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Abstract: The wake produced by a utility-scale wind turbine invested by a laminar, uniform inflow
is analyzed by means of two different modal decompositions, the proper orthogonal decomposition
(POD) and the dynamic mode decomposition (DMD), in its sparsity-promoting variant. The turbine
considered is the NREL-5MW at tip-speed ratio λ = 7 and a diameter-based Reynolds number of
the order 108. The flow is simulated through large eddy simulation, where the forces exerted by
the blades are modeled using the actuator line method, whereas tower and nacelle are modeled
employing the immersed boundary method. The main flow structures identified by both modal
decompositions are compared and some differences emerge that can be of great importance for the
formulation of a reduced-order model. In particular, a high-frequency mode directly related to the
tip vortices is found using both methods, but it is ranked differently. The other dominant modes
are composed by large-scale low-frequency structures, but with different frequency content and
spatial structure. The most energetic 200 POD modes account for ≈20% only of the flow kinetic
energy. While using the same number of DMD modes, it is possible to reconstruct the flow field to
within 80% accuracy. Despite the similarities between the set of modes, the comparison between
these modal-decomposition techniques points out that an energy-based criterion such as that used in
the POD may not be suitable for formulating a reduced-order model of wind turbine wakes, while
the sparsity-promoting DMD appears able to perform well in reconstructing the flow field with only
a few modes.

Keywords: modal decomposition; NREL-5MW wind turbine; wind turbine wake; coherent structures

1. Introduction

Low-dimensional models based on modal decomposition of complex flows are often
sought in many different fields and among those in wind energy. The orthogonality of
the resulting modes makes the proper orthogonal decomposition (POD) the commonly
chosen basis for the formulation of a reduced-order model (ROM). In the wind-energy
field, POD was at first applied to two-dimensional data. Andersen et al. [1] applied this
modal decomposition to planes perpendicular to the streamwise direction of large eddy
simulations (LES) of the flow impinging on an infinite series of rows of wind turbines, each
one consisting of three turbines modeled by the actuator line technique. Bastine et al. [2]
applied two-dimensional POD to the case of a single wind turbine, impinged by a turbulent
neutrally stratified atmospheric boundary layer. POD analysis was then applied to three-
dimensional flow fields behind a wind turbine array by VerHulst and Meneveau [3], both
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in the presence and in the absence of atmospheric turbulence. Hamilton et al. [4,5] used
POD applied to velocity measurements for investigating wake interaction and recovery
dynamics in different wind turbine array configurations. More recently, Hamilton et al. [6]
applied POD to LES data in order to construct a ROM of turbine wakes using polynomial
reconstruction based on POD modes. Among others, Fortes-Plaza et al. [7] developed a
ROM based on POD of LES data of yaw-controlled wake-interacting wind turbines. Very
recently, De Cillis et al. [8] used POD analysis of LES of the flow behind a model wind
turbine to determine the effect of the tower and nacelle on the development of coherent
structures linked to given instability mechanisms within the flow.

POD is extensively used in the analysis of complex flow fields as it provides a finite
set of orthogonal modes whose linear combination optimally reconstructs the energy of
a set of stochastic flow data. However, in some particular cases, the most energetic POD
modes may not be dynamically relevant; therefore, the selection of a low-dimensional basis
for the realization of a reduced-order model may be not trivial [9]. In fact, POD ranks the
modes depending on their energy, where the most energetic modes are often characterized
by large-scale coherent structures which, in some cases, may not be the most dynamically
relevant. Moreover, POD modes represent statistically steady structures, thus being unable
to describe transient states which might arise from the interaction of the flow field with
environmental disturbances, such as atmospheric turbulence. Finally, POD modes have
a non-trivial temporal evolution, being composed by several temporal wavenumbers,
while in some cases it can be interesting to capture structures characterized by a given
frequency that can be more easily associated with well-defined physical processes (for
instance, the wake meandering) or instabilities.

Another data-driven modal-decomposition technique that has all these capabilities
and gained popularity in the last ten years is the dynamic mode decomposition (DMD),
introduced by Schmid [10]. This technique finds eigenvalues and eigenvectors of a linear
operator approximating the nonlinear dynamics embedded in the data sequence and it
has been recently exploited for the formulation of ROMs of wind turbine relevant flows.
Iungo et al. [11] realized a reduced-order model of wind turbine wakes based on the
dynamic mode decomposition of LES flow data of wind turbines operating under different
operational regimes. Le Clainche et al. [12] used the dynamic mode decomposition of
LIDAR measurements to build a reduced-order model of the wind velocity upstream of a
horizontal axis wind turbine. DMD modes are usually ranked according to their amplitude
at the first snapshot of the data sequence. Such a criterion for the selection of a limited subset
of dynamic modes can lead to poor quality of approximation of numerically generated
snapshots and, therefore, to poor predictive capability of low-dimensional models. For this
reason, different variants of the standard algorithm, aiming at extracting a limited subset of
flow features that optimally approximate the original data sequence, have been developed,
i.e., the optimized [13] or the sparsity-promoting DMD [14]. In the present work we use,
for the first time in wind turbine wakes characterization, the sparsity-promoting (SP)
algorithm for ranking the most relevant DMD modes.

The novelty of the current work is, therefore, to provide a direct comparison of the
dominant POD and SP-DMD modes in the wake of a wind turbine, discussing possible
reasons for their similarities and discrepancies and their potential relevance for the de-
velopment of ROMs. As discussed before, POD is well fitted for flows whose coherent
structures are to be ranked in terms of their energy content. However, in some cases the
energy content of the coherent structures is not a well-fitted criterion to accurately describe
the dynamical behaviour of the flow, which can be better modeled using a decomposition
ranking the temporal dominant frequencies in terms of amplitude, such as DMD. In the
literature, a few examples of comparative analyses of the performance of these two modal
decompositions for different flows can be found. Reference [15] presents a comparative
analysis of the POD and DMD modes extracted from experimental measurements of a
turbulent jet flow. In this particular flow case, the modes arising from the different decom-
positions bear many similarities and the main physical instabilities are easily identified



Int. J. Turbomach. Propuls. Power 2021, 6, 44 3 of 17

using both methods. In Reference [16], both modal decompositions are used to study the
complex turbulent flow around a wall-mounted finite cylinder at high Reynolds number.
Both methods were able to capture dominant phenomena, mostly characterized by large
energy content. However, POD was found to not clearly separate frequencies and scales,
while DMD yielded the most relevant physical phenomena, with distinct frequencies and
growth rates. In Reference [17], the most dominant flow structures of a simulated flow in
the wake of a high-speed train model were extracted using both POD and DMD. Com-
parison between the modes from the two different decomposition methods shows that
the second and third POD modes correspond to the same flow structure as the second
DMD mode. More recently, the performance of these two methods have been compared
for several flows [18], finding relevant differences depending on the selected flow case.
In general, it was found that POD is able to correctly reproduce time-localized events,
but produces a severe spectral mixing between different modes. Contrariwise, DMD allows
for proper frequency identification but may yield poor convergence and redundancy in
the spatial structures [18]. However, this comparison has never been assessed directly for
the case of the flow behind a utility-scale wind turbine at realistic Reynolds number. This
type of flow is characterized by coherent structures at different scales, where the largest,
most energetic scales are not deemed to be the most dynamically relevant. Moreover,
the interaction of the rotating tip vortices generated by the blades with the non-rotating
ones, originated by the tower and the nacelle, might potentially lead to transient events
within the flow that might not be accurately described by the statistically steady POD
modes. Finally, DMD analysis might be better suited to describe typical phenomena at
given frequencies, such as the wake meandering [19].

The present study is motivated by the need to clarify the connection and differences
between DMD and POD modes, as well as their physical meaning and performance in
reconstructing the flow field, for the flow behind a utility-scale wind turbine. In the present
paper, we identify the most relevant coherent structures embedded in the turbulent wake
flow developing downstream of the NREL-5MW wind turbine, using the two mentioned
modal decompositions, addressing convergence, selection and physical interpretation of
both POD and DMD modes. The flow is computed through large eddy simulation using
the actuator line method to simulate the rotor and the immersed boundary method to
simulate tower and nacelle. Coherent structures are isolated by means of the POD and
the sparsity-promoting DMD. The results obtained with the two modal-decomposition
techniques are compared and differences are highlighted, particularly in regard to a low-
order representation of the wake. In conclusion, the DMD modes selected by the sparsity-
promoting algorithm are found to be similar to the most energetic POD modes, but strong
differences are found in their capability of reconstructing the flow field.

2. Methodology

The present study is based on the numerical simulation of the flow over a wind
turbine using the LES approach. The large-scale structures of the flow are directly com-
puted integrating the filtered Navier–Stokes equations, whereas the effect of smaller-scale
structures on the resolved ones is modeled [20]. The governing equations for the filtered
non-dimensional velocity, u= (u, v, w)T , and pressure, p, derived from the Navier–Stokes
equations for incompressible flows read as follows:

∂ui
∂t

+
∂uiuj

∂xj
= − ∂p

∂xi
+

1
Re

∂2ui
∂xj∂xj

−
∂τij

∂xj
+ fi, (1)

∂ui
∂xi

= 0, (2)

where the subscripts i, j ∈ {1, 2, 3} indicate the streamwise, x, vertical, y, and transverse, z,
directions, respectively, and Re = U∞D/ν is the Reynolds number, defined using the inlet
velocity U∞, the rotor diameter D and the kinematic viscosity of the fluid ν. Throughout
the paper, upper-case (respectively, lower-case) notation denotes dimensional (respectively,
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non-dimensional) variables. The subgrid-scale stress tensor, τij, is modeled using the
Smagorinsky model with constant CS set to 0.17, about equal to the theoretical value
typically used for LES.

Equations (1) and (2) are discretized using a finite difference scheme based on second-
order centered discretization on a staggered Cartesian grid. Time integration is performed
using a hybrid low-storage third-order accurate Runge–Kutta scheme [21]. The term fi in
Equation (1) accounts for the aerodynamic forces per unit volume exerted by the turbine
blades on the fluid via the actuator line method [22]. These forces are modeled making use
of the lift and drag coefficients of the rotor blades, which are treated as rotating rigid lines
divided into discrete segments. In each segment, given the angle of attack and the relative
inflow velocity, the lift and drag forces per unit length are estimated and then spread on
areas perpendicular to each segment using a Gaussian distribution kernel. The tower and
nacelle are taken into account by using the immersed boundary method, which avoids the
use of a body-fitted grid, reducing the computational cost of the simulations. In particular,
the approach proposed in Reference [23] has been used.

2.1. Proper Orthogonal Decomposition

The proper orthogonal decomposition (POD) is a statistical numerical technique able
to identify the most energetic coherent structures characterizing the flow. The method
is based on the eigendecomposition of the two-point spatial correlation tensor C, where
the eigenvectors represent the POD modes and the associated eigenvalues represent their
energy. A discrete approximation of the tensor C can be obtained from data consisting of a
large number M of snapshots of the flow field. The entire dataset is usually organized into
a single matrix Q ∈ RN×M, in which each column is a single instantaneous velocity field,
represented by N scalars. The two-point correlation tensor can be approximated by the
matrix C ∈ RN×N , computed as follow:

C =
1
M

QQT . (3)

The eigendecomposition of C can be easily performed by computing the singular
value decomposition of the snapshot matrix Q, divided by the square root of the number
of snapshots M,

Q√
M

= USVT , (4)

where the columns uk of the matrix U of size N×M correspond to the POD modes, and the
singular values squared correspond to the eigenvalues L of C, namely L = S2. The i-th
snapshot can then be represented as a linear combination of POD modes:

qi(t) =
M

∑
k=1

ak(ti)uk (5)

where the time coefficients of each POD mode, ak, are given by the rows of the matrix√
MSVT . In addition, due to the orthogonality of the modes, it can be shown that the time

coefficients ak are uncorrelated at zero time lag:

ajak = λjδjk (6)

where · indicates the long-time average.

2.2. Sparsity-Promoting Dynamic Mode Decomposition

The dynamic mode decomposition (DMD), proposed by [10], is a data-driven tech-
nique which allows one to extract relevant flow features, namely the DMD modes, whose
dynamics are governed by correspondent eigenvalues. The key steps of the basic algorithm
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are outlined hereafter.

As for the POD, a series of snapshots qi is collected at a constant sampling frequency.
We assume that a linear time-invariant mapping A connects every pair of successive
snapshots,

qi+1 = Aqi, i = {0, . . . , M− 1}. (7)

Using Equation (7) we can write:

Q1 = AQ0, (8)

where Q0 and Q1 are:

Q0 =
[
q0 q1 . . . qM−1

]
, Q1 =

[
q1 q2 . . . qM

]
. (9)

The linear operator A, as suggested by [10], can be projected onto the r−dimensional
basis U consisting of the first r POD modes of the snapshots matrix Q0,

Q0 ≈ USVT (10)

A ≈ UFUT . (11)

The dynamics in the low-dimensional subspace defined by the POD modes U is
governed by

xi+1 = Fxi. (12)

where xi is the projection of the snapshot matrix Qi in the low-dimensional subspace
defined by the chosen POD modes, with i = 0, M− 1. Dynamic modes are then extracted
by computing the eigendecomposition of the matrix F:

F =
[
y1 . . . yr

]︸ ︷︷ ︸
Y

µ1
. . .

µr


︸ ︷︷ ︸

Dµ

z∗1
...

z∗r


︸ ︷︷ ︸

Z∗

(13)

where yi and z∗i are the right and left eigenvectors of F, which are scaled such that y∗i yi = 1
and z∗i yj = δij. Notice that the frequency of the DMD modes is then given by the eigenval-

ues µi via the following relation: ωi = −
log(µi)

i∆t
. Therefore, using Equation (12), we can

approximate the solution xn as follows:

xn = YDn
µZ∗x0 =

r

∑
i

yiµ
n
i z∗i x0 =

r

∑
i

yiµ
n
i αi, (14)

where αi = z∗i x0 represents the component of the initial condition x0 in the z∗i direction.
The snapshots can be approximated by mapping xn on the higher dimensional space CN ,

qn ≈ Uxn =
r

∑
i

Uyiµ
n
i αi =

r

∑
i

φiµ
n
i αi, (15)

and can be seen, therefore, as a linear combination of the DMD modes φi = Uyi where αi
is the amplitude of the corresponding DMD mode. Equation (15) can be written also in
matrix form:
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[
q0 q1 . . . qM−1]︸ ︷︷ ︸

Q0

≈
[
φ1 φ2 . . . φr

]︸ ︷︷ ︸
P


α1

α2
. . .

αr


︸ ︷︷ ︸

Dα


1 µ1 . . . µM−1

1
1 µ2 . . . µM−1

2
...

...
. . .

...
1 µr . . . µM−1

r


︸ ︷︷ ︸

Vand

(16)

which highlights that the temporal evolution of the dynamic modes is governed by the Van-
dermonde matrix Vand. Once the eigendecomposition of (13) is performed, the amplitudes’
vector α = [α1 . . . αr]

T is computed solving the following optimization problem:

minimize
α

J(α) =
∥∥∥Q0 − PDαVand

∥∥∥2

F
(17)

The superposition of all the DMD modes, weighted by their amplitudes and evolving
according to their frequency and growth rate, optimally approximates the data sequence.
Moreover, the sparsity-promoting DMD aims at finding a low dimensional representation
of the snapshots’ sequence in order to capture the most relevant dynamic structures. This
objective is achieved in two steps. Firstly, a sparsity structure is sought, which achieves a
user-defined trade-off between the number of modes and the approximation error, which
depends on the sparsity parameter γ. This step is carried out by augmenting the objective
function to be minimized with an additional term, card(α), that penalizes the number of
non-zero elements in the amplitudes’ vector α,

min
α

J(α) + γ card(α). (18)

where γ is the parameter that influences the sparsity level, with higher values of the
parameter promoting sparser solutions. Then the sparsity structure of the amplitudes’
vector is fixed and the optimal values of the non-zero amplitudes are calculated. The metrics
defining the performance of the algorithm are the cardinality of the optimal amplitude
vector card(α) and the performance loss, defined as:

%Πloss = 100

∥∥Q0 − PDαVand
∥∥2

F

‖Q0‖2
F

. (19)

For further details, the reader is referred to Reference [14].

3. Simulation Setup

The turbine considered in this study is the NREL-5MW with a diameter D = 126 m
and hub height h = 87.5 m. The turbine is simulated at rated conditions with tip-speed
ratio λ = 7, which implies a constant dimensionless angular frequency of the rotor
ω = 2λ = 14. The reference incoming wind speed at rated conditions is U∞ = 11.4 m/s;
therefore, the resulting diameter-based Reynolds number is Re ≈ 108.

The size of the computational domain is 12.5× 5× 3 diameter units in the stream-
wise (x), vertical (y) and transverse (z) directions, respectively. The turbine is located at
4 diameter units from the inlet, where a uniform velocity U∞ is imposed, and it is centered
in the transverse direction. We should remark that in real-life applications the turbine is
impinged by an atmospheric turbulent boundary layer, which can potentially affect the
dynamics of the wake.

Therefore, the scenario we discuss can be considered representative of real-life appli-
cations for low values of the inlet turbulence intensity. At the outlet, a radiative boundary
condition is employed, with uniform convection velocity c = 0.9 [24]. No-slip and free-slip
conditions are imposed at the bottom- and the top-wall, respectively, whereas the lateral
boundaries are periodic. The computational grid used consists of 2048× 512× 512 grid-
points in x, y and z directions, respectively. The grid is uniform along the streamwise and
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transverse directions, whereas it is stretched in the vertical direction, with finer (uniform)
spacing in the part of the domain where the turbine’s wake develops. The convergence
of the numerical results with respect to the mesh has been assessed in Reference [8] for
the mean flow. Concerning the POD and DMD modes, we have performed a sampling
convergence study finding a moderate sensitivity of intermediate-frequency DMD modes,
whereas low- and high- frequency DMD modes have shown robustness with respect to the
sampling points.

4. Modal Decomposition of the Wake

Both modal-decomposition techniques used for identifying coherent structures in the
wake are based on the same dataset. Snapshots of the velocity field are taken each 10◦

rotation of rotor, in a reduced three-dimensional subdomain enclosing the wake, whose
extent is [4 12.4]× [−0.7 0.63]× [0.8 2.2] in x, y and z direction, respectively. The entire
dataset comprises 3052 snapshots; one of them is shown in Figure 1. The ensemble average
of the snapshots, shown in Figure 2, is then subtracted from each snapshot.

Figure 1. Streamwise velocity contours of a flow snapshot extracted from LES.

(a)

(b)
(c)

Figure 2. Streamwise velocity contours of the snapshots’ ensemble mean. (a) x− y plane at z = 1.5.
(b) x− z plane at y = 0 . (c) z− y plane at x = 4.

4.1. POD Results

In Figure 3a, the distribution of the singular values is shown. A fast energy decay for
the first 2–3 hundreds of modes can be observed; then, the slope of the curve decreases and
a nearly null energy is reached for k ≈ 2500. A closer look to the singular values for the
first 20 POD modes highlights a step-wise distribution, suggesting that successive modes
characterized by a similar energy are paired. Figure 3b shows the cumulative percentage
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distribution of turbulent kinetic energy versus the fraction of POD modes considered,
computed as:

k[%] =
∑m

k=1 sk

∑M
k=1 sk

× 100 m ∈ {1, . . . , M} (20)

modes[%] =
m
M
× 100. (21)

A total of 50% of the turbulent kinetic energy is due to only 15% of POD modes
(∼457 modes), and 50% of modes (∼1525 modes) accounts for about 90% of the turbulent
kinetic energy.

0 500 1000 1500 2000 2500 3000

k
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200
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800

1000

s
k

0 5 10 15 20
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400

600

800

1000

s
k

(a)

0 20 40 60 80 100

0

20

40

60

80

100

(b)
Figure 3. (a) Singular values distribution with a close up for the first 20 modes. (b) Cumulative
turbulent kinetic energy distribution versus the fraction of POD modes.

The most energetic POD modes are shown in Figure 4 (streamwise component) and
Figure 5 (vertical and transverse components). The second pair, provided in Figures 4b and 5c,d,
clearly corresponds to the tip vortices, which are localized very close to the turbine. The remaining
modes are mostly localized in the far wake and are all characterized by low-frequency large-
scale coherent motions. In fact, in the region close to the turbine, the tip vortices quickly
break down and their energy is redistributed towards the smaller scales, until reaching the
dissipative range, where the very small eddies are dissipated. Thus, far from the turbine,
where tip vortices have broken down, other low-frequency coherent structures emerge that
can be linked to the instability of the mean flow or to the nonlinear interactions between the
vortices released by the turbine. In the case under consideration, the observed large-scale
structures can be linked to the vortices shed by the tower and nacelle, as observed by
De Cillis et al. [8]. Fourier transform of the time coefficients ak(t) associated with the most
energetic POD modes is provided in Figure 6. While the third mode, which is associated
with the tip vortices, has dominant wavenumber ω ≈ 42 ( f ≈ 6.45), roughly corresponding
to three times the angular frequency of the rotor, the other energetic modes are characterized
by low-frequency oscillations in the range ω ∈ [2.44− 4.58] ( f ∈ [0.44− 0.73]). However,
Figure 6 shows that most of the POD modes are characterized by more than one frequency
peak, showing a higher/lower frequency content which appears not to be merely due to
the development of harmonics of the main frequency. This confirms the fact that POD
does not allow to clearly separate frequencies and scales of the main coherent structures
developing in the flow. The main temporal wavenumbers of the eight most energetic pairs
are reported in Table 1, for further comparison with the DMD most relevant modes.
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(a) POD Mode 1 (b) POD Mode 3

(c) POD Mode 5 (d) POD Mode 7

(e) POD Mode 9 (f) POD Mode 11

Figure 4. Streamwise velocity iso-surfaces of the most energetic POD modes (red for u = 0.001, blue
for u = −0.001).

(a) POD Mode 1, v (b) POD Mode 1, w

(c) POD Mode 3, v (d) POD Mode 3, w

(e) POD Mode 5, v (f) POD Mode 5, w

Figure 5. Vertical (left) and transverse (right) velocity iso-surfaces of the most energetic POD modes
(magenta/green for v, w = 0.0008, cyan/yellow for v, w = −0.0008).
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Figure 6. Fourier transform of the time coefficients ak(t) associated with the most energetic POD
modes shown in Figure 4.

Table 1. Frequencies and amplitudes of the selected complex conjugate dynamic modes’ pairs,
computed with the standard and sparsity-promoting DMD.

R(ω)-POD R(ω)-DMD |α| (std. DMD) |α| (SP-DMD)

Pair 1 3.26 42.0 14.34 14.86
Pair 2 42.0 5.20 11.39 9.55
Pair 3 4.58 2.13 8.54 8.53
Pair 4 2.23 3.92 9.26 7.89
Pair 5 2.44 2.30 7.50 7.80
Pair 6 3.76 2.96 8.26 7.48
Pair 7 2.64 4.25 6.39 6.02
Pair 8 1.13 3.58 4.22 4.06

4.2. SP-DMD Results

The sparsity-promoting DMD has been performed on a subspace made of 251 POD
modes, for increasing values of the sparsity parameter γ, in order to investigate the
performance of the algorithm, as shown in Figure 7. It can be noted that the performance
loss is not null, even for low values of γ, because the DMD is computed on the low-
dimensional space defined by the first 251 POD modes. Notice that the first 251 POD modes
allow a reconstruction of only ≈30% of the flow kinetic energy (see Figure 3). However,
the same number of DMD modes leads to a loss in reproducing the whole velocity field
of 20% only (see Figure 7, showing the percentage of loss as defined in Equation (19)).
Thus, when comparing the performance of POD and DMD, we will refer to the relative
performance loss, computed with respect to the baseline value obtained when retaining
all 251 modes used for the projection on the POD base (namely, 20%Piloss). In Figure 7,
we can see that, for γ < 4× 103, approximately all 250 modes are retained, leading to a
relative performance loss close to zero. For 4× 103 < γ < 104, the retained modes drop to
≈150, leading to a performance loss only slightly larger than the baseline value. Further
increasing the sparsity parameter leads to a further drop of the number of selected modes,
but at the price of a relative performance loss of more than 45% when less than 100 modes
are retained. This analysis shows that ≈200 modes are sufficient for reconstructing the flow
field with an almost negligible relative performance loss. As a comparison, we can observe
in Figure 3 that 200 POD modes lead to the reconstruction of only 20% of the flow energy,
while the same number of DMD modes leads to a performance loss of only 20%. This
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clearly indicates that the kinetic energy may not be a relevant measure of the dynamical
relevance of the flow structures for the considered flow. Thus, DMD modes appear to be
better fitted for building reduced order models aiming at reconstructing the flow field with
a small number of degrees of freedom.
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Figure 7. The sparsity level card(α) (a) and the optimal performance loss %Πloss (b) for different
values of the sparsity parameter γ.

For reducing the dynamics on a very low dimensional space, and comparing the
relevant modes with the most energetic ones recovered using POD, in the remainder of
the paper we select the value of sparsity-promoting parameter γ = 40,000. This particular
choice, despite being characterized by a high performance loss, leads to the nontrivial
selection of just 16 relevant dynamic modes. In the left panel of Figure 8, the eigenvalues µ
of the linear operator F (see Equations (12) and (13)) are shown, along with the unit circle.
The modes selected by the sparsity-promoting algorithm are marked with a black circle.
As expected for a turbulent statistically stationary flow, all eigenvalues are very close to
the unit circle, describing the periodic dynamics of the associated modes. It is noticeable,
furthermore, the unbalance between high- and low-frequency modes, the high frequency
ones being, essentially, harmonics of the tip vortices. The right panel of Figure 8 shows the

logarithmic mapping of the eigenvalues, computed according to ω = − log(µ)
i∆t

where ∆t
is the temporal separation between two consecutive snapshots and i the imaginary unit.
Since the analyzed dataset is real, the eigenvalues with non-zero frequency form complex
conjugate pairs, and so do the associated dynamic modes. Therefore, the 16 dynamic
modes selected by the sparsity-promoting DMD consist of eight complex conjugate pairs.
Frequencies and amplitudes of the selected dynamic modes’ pairs are summarized in
Table 1, compared to the main frequencies of the most energetic POD modes.
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Figure 8. Eigenvalues resulting from the standard DMD algorithm (red crosses) and the sparsity-
promoting algorithm (black circles). The right panel shows the logarithmic mapping of the eigenval-

ues, ω = − log(µ)
i∆t

, where ∆t is the temporal separation between two consecutive snapshots and i
the imaginary unit.
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Figures 9 and 10 provide the velocity components of the most relevant DMD modes,
ordered by their amplitude |α|. It is apparent that their main structure is similar to that
of the most energetic POD modes, despite the ranking is different and the associated
frequencies are not exactly the same (except for the high-frequency mode). Among the
modes selected by the SP-DMD, the ones that have the largest amplitude correspond to the
tip vortices, as one can see in Figure 9a for the streamwise velocity and Figure 10a,b for
the vertical and transverse components. Notice that this mode oscillates at a characteristic
angular frequency ω = 42, equal to three times the rotational angular frequency of the
turbine. It is interesting to note that the POD ranked the mode associated with the tip-
vortices as the second one in terms of energy, probably because it is characterized by
smaller-scale structures than the other ones (large-scale structures bearing, in general, more
energy than small-scale ones). The remaining selected modes are characterized by low
frequencies and large-scale spatial structures, as can be observed in Figures 9b–h and 10c–f.
These low-frequency modes are probably linked to the interaction of tip vortices and tower
vortices, as recently found by modal analysis of the wake of a wind turbine with and
without tower and nacelle [8]. Compared to the POD modes, one can notice that these
modes occupy a larger part of the domain, being characterized by smaller-scale structure
in the near wake and large-scale structures in the far wake, while the POD low-frequency
modes were found to be mostly localized in the far wake, probably due to the larger
energetic content of large-scale structures which develop downstream once smaller-scale
ones have dissipated. Moreover, in all the low-frequency DMD modes, one can clearly
identify the footprint of the tower close to the inlet (see Figure 9b–h), which was seen only
in POD modes 9 and 11. This direct connection with the near-wake small-scale structures is
highlighted in Figure 11, providing the streamwise velocity contours of the most relevant
DMD modes in two different wall-parallel planes. One can observe that the coherent
structures of the DMD modes are almost equally distributed in the streamwise direction,
except for the high-frequency mode which is mostly localized in the near wake, at least in
the planes closest to the hub. Contrariwise, as shown in Figure 12, the most energetic POD
modes are much more concentrated in the far wake (once again, except the high-frequency
mode). Moreover, concerning the low-frequency POD modes, one can see a relevant scale
separation between the structures closer to the hub (left frames) and those located closer
to the wall (right frame). In particular, the coherent structures located farther from the
hub have a much larger scale than those closer to it, probably being directly linked to the
shedding of the tower (see De Cillis et al. [8] for a discussion of this type of POD mode).
Instead, the coherent structures characterizing the DMD mode appear to maintain roughly
the same wavelength, no matter the wall-normal position. It is worth to note that all the
most energetic POD modes suffer from the same scale separation in the y and x direction,
probably due to the fact that they are associated with more than one temporal frequency.

Finally, concerning the frequencies reported in Table 1, the DMD modes are character-
ized by slightly larger frequencies and are ordered with a different ranking with respect to
the POD modes. In conclusion, the DMD modes selected by the sparsity-promoting algo-
rithm are found to be structurally similar to the most energetic POD modes. Nevertheless,
some non-trivial differences exist in ranking, frequencies and spatial structures, probably
linked to the fact that DMD isolates structures associated with one frequency only, leading
to relevant differences in the performance of the two sets of modes in reconstructing the
flow field.
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(a) Pair 1 (b) Pair 2

(c) Pair 3 (d) Pair 4

(e) Pair 5 (f) Pair 6

(g) Pair 7 (h) Pair 8

Figure 9. Streamwise velocity iso-surfaces (red for u = 0.001, blue for u = −0.001 values) of the
real part of the eight dynamic modes’ pairs selected by the sparsity-promoting algorithm, ordered
according to their amplitude |α|.
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(a) Pair 1, v (b) Pair 1, w

(c) Pair 2, v (d) Pair 2, w

(e) Pair 3, v (f) Pair 3, w

Figure 10. Vertical (left) and transverse (right) velocity iso-surfaces (magenta/green for v, w = 0.0008,
cyan/yellow for v, w = −0.0008 values) of the real part of the most relevant three dynamic modes’
pairs selected by the sparsity-promoting algorithm, ordered according to their amplitude |α|.
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(a) DMD mode 1, y = −0.41 (b) DMD mode 1, y = −0.65

(c) DMD mode 3, y = −0.41 (d) DMD mode 3, y = −0.65

(e) DMD mode 5, y = −0.41 (f) DMD mode 5, y = −0.65.
Figure 11. Streamwise velocity contours of the most relevant DMD modes on two y-constant planes.

(a) POD mode 1, y = −0.41 (b) POD mode 1, y = −0.65

(c) POD mode 3,y = −0.41 (d) POD mode 3, y = −0.65

(e) POD mode 5,y = −0.41 (f) POD mode 5, y = −0.65
Figure 12. Streamwise velocity contours of the most energetic POD modes on two y-constant planes.

5. Discussion

The present work provides a numerical analysis of the dynamics of the wake develop-
ing behind the NREL 5-MW reference wind turbine, for laminar inflow conditions, using
the proper orthogonal decomposition (POD) and the sparsity-promoting dynamic mode
decomposition (SP-DMD) of the unsteady flow field. While POD provides a set of highly
energetic, mutually orthogonal modes, these modes may not be the most dynamically
relevant; therefore, the selection of a low-dimensional basis for the realization of a reduced-
order model may be not trivial. On the other hand, DMD, in the sparsity-promoting variant,
has the capability of selecting the most dynamically relevant motion, using a decomposition
that ranks the temporal dominant frequencies in terms of amplitude. In the literature, some
examples of comparative analyses of the performance of these two modal decompositions
have been performed for different flows, showing the appropriateness of either of the two
modal decompositions depending on the flow cases. However, such a comparison has
never been assessed directly for the case of the flow behind a utility-scale wind turbine at
realistic Reynolds number. In the present paper, the flow behind the NREL-5MW wind
turbine was simulated employing an LES approach, in which the rotor blades are mod-
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eled using the actuator line method, whereas tower and nacelle are simulated using an
immersed boundary method. The most energetic modes identified by the POD are mostly
characterized by large-scale structures localized in the far wake, except for the second most
energetic mode which develops in the near wake and closely resembles the tip vortices.
Notably, 50% of the whole flow field’s turbulent kinetic energy is due to only 15% of POD
modes, namely ≈457 modes. However, ≈1525 modes are needed to account for about 90%
of the turbulent kinetic energy. Thus, using an energy-based criterion, it appears that a
large number of modes is needed to appropriately reconstruct the flow field.

Attempting to reduce the degrees of freedom of the system, the sparsity-promoting
DMD was performed on a subspace made of 251 POD modes. Depending on the value
of the sparsity parameter, the SP-DMD selected different non-trivial subsets of dynamic
modes that optimally reconstruct the entire data sequence. Comparing the reconstructed
flow with the original one, it appears that for low values of the sparsity parameter the
SP-DMD algorithm selects ≈200 modes, leading to a performance loss of ≈20% with
respect to the reference snapshots. For high values of the sparsity parameter, the number
of selected modes decreases considerably at the price of a larger loss. In all cases, the most
relevant mode appears to be directly linked to the tip vortices, while the other most relevant
modes are characterized by low-frequency oscillations filling a large part of the domain.
While the coherent structures characterizing the DMD modes maintain roughly the same
wavelength, no matter the wall-normal/streamwise position, the POD modes show a
clear scale separation in the different spatial directions, probably due to the fact that they
are associated with more than one temporal frequency. Moreover, the DMD modes are
characterized by slightly larger frequencies and are ordered with a different ranking with
respect to the POD modes.

6. Conclusions

Comparing the outcome of the DMD analysis with that of POD, we have to remark
that a reconstruction using the most energetic 200 POD modes induces a loss of ≈80% of
the flow kinetic energy, while reconstructing the flow field using the most relevant 200
DMD modes leads to a performance loss of only ≈20%. Despite the overall similarities
between the two set of modes, the differences in ranking, temporal frequencies and spatial
structures between the two modal-decomposition techniques points out that an energy-
based criterion, such as that used in the POD, may not be suitable for formulating a
reduced-order model of wind turbine wakes. Thus, sparsity-promoting DMD should be
preferred for finding an optimal low-dimensional representation of flow data. Future
work will aim at developing reduced-order models based on SP-DMD and evaluating their
performance in different flow conditions.
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