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Abstract. During the Last Glacial Maximum (LGM), a very
cold and dry period around 26.5–19 kyr BP, permafrost was
widespread across Europe. In this work, we explore the pos-
sible benefit of using regional climate model data to im-
prove the permafrost representation in France, decipher how
the atmospheric circulation affects the permafrost boundaries
in the models, and test the role of ground thermal contrac-
tion cracking in wedge development during the LGM. With
these aims, criteria for possible thermal contraction crack-
ing of the ground are applied to climate model data for the
first time. Our results show that the permafrost extent and
ground cracking regions deviate from proxy evidence when
the simulated large-scale circulation in both global and re-
gional climate models favours prevailing westerly winds. A
colder and, with regard to proxy data, more realistic ver-
sion of the LGM climate is achieved given more frequent
easterly winds conditions. Given the appropriate forcing, an
added value of the regional climate model simulation can be
achieved in representing permafrost and ground thermal con-
traction cracking. Furthermore, the model data provide evi-
dence that thermal contraction cracking occurred in Europe
during the LGM in a wide latitudinal band south of the proba-
ble permafrost border, in agreement with field data analysis.
This enables the reconsideration of the role of sand-wedge
casts to identify past permafrost regions.

1 Introduction

Permafrost is an important component of the climate sys-
tem and is particularly sensitive to variations in climate. Per-
mafrost is defined as ground – including soil, rock, ice, and
organic material – that remains at or below 0 ◦C for at least
2 consecutive years (e.g. van Everdingen, 2005). In recent
decades, thawing of permafrost soils has affected many high-
latitude regions, and thawing is most likely to accelerate in
the near- and long-term future (IPCC, 2013, 2019; Harris
et al., 2009). While enhanced greenhouse gas forcing leads
to warming temperatures and, thus, to permafrost thawing,
the thawing itself leads to the release of greenhouse gases
that were previously bound within the frozen soils. There-
fore, the greenhouse effect is enhanced and leads to further
warming of the climate in a positive feedback (e.g. IPCC,
2019; Liu and Jiang, 2016a; Schuur et al., 2015).

Current climate model simulations project a large range of
uncertainties regarding the decrease in permafrost areas (e.g.
IPCC, 2019; Schuur et al., 2015). The models are calibrated
for present-day conditions, under which they are well tested.
However, the responses of the models to the same forcing
vary by several orders of magnitude (e.g. Braconnot et al.,
2012; Cleator et al., 2020; IPCC, 2013, 2019). It is therefore
necessary to evaluate the climate models under a wider range
of climate conditions. This can be achieved by simulating
past climates and comparing the results with proxy evidence
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from Quaternary sequences (Braconnot et al., 2012; Harrison
et al., 2015; Smerdon, 2012).

During the Last Glacial Maximum (LGM; Clark et al.,
2009; Mix et al., 2001), corresponding to around 26.5–
19 kyr BP, huge ice sheets covered large parts of the North-
ern Hemisphere, modifying the surface albedo and orogra-
phy (Hughes et al., 2015; Ullman et al., 2014), and enhanced
sea ice cover modified heat fluxes between the ocean and at-
mosphere (Flückiger et al., 2008). During the coldest phase
of the LGM, the sea level was about 130 m lower than to-
day (Lambeck et al., 2014) and the greenhouse gas con-
centrations were at a historical minimum with values less
than half of present-day concentrations (Clark et al., 2009;
Monnin et al., 2001). Lower greenhouse gas concentrations
favoured the growth of C4 over C3 plants (Prentice and Harri-
son, 2009), although only C3 plants have actually been iden-
tified in European loess (Hatté et al., 1998, 2001). Globally,
this hampered the development of trees (Woillez et al., 2011),
resulting in less-productive terrestrial ecosystems and more
open vegetation (Bartlein et al., 2011). Ultimately, this in-
duced easily erodible soils, whose contribution to the dust cy-
cle increased (Prospero et al., 2002; Ray and Adams, 2001).
These boundary conditions and forcing led to a substan-
tially different climate than today. In general, the LGM was
a colder, drier, and windier period in Earths’ history com-
pared with the recent climate (e.g. Annan and Hargreaves,
2013; Bartlein et al., 2011; Löfverström et al., 2014). The
global and annual mean surface air temperatures were about
4 ◦C colder than today, with differences reaching up to 14 ◦C
close to the LGM ice sheets in areas such as central Eu-
rope (e.g. Annan and Hargreaves, 2013; Bartlein et al., 2011;
Clark et al., 2009; Pfahl et al., 2015; Ludwig et al., 2017).
The atmospheric circulation in the North Atlantic region var-
ied considerably from the current conditions, mainly due to
the direct influence of the altered topography by ice sheets
(Justino and Peltier, 2005; Merz et al., 2015). A planetary
large-scale atmospheric wave with an amplitude much larger
than today was induced, with a deep trough downstream
of the Laurentide ice sheet. This led to a generally more
zonal orientation of the North Atlantic jet stream (Löfver-
ström et al., 2014). Additionally, the jet was enhanced and
its position was shifted southward (e.g. Li and Battisti, 2008;
Merz et al., 2015; Pausata et al., 2011). The storm track dur-
ing the LGM evolved accordingly (e.g. Löfverström et al.,
2014; Ludwig et al., 2016; Raible et al., 2021), and extreme
cyclones were more intense and characterised by less pre-
cipitation (Pinto and Ludwig, 2020). Thus, cyclones were
able to trigger more frequent dust storms during the LGM
(Antoine et al., 2009; Pinto and Ludwig, 2020; Sima et al.,
2009). Besides these dust storms, easterly winds induced
by an anticyclone over the Fennoscandian ice sheet (FIS)
were another important factor for the deposition of loess in
central and western Europe (Krauß et al., 2016; Schaffer-
nicht et al., 2020; Stevens et al., 2020) as well as westerly

to north-westerly winds (e.g. Renssen et al., 2007; Schwan,
1986, 1988).

At the same time, adjacent areas south of the FIS were
widely affected by permafrost (Kitover et al., 2013; Lev-
avasseur et al., 2011; Saito et al., 2013; Vandenberghe et al.,
2014; Washburn, 1979). The past permafrost distribution is
usually inferred from the occurrence of a variety of fos-
sil periglacial features, among which ice-wedge pseudo-
morphs are the most reliable and widespread (e.g. Bertran
et al., 2014; Huijzer and Isarin, 1997; Péwé, 1966; Van-
denberghe, 1983; Vandenberghe et al., 2014). Ice wedges
develop within perennially frozen ground, when the tem-
perature drops quickly and the ground experiences thermal
contraction cracking. Annual frost cracks that reach down-
ward into the permafrost are a few millimetres wide. They
get filled with snowmelt that freezes into ice veins. Re-
peated cracking over years at the same location adds ice
veins that constitute ice wedges (e.g. Harry and Gozdzik,
1988; Murton, 2013). Ice-wedge pseudomorphs observed
from the LGM in Europe were formed when the ice melted
and the cavities were filled by collapsing soil materials. To-
day, ice wedges are mostly active in continuous permafrost
environments (Fortier and Allard, 2005; Kokelj et al., 2014;
Matsuoka et al., 2018; Péwé, 1966). Open cracks may also
be filled with wind-blown sand, which gives rise to sand
wedges, or by both ice and sand, which gives rise to com-
posite wedges. Active sand wedges are currently primarily
found in areas characterised by continuous permafrost and
limited snow and vegetation cover (i.e. the polar deserts), and
with local sources of aeolian sediments, such as in Antarc-
tica (Bockheim et al., 2009; Levy et al., 2008; Murton et al.,
2000; Péwé, 1959). Ground cracking is often restricted to
the active layer (i.e. the surface layer subjected to seasonal
freezing and thawing) in the areas underlain by “warm” per-
mafrost (i.e. at a temperature close to 0 ◦C) and south of the
permafrost border. Thin cracks develop and are referred to as
seasonal frost cracks. However, Wolfe et al. (2018) showed
that large shallow sand wedges can also develop in Canada in
areas with deep seasonal ground freezing (i.e. without peren-
nially frozen ground) in mineral soils close to dune fields,
which provide abundant sand to fill the cracks.

Thermal contraction cracking of the ground is the causal
factor that leads to ice (or sand) wedge growth. Ecological
factors such as type of vegetation cover and thick snow cover
often limit thermal contraction cracking, as they may prevent
the cooling of the ground. This is the case in current densely
vegetated areas that insulate the ground and trap snow (e.g.
shrub tundra and taiga; Kokelj et al., 2014; Mackay and Burn,
2002). Conversely, cracking can occur at low frequency in
mid-latitude, cool temperate regions in grounds devoid of tall
vegetation and snow, particularly in roads and airport run-
ways (Barosh, 2000; Okkonen et al., 2020; Washburn, 1963).

Many attempts at reconstructing the past permafrost dis-
tribution in Europe using field proxies have been performed
during the last decades. Based on the assumption that both
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active ice wedges and sand wedges are associated with con-
tinuous permafrost and possibly with widespread discontin-
uous permafrost (Burn, 1990; Romanovskij, 1973), some
of the earliest reconstitutions, as reported by Vandenberghe
et al. (2014), proposed that Europe was affected by per-
mafrost as far south as 43.5◦ N. However, a detailed anal-
ysis of periglacial features in France by Andrieux et al.
(2016b, 2018) demonstrated that typical ice-wedge pseu-
domorphs are exclusively found north of 47.5◦ N, whereas
sand-wedge casts occur at lower latitude at the periphery
of aeolian sand sheets. A correlation between wedge depth
and latitude has also been highlighted, which strongly sug-
gests that the southernmost shallow sand wedges developed
in regions where perennial ice could not form, i.e. without
permafrost or with sporadic permafrost. A similar pattern
has also been highlighted in China by Vandenberghe et al.
(2019). The sand wedges reach up to 1 m wide in south-west
France near 45◦ N in the periphery of cover sands. Optically
stimulated luminescence dating of the sand fill by Andrieux
et al. (2018) demonstrated that these large epigenetic sand
wedges resulted from repeated periods of growth throughout
the Last Glacial.

Multiple attempts have also been performed to infer the
LGM permafrost occurrence from climate model data. Liu
and Jiang (2016b) considered both direct and indirect meth-
ods. The simplest indirect method is based on the modelled
mean annual air temperature (MAAT). Threshold values for
permafrost occurrence were adapted according to ground
texture (Vandenberghe et al., 2012). However, this method
only provides a rough estimate of permafrost extension, as a
variety of other factors are known to impact ground tempera-
tures, including water content, vegetation, and snow cover.
Particularly, the insulating effects of snow and vegetation
cover may be responsible for an offset of up to 6 ◦C be-
tween the MAAT and the mean annual ground surface tem-
perature (MAGST). On the other hand, variations in ground
thermal conductivity (depending on texture and water con-
tent) may result in an offset of 2 ◦C between the MAGST
and the temperature at the top of permafrost (TTOP) (e.g.
Smith and Riseborough, 2002; Throop et al., 2012). A re-
fined indirect method to derive permafrost occurrence from
climate model data is the use of the surface frost index (SFI,
Nelson and Outcalt, 1987), which corresponds to the ratio be-
tween frost and thaw penetration depths and takes the effects
of snow in account. The SFI has been used in several stud-
ies, with only minor changes to the original method. For ex-
ample, monthly model output was used instead of summing
up daily air temperatures (e.g. Frauenfeld et al., 2007; Liu
and Jiang, 2016b). Slater and Lawrence (2013) weighted the
snow depth for each month to consider snow accumulation
effects, whereas Stendel and Christensen (2002) replaced the
surface air temperature with the temperature of their deepest
simulated ground layer (5.7 m deep) to investigate permafrost
degradation due to current global warming. The latter au-
thors pointed out the advantage of taking simulated ground

temperatures, where insulation effects of snow and vegeta-
tion cover are explicitly taken into account by the models,
and rendered empirical approaches redundant. For the direct
method, the modelled ground temperatures below 0 ◦C are
used to diagnose permafrost. The studies differ slightly with
respect to the depth of the considered ground temperatures
(e.g. Liu and Jiang, 2016a, b; Saito et al., 2013; Slater and
Lawrence, 2013).

Studies investigating the permafrost limits during the
LGM using global climate simulations have so far failed
to appropriately reproduce the permafrost extent as recon-
structed from field proxies (e.g. Andrieux et al., 2016b; Lev-
avasseur et al., 2011; Ludwig et al., 2017). However, there
is evidence for improvements when using the data from re-
gional climate simulations (e.g. Ludwig et al., 2017, 2019).
The aim of this study is (1) to explore the possible bene-
fit of using regional climate model data to improve the per-
mafrost representation over France, (2) to decipher how the
atmospheric circulation affect the permafrost boundaries in
the models and finally, (3) to test the role of ground thermal
contraction cracking in wedge development during the LGM.

In Sect. 2, we introduce the adaptions made to the regional
climate model to be compliant with LGM boundary condi-
tions and describe the global simulations that provide the ini-
tial and boundary conditions. Further, we give an overview of
the different methods used to derive the LGM permafrost dis-
tribution in France. In Sect. 3, we describe the general char-
acteristics and differences of the LGM climate based on the
global and regional climate model data and present the per-
mafrost and ground cracking distribution based on regional
climate model data. Finally, we discuss and summarise the
results in Sect. 4.

2 Data and methods

In this study, LGM simulations of two global climate mod-
els, namely MPI-ESM-P (MPI – Max Planck Institute; Jung-
claus et al., 2013; Stevens et al., 2013) and AWI-ESM (AWI
– Alfred Wegener Institute; Sidorenko et al., 2015; Lohmann
et al., 2020), are dynamically downscaled with the Weather
Research and Forecasting model (WRF; Skamarock et al.,
2008). Both global models share the same atmospheric com-
ponent ECHAM6 but different modules for the ocean. The
MPIOM (Marsland et al., 2003) is coupled within the MPI-
ESM-P, forming the well-established global climate model
that took part in several Coupled Model Intercomparison
Project (CMIP) phases. In the AWI-ESM, the FESOM ocean
model (Wang et al., 2014) featuring an unstructured mesh as
well as a multi-resolution approach is used with a relatively
high resolution of less than 30 km north of 50◦ N. The atmo-
spheric grid applied in the MPI and AWI experiments is T63
(roughly 1.9◦ spatially) with 47 unevenly distributed verti-
cal levels. The simulations follow either the Paleoclimate
Modelling Intercomparison Project Phase 3 (PMIP3) pro-
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tocol (MPI; Braconnot et al., 2012; https://wiki.lsce.ipsl.fr/
pmip3/doku.php/pmip3:design:21k:final, last access: 6 De-
cember 2021) or the PMIP4 protocol (AWI; Kageyama et al.,
2017), where the boundary conditions (solar constant, orbital
parameters, greenhouse gases) are set according to the best
estimate of the LGM boundary conditions. The AWI-ESM
has been used in the recent CMIP6/PMIP4 intercomparisons
(Brierley et al., 2020; Keeble et al., 2021; Kageyama et al.,
2021) and was applied for the LGM (Lohmann et al., 2020).
The ice sheet provided for PMIP3/CMIP5 LGM experiments
is a blended product obtained by averaging three different
ice sheet reconstructions: ICE-6G v2.0 (Peltier et al., 2015),
MOCA (Tarasov and Peltier, 2003), and ANU (Lambeck
et al., 2002). In contrast, the LGM topography in the AWI
experiment is configured based on the ICE6G reconstruction
(Peltier et al., 2015). For the recent climate, the pre-industrial
period (PI), corresponding to roughly 1850, is used as a refer-
ence. The simulations again follow the PMIP3 (MPI; Taylor
et al., 2012) or PMIP4 protocol (AWI; Eyring et al., 2016).

To account for model uncertainties, outputs from these
global LGM simulations are used to drive the regional WRF
simulations. The atmospheric boundary conditions are up-
dated every 6 h, and sea surface temperature (SST) and sea
ice cover are updated daily. Apart from the different forc-
ing, the set up of the two regional simulations is identical.
The coastlines, ice sheet extent, trace gas conditions, and
orbital parameters are adapted to LGM values according to
the PMIP3 protocol (Ludwig et al., 2017). Modifications to
the Alpine ice sheet are implemented according to Seguinot
et al. (2018). Land use and vegetation cover is taken from
the CLIMAP data set (CLIMAP Project Members, 1984). An
overview of the parameterisation schemes used in the WRF
simulations is given in Table 1. Most important for the repre-
sentation of the ground characteristics is the parameterisation
of the land surface, for which we used the unified Noah land
surface model (Tewari et al., 2004). Based on 19 different
soil types, various ground parameters (e.g. ground thermal
conductivity) are set and used for the calculations of ground
temperatures and moisture for each grid point. More details
can be found in studies such as Chen and Dudhia (2001) and
Niu et al. (2011) as well as references therein. The first model
domain covers large parts of Europe with a horizontal resolu-
tion of 50 km (see Fig. 1) and 35 vertical layers up to 150 hPa.
The integration time step is 240 s. The second, nested domain
covers southern parts of the FIS, the Alps, and France, where
the latter represents the target region to assess the LGM per-
mafrost limits in this study. Here, the horizontal resolution is
12.5 km and the integration time step is 48 s. The soil is sepa-
rated into four layers, with representative depths of 5, 25, 70,
and 150 cm. A total of 32 years are simulated for each global
forcing simulation. The first 2 years are used as a spin-up
phase and are excluded from further analysis. Thus, it is en-
sured that the atmosphere and soil properties and processes
are in equilibrium.

The permafrost distribution is derived from climate model
data using the three different methods described in Sect. 1.
For MAAT, the 2 m air temperature is considered. Threshold
values were derived from data compiled from studies in cur-
rent Arctic regions, where continuous permafrost is inferred
for MAATs<−8± 2 ◦C, whereas discontinuous permafrost
requires MAATs<−4± 2 ◦C (e.g. Smith and Riseborough,
2002; Vandenberghe et al., 2012). The surface frost index
(SFI) is based on the annual freezing and thawing degree-
days (DDF and DDT respectively) which refer to the sum of
daily air temperatures below or above 0 ◦C respectively:

SFI=
√

DDF/(
√

DDF+
√

DDT).

An SFI between 0.5 and 0.6 indicates sporadic permafrost,
between 0.6 and 0.67 indicates discontinuous permafrost,
and above 0.67 indicates continuous permafrost (e.g. Nel-
son and Outcalt, 1987; Stendel and Christensen, 2002). For
this indirect method, we use ground temperatures of the third
layer at 78 and 70 cm for the global and regional simulations
respectively. With the direct method, permafrost is inferred
when ground temperatures are at or below 0 ◦C.

Beyond the permafrost indices, ground cracking is as-
sumed to be possible when two conditions derived from field-
work by Matsuoka et al. (2018) are fulfilled simultaneously:
a daily mean soil temperature below −5 ◦C at a depth of 1 m
and a temperature gradient in the upper metre of the ground
below −7 ◦Cm−1. These minimum values might represent
shallow cracking within the active layer or seasonally frozen
layer and can be compared against the sand-wedge distri-
bution. Conditions for intensive and deep thermal contrac-
tion cracking (T100 =−10 ◦C and GAL =−10 ◦Cm−1) are
tested in regard to the ice-wedge pseudomorph distribution
in France. Due to higher ice content and higher organic car-
bon content of the ground, these values do not necessarily
correspond exactly to those of France during the Pleistocene.
We use the third soil layer again, with depths of 78 cm in the
global simulations and of 70 cm in the regional simulations.

To evaluate the model simulations, the distribution of ice-
wedge pseudomorphs and sand wedges after Andrieux et al.
(2016b) and Isarin et al. (1998) are considered.

3 Results

3.1 Global boundary conditions

In this section, we present the large-scale characteristics of
the LGM climate derived from global climate model data that
is used for dynamical downscaling in comparison with the
respective PI simulations. It is important to investigate the
climatic mean state and possible biases of the global projec-
tions in order to be able to interpret the regional simulations
accurately.

Both global models simulate colder annual mean SSTs un-
der LGM than under PI conditions (see Fig. 2a and b). For the
MPI model, a limited area with enhanced SSTs is simulated
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Table 1. Physical parameterisation schemes used for the regional simulations.

WRF namelist option Scheme and reference

Microphysics mp_physics= 4 WRF single-moment 5-class scheme;
Hong et al. (2004)

Radiation ra_sw_physics= 4 rrtmg scheme;
ra_lw_physics= 4 Iacono et al. (2008)

Surface layer sf_sfclay_physics= 1 Revised MM5 Monin–Obukhov scheme;
Jiménez et al. (2012)

Land surface sf_surface_physics= 2 Unified Noah land surface model;
Tewari et al. (2004)

Planetary boundary layer bl_pbl_physics= 1 Yonsei University scheme (YSU scheme);
Hong et al. (2006)

Cumulus parameterisation cu_physics= 1 Kain–Fritsch scheme;
Kain (2004)

Figure 1. WRF model domain orography with the LGM coastline (black line) and LGM ice sheet (pink line). (a) Domain 1 with 50 km
grid spacing; (b) domain 2 with 12.5 km grid spacing. Locations A and B on the map refer to the time series of soil temperatures and soil
temperature gradients shown in Fig. 7 and Fig. S6 in the Supplement.

over the North Atlantic. This does not match with proxy data
(MARGO Project Members, 2009) and is a known issue for
this and other PMIP3 models (e.g. Wang et al., 2013; Lud-
wig et al., 2016, 2017). The AWI simulation does not show
this warm anomaly over the North Atlantic and the SSTs are
generally colder. In the Arctic Ocean, the SSTs in the AWI
simulation are considerably higher than in the MPI simula-
tion. This can be explained by the sea ice cover, which is
lower in the AWI LGM simulation.

The analysis of wind speed at 300 hPa gives insights into
the jet stream structure and strength, which are dominant fac-
tors of the atmospheric large-scale circulation over the North
Atlantic/European region. In agreement with Li and Battisti
(2008), both models show a stronger jet under LGM con-
ditions compared with the simulations under PI conditions
(see Fig. 2c and d). This is particularly the case over the

North Atlantic, south-eastward of the Laurentide ice sheet,
where the annual mean wind speed is up to 14 ms−1 higher
for the LGM. On the other hand, the wind speed on both
the southern and northern flanks of the jet stream is actually
2–4 ms−1 weaker during the LGM, indicating a more con-
strained large-scale flow. Even though the wind anomalies
are quite similar for both global climate models (GCMs), the
actual structure is dissimilar: while the jet is less constrained
and deflected to the north for the MPI simulations, reaching
Europe at the latitude of Ireland, the jet stream in the AWI
GCM reaches Europe at the latitude of the Iberian Peninsula
and France and extends farther into the continent. In gen-
eral, the simulated winds speeds at 300 hPa in the AWI model
are weaker compared with the MPI model (not shown). The
zonal structure of the wind speed anomalies identified for
the AWI simulations is more similar to the ensemble mean

https://doi.org/10.5194/cp-17-2559-2021 Clim. Past, 17, 2559–2576, 2021
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Figure 2. (a) Distribution of annual mean SST differences between the global MPI simulations under LGM and PI conditions. Panel (b) is
the same as panel (a) but for the global AWI simulations. Panels (c) and (d) are the same as panels (a) and (b) but for the annual mean wind
speed at 300 hPa.

of CMIP5 models (e.g. Ludwig et al., 2016) than the MPI
anomaly pattern.

3.2 Climate of the regional simulations

Based on the GCM simulations, we obtain two different vari-
ants of the regional LGM climate in western Europe. The
results are shown primarily for the larger domain of the re-
gional simulations, as the climate of the high-resolution sim-
ulations yields a similar structure.

The annual mean 2 m air temperature is considerably
lower in the WRF-MPI than in the WRF-AWI simulation
(see Fig. 3). The biggest differences are identified near the ice
sheet margin – almost 10 ◦C in the respective annual means.
The sign and pattern of the differences are visible in all sea-
sons, but winter air temperatures clearly diverge most. For
the summer, air temperatures in both models are more sim-
ilar to each other. These differences can be partly attributed
to the snow cover: except for summer, almost the entire re-
gion is covered by snow in WRF-MPI, even though a snow
height of several metres is only reached over the FIS and
the Alpine region (see Fig. S3 in the Supplement). WRF-
AWI shows markedly higher snow accumulation over the ice
sheets with differences of more than 20 m compared with the
WRF-MPI simulation but generally shows less snow cover
in southern and central Europe. Differences amount to 20 %
less snow cover in WRF-AWI in the respective annual means
and to 40 % in both spring and winter. In summer, only the
ice sheets are snow covered in both simulations; thus, the
differences are negligible. Nevertheless, more precipitation
is simulated over Europe in the WRF-AWI simulation (see

Fig. 4). High precipitation amounts are either orographically
induced, as for precipitation over the Alps and over the FIS,
or they are associated with the moisture availability of the
North Atlantic.

The absolute annual mean wind field and the associated
differences are depicted in Fig. 5. Both simulations show
strongest winds south of the FIS in the respective annual
and winter means, although with a notably enhanced pat-
tern in WRF-MPI, where this also holds for each season.
These winds are easterlies/north-easterlies. In contrast, west-
erly winds from the North Atlantic are stronger in WRF-
AWI and, thus, transport heat and moisture towards Europe.
During winter, the westerly winds are directed towards the
centre of the domain in WRF-AWI, whereas the winds have
a more south-western component in WRF-MPI and are di-
rected towards the outside of the domain. In summer, both
the WRF-MPI and WRF-AWI simulations are characterised
by westerly winds from the North Atlantic. Again, winds
from the FIS are blowing south- and south-eastwards, but the
summer wind speeds are consistently weaker than in winter
for both simulations. These wind fields are induced by the
large-scale circulation in the global forcing simulations. In
fact, the northerly and easterly components predominantly
occur in the MPI simulation (Ludwig et al., 2016), whereas
southerly and westerly components occur more often in the
AWI simulation. This is in accordance with the jet structure
in both global simulations. As the influence of the ice sheet
is higher in the (global and regional) MPI simulations, this is
consistent with a partially drier and generally colder climate
in western Europe during the LGM.
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Figure 3. Distribution of 2 m air temperature in annual (a–c) and seasonal winter (d–f) and summer (g–i) means as simulated with the
regional WRF model with MPI forcing (a, d, and g) and with AWI forcing (b, e, and h) as well as their differences (c, f, and i). The black
line shows the LGM coastline, and the pink line denotes the LGM ice sheet.

3.3 Permafrost and ground cracking distribution

The permafrost distribution of the global and regional simu-
lations based on the SFI is depicted in Fig. 6. The permafrost
extent based on the AWI-ESM and WRF-AWI simulations
does not reach farther south than the ice sheet, apart from the
Alps in WRF-AWI. A modest increase in the permafrost area
is simulated by the global MPI simulation. Here, continuous
permafrost is still limited to the ice sheet, but sporadic per-
mafrost is slightly more widespread. The WRF-MPI simula-
tion shows a larger permafrost extent. In eastern Europe, the
distribution of ice-wedge pseudomorphs (Isarin et al., 1998)
strictly overlaps that of modelled continuous permafrost in
the selected layer with a depth of 70 cm. In western Europe,
field evidence for permafrost exceeds the modelled sporadic
permafrost to the south. The conditions for discontinuous and
sporadic permafrost are rarely fulfilled in all simulations.

The results of the direct method (see Fig. S4 in the Supple-
ment) using long-term mean annual soil temperatures agree

with the permafrost extent based on the SFI. However, the
different types of permafrost cannot be distinguished by this
method, leading to a permafrost line that corresponds to that
of the sporadic permafrost based on the SFI.

Permafrost estimations based on MAAT are limited to the
permanent ice areas during the LGM in all four simulations
(see Fig. S5 in the Supplement). Despite the different re-
gional climates, the reconstructed permafrost boundaries in
this study closely resemble each other for MAAT. The re-
gional climate model simulations show some additional per-
mafrost areas, which are related to higher orography, espe-
cially in the Alps, and, in WRF-MPI, also in the Pyrenees
and the Massif Central (see Fig. 1 and Fig. S2 in the Supple-
ment). These mountainous areas are not adequately resolved
in the global forcing simulations because of the coarse hori-
zontal grid spacing.

Conditions for thermal contraction cracking after Mat-
suoka et al. (2018) have been tested based on the global and
regional climate model data. Examples of how the soil tem-
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Figure 4. Distribution of total precipitation in annual (a–c) and seasonal winter (d–f) and summer (g–i) means as simulated with the regional
WRF model with MPI forcing (a, d, and g) and with AWI forcing (b, e, and h) as well as their differences (c, f, and i). The black line shows
the LGM coastline, and the pink line denotes the LGM ice sheet.

perature and the gradient develop over 2 consecutive years in
France (locations A and B in Fig. 1) are shown in Fig. 7. Time
series of the entire simulation periods for these locations can
be found in Fig. S6. The two minimum criteria, (a) ground
temperature at −1 m below −5 ◦C and (b) temperature gra-
dient in the upper metre of ground greater than −7◦Cm−1,
are fulfilled when both curves reach below the depicted ref-
erence line. In the WRF-MPI simulation (Fig. 7a, c), this is
the case several times in both years and locations, but it is not
the case in the WRF-AWI simulation.

For each grid cell, the number of days per year when the
thermal contraction cracking criteria (Matsuoka et al., 2018)
are fulfilled is translated into heat maps for each simulation.
The results of the minimum conditions for (shallow) crack-
ing are shown in Fig. 8, and the results of the conditions for
intensive and deep cracking are shown in Fig. S7 in the Sup-
plement. While the permafrost area is much smaller in the
global models than their respective regional counterpart, the
opposite is the case for thermal contraction cracking areas.

The global AWI simulation almost meets the boundaries of
sand-wedge occurrence. According to the global MPI simu-
lation, thermal contraction cracking would have been possi-
ble as far south as the Iberian Peninsula, where no field ev-
idence for it has been found so far. This can be associated
with the lower resolution of the global simulations. Here,
the Pyrenees are not resolved adequately in the model and
do not act as a natural barrier for cold air arriving from the
North, which can, thus, reach further south in the GCMs (see
Fig. 1 and Fig. S2 in the Supplement). As for the permafrost
distribution, the possible thermal contraction cracking occur-
rence is also poorly represented in WRF-AWI and is not able
to explain the occurrence of wedges in middle and southern
France. By contrast, the WRF-MPI simulation agrees well
with proxy evidence. Apart from two sand wedges in the
lower Rhône valley, the conditions for thermal contraction
cracking are found in the simulation in the area where the
features are found. This spatial coherence is further improved
in the high-resolution simulation (see Fig. 8e), which can
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Figure 5. Distribution of 10 m wind speed in annual (a–c) and seasonal winter (d–f) and summer (g–i) means as simulated with the regional
WRF model with MPI forcing (a, d, and g) and with AWI forcing (b, e, and h) as well as their differences (c, f, and i). The black line shows
the LGM coastline, and the pink line denotes the LGM ice sheet.

be primarily attributed to a higher resolved orography (see
Fig. 1b). Moreover, the conditions for deep ground cracking
are represented best in the regional WRF-MPI simulation.
The heat maps show that those conditions did not occur in
south-western France, which is in agreement with the field
data. In this area, the sand-wedge casts do not exceed a depth
of 2 m and ice-wedge pseudomorphs are not mapped at all
(Andrieux et al., 2016b).

4 Summary and discussion

In this study, we explore the benefit of using regional climate
model data for the delimitation of the LGM permafrost distri-
bution in comparison with field proxies in France. The main
findings can be summarised as follows:

1. The SFI is suitable to infer LGM permafrost from cli-
mate model data. The results based on the SFI are sup-

ported by the direct method, as the boundaries between
permafrost occurrence and absence, as indicated by the
SFI, fully match the permafrost border derived from the
annual mean ground temperature. Among the models
used, the SFI-based permafrost extent of the regional
WRF-MPI simulation best agrees with proxy data and
is clearly improved compared with its global counter-
part.

2. The thermal contraction cracking may have occurred
much further south than the simulated permafrost lim-
its, in a context of low and sparse vegetation. The south-
ern extent of sand wedges and that of ice-wedge pseu-
domorphs in France as delineated by Andrieux et al.
(2016b) fit well with the boundaries of LGM thermal
contraction cracking derived from the regional WRF-
MPI simulation based on the criteria for shallow and for
deep cracking after Matsuoka et al. (2018) respectively.
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Figure 6. Permafrost distribution based on the surface frost index (SFI) at approximately 70 cm depth as simulated by the global MPI (a)
and the global AWI (b) simulations and their respective regional counterpart (c and d). Ice-wedge pseudomorphs, composite wedges, and
sand wedges from Andrieux et al. (2016) and Isarin et al. (1998) are denoted by the purple, grey, and red triangles respectively. The black
line shows the LGM coastline, and the pink line denotes the LGM ice sheet.

In contrast, the global MPI simulation does not resolve
orographic features (e.g. the Pyrenees and the Rhône
Valley) sufficiently, leading to a possible southward air-
flow transporting cold air across France to Spain, and
allows ground cracking to occur at excessively low lati-
tudes.

3. The obtained estimates for the possible location of per-
mafrost is consistent with the hypothesis proposed by
Andrieux et al. (2016b, 2018), who suggest that sand
wedges did not exclusively form in permafrost areas
during the LGM but also developed within deep sea-
sonally frozen ground. Contrary to what occurs today
in large Arctic areas underlain by permafrost, where
ground insulation is limited by dense vegetation (shrub
tundra, taiga) and snow cover prevents ground crack-
ing and limits the growth of ice wedges (existing ice
wedges that have formed in relation to different climatic
or ecological conditions do not melt but are dormant),
ice-wedge growth in permafrost areas in France during
the LGM was rapid because thermal conditions lead-
ing to ground cracking occurred with high frequency.
Large ice wedges (which after thawing developed into
recognisable pseudomorphs) would have formed in per-
mafrost where it was cold enough in winter to crack.

Simulations show that periods of winter ground temper-
atures below −10 ◦C at 1 m depth could occur in the
discontinuous and sporadic permafrost zone, suggest-
ing that thermal contraction cracks were possibly not
restricted to the active layer but could propagate into
the permafrost in these areas leading to the development
of ice wedges. The regional WRF-MPI simulations best
match the proxy-based permafrost reconstruction. The
agreement with the proxies is better in eastern Europe,
even though the availability of field data remains scarce
in that region compared with western Europe. The pres-
ence of ice-wedge pseudomorphs in northern France ac-
tually shows that permafrost must have extended at least
150 km further south than simulations suggest.

The consideration of two global models enables the quan-
tification of uncertainties associated with the large-scale flow
under LGM conditions. The global MPI and AWI simula-
tions differ in their atmospheric flow and jet structure. In the
AWI, the westerly flow dominates so that moisture and heat
are transported from the North Atlantic towards Europe. This
large-scale circulation is in good agreement with the multi-
model mean of the CMIP5/PMIP3 and CMIP6/PMIP4 mod-
els, whereas the MPI simulation exhibits a more northward
jet stream and suggests a stronger ice sheet influence through

Clim. Past, 17, 2559–2576, 2021 https://doi.org/10.5194/cp-17-2559-2021



K. H. Stadelmaier et al.: A new perspective on LGM permafrost boundaries in France 2569

Figure 7. Time series of the daily mean soil temperature and soil temperature gradient at locations A (model grid point 49.8◦ N, 2.49◦ E) and
B (model grid point 46.1◦ N, 0.33◦ E), as denoted in Fig. 1, simulated in WRF-MPI (a and c) and in WRF-AWI (b and d) for 2 consecutive
years. Blue lines show the development of the soil temperatures in layer 3 (70 cm). When the temperatures fall below −5 ◦C, the first
condition for thermal contraction cracking after Matsuoka et al. (2018) is fulfilled, marked with blue shading and the reference line. The
soil temperature gradient between the first layer (5 cm depth) and the third layer (grey shading) is only depicted when condition two after
Matsuoka et al. (2018) is fulfilled, with a gradient below −7 ◦Cm−1. Red lines indicate the coincidence of the two conditions.

prevailing north- and north-easterly winds (Kageyama et al.,
2021; Ludwig et al., 2016). Considering that the regional
WRF-MPI simulation is largely in agreement with proxy ev-
idence for both the permafrost and ground cracking extent,
we assume that the large-scale circulation of the LGM is re-
flected more accurately in this simulation. For wind and air
pressure, only indirect proxy evidence currently exists, e.g.
the reconstruction of easterly wind directions from sediments
across the European loess belt (Dietrich and Seelos, 2010;
Krauß et al., 2016; Römer et al., 2016). Because of the drier
conditions with less vegetation and higher wind speeds, dust
events occurred frequently during the LGM. This is reflected
by the thick loess deposits in western and central Europe,
which form the European less belt (e.g. Lehmkuhl et al.,

2016). Recent studies similarly support the hypothesis that,
besides individual cyclone events, easterly winds induced by
a semi-permanent anticyclone over the FIS were an impor-
tant component for the glacial dust cycle (e.g. Raible et al.,
2021; Schaffernicht et al., 2020; Stevens et al., 2020).

Overall, the new regional climate simulations largely rec-
oncile the field data and enable the reconsideration of the sig-
nificance of ice-wedge pseudomorphs and sand-wedge casts
for understanding past climate variations. Field data still sug-
gest a wider extension of permafrost in western Europe than
shown by the simulations; however, analysing the southern
extent of thermal contraction cracking completes the picture.
Various factors may account for a remaining gap between
proxy and model data. These factors include the following:
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Figure 8. Heat maps of the mean number of days per year when the minimum conditions for thermal contraction cracking after Matsuoka
et al. (2018) are fulfilled for each grid box in the global MPI (a) and AWI simulations (b), for the first domain of the regional WRF-MPI
(c) and WRF-AWI (d) simulations, and for the second domain in WRF-MPI (e) and in WRF-AWI (f). Ice-wedge pseudomorphs and sand
wedges from Andrieux et al. (2016) are highlighted using cyan and red triangles respectively, only when located in France. The black line is
the LGM coastline, and the grey line denotes the LGM ice sheet.

1. The ground thermal conductivities used in the models
may not be perfectly adequate. For fine-grained soils
such as loess (in which many ice-wedge pseudomorphs
have been reported), this could lead to a slightly colder
ground temperature, although this effect is assumed to
have been minor.

2. Snow depth and snowpack properties (e.g. Royer et al.,
2021) are very sensitive factors for permafrost, and
some snow processes are not considered in the mod-
els. This may explain some of the discrepancies be-
tween field data and simulations. Snow sweeping by the
wind at some sites, especially on plateaus, may have
led to local permafrost development. However, it should
be mentioned that pseudomorphs have been described
in the Last Glacial floodplains in the Paris Basin (e.g.

Bertran et al., 2018), i.e. in places that are favourable to
snow accumulation a priori.

3. Data from loess sections in northern France (Antoine
et al., 2003, 2014) and Germany (Meszner et al., 2013)
show that the main phases of ice-wedge development
occurred between 30 and 24 ka. This period, called the
Last Permafrost Maximum (LPM, Vandenberghe et al.,
2014), covers short and very cold events, which re-
sulted in wider permafrost extension than during the
LGM sensu stricto. However, boundary conditions for
the simulations are only known accurately at 21 ka.

To conclude, the combination of the well-established per-
mafrost index SFI and the criteria for thermal contraction
cracking by Matsuoka et al. (2018), both based on regional
climate model data, provides new possibilities for the esti-
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mation of the permafrost extent and the interpretation of ice
and sand wedges, especially for palaeoclimate applications.
In this context, the use of regional climate model simulations
with a highly resolved orography is clearly beneficial (e.g.
Ludwig et al., 2019) and should be considered for regions
other than western Europe.
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