the HR patches. Until

recent years, the state-of-the-art solution for the problem used

this approach with sparsity-based machine learning, despite

its high computational complexity and its dependency on the

training set [13].

Deep neural networks—in particular convolutional neu-

ral networks (CNNs)—have been shown to be powerful

tools in image processing in the last couple of decades,



opening a new perspective for SR techniques as well [14]. 
In biomedical imaging CNNs are mainly used for clas-

sification, segmentation and detection. Litjens et al. [15] 
gave a comprehensive overview on the topic. Some exam-

ples for these kinds of tasks are differential diagnosis 
between Alzheimer’s and Huntington’s diseases on MRI 
data [16], [17], tumor segmentation with multiscale anal-

ysis [18], striatum segmentation [19], or tumor and lesion 
detection [20], classification [21].

While deep learning is increasingly practised in the above 
areas of biomedical imaging, its use in image enhancement 
is less investigated. Deep learning has been used so far for 
image denoising [13], [22], image generation, e.g., construct-
ing CT images from MRI data [23], or artifact removal from 
sparse-view [24], [25] and limited-angle CT images [26]. To 
the authors’ knowledge, biomedical image resolution enhance-
ment with deep learning has so far only been implemented 
using multi-input frameworks—the input was either an LR 
cardiac MRI sequence [27], [28] or multichannel MRI data 
(T1-, T2-weighted and fluid attenuated inversion recovery 
images [29]). Most of the previously mentioned biomedical 
applications tend to use CNNs [16], [18]–[21], [23], [27].

CNNs can realize the previously described SR pipeline 
of image-enhancement, namely feature extraction, nonlinear 
mapping, and reconstruction. In a CNN, the units within a 
layer are organized in such a way that the multiplication of 
input pixels with their corresponding weights implements a 
convolution process followed by a nonlinear activation oper-
ator, passing a series of filtered images to the upcoming 
layer. The output of the combined layers can either be an 
image or a classification answer. The weights of the con-
volution layers and the classification are learned via error 
backpropagation.

Many different approaches have been investigated for the 
enhancement of training in terms of quality and speed. In the 
pioneering, 2014 work of Dong et al. [14] the single image SR 
algorithm starts with the upsampling of the LR image using 
bicubic interpolation. However, Shi et al. [30] showed in 2016 
that this step can be left out. Kim et al. [32] have shown 
that the number of layers can increase the performance, so 
that deep CNNs highly outperform the shallow ones [48]. An 
interesting structure called U-net was introduced for biomed-

ical image segmentation and artifact removal, where features 
on different scales are learned efficiently [25], [33].

The aim of this paper was to investigate the use of CNNs 
for resolution enhancement of 2-D CBCT dental images, using 
µCT data of the same teeth as ground truth. Two different 
network structures have been tested, a subpixel network and a 
U-net designed for the given task. Its outputs were compared to 
deconvolution-based reconstruction techniques with ℓ2-norm 
and total variation (TV) regularization.

In the rest of this paper, the methods are first described, 
namely the collection of data, the reconstruction-based SR 
methods used as reference, the tested deep learning archi-
tectures, and finally the metrics used for comparison. In the 
Results, the evolution of the network training is presented, 
followed by qualitative and quantitative comparisons, and 
segmentation-based image analysis.

II. METHODS

A. Data Acquisition and Preprocessing

Images of 17 intact freshly extracted teeth (incisors, canines,

premolars, and molars for structural diversity) were acquired.

These teeth were donated anonymously for research and had

been extracted for reasons unrelated to the current study. A

Carestream 81003-D limited CBCT system, currently used in

clinics, was used for the LR image acquisition, and a Quantum

FX µCT system from Perkin Elmer for the HR images. In

vivo imaging was performed at Life Imaging Facility of Paris

Descartes University (Plateforme Imageries du Vivant—PIV)

on µCT Platform site (EA2496, Montrouge, France). The reso-

lution of the CBCT machine was 1 LP/mm at 50% modulation

transfer function (MTF), meaning that spatial frequencies of

1 line pair per mm are depicted with 50% contrast, defin-

ing a linewidth of 500 µm. The reconstructed voxel size was

75 µm3. For the µCT machine the resolution was 10 LP/mm

at 50% MTF (a linewidth of 50 µm), the reconstructed voxel

size was 40 µm3.

The acquired CBCT images were automatically registered

onto the µCT volume with the 3-D Slicer tool [34]–[36], using

linear interpolation in the rescaling step. Note that in addition

to being geometrically aligned, both sets of images had a com-

mon voxel size of 40 µm3 after the registration process. The

axial cross-sectional slices were saved as single images for

both types of volumes. The reason for transforming the CBCT

images to the pixel resolution of the µCT images (rather than

the other way round) was to avoid degradation of the intrin-

sic resolution of the µCT images and thereby reducing the

training sample number.

5680 slices of 13 teeth were selected for the training sets,

and four other teeth (an incisor, a premolar, and two molars)

provided 1824 slices for the test sets. In spite of the small

number of teeth, the large variability of the slices allowed

more precise measurements on a greater set of independent

2-D images. From hereon, the training set of LR CBCT images

and HR µCT images will be denoted by TRL and TRH , and

the corresponding test sets by TEL and TEH .

The CBCT and µCT images were uniformly normalized

using the highest and lowest pixel values found in the TRL

and TRH sets accordingly.

The noise and the reconstruction errors in the background

of the images are structurally different on the two modalities.

This difference is investigated in Fig. 1 where on a log-scale

the noise in the background is clearly visible, both on the

CBCT and on the µCT images. On the mean histograms of

the training sets it can be seen that the pixels of the background

and those of the foreground are easily separable with global

thresholds (dashed lines). The result of this thresholding can

be seen on the example images as masks of the tooth. After

thresholding, the images were renormalized between 0 and 1.

It was qualitatively and quantitatively investigated how the SR

algorithms handle this difference in noise patterns, and how

do they perform after background removal.

B. Reconstruction-Based Deconvolution Methods

For evaluating the quality of our proposed SR method,

our results are compared to a recent reconstruction-based SR



(a) (b)

(c) (f)

(d) (e)

Fig. 1. Background artifacts. (a) Background artifacts on the CBCT image on log scale. (b) Mask of the tooth from (a). (c) Mean histogram of CBCT
images from TRL, with the global threshold used for background removal (dashed line). The same threshold was used for masking on (b). (d) Background
artifacts on the µCT image on log scale. (e) Mask of the tooth from (d). (f) Mean histogram of µCT images from TRH , with the global threshold used for
background removal (dashed line). The same threshold was used for masking on (e).

method (SRR), implemented in MATLAB [37]. It should be

noted that such approaches are among the most popular SR

techniques. They assume that the observed LR image can be

thought of as a noisy, blurred, and downsampled version of the

HR image. The blurring effect is generally modeled as a con-

volution with a spatially invariant point-spread function (PSF).

In practice the PSF is unknown, so it must be measured or esti-

mated. Its estimation for experimental data is a very difficult

task and is solved empirically in many existing works (see [38]

for an example). In this paper, the CBCT images are assumed

as low-pass filtered versions of the ideal µCT images. The

PSFs were estimated using direct inverse filtering from each

pair of the training CBCT- µCT images, where the constant λ

was used to avoid dividing by 0. Finally, PSF-averaging over

all the samples was processed to reduce noise. The PSF was

thus obtained as

PSF =
1

|TRL|

∑

k∈TRL

F(TRL(k))

F(TRH(k)) + λ · J
. (1)

The images are all resized to a common size. In (1) F

denotes the Fourier transform operator, |TRH| is the cardinal-

ity of the set, k is the training image index, λ is a small positive

real number, and J is a matrix of ones having the same size

as the images. The division here is to be considered element-

wise. A Hanning-window was applied to the estimated PSF,

suppressing high-frequency noise due to edge effects. The ill-

posedness of the inverse problem regarding the estimation of

the HR image from its LR counterpart is overcome by incorpo-

rating regularization in the reconstruction process. In this paper

two regularization terms are considered, namely the ℓ2-norm

and TV. The first was shown in [37] to lead to an inverse

problem that can be solved analytically by exploiting particu-

lar properties of the downsampling and blurring operators. The

second is well-known to promote piece-wise constant solu-

tions, thus it was adapted to the application addressed in this

paper.

C. Realizations of the CNN

The neural networks were realized using the open-access

deep learning framework TensorFlow 1.3.0 [39], running with

an NVIDIA GK210GL (Tesla K80 with 12 GB RAM) GPU.

To investigate the potentials of these methods in dental CT

image enhancement, two architectures of CNNs were created.

In the discussion that follows, the organization of the layers for

each of the two architectures will be first presented, followed

by a description of the error metric used to train the networks.

The term features will refer to channels of the CNN along the

usual definition of its processing pipeline which act as implicit

features in the reconstruction process.

One of the investigated architectures was inspired by the

U-net architecture [33] which is commonly used for domain-

to-domain transformation, especially in medical imaging. It

can also be modified to generate higher image dimensions

than that of the original input image, but in this case the num-

ber of pixels was the same as in the CBCT and µCT images.

We have implemented a structure with four successive down-

sampling layers on the original input image, continued by four

upsampling steps which were implemented by transposed con-

volutions. At each size-level lateral connections concatenating



Fig. 2. Depiction of the U-net structure as a domain-to-domain transformation
converting the input image with size 400x400x1 to an image of similar shape
but different features. As it can be seen on the figure this structure is good to
process local and global features together. The neurons in the deeper layers
have larger and larger receptive fields. The numbers in the right bottom corner
of the layers indicate the number of features stored.

the downsampled image features to the upsampled ones were

also made. In each layer a combination of convolution, batch

normalization [40] and rectified linear units (ReLU) was twice

employed. Leaky implementations of ReLUs have been shown

to provide higher accuracy and avoid the dying ReLU problem

by providing a nonzero gradient for the constantly inactive

neurons in the network [41]. The function of the leaky-ReLU

(LReLU) is the following:

LReLU(x) =

{

x if x ≥ 0

αx if x < 0
(2)

where x is the input response coming from the neuron and

α is a parameter defining leakage of the ReLU over nega-

tive responses, which provides a gradient to compensate for

wrongly initialized or trained values. Parameter α is typically

a small positive number; in our case, it was set to 10−3.

The number of convolutions—different features—were 32,

64, 128, 256 in the downsampling layers and 256, 128, 64,

32 in the upsampling layers. In the lowest resolution two

convolutions with 512 features were also used.

It has been shown in various problems that the application of

smaller kernel sizes can result in a lower number of parameters

and higher accuracy [42]. Therefore, the size of all the kernels

employed here was 3 × 3.

A detailed depiction of our architecture can be seen in

Fig. 2.

Our second architecture for image enhancement was moti-

vated by the subpixel networks implemented by Shi et al. [30],

where deconvolution is realized as a tiling operator, instead of

transposed convolutions [30]. We have implemented a com-

monly used six layer CNN structure containing an alteration

of convolution, ReLU, and pooling operations in each layer,

with 16, 32, 32, 64, 64, 4 convolutions, respectively. The last

layer with four features is needed for the depth-to-space oper-

ation to give space to the higher resolution on a higher number

of pixels (by a factor of two compared to the image size of

the original input). The size of the max-pooling kernels was

Fig. 3. Depiction of the retiling (depth-to-space) operation which we have
also investigated for enhancing image quality. The image was taken from [30],
showing an upsampling factor of three.

3 × 3 in all cases. The retiling operation (RT) that rearranges

the elements of an H × W × Dr2 tensor I to a tensor with a

shape of (rH × rW × D)—and as such is responsible for the

upscaling—can be defined as

RT{I}(x, y, d) = I(⌊x/r⌋, ⌊y/r⌋, D · r · mod(y, r)

+ D · mod(x, r) + d) (3)

where x, y, and d are the width, height, and depth indices of

the input image, r is the upsampling factor (in our (in our

case 2), D is the input depth of the image, ⌊·⌋ is the modulo

operation. The depiction of this retiling can be seen in Fig. 3.

For training the networks on the 5680 slices of the TRL

and TRH sets, the ADAM optimizer algorithm [43] was used

with dynamic learning rate initially set to 10−4. The network

was trained with randomly initialized weights using the Xavier

method as it is described in [44] and there were no significant

differences in training depending on the weight and parame-

ter settings. Similarly the initial timestep of the used ADAM

optimizer did not have effect on overall reconstruction accu-

racy of the network. At each iteration of the training a random

subset, batch of images was used to fit all computations in the

memory of the GPU. We have used batches of 64 images for

the CNN architecture and batches of 16 images for the U-net

structure.

The concept of a loss function needs to be introduced, which

is the error between two pixels backpropagated to improve the

weights of the network with each iteration. The so-called ℓ1
loss is the absolute difference, while the ℓ2 loss is the squared

difference (notice the analogy with the ℓ1- and ℓ2-norm). The

ℓ1 loss is generally better for SR problems as well as for

texture and image generation, since ℓ2 loss is often domi-

nated by outlier pixels on the ground truth images [45]. On

the other hand, ℓ1 is only once differentiable, as opposed

to ℓ2. Here, a modified version of the Huber loss [46] was

implemented, which combines the advantages of the two loss

functions, helping the network to avoid local minima during

training. The twice differentiable and smoother loss function

ℓ1s is

ℓ1s(O, G) =

{

|O − G| if |O − G| ≥ 1

(O − G)2 if |O − G| < 1
(4)

where O is the output image of the network and G is the

desired output, the ground truth image. The loss function is

then averaged over the entire aforementioned batch of images

to yield an error that is then backpropagated. The networks

may also be trained according to other metrics, as long as



they are fully differentiable. Note that for image normaliza-

tion for the first layers and also between the layers we have

used batch normalization [40]. This method ensures that input

data in training batches is transformed to zero mean and unit

variance. This means that those images and regions where a

larger variance appeared fall into the |O−G| ≥ 1 region. To the

best of our knowledge this method is the most commonly used

normalization method for deep learning image applications.

The structure of the two networks along with the algorithms

and chosen parameters used for the training can be found on

GitHub at: https://github.com/horan85/dentalsuperresolution.

D. Metrics

For the evaluation of similarity between corresponding 2-D

images, we used the same metrics as in an earlier deep learning

SR work [31]. Due to the complexity of some of the expres-

sions, we limit ourselves to a brief description of the metrics,

and refer the interested reader to the accompanying citations.

A simple and widely used measure is the mean squared

error (MSE) calculated by averaging the squared differences

of the reference and distorted image pixels. The peak signal-

to-noise ratio (PSNR) is calculated by dividing the dynamic

range by the MSE. These metrics, however, do not necessar-

ily correspond to the perception of the human observer. The

structure similarity index (SSI) was designed to better reflect

subjective evaluation [47]. It combines the luminance, contrast,

and structural measures, and can be calculated for single pix-

els considering small neighborhoods, or for the whole image

as an average of the single values. The information fidelity

criterion (IFC) quantifies the mutual information between two

images, correlating with the perceptual quality [48]. The effect

of frequency distortion and additive noise is estimated using

the noise quality measure (NQM) [49]. These methods are all

reference-based, meaning that a ground truth image—µCT in

our case—is needed for the evaluation.

The enhanced images were also compared as 3-D vol-

umes. The canal root was segmented from the 3-D volume

using a dedicated adaptive local thresholding described in [50].

For visually showing the segmentation results, the software

MeVisLab [51] was used. The segmentation results were ana-

lyzed quantitatively as well. For each root, the canal area and

the Feret’s diameter were estimated for all the radicular axial

reconstructions, as suggested in [50]. The Feret’s diameter

defines the longest distance between two parallel straight lines

that are tangent to the shape.

The comparison is first evaluated using the method of Bland

and Altman through the bias (mean of differences). It shows

whether there is a systematic error or bias between the two

images. The segmented volumes were also measured, showing

the absolute differences with the ground-truth µCT images in

percentages and using the Dice coefficient [52].

III. RESULTS

A. Evolution of the Loss Function

Fig. 4 shows a comparison of convergences regarding the

loss using the ℓ1 (upper plot) and ℓ1s (lower plot) functions.

Fig. 4. Loss of the different networks during training according to the
ℓ1 and ℓ1s metrics. To help visualize the general trends without the short-
time randomness of the training algorithm, exponentially smoothed values are
shown in dark, and the original values are plotted in semi-transparent colors.

The network was trained for 20 epochs, the loss converged

and did not change significantly after ten epochs. The recon-

struction error of the U-net architecture was much lower using

both loss functions, but as it will be discussed later, this result

does not agree with the image quality metrics. When applying

background removal, the loss values of the networks decrease

for both loss functions (Fig. 4). Thus, background removal

helped both networks to decrease the reconstruction error and

to speed up the convergence.

B. Effect of Background Noise

The effect of the background noise was investigated

qualitatively and quantitatively. The four SR algorithms—

SRR-ℓ2, SRR-TV, and CNNs with the subpixel and U-net

architecture—were used on the test set, TEL. An example

slice can be seen in Fig. 5 for qualitative evaluation. It can

be observed, that the SRR methods led to an amplification of

this error, and were also causing artifacts on the edges. This

latter phenomenon remained after background removal too.

On the other hand, the CNNs—especially the U-net—learned

the shape of the background-noise on the µCT image, but

estimated a blurred version of its pattern. As the lower row

indicates, this problem can also be solved with background

removal.

The quantitative effect of the background noise can be seen

in Table I. The values were calculated against the ground truth

images on the four teeth of the test set. All the measures

apart from the IFC showed an improvement after background

removal.

The first value to consider is the NQM, as it directly shows

the quality of the noise. This value increased significantly with

background removal for all the methods. When calculating

the MSE, the differences on the relatively large area of the

background led to a high error-rate, and thus to a lower PSNR.

It also caused a higher (and different) variance of the compared

backgrounds which effected negatively the SSI values. This

effect is less significant on the results with the CNNs, as they

learned a similar noise pattern. The decrease of the IFC value

following background removal is supposed to be due to the

decrease in image variance.



TABLE I
AVERAGE VALUES OF PSNR (dB), SSI, IFC, AND NQM FOR THE TEST SET COMPARED TO THE µCT IMAGES. BEST RESULTS ARE MARKED IN BOLD

Fig. 5. Effect of background removal on noise amplification. The columns stand for the four different enhancement methods along with the original CBCT
and µCT images. The upper row shows an example slice with intact background, while on the lower row background-removal was carried out. It can be seen
that the SRR methods amplify the noise, while the deep learning methods are trying to learn the background-pattern of the µCT image. After background
removal this problem no longer holds, only edge-effects of the SRR methods can be observed. The display range was stretched to [0,1].

When performing ℓ2 and TV methods not all measures show

improvement after background removal. Sometimes back-

ground removal seems to negatively affect reconstruction at

the edges. It means that although we see a visually better

image with higher contrast, not all quality metrics can cap-

ture this improvement. The deep-learning methods, however,

do not suffer from this effect, significantly outperforming the

traditional methods in every case—even when the contrast is

lower than that of the SRR images. It should be noted, that

the contrast of the CNN methods is still higher than on the

CBCT images.

C. Resolution Enhancement on Background-Removed Images

As we have qualitatively and quantitatively discussed the

validity of background-removal, from hereon only the results

obtained with the modified (without background) images will

be examined. The values of Table I confirm the superiority

of the proposed deep learning-based methods. The average

PSNR increased by 18.59 and 19.24 dB for the SRR meth-

ods (ℓ2 and TV, respectively), while with deep learning this

improvement was higher, 21.04 dB with the subpixel and

22.02 dB with the U-net structure. If the SSI and IFC values

([0,1]) are considered as percentages, they improved com-

pared to the CBCT by 1.59%–2.01% and 15.54%–15.81%,

respectively.

The PSNR value is the only metric where the U-net slightly

outperforms the subpixel structure. As this metric uses the

MSE, this fact relates to the previous result regarding the ℓ1s

loss function, where the U-net performs better than the sub-

pixel structure. It shows that the subpixel CNN can grasp the

inner structure of the image better and the ℓ1- and ℓ1s-type

losses training the networks are not directly the best measures

for perceptually correct metrics.

D. Comparison of 3-D Segmented Images

The quantitative results of the segmentation can be seen

in Table II. The CBCT images and the results of the four

enhancement methods were compared to the µCT images. In

the table the averages of the absolute results on the four test

teeth are shown.

The subpixel method clearly improved all the measures,

which is most conspicuous with the difference of the volumes

and mean of differences. The U-net gave better results too,

but these were less considerable. The SRR techniques could

slightly enhance some of the measures (see the Feret diameter

for the ℓ2 Dice coefficient for the TV method), but gave worse

results than the CNN techniques.

As the quantitative results showed the subpixel method as

the best technique, it was chosen for 3-D-visualization. The

segmented canal structures of the CBCT-µCT and subpixel-

µCT volume pairs were compared. Fig. 7 shows the two teeth



Fig. 6. Result of SR methods on different slices from the test set. On the left of the first column the type of the tooth and the depth of the slice from
the apex of the root is displayed. The columns stand for the four enhancement methods along with the original CBCT and µCT images. The enhancement
was carried out after background-removal. It can be observed, that the SRR methods are tending to overestimate the size of the canal. In many cases the
U-net shows a morphologically different shape. The result of the subpixel CNN is the most similar to the ground truth, as the metrics in Table I suggest. A
2 mm-scalebar is displayed on the µCT images. The display range is stretched to [0,1].

TABLE II
AVERAGE VALUES OF CANAL SEGMENTATION METRICS

from the test set with a color bar indicating the differences

between the segmentation pairs. It can be seen that on the

apical side of the root, where the diameter is smaller making

the imaging and image segmentation more difficult, the deep

learning technique estimated the structure more precisely. On

the molar tooth a thinner lateral canal could be reconstructed.



Fig. 7. Volumetric segmentation of the root canal on the test set (an upper
incisor, a lower premolar tooth, and a lower molar). The colored area shows
the difference between CBCT and µCT (on the left) and µCT segmentations.
The highlighted areas show the apical end of the root, where the precision of
the segmentation is more important during root canal treatment.

Similarly to Section III-B, where the performance metrics

showed the CNN methods to be superior to SRR methods

despite the lower contrast, the metrics here show that the

segmentation was not affected by the lower contrast of the

CNN methods.

IV. CONCLUSION

In this paper, two different deep-learning-based SR meth-

ods were implemented for dental CT image enhancement.

The techniques showed better results than state-of-the-art

reconstruction-based SR approaches both in terms of quality

metrics and subsequent image-segmentation-based analysis. It

has been observed that the ℓ1s loss function of the network

is not directly the best measure for perceptually correct met-

rics like the SSI, IFC, or PNSR. In future work, the efficiency

of different loss-functions and adversarial networks could be

investigated in this regard. Further progress could be achieved

by implementing networks with 3-D inputs, where information

from neighboring slices could improve the training. Another

interesting perspective of this paper is the application to phan-

tom [53] or in vivo CBCT data, where the spatial resolution

is further degraded compared to extracted teeth.
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