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Stability and optimal forcing analysis of a wind turbine wake:

comparison with POD

Giovanni De Cillis1,2,4,∗, Stefania Cherubini1, Onofrio Semeraro3, Stefano Leonardi2,
Pietro De Palma1

Abstract

Understanding the dynamics and generation of coherent structures in wind-turbine wakes
is crucial for efficiency improvement of wind farms, which will most probably represent one
of the main renewable power generation sources in 2050. In this paper, we investigate the
origin of such coherent structures by performing modal and non-modal stability analysis of
the mean flow downstream of a wind-turbine rotor. The database consists of large-eddy-
simulation results. Bi-local linear-stability and optimal-forcing analyses are performed
at several wake’s cross-sections. Most unstable perturbations are compared with the
most energetic coherent structures recovered by the proper orthogonal decomposition
(POD) analysis, showing a good agreement close to the rotor. Further downstream,
these modes are overtaken by others with wavenumbers departing from those of the main
POD modes. However, optimal-forcing analysis shows that asymptotically stable modes
can be amplified by more than one order of magnitude via quasi-resonance mechanisms,
bypassing the growth of the most unstable modes in the far wake. This suggests that
the most energetic structures are originated by modal instabilities, which trigger quasi-
resonance mechanisms in the far wake, determining the emergence of specific frequencies
in the turbulent flow. These findings are crucial for designing efficient control systems to
optimize wind farm performance.

Keywords: Wind turbine wake, Bi-local stability analysis, Resolvent analysis, Proper
Orthogonal Decomposition (POD), Large Eddy Simulation (LES)
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Nomenclature2

α Streamwise wavenumber3

λ Tip-speed ratio4

u Nondimensional instantaneous velocity vector5
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u′ Incoherent nondimensional velocity vector6

Ω Nondimensional angular frequency of the rotor7

ω Temporal wavenumber8

u Time-averaged nondimensional velocity vector9

ũ Coherent nondimensional velocity vector10

D Diameter of the turbine11

m Azimuthal wavenumber12

p Nondimensional pressure13

Re Reynolds number14

U∞ Dimensional uniform velocity at the inflow15

1. Introduction16

Achieving the Paris climate goals needs a significant acceleration in the exploitation17

of wind and solar energy, which will most probably represent the main renewable power18

generation sources in 2050. It is expected that wind power alone would provide about19

35% of the total electricity needs [2], corresponding to a production of about 6000 GW ,20

becoming the main power generation source. Such a transformation is possible only21

through a significant increase of the installed wind power. In fact, the wind-energy share22

of electricity capacity was about 7, 9%, 8, 5%, 9, 6% in 2018, 2019, 2020, respectively,23

corresponding to 564 GW , 622 GW , 733 GW [3]. Annual net wind power additions24

were about 58 GW in 2019 and 111 GW in 2020. Therefore, about 180 GW of average25

power addition per year would be needed in the future to meet the Paris goal. The global26

LCOE for onshore wind plants is estimated to fall to 30 − 50 USD/MWh by 2030 and27

20− 30 USD/MWh by 2050 [2]. Instead, the LCOE of offshore wind plants should drop28

to an average of 50 − 90 USD/MWh by 2030 and 30 − 70 USD/MWh by 2050 [2, 4].29

However, the current rate of growth of new wind-energy installed power is not sufficient30

to meet the Paris climate goals. Due to construction and supply chain delays related to31

the effects of Covid-19, some Countries have even reduced their capability of capacity32

addition (China, for instance, installed 30% less onshore wind capacity in the first half33

of 2020) [1]. Innovation is needed both for the single turbine technology and for the34

farm optimization. Concerning the single turbine, the increase of rotor diameters and35

hub heights will likely lead to an average capacity of 5 − 6 MW by 2035 in the case of36

onshore applications (from an average of 2.5 MW in 2019); these turbines would have di-37

ameters of 160−170 m. In the case of offshore installations, the single wind power would38

achieve 15 − 20 MW within 2035 (from the actual average capacity of about 6 MW ),39

corresponding to diameters of about 230− 250 m [53]. Moreover, the optimization of the40

farm design and its control with respect to the wind conditions is crucial to guarantee41

high efficiency, flexibility and security of the power generation, leading us to the topic of42

the present work, in particular with reference to the turbine wake control.43
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Large wind farms are constituted by hundreds of turbines, a great part of which oper-44

ates in the wake of other turbines. The presence of upwind turbines induces velocity45

deficit and oscillations in the incoming flow which produce power losses and fatigue blade46

loading [7, 45]. For preventing these shortcomings, turbines and farms should be oppor-47

tunely designed to reduce, when possible, the generation of low-frequency oscillations,48

such as the wake meandering phenomenon [54], and to accelerate wake recovery. Thus,49

understanding the dynamics of coherent structures in wind turbine wakes is crucial for50

the design and efficiency improvement of wind farms. The dynamics of coherent struc-51

tures in the wake of a wind turbine has been analysed in detail in the literature using52

the proper orthogonal decomposition (POD) technique [43, 10] applied to numerical or53

experimental data. VerHulst and Meneveau [49] applied this technique to the study of54

a wind farm. They found that streamwise counter-rotating rolls, which generate ejec-55

tion and sweep regions, are the dominant coherent structure within the flow. Other56

authors applied POD analysis to study the wake of a single wind turbine. Bastine et57

al. [9, 8] performed two-dimensional POD analysis using large eddy simulation (LES)58

of the wake of a wind turbine modeled by an actuator disk, impinged by an incoming59

turbulent atmospheric boundary layer. A similar two-dimensional POD analysis carried60

out by Sorensen et al. [44] provided POD modes with distinct spatial structures, such as61

monopole, dipole, quadrupole and hexapole structures. The most energetic POD modes,62

displaying a dipole structure around the rotor perimeter, are found to govern the very63

large scale motion of the wake, often referred to as wake meandering. Debnath et al.64

[17] used three-dimensional POD analysis to study the dynamics of a single wind-turbine65

wake. They carried out LESs using the actuator-line technique to simulate the rotor, and66

the immersed-boundary method to include the tower and nacelle. Several POD modes67

with different energy content, mostly representing instabilities of the tip vortices, but also68

the interaction between the rotor wake and the vortex shedding from the turbine tower,69

have been detected and used to build a reduced order model.70

Despite extracting the most energetic flow structures, POD analysis does not provide71

a deep insight on the physical origin of coherent structures. On the other hand, linear72

stability analysis of time-averaged mean flows has proven to be a powerful tool able to pre-73

dict the low-frequency oscillations in statistically stationary turbulent flows. By means of74

a ’local’, one-dimensional stability analysis carried out in the vicinity of the wind-turbine75

rotor, Iungo et al. [24] found highly unstable eigenmodes with temporal frequency typical76

of the wake meandering and associated with small azimuthal wavenumbers. A similar77

one-dimensional analysis has been then performed by Viola et al. [52] adding different78

eddy viscosity models to take into account the turbulent diffusion of perturbations. This79

analysis provided eigenspectra with maximum growth rate at temporal and azimuthal80

wavenumbers corresponding to those typical of the wake meandering phenomenon. The81

influence of turbulence intensity and blade aerodynamics on the hub-vortex instability82

frequencies and related flow structures has been studied in references [6, 5] using a model83

mean flow. Viola et al. [51] have carried out a two-dimensional stability analysis in84

the cross-planes close to the rotor of a model wind turbine immersed in an atmospheric85

boundary layer, finding once again unstable modes with frequencies typical of the hub-86

vortex instability. More recently, Ferrer et al. [20] used stability and sensitivity analysis87

on a wall-parallel plane passing through the hub center of a wind turbine rotor to design a88

passive way to control the primary wake destabilization at low Reynolds number. Focus-89
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ing the analysis on a two-dimensional configuration, they showed that adding a localised90

control force in flow regions identified by the sensitivity analysis can stabilise the wake.91

Although based on a simplified flow configuration at low Reynolds number, this work92

indicates that, for controlling the wake, one should modify the velocity gradient close to93

the turbine in a non trivial way, as predicted by sensitity analysis. Linear stability eigen-94

modes, together with their adjoint counterparts [21], are thus able to provide valuable95

information on the shape and location of active or passive means to control the spatial96

structure, recovery rate, and frequency content of the wake behind a wind turbine.97

Despite the importance of linear stability analysis for the identification and control98

of coherent structures, only a few stability studies, mostly focused on the hub-vortex99

instability, have been carried out on wind turbine flows. A detailed analysis of the main100

flow features found by modal and non-modal instability methods, and on their relevance101

with respect to the coherent structures that populate the turbulent flow, is still lacking102

in the literature. In fact, apart from the hub-vortex instability recovered by Iungo et al.103

[24] in the immediate vicinity of the rotor, the correspondence of other linear instabili-104

ties to energetic coherent structures extending towards the far wake region has not been105

investigated yet. Moreover, the possible relevance of non-modal stability mechanisms,106

able to provide a strong amplification of some particular perturbations, in the dynamics107

of coherent structures in wind turbine wakes, has not been assessed yet. Non-modal108

mechanisms such as the amplification of harmonic forcing at particularly receptive fre-109

quencies, can have a strong relevance in the development of coherent structures within the110

wake. In fact, non-modal amplification mechanisms may allow a fast transfer of energy111

from the mean flow to some waves having particularly receptive frequencies, allowing112

the displacement of energy among different regions of the wake and strongly affecting113

wake recovery. The capability of resolvent (optimal forcing) analysis to identify the most114

energetic flow structures in asymptotically stable flows has been recently proven for dif-115

ferent flow configurations [28, 22, 42], and the importance of Reynolds stress modeling116

and forcing statistics has been highlighted [34, 47]. However, in our knowledge, resolvent117

analysis has never been performed on a wind-turbine wake, despite it might potentially118

provide a deep insight in the origin of the most energetic coherent structures developing119

into the wake, such as those recovered by POD analysis. Thus, a detailed analysis of120

the modal and non-modal stability of a wind-turbine wake, framed by a comparison with121

POD modes, will elucidate the link between the most energetic frequencies and structures122

developing in the wake and the energy amplification mechanisms originating them, finally123

providing a profound insight into their control.124

Towards this aim, in the present paper, we investigate in detail the modal and non-125

modal stability of the turbulent mean flow developing downstream of a wind turbine126

rotor, computed by LES using the actuator line technique to simulate the rotor. Since127

stability analysis aims at finding intrinsic oscillations of the flow, which arise even in128

the absence of ambient turbulence, the flow impinging on the turbine is considered to129

be laminar and uniform. Two-dimensional linear stability and optimal forcing analyses130

have been carried out at different cross-flow planes sufficiently far from the rotor, where131

the non-parallel effect are weak and can be neglected. The frequency content and spatial132

structure of the most amplified perturbations are then compared with the most energetic133

coherent structures recovered by POD analysis. This comparison will help understanding134

the physical mechanisms at the origin of the development of the particular flow structures135
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and wavenumbers of the most energetic POD modes.136

The paper is structured as follows. We present the numerical simulation in § 2 and137

the flow setting in § 2.1. The numerical dataset used as a benchmark for the stability138

analysis is introduced in § 3, and analysed by means of data-driven modal analysis in139

§ 3.1. In § 4, we introduce the linear modelling and the stability tools adopted (§ 4.1 and140

§ 4.2); results are discussed in § 4.3 and § 4.4. The paper finalises with conclusions in141

§ 5.142

2. Methodologies143

The Large Eddy Simulation (LES) approach is employed to compute the dynamics of
the wake developing behind a wind turbine. Starting from the Navier-Stokes equations
for incompressible flows, the governing equations for the filtered non-dimensional velocity,
u = (u, v, w)T , and the pressure, p, are obtained as

∂u

∂t
= − (u ·∇) u−∇p+

1

Re
∇2u−∇ · τ + F, (1a)

0 =∇ · u, (1b)

where τ represents the sub-grid scale stress tensor, and F represents the aerodynamic144

forces exerted by the turbine blades on the fluid modeled by the actuator line method145

(see [13], for instance). The quantities in Eq. (1) are non-dimensional with respect to the146

free-stream velocity U∞, the rotor diameter D and the kinematic viscosity of the fluid ν,147

the Reynolds number being defined as Re = U∞D
ν

. The isotropic part of the subgrid-scale148

stress tensor 1
3
τii is included in the modified filtered pressure, so that p∗ = p+ 1

3
τii, while149

the anisotropic part τ rij is modeled using the Smagorinsky model with constant Cs = 0.09.150

This choice has been widely used in similar test cases and validated against different151

subgrid scale models, showing a weak dependence of the wake dynamics (see Martinez-152

Tossas et al. [31] and Ciri et al. [14, 13]). The governing equations are solved using153

a second-order-accurate centered finite difference scheme using a staggered Cartesian154

grid, where streamwise, wall-normal and spanwise directions are indicated by x, y and155

z, respectively. For time integration, a hybrid low-storage third-order-accurate Runge-156

Kutta scheme is employed [35].157

2.1. Simulation layout158

The simulation layout is based on the experiments performed by Krogstad & Erik-159

sen [26], using a turbine model with a three-bladed rotor of diameter D = 0.894 m and160

hub height of 0.817 m. With respect to the reference case [26], we consider a setup more161

similar to that of a realistic wind turbine by extending the domain in the wall-normal162

direction and by removing the lateral walls with the aim of reducing the blockage ef-163

fect. The dimensions of the computational domain, in diameter units, are Lx = 12.5,164

Ly = 5 and Lz = 3, in the streamwise (x), wall-normal (y), and spanwise (z) directions,165

respectively. As sketched in figure 1, the rotor is located at 4 diameters from the inlet166

section, where a uniform velocity profile U∞ = 10 m/s, aligned with the rotor axis, is167

imposed. A radiative non-reflective boundary condition is employed at the outlet points168

with convection velocity C = 9 m/s [36]. No slip boundary conditions are imposed at169
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the bottom wall, whereas free slip is prescribed at the top wall. Periodicity is imposed170

along the spanwise direction. The Reynolds number is Re = 6.3 × 105. The computa-171

tional domain is discretized using an uniformly–spaced grid with 2048 and 512 points in172

the streamwise and spanwise direction, respectively. Along the wall-normal direction y,173

a stretched grid consisting of 512 points is used, with finer (uniform) spacing, equal to174

∆y = 0.006 diameter units, in the rotor-wake region. We impose a tip-speed ratio λ = 3175

following the experimental data reported in Ref. [26]. Thus, the dimensionless angular176

frequency of the rotor is equal to Ω = 2λ = 6, corresponding to a Strouhal number177

Str = Ω/2π = 0.9549.

Figure 1: Sketch of the computational domain.

178

Note that, for validation purposes, we have chosen a configuration in which the Reynolds179

number is lower than that of utility-scale turbines, and the inflow is laminar. Despite180

the influence of ambient turbulence on the development of the flow behind the turbine is181

not negligible [50, 33], the absence of inflow turbulence will allow us discriminating the182

presence of intrinsic stability modes in the turbine wake, from the oscillations that can be183

already present in the ambient turbulence. In Ref. [16], this numerical layout has been184

validated by means of a mesh convergence analysis, and used for assessing how the pres-185

ence of tower and nacelle impacts on wake recovery. The turbine is simulated with and186

without tower and nacelle and the proper orthogonal decomposition of the wake velocity187

fields allowed us to isolate the main coherent structures in the two cases. Moreover, we188

have verified that the structure and frequencies of the main POD modes is not strongly189

affected by the Reynolds number [15]. One snapshot of the streamwise velocity for each190
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Figure 2: Streamwise velocity contours in the x-y plane passing through the rotor axis, for the case with
(top frame) and without (bottom frame) tower and nacelle.

case is shown in Fig. 2. POD modes are analysed in terms of their contribution to mean191

kinetic energy flux within the wake and therefore to wake recovery. In the following,192

we provide a brief survey of the dataset considered in this investigation and include a193

summary of the main results which will be considered later as a guideline for the stability194

analysis195

3. Identification of coherent structures196

The numerical dataset is first analysed using POD in order to identify the coherent
structures dominating in the wind-turbine wake. The flow field is decomposed using a
set of orthonormal functions φj, providing a complete basis for each realization of the
stochastic process q(x, t). This can be expanded as

q(x, t) =
∞∑
j=1

aj(t)φj(x), (2)

aj(t) = 〈q(x, t),φj(x)〉 being the time coefficients of the expansion. The spatial modes
φ(x) are chosen such that the quotient

λ =
E{|〈q(x, t),φ(x)〉|2}
〈φ(x),φ(x)〉

, (3)

is maximized; in Eq. (3), 〈·, ·〉 denotes the inner product and E{·} is the expectation197

operator. Further details on the POD method can be found in Ref. [10]. In this work,198
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Figure 3: Convergence of the eigenvalues λ associated with the first 18 POD modes with respect to the
employed number of snapshots M.
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|u|

Figure 4: Snapshot of the flow field behind the wind turbine computed by LES: Q-criterion isosurfaces
(Q = 0.5) coloured with the velocity magnitude (see legend). The box with blue edges represents the
subdomain considered for the POD.
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(a) (b)

(c) (d)

Figure 5: Streamwise velocity contours of the 0th POD mode, in the y = 0 (top left), z = 1.5 (top right)
and x = 6.5 (bottom left) planes and three-dimensional plot of the isosurface u = 0.75 (bottom right).

POD of the spatio-temporal flow fields behind the rotor has been carried out over a dataset199

made of M = 2575 snapshots, after a thorough validation of the convergence of the POD200

modes with respect to the number of snapshots. Fig. 3 provides the convergence of the201

eigenvalues associated with the first 18 POD modes for different numbers of snapshots202

1400 ≤ M ≤ 2575. The first two modes converge very well already for the lowest value203

of M considered, but the remaining ones need a larger number of snapshots to be well204

approximated.205

The snapshots for the POD analysis are collected with a ∆t allowing for a 10 degrees206

rotation of the rotor. Thus, the dataset spans about 71 revolutions of the rotor blades.207

To allow a meaningful comparison with the stability analysis, the POD analysis has been208

carried out in a subdomain located in the far-wake, where the flow can be assumed to209

be approximately parallel. The inlet of the subdomain is set at a streamwise location for210

which the value of the coherent averaged kinetic energy drops below 3% of its maximum.211

According to this criterion, the resulting sub-domain extent, shown by the box in Fig. 4212

is [4.5 8.4] × [−0.8 0.9] × [0.3 2.7], in the x, y and z directions, respectively. We have213

verified that the results of the analyses are robust with respect to the choice of the214

threshold for determining the far wake region. In this subdomain, the velocities have215

been down-sampled using a 1:5 ratio with respect to the computational grid.216
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(c) (d)
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Figure 6: Streamwise velocity contours of the 1st POD mode in the same planes of figure 5 (a-c) and in a
three-dimensional visualization showing the isosurface of the streamwise velocity component of velocity
u = 0.1umax (d). The bottom plot represents the evolution of the associated temporal coefficient.
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Figure 7: Spectra of the 1st POD mode in time (top) and in the streamwise (middle) and azimuthal
(bottom) directions.

3.1. POD modes217

The POD method ranks the eigenvectors with respect to their energy content. The 0th218

POD mode provides the time-averaged mean flow as shown in Fig. 5. The wake is slightly219

asymmetric in the vertical (y, z) plane, and the near-wake flow rotates in the direction220

opposed to that of the rotor. The nacelle has been neglected, resulting in a nonphysical221

jet which develops at the center of the rotor for more than 3 diameters in the streamwise222

direction, and whose strength increases with the tip speed ratio [39]. However, in the far223

wake, the jet velocity gradient is smoothed out by the viscosity effect and the breakdown224

of the root vortex, as shown in the longitudinal planes provided in Fig. 5. The successive225

most energetic POD modes from 1 to 12 are paired: their associated eigenvalues are close226

to each-other and the time coefficients ai(t) have identical frequency spectra. The top227

frames of Fig. 6 provide the streamwise velocity contours of the 1st POD mode in the x−y228

and z − y planes containing the rotor axis, showing a clear set of tip vortices fading out229

towards the end of the domain. The tip vortices are rather coherent in the region closest230

to the rotor, as shown by the streamwise velocity contours in the x = 6.5 plane (Fig. 6c),231

but they begin to break down in the upper region of the wake towards the end of the232

computational sub-domain (Fig. 6d). The frequency content of the first POD mode is233

provided in Fig. 7, where the Fourier spectra in time and in the streamwise and azimuthal234

directions are shown, their wavenumbers being ω, α, and m, respectively. Since the mode235

is quasi periodic in time, as shown in Fig. 6 (e), the time spectrum has only one sharp236

peak at ω = 18, corresponding to three times the non-dimensional rotational frequency.237

The Fourier spectrum in the streamwise direction, resulting from the averaging of the238

Fourier spectra computed at different wall-normal and spanwise locations within the sub-239

domain, shows a clear peak at α = 20.92, corresponding to the tip-vortices pitch. In240

the azimuthal direction, the Fourier spectrum, resulting from the averaging of different241
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Figure 8: (Left) Fourier transform in time, streamwise and azimuthal directions of the 3rd (top), 5th

(middle) and 7th (bottom) POD modes. (Right) Streamwise frequency of the mode on the left for
different radii, averaged in the azimuthal direction. The dashed-dotted line indicates the locus of the
maximum amplitude of the Fourier modes for different values of α and radial position.
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(a)

(b)

(c)

Figure 9: Streamwise velocity contours of the 3rd (a) 5th (b) and 7th (c) POD modes in the x = 6.5
(left) and y = 0 (right) planes.
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spectra obtained for different radial and streamwise positions, peaks at the azimuthal242

wavenumber m = 3, corresponding to the number of blades of the rotor. The successive243

pairs of modes have lower frequencies both in space and time, as shown by the spectra244

in Fig. 8 (left column) for the 3rd, 5th and 7th POD modes (from top to bottom). Fig. 9245

provides the streamwise velocity contours of the same POD modes (from top to bottom,246

respectively), showing that they are mostly located in the tip-vortices region, and to a247

lesser extent, in the core of the wake, where radial gradients due to the central jet are248

present. These modes capture the convective instabilities developing in the regions of249

high shear of the far wake.250

One of these instabilities is the mutual inductance instability phenomenon investigated251

extensively by Sarmast et al. [40], which is characterized by a streamwise frequency252

about half the tip-vortex one. Here, the 3rd POD mode has the main temporal and253

streamwise wavenumbers equal approximately to half the tip-vortex ones, namely ω ≈ 8254

and α ≈ 9 (see the top left frame of Fig. 8). The radial distribution of the main streamwise255

wavenumbers of this POD mode, averaged on the azimuthal direction, provided in the top256

right frame of Fig. 8, shows that the main α peak is located at r ≈ 0.5, corresponding to257

the tip vortices. A weaker peak is found also at r ≈ 0, corresponding to the root-vortex258

system, associated to a slightly larger value of α. Similarly to the mutual inductance259

instability discussed by Ivanell et al. [25], these POD modes are able to produce an out-260

of-phase displacement of two consecutive tip vortices, leading to vortex pairing in the261

tip-vortex system, which promotes its break down.262

The 5th POD mode has a spatial structure similar to that of the 3rd mode, but is263

characterized by slightly smaller temporal and streamwise wavenumbers, namely ω ≈ 6264

and α ≈ 7. Moreover, the streamwise wavenumber appears to be only slightly dependent265

on the radial direction, being mostly localized in the outer part of the wake (r ≈ 0.5),266

as shown in Fig. 8. As it will be discussed in the following, this POD mode seems to be267

originated by a convective instability of the mean shear of the wake.268

The 7th mode presents a broader temporal and streamwise spectra, with two peaks269

at wavenumbers close to those of the previous modes. The bottom right frame of Fig. 8270

shows that both peaks are mostly localized at the wake shear layer. In particular, the271

two main streamwise wavenumbers are α ≈ 10.1 and α ≈ 6, and two equally strong peaks272

are recovered in time, with ω ≈ 4.7 and ω ≈ 8.9. The spatial structure of this mode is273

very close to that of the previous ones, suggesting a similar physical mechanism at their274

origin. Finally, it is important to remark that the main azimuthal wavenumber of all275

these POD modes is m = 1 (although the 7th mode presents also a peak for m = 2),276

confirming a strong similarity of the structure and physical origin of these modes.277

In the next section, we consider these results as a benchmark for the linear stability278

analysis; in particular, the most amplified spatial wavenumbers α at each of the cross-279

sectional planes are considered. The final goal is to verify to which extent the identified280

coherent structures are governed by linear mechanisms.281

4. Linear modeling of coherent structures282

We consider a linearization of the Navier-Stokes equations obtained by using a triple
decomposition of the velocity field as proposed by Reynolds & Hussain [38]

u(x, t) = u + ũ + u′. (4)
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The first term of the decomposition u is the mean flow obtained by long-time averaging
the flow field, whereas the remaining two terms describe the turbulent fluctuations; in
particular, within the context of the triple decomposition, using a phase average, 〈·〉, we
make a distinction between organized waves containing all coherent time-periodic large-
scale motions, ũ = 〈u〉−u and the remaining incoherent turbulent fluctuations with zero
phase average u′ (see § Appendix A). Here, we are interested in the dynamics of the
organized wave ũ, governed by the equation

∂ũ

∂t
= −u · ∇ũ− ũ · ∇u = −∇p̃+∇ ·

[
Re−1eff (∇ũ +∇ũT )

]
+ f , (5a)

0 =∇ · ũ, (5b)

where f represents the nonlinear term, i.e., f =∇· ˜̃uũ. Different assumptions on the latter
term lead either to stability analysis (§ 4.1) or optimal forcing analysis (§ 4.2). The frozen
eddy-viscosity approach is used for modelling the Reynolds stresses. Such an approach is

based on the effective Reynolds number Reeff =

(
1

Re
+ νt

)−1
, where the eddy-viscosity

term, νt, is a non-dimensional quantity dependent on the spatial coordinates. In this
work, νt is computed as

νt = −u′u′ : S

2S : S
, (6)

S =
∇u +∇uT

2
being the mean flow shear stress tensor. Further details on the compu-283

tation of the Reynolds stresses and derivation of the equations are given in § Appendix284

A. Fig. 10 provides the eddy-viscosity field on z − y planes at three different streamwise285

locations. It is noteworthy that the turbulent viscosity is concentrated in the wake region286

and increases moving downstream. Also, due to the limitations of the model employed for287

the Reynolds stress and to the assumptions introduced, the turbulent viscosity computed288

with Eq. (6) can be locally negative. In these regions viscosity is set to zero, then the289

viscosity field is filtered in order to remove non-physical discontinuities. In the following,290

we consider Eq.s (5) as starting point for the linear modelling.291

4.1. Two dimensional stability analysis292

Linearization of Eq.s (5) consists of neglecting the nonlinear term, f = ˜̃uũ. Projection
of the equations onto a divergence-free vector space provides

∂q

∂t
= Lq, (7)

L being the linearized phase-averaged Navier-Stokes operator projected onto the divergence-
free vector space and q is the vector of the state variables. The asymptotic time evolution
of an infinitesimal perturbation q of a given flow state is governed by the eigenspectrum
of L. Due to the very large dimensions of L after discretization of the linearized phase-
averaged Navier-Stokes equations, its leading eigenvalues cannot be easily obtained using
direct eigenvalue computation. The eigenvalue problem is made computationally afford-
able by using the quasi-parallel hypothesis, for which the mean flow is supposed to be
slowly varying in the streamwise direction. As shown in Fig. 11, providing the streamwise
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(a) (b) (c)

Figure 10: Turbulent viscosity νt at x = 3.5 (a), x = 4.5 (b), and x = 6.5 (c).

Figure 11: Time-averaged mean flow: iso-surfaces of the streamwise velocity component of the velocity
and iso-contours of the same component at different cross-sections.
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velocity component of the mean flow velocity at different cross-sections, the mean flow
is found to change slightly in the streamwise direction with respect to the other flow di-
rections, making this hypothesis appropriate for the considered flow case. Following this
rationale, we analyse the infinitesimal perturbations around the two-dimensional mean
flow u(y, z) introducing the ansatz

q(x, t) = q̂(y, z)ei(αx−ωt) + c.c., (8)

where q̂ is the Fourier-Laplace transform of q(x, t), c.c. is its complex conjugate, ω is the
complex temporal frequency, and α is the real wave number in the x direction. Replacing
the mean flow profiles and the ansatz (8) in the linearized system (7), the resulting
problem is cast as an eigenvalues problem

−iωq̂(y, z) = Lq̂(y, z), (9)

with eigenvectors q̂k(y, z) and eigenvalues ω = ωr + iωi, ωr and ωi being the growth rate293

and pulsation for each eigenvalue, respectively. Primitive-variable formulation is adopted,294

resulting after discretization in a linear operator L described by a (Ny ×Nz × 4)× (Ny ×295

Nz × 4) matrix. The Chebyshev collocation method is employed in the wall-normal (y)296

direction with a resolution of Ny = 75, whereas a Fourier discretization is used in the297

spanwise (z) direction with a resolution of Nz = 72 collocation points. Dirichlet boundary298

conditions are imposed at upper and lower walls, and periodic boundary conditions are299

applied in the spanwise direction. The same discretization is adopted for the resolvent300

analysis detailed in the next section.301

4.2. Resolvent analysis302

While linear stability analysis identifies the flow structures and frequencies subject
to exponential amplification, resolvent analysis establishes which kind of harmonic dis-
turbances are amplified due to non-modal or quasi-resonance mechanisms, despite the
system being asymptotically stable. We consider again the problem in Eq.s (5), where
the term including the non-linearities f is modeled by a harmonic forcing and the following
input-output linear problem arises

∂q

∂t
= Lq + f . (10)

The approach we follow here is the one proposed in reference [38] and pursued in ref-
erences [18, 23, 46] among the others, where the turbulent Reynolds stresses related to
the incoherent fluctuations u′ is included in the eddy viscosity model. An alternative ap-
proach consists of including in the external forcing also the instantaneous and averaged
Reynolds-stress perturbations, as shown in references [30, 19, 32]. The real frequency
ω ∈ R is introduced in the ansatz f = f̂eiωt, under the assumption that the eigenvalues
of L are confined to the stable half-plane; by Fourier transforming the state vector q, we
finally obtain the relation

q̂ = (iωI− L)−1f̂ , (11)

where R(ω) = (iωI− L)−1 is known as resolvent operator. Note that we consider a null
initial condition, without loosing generality. In Eq. (11), the forcing f̂ is unknown, but it
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can be identified by maximizing the quotient

R(ω) = max
f̂

‖(iωI− L)−1f̂‖E
‖f̂‖E

. (12)

The solution is associated to an optimization problem that can be solved by means of303

Singular Value Decomposition (SVD); the gain R is obtained from the singular values,304

while the pair of modes are associated to the forcing term and the corresponding frequency305

response. Further details on the resolvent analysis are provided in §Appendix B.306

4.3. Stability modes307

In this section, we perform two-dimensional mean-flow stability analysis on different308

cross-sectional planes along the streamwise direction. Two considerations are in order.309

First of all, as a mean-flow analysis is considered, the comparisons that we carry out be-310

tween the linear-model predictions and the turbulent flow generated by the wind turbine311

are mostly qualitative and needs to be assessed a posteriori. For this reason, we will312

consider the POD modes introduced in the previous section as a benchmark for the lin-313

ear analysis. From a theoretical viewpoint, the analysis of spectral POD (SPOD) modes314

would be more appropriate [29, 37]: in fact, a single POD mode can contain multiple315

flow structures with different frequencies, originated from different physical mechanisms.316

Moreover, recent works have shown that a relation exists between the spectral POD317

modes and the frequency response obtained from a suitable decomposition of the resol-318

vent operator [27, 48], under the assumption that the forcing harmonically drives the319

system at the different frequencies with equal spectral density (i.e. white noise). How-320

ever, SPOD requires a larger number of snapshots to achieve convergence with respect321

to POD. Due to this limitation, we still adopt the POD and recover the frequencies in-322

formation by means of Fourier transform during the post-processing for a quantitative323

analysis of its spectral content. A second aspect to be considered is the chosen ansatz,324

in which the streamwise wavenumber α is assigned; due to this hypothesis, the stability325

approach considered here can be regarded as local, as the two discretised coordinates are326

normal to the main direction of the flow [11].327

Fig. 12 provides the stability eigenspectrum computed for the cross-sections x = 3.5328

and x = 6.5, and different values of α ranging from α = 3 to α = 10. At x = 3.5,329

the spectrum shows branches of unstable modes for each value of α. A similar situation330

is obtained for the x = 6.5 plane and α < 8, while stable modes are found for larger331

values of α. The corresponding growth rate of the most unstable modes as a function of332

α are shown in Fig. 13(a) for x = 3.5, x = 4.5, and x = 6.5. It appears that by moving333

downstream of the rotor, the maximum growth rate decreases and is achieved at values of334

α progressively smaller, going from α ≈ 6 at x = 3.5 to α ≈ 3.5 at x = 6.5. In Fig. 13(b),335

we can observe that the angular frequency of the most unstable modes is proportional336

to the value of α imposed for the stability analysis, with the relation ωr ≈ α in all cases337

except at x = 6.5 when a change can be observed at α ' 8.25. We can conclude that338

stronger higher-frequency instabilities are predicted by the linear model in the vicinity of339

the rotor.340

The eigenvectors corresponding to the most unstable eigenmodes at x = 3.5, x = 4.5341

and x = 6.5 are shown in Fig. 14a-c. In the two closest planes to the rotor, the most342

unstable modes are radially modulated as shown by the alternation of positive/negative343
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Figure 12: Eigenvalue spectra at x = 3.5 (a) and x = 6.5 (b) for different values of α reported in the
legend.

(a) (b)

Figure 13: (a) Growth rates of the most unstable eigenmodes for different streamwise frequencies α. (b)
Temporal frequencies associated to the growth rates in (a).
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(a)

4.5 5 5.5 6 6.5 7 7.5 8

(b)
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(c)

Figure 14: Streamwise velocity component of the most unstable eigenmode for x=3.5 and α = 6 (a),
x=5.5 and α = 5.5 (b), and x=6.5 and α = 3.5 (c) in a z − y (Left) and x − z (Right) plane, after
reconstruction of the perturbation in the streamwise direction.
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(a) u ( ), ∂u
∂r ( ) at x = 3.5
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(b) u ( ), ∂u
∂r ( ) at x = 6.5

Figure 15: Mean-flow streamwise velocity profiles ( ) and corresponding radial derivatives ( )
at four azimuthal positions, θ = 0, π/2, π, 3π/2, corresponding to the right, bottom, left and top part of
the wake, respectively, in the cross-flow planes at x = 3.5 (a) x = 6.5 (b).
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Figure 16: Isosurface of streamwise velocity of the three-dimensional reconstruction of the most unstable
mode for (a) x = 3.5, α = 6, and (b) x = 6.5, α = 3.5.

(a) (b) (c)

Figure 17: Fourier transform in the azimuthal direction of the streamwise velocity component of the
eigenmode at x=3.5 and α = 6 (a), x=5.5 and α = 5.5 (b), and x=6.5 and α = 3.5 (c), all representing
the maximum growth rate in the considered plane.
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streamwise disturbances, mostly localized at r ≈ 0.5 and along the centerline r ≈ 0. A344

streamwise view of the u component of these modes is provided in the right frames of345

Fig. 14.346

Focusing on the most unstable modes at x = 3.5 and x = 4.5, we observe that their347

structure is mostly localized on the right region (with respect of an observer looking348

downstream). This asymmetry is attributed to the mean flow, characterized by different349

shear intensities in the azimuthal direction, as shown in Fig. 15 for four different azimuthal350

angles θ = {0, π/2, π, 3π/2} (varying counter-clockwise starting from the plane with y = 0351

and positive z, corresponding to θ = 0) at x = 3.5 and x = 6.5. In particular, Fig. 15352

shows that, in the plane closest to the rotor, the mean flow shear is less pronounced353

in the left part of the wake, whereas, in the right region of the wake, the streamwise354

velocity profile presents two inflection points in the radial direction, i.e. ∂2u/∂r2 = 0.355

At x = 6.5, despite an inflection point can be found as well, the radial shear is weaker356

and more uniform in both radial and azimuthal directions, probably due to the mean357

kinetic energy entrainment. Thus, the unstable mode has almost the same intensity at358

different azimuthal positions. All these features can be summarised by analysing the359

three-dimensional rendering of the modes in Fig. 16a-b, for x = 3.5, α = 6 and x = 6.5,360

α = 3.5, respectively; here, the most unstable mode at x = 3.5 shows streamwise-361

alternating and azimuthally-elongated patches following the mean-flow shear in the upper-362

right part of the wake, while the mode at x = 6.5 develops a double-helix structure.363

We consider now the POD modes analysed in Section 3.1. The first pair of modes,364

which capture the tip-vortex helices, is not considered. In fact, the tip vortices are365

”forced” by the rotor and do not emerge as an instability of the wake mean flow. By366

analysing the spectral content of the successive POD modes, we observe that the main367

streamwise angular frequency found in the 5th POD mode and in the second peak of the 7th368

POD mode (see the bottom frame of Fig. 8), α ≈ 6, is close to the streamwise frequencies369

of the most unstable modes found at x = 3.5 and x = 4.5, namely α = 6 and α = 5.5,370

respectively. The spatial structure of the u component of these two unstable modes is371

provided in the two upper right frames of Fig. 14, where it is possible to observe that372

the overall structure resembles the POD modes 3− 7. Moreover, a Fourier transform in373

the azimuthal direction, provided in Fig. 17, shows that the main azimuthal wavenumber374

of the most unstable mode found in the plane closest to the rotor coincides with that of375

the most energetic POD modes, namely, m = 1. Whereas, the most unstable mode for376

x = 6.5, found for α = 3.5, is characterized by main azimuthal wavenumber m = 2, and377

by structures of longer wavelength in the streamwise direction. Neither this wavenumber,378

nor the double-helix structure of this eigenmode, shown in Fig. 16, is recovered in the379

main POD modes. This is probably due to an insufficient length of the computational380

domain in the streamwise direction. In fact, the angular frequency α ≈ 3.5 corresponds381

to a wavelength λx = 2π
α
≈ 1.8. Since the unstable mode with α ≈ 3.5 emerges at382

x = 6.5, only one wavelength can be contained in this portion of the domain, which may383

be insufficient to capture unambiguously such an instability.384

4.4. Optimal forcing analysis385

In the previous section, we noticed that the most unstable mode found at x = 6.5 is386

not recovered by the POD. However, at the same location, the mean flow is linearly stable387

for α > 7.5. This allows us to complement the linear stability analysis with a resolvent388
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Figure 18: Eigenvalue spectrum for x = 6.5 and α = 9.

analysis, which enables to scrutinize the response of the system when harmonically driven389

by real frequencies and to identify the corresponding optimal forcing. In order to do so, we390

consider the main streamwise frequency that characterize the third POD mode, namely391

α = 9 (see the top frames of Fig. 8). Inspecting the corresponding eigenspectrum provided392

in Fig. 18, we notice that there are three modes lying very close to the neutral axis, whose393

spatial structures are shown in Fig. 19. The two of them characterized by a (slightly) lower394

angular frequencies are mostly localized in the region r ≈ 0, showing positive/negative395

streamwise disturbances alternating in the azimuthal direction. Whereas, the mode with396

highest temporal wavenumber is mostly localized in the r ≈ 0.5 region, showing a more397

complex flow structure. This correspondence between localization and wavenumber is398

consistent with what has been observed in the 3rd POD mode, being characterized by399

slightly larger wavenumbers in the root region with respect to the tip one (see the top400

right frame of Fig. 8). Moreover, Fourier transform in the azimuthal direction shows401

that all of these modes are characterized by main azimuthal wavenumber m = 1 (see402

right frame of Fig. 19). The azimuthal Fourier spectrum of mode 3 (see bottom right403

frame of Fig. 19) has a second peak with equivalent amplitude at m = 2 and a weaker404

peak at m = 4. As already noticed, the POD mode taken here as reference comprises405

different structures with a different localization and frequency. Therefore we attempted406

to reconstruct the POD mode by combining the three least stable modes mentioned above407

with coefficients c1 = 0.25, c2 = 0.15, c3 = 0.6 which have been chosen after some trials408

followed by comparison with the POD mode. Fig. 20 provides the streamwise velocity409

contours of this combination, which shows a strong resemblance with the overall structure410

of the third POD mode given in Fig. 9.411
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(c)

Figure 19: First (a), second (b) and third (c) most unstable modes obtained for x=6.5 and α = 9:
streamwise disturbance in the z − y (left) and in the x − z plane (middle) and associated Fourier
amplitudes in the azimuthal direction (right).
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Figure 20: Linear superposition of the three main eigenmodes of the energy spectrum at x = 6.5 and
α = 9: streamwise disturbance in the z − y (left) and in the x− z plane (right)
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(b) x = 7.5

Figure 21: Resolvent norm at different cross-sections for α = 9, versus the frequency ω and the Strouhal
number St.
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Figure 22: Streamwise velocity component of the optimal forcing (left) and responses (right) for different
frequencies ωopt for x = 6.5 and α = 9.
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(a) (b)

(c) (d)

(e)

Figure 23: Fourier transform in the azimuthal direction of the optimal responses at different frequencies
ωopt indicated within the plots for x = 6.5 and α = 9.
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Figure 24: Streamwise velocity component of the optimal forcing (left) and responses (right) for different
frequencies ωopt for x = 7.5 and α = 9

Fig. 21 shows the resolvent norm R(ω), providing the maximum energy gain for a given412

forcing in the range 6.8 < ω < 9, corresponding to a Strouhal number 1.1 < St < 1.5.413

One can notice that the main three peaks correspond to the frequencies of the least stable414

modes of the eigenspectrum, suggesting a quasi-resonance mechanism at these particular415

wavenumbers (see [41, 12]). In fact, in some flow cases, the amplification of the external416

forcing at a given frequency can mostly result from the resonance of a given eigenmode,417

though other eigenmodes can also contribute to the response, albeit to a lesser extent.418

In the present case, the main resolvent peak is found for ω = 7.8, providing a gain of419

R(ω = 7.8) ≈ 40, although harmonic perturbations with slightly larger or smaller ω are420

also amplified more than one order of magnitude. Looking at the optimal forcing and421

responses at the different frequencies corresponding to the several peaks of the resolvent422

norm, provided in Fig. 22, one can see that the three most amplified harmonic responses423

(ω = 7.44, 7.89, 8.48 in the first, third and bottom row) are very similar to the eigenmodes424

with the same frequencies recovered by stability analysis. This feature is a clear indication425

of the existence of a quasi-resonance mechanism at those particular frequencies. As shown426

in Fig. 23a-c-e, all of these responses have main azimuthal wavenumber m = 1, which427

corresponds to the peak wavenumber of the main POD modes. At intermediate forcing428

frequencies, rather different flow structures are found, with main azimuthal wavenumber429

ranging from m = 1 to m = 4 (see Fig. 23 (b-d)), which are however less amplified. A430

very similar behaviour is found in different cross-sections further downstream. Fig. 21431

(b) shows the resolvent norm in the cross-section x = 7.5 for the same value of α =432

9. As before, the resolvent norm peaks at the frequencies of the least stable modes of433

the corresponding eigenspectrum (not shown), indicating once again a quasi-resonance434

mechanism. Moreover, the most amplified optimal responses are similar to those found435

at x = 6.5, characterized by very low azimuthal wavenumber (m = 1− 2, as for the main436
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POD modes) as shown in Fig. 24.437

In conclusion, it appears that the local stability analysis can provide some information438

about the main wavenumbers and structures within the flow when carried out sufficiently439

close to the rotor. In that sense, those large coherent structures can be approximated440

by linear modelling, thus enabling - for instance - control design in combination with441

the information obtained by perusing the localisation of the optimal forcing. We also442

observe that, in the far wake, stability analysis does not predict the main frequency and443

spatial content of the flow; this can be related with the development of the wake further444

downstream, where the main flow structures have broken down. We further analyse445

the linear model by means of resolvent analysis and show that, if forced appropriately,446

linearly stable modes can be effectively amplified, and detected in the flow. Therefore, it447

appears that in convective flows as a wind turbine wake, flow structures arising upstream448

can determine also the most amplified frequencies downstream. This suggests that the449

frequency content of the nonlinear forcing f (which is often assumed being a white-noise)450

may be a key factor in determining the emerging flow structures in this types of flows.451

5. Conclusions452

Understanding the dynamics and generation of coherent structures in wind turbine453

wakes is crucial for the design and efficiency improvement of wind farms. In the present454

paper, we investigate the origin and development of such coherent structures by perform-455

ing two-dimensional modal and non-modal stability analysis of the turbulent mean flow456

developing downstream of a wind turbine rotor invested by a laminar, uniform wind. We457

considered numerical snapshots computed by Large-Eddy-Simulation using the actuator458

line technique to simulate the rotor, at Re = 6.3 × 105. Proper orthogonal decompo-459

sition analysis is applied for detecting the coherent structures developing in the flow.460

These modes are applied here for benchmarking the linear modelling. More precisely,461

two-dimensional linear stability and optimal forcing analyses have been applied at differ-462

ent cross-flow planes. The resulting spatial structures at each frequency are compared463

with the most energetic coherent structures recovered by POD analysis.464

In the closest planes to the rotor (3 to 6 diameters), the main POD modes are charac-465

terized by rather high values of the temporal and streamwise angular frequency α = 6−10,466

and azimuthal wavenumber m = 1. These structures, mostly located in the root and tip467

vortices regions, are characterized by slightly different wavenumbers in the inner and in468

the outer part of the wake and are recovered in the modal stability analysis. Close to469

the rotor, the unstable modes are mostly located in the outer part of the wake and have470

a frequency content consistent with that of the most energetic POD modes. The growth471

rate of these modes decreases while moving far from the rotor, until they become asymp-472

totically stable. In the far wake, these branches identify structures losing resemblance473

with respect of the identified POD modes, and are characterized by lower streamwise474

wavenumbers and higher azimuthal wavenumbers. We further explore the spectral con-475

tent of the POD modes, by considering optimal forcing and response obtained by the476

resolvent analysis. In particular, we examined a far-wake cross section at the character-477

istic streamwise frequency of the third POD mode, namely α = 9, where the mean flow478

results to be linearly stable. The response gain showed three distinct frequencies corre-479

sponding to three barely stable modes. The two linear modes with lower ω are localised480
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at the wake core, wheareas the mode with a higher ω is mostly localised in the outer layer481

of the wake, in correspondence with the shear layer. Moreover, the combination of these482

three linear modes resembles the third POD mode, taken as reference. Optimal forcing483

analysis shows, therefore, that these asymptotically stable modes can be amplified by484

more than one order of magnitude by means of a quasi-resonance mechanism, being able485

to bypass the growth of the most unstable modes recovered in the far wake. This sug-486

gests a scenario in which the coherent structures within the wake are mostly originated by487

modal instability mechanisms close to the rotor, generating waves of selected frequencies488

able to trigger a high flow response downstream. Note that the application of the linear489

modeling of the wake at higher Reynolds number would not represent a challenge from490

the mathematical viewpoint, as far as a proper small-scale turbulence modeling is used.491

In this regard, the strong separation of scales provides a sufficient solid hypothesis for492

this type of analysis, although the physical relevance of these linearised models need to493

be always verified a posteriori by benchmarking the results with the data-driven modal494

analysis. From the computational viewpoint, LES and possibly stability analysis will be495

more expensive.496

The fact that the development of coherent structures in the rotor’s wake appears497

to be mostly driven by linear mechanisms may pave a way to design efficient means to498

passively control the wake meandering and/or the wake recovery. Previous studies based499

on a simplified flow configuration at low Reynolds number have shown that adding a500

localised control force mimicking the presence of a solid body in flow regions identified by501

a sensitivity analysis of linear stability modes can consistently modify the wake dynamics.502

Linear stability eigenmodes, together with their adjoint counterparts are able to provide503

valuable information on the shape and location of active or passive means to control the504

spatial structure, recovery rate, and frequency content of the wake behind a wind turbine,505

provided that the validity of the mean-flow linear model is verified using appropriate506

data analyses. Such passive control, whose design is based on stability modes and their507

adjoints, could be achieved by placing solid or compliant bodies downstream of the rotor,508

mounted on the nacelle of the turbine. Thus, the results of the present paper can509

potentially open the route to future works where stability-driven passive control of turbine510

wakes may be used to optimize the power production of wind farms.511

Appendix A. Linear analysis of a turbulent mean flow512

In the present work a triple decomposition of the flow field is employed, following
reference [38]

u(x, t) = u + ũ + u′. (A.1)

Time average and phase average of a fluctuating quantity f(x, t) are defined as

f(x) = lim
T→∞

∫ t=T

t=0

f(x, t)dt, (A.2a)

〈f(x, t)〉 = lim
N→∞

1

N

N∑
n=0

f(x, t+ nτ), (A.2b)

respectively, where τ is the period of the fluctuation. The wave component f̃ is then
defined as f̃ = 〈f〉 − f . Substituting the triple decomposition into the Navier-Stokes
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equations and taking the time average, the equations for the mean flow are obtained,

u ·∇u = −∇p+∇ ·
(

2

Re
S− ũũ− u′u′

)
. (A.3)

The organized wave satisfies the phase-averaged Navier-Stokes equations, after Eq. (A.3)
is subtracted

∂ũ

∂t
+ u ·∇ũ + ũ ·∇u = −∇p̃+∇ ·

(
2

Re
S̃− ˜̃uũ− ũ′u′

)
, (A.4)

where S =
∇u +∇uT

2
is the mean flow shear stress tensor and S̃ the stress tensor

of the organized wave. The Reynolds stress tensors ũ′u′ and u′u′ are modeled using
the Boussinesq hypothesis. Moreover, we assume that the eddy-viscosity field is not
oscillating with the perturbation, ν̃t = 0, and similarly for the turbulent kinetic energy,
k̃ = 0. With these assumptions, one obtains

u′u′ =
2

3
kI− 2νtS, (A.5a)

ũ′u′ = −2νtS̃. (A.5b)

We refer the interested reader to the work in reference [46] for further details. The eddy
viscosity νt can be determined from equation (A.5a) and used as it is for the oscillating
Reynolds stresses (A.5b), similarly to what is done in Newtonian eddy models. As already
reported in Eq. (6), we compute νt as

νt = −u′u′ : S

2S : S
. (A.6)

The incoherent fluctuations for the Reynolds stresses computation clearly corresponds513

to the difference between the instantaneous velocity u and the phase-averaged flow 〈u〉.514

Here the phase average is computed according to (A.2b), taking the sampling period515

equal to the period of rotation of the rotor, τ = 1/Str = 1.047.516

Appendix B. Resolvent analysis computation517

The resolvent analysis is carried out following the approach proposed in reference [41],
which is recalled here. As already stated in Eq. (12), we can identify the optimal response
of the system due to a forcing at a frequency ω by maximizing the ratio

R(ω) = max
f̂

‖(L− ωI)−1f̂‖E
‖f̂‖E

. (B.1)

The solution can be obtained by direct or iterative methods, the latter being employed
when the computational costs make the solution of the problem prohibitive. Here we
employ a direct method. In order to lower the costs of solving Eq. B.1, we consider the
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space SN = span{q̃1, q̃2, . . . , q̃N} spanned by the first N eigenfunctions of L and expand
onto it the vector functions q, f ∈ SN , such that

q =
N∑
n=1

κn(t)q̃n and f =
N∑
n=1

κfn(t)q̃n. (B.2)

The forced problem in Eq. (10) is restated as

dκ

dt
= Λκ+ κf (t) κf (t) = κfeiωt (B.3a)

κ = (iωI−Λ)−1κf (B.3b)

with
κ = (κ1, κ2, . . . , κN)T , κf = (κf1 , κ

f
2 , . . . , κ

f
N)T (B.4a)

Λ = diag{λ1, λ2, . . . , λN}. (B.4b)

The operator Λ represents the linear evolution operator L, projected onto the space SN .
The resolvent norm in (B.1) requires the calculation of the energy norm of the state
vector q that can be performed as

‖q̂‖E = q̂∗Mq̂ = κ∗M1κ = ‖κ‖E (B.5)

where q̂ = Veκ and Ve contains N eigenvectors of L, while M and M1 are suitable energy
weight matrices. M1 is both Hermitian and positive definite, thus we can compute its
Cholesky factorization M1 = F∗1F1

‖κ‖E = κ∗F∗1F1κ = 〈F1κ,F1κ〉 = ‖F1κ‖2. (B.6)

Using the relations in (B.5)-(B.6) and the equation (10) we rewrite the resolvent norm as518

R(ω) = max
f̂

‖(iωI− L)−1f̂‖E
‖f̂‖E

= max
κf

‖F1(iωI−Λ)−1κf‖2
‖F1κf‖2

= max
κf

‖F1(iωI−Λ)−1F1
−1F1κ

f‖2
‖F1κf‖2

= ‖F1(iωI−Λ)−1F1
−1‖2. (B.7)

By indicating B = F1(Λ− iωI)−1F1
−1, the singular values decomposition lead to

BV = UΣ, (B.8)

where V and U are unitary matrices and Σ is a diagonal matrix consisting of singular
values ordered in size σ1 ≥ σ2 ≥ · · · ≥ σN . Concentrating only on the column vectors
of V and U corresponding to σ1, which are referred to as the principal right and left
singular vectors respectively, one obtains

Bv1 = σ1u1. (B.9)

This describes a mapping B of an input vector v1 onto an output vector u1 that is also
stretched by a factor of σ1 equal to the 2-norm of B. Therefore, v1 describes the most

32



responsive disturbance that will be amplified by a factor of σ1 = ‖B‖2 = R(ω) and
u1 represents the corresponding response. The optimal forcing and response in spatial
coordinates, f̂ and q̂, normalized by their energy norm, are given by

f̂ = VeF−11 F1κ
f = VeF−11 v1, (B.10a)

q̂ = VeF−11 σ−11 F1κ = VeF−11 u1. (B.10b)

519
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[22] F Gómez, HM Blackburn, M Rudman, AS Sharma, and BJ McKeon. A reduced-575

order model of three-dimensional unsteady flow in a cavity based on the resolvent576

operator. J. Fluid Mech., 798, 2016.577

[23] Y. Hwang and C. Cossu. Amplification of coherent streaks in the turbulent C,ouette578

flow: an input-output analysis at low R,eynolds number. J. Fluid Mech., 643:333–579

348, 2010.580

[24] G V Iungo, F Viola, S Camarri, F Porté-Agel, and journal=J. Fluid Mech. vol-581
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