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Abstract. We present a new, elementary, dynamical proof of the prime number theorem.
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1. Introduction

The prime number theorem states that

π(N) = (1 + oN→∞(1))
N

logN
,

where π(N) denotes the number of primes of size at most N . In some sense, the result was first
publicly conjectured by Legendre in 1798 who suggested that

π(N) =
N

A logN +B + oN→∞(1)
,

for some constants A and B. Legendre specifically conjectured A = 1 and B = −1.08366. Gauss
conjectured the same formula and stated he was not sure what the constant B might turn out to
be. Gauss’ conjecture was based on millions of painstaking calculations first obtained in 1792 and
1793 which were never published but nonetheless predate Legendre’s work on the subject. It is worth
noting that later in his 1849 letter to Encke Gauss conjectured that π(N) ≈ Li(N), which in particular
implies the correct values for A and B. The first major breakthrough on the problem was due to
Chebyshev who showed that

c+ oN→∞(1) ≤ π(N) logN

N
≤ C + oN→∞(1)

for some explicit constants c and C with c > 0. There is a long history of improvements to these
explicit constants for which we refer to Goldstein [Gol73] and Goldfeld [Gol04]. The prime number
theorem was important motivation for Riemann’s seminal work on the zeta function.

The first proofs of the prime number theorem were given independently by Hadamard and de la
Vallée Poussin in 1896. The key step in their proof is a difficult argument showing that the Riemann
zeta function does not have a zero on the line Re(z) = 1. Their proof was later substantially simplified
by many mathematicians. In 1930, Wiener found a “Fourier analytic” proof of the prime number
theorem. In 1949, Erdös [Erd49] and Selberg [Sel50] discovered an elementary proof of the prime
number theorem, where here elementary is used in the technical sense that the proof involves no
complex analysis and does not necessarily mean that the proof is easy reading. The bitter battle over
credit for this result is the subject of an informative note by Goldfeld [Gol04]. Other proofs are due
to Daboussi [Dab89] and Hildebrand [Hil86]. In a blog post from 2014, Tao proves the prime number
theorem using the theory of Banach algebras [Taob]. A published version of this theorem can be
found in a book by Einsiedler and Ward [EW17]. In an unpublished book from 2014, Granville and
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Soundarajan prove the prime number theorem using pretentious methods (see, for instance, [GHS19]).
A note by Zagier [Zag97] from 1997 contains perhaps the quickest proof of the prime number theorem
using a tauberian argument in the spirit of the Erdös-Selberg proof combined with complex analysis
in the form of Cauchy’s theorem. Zagier attributes this proof to Newman.

The goal of this note is to present a new proof of the prime number theorem. Florian Richter
and I discovered similar proofs concurrently and independently. His proof can be found in [Ric].
Terence Tao wrote up a version of this argument on his blog following personal communication from
the author which can be found in [Taoa].

The proof proceeds as follows. To prove the prime number theorem, it suffices to prove that

1

N

∑
n≤N

Λ(n) = 1 + o(1),

where Λ(n) is the von Mangoldt function which is log p if n is a power of a prime p and 0 otherwise.
The reader may think of Λ as the normalized indicator function of the primes. The von Mangoldt
function is related to the Möbius function via the formula

Λ = µ ∗ log,

where the Möbius function µ(n) is 0 if n has a repeated factor, −1 if n has an odd number of distinct
prime factors, +1 if n has an even number of distinct prime factors. This formula, sometimes called
the Möbius inversion formula, encodes the fundamental theorem of arithmetic. Thus, there is a
dictionary between properties of the von Mangoldt function Λ and the Möbius function µ. Landau
observed that cancellation in the Möbius function is equivalent to the prime number theorem i.e. the
prime number theorem is equivalent to the statement

1

N

∑
n≤N

µ(n) = oN→∞(1).

This is what we actually try to prove.
The next observation is that, if one wants to compute a sum, it suffices to sample only a small

number of terms. Typically (for instance for an i.i.d. randomly chosen sequence) the average value

1

N

∑
n≤N

a(n)

is approximately the same as the average over only the even terms

≈ 2

N

∑
n≤N

a(n)12|n.

However, for certain sequences, like a = (−1,+1,−1,+1, . . .), the averages do not agree. Still for this
sequence, if we instead sample every third point or every fifth point or every pth point for any other
prime then the averages are approximately equal. It turns out, this is a rather general phenomenon:
for any sequence, for most primes p, the average of the sequence is the same as the average along only
those numbers divisible by p.

Applying this to the Möbius function, for each N , for most primes p

1

N

∑
n≤N

µ(n) ≈ 1

N

∑
n≤N

µ(n)p1p|n.
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For the purposes of this introduction, we will “cheat” and pretend that this equation is true for any
prime p. By changing variables

1

N

∑
n≤N

µ(n)p1p|n =
p

N

∑
n≤N/p

µ(pn).

But µ(pn) = −µ(n) for most numbers n since µ is multiplicative. Combining the last two equations
gives

1

N

∑
n≤N

µ(n) ≈ − p

N

∑
n≤N/p

µ(n).

The plan is to use this identity three times. Suppose we can find primes p1, p2 and p such that
p1p2
p ≈ 1. Then by applying the previous identity

1

N

∑
n≤N

µ(n) ≈ − p

N

∑
n≤N/p

µ(n)

and also

1

N

∑
n≤N

µ(n) ≈− p1
N

∑
n≤N/p1

µ(n)

≈+
p1p2
N

∑
n≤N/p1p2

µ(n).

But since p1p2
p ≈ 1, we know that

p1p2
N

∑
n≤N/p1p2

µ(n) ≈ p

N

∑
n≤N/p

µ(n).

Putting everything together we conclude that

1

N

∑
n≤N

µ(n) ≈− 1

N

∑
n≤N

µ(n)

which implies

1

N

∑
n≤N

µ(n) ≈ 0.

This implies the prime number theorem.
Thus, the main difficulty in the proof is finding primes p, p1 and p2 lying outside some exceptional

set for which p1p2
p ≈ 1. We give a quick sketch of the argument. The Selberg symmetry formula

(Theorem 2.5) roughly tells us that, even if we do not know how many primes there are at a certain
scale (say in the interval from x to x(1 + ε)) and we do not know how many semiprimes (products
of two primes) there are at that scale, the weighted sum of the number of primes and semiprimes is
as we would expect. In particular, if there are no semiprimes between x and x(1 + ε) there are twice
as many primes as one would expect (meaning 2 · ε x

log x many primes). Let x be a large number. If
there are both primes and semiprimes between x and x(1 + ε) then we can find p, p1 and p2 such
that p1p2

p ≈ 1 + O(ε) and we are done. Thus, assume that there are either only primes or only
semiprimes in the interval [x, x(1 + ε)]. For the sake of our exposition, we will assume there are only
primes between x and x(1 + ε). By the Selberg symmetry formula, there are twice as many primes
in this interval as expected. Now if there is a semiprime p1p2 in the interval [x(1 + ε), x(1 + ε)2] then
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picking any prime p in the interval [x, x(1 + ε)] we conclude that there exists p, p1 and p2 such that
p1p2
p ≈ 1 + O(ε). Thus, either we win (and the prime number theorem is true) or there are again

twice as many primes in the interval [x(1 +ε), x(1 +ε)2] as one would expect. Running this argument
again shows that there are again only primes and no semiprimes in the interval [x(1 + ε)2, x(1 + ε)3].
Iterating this argument using the connectedness of the interval, we find large intervals [x, 100x] where
there are twice as many primes as predicted by the prime number theorem. But this contradicts
Chebyshev’s theorem: Chebyshev’s theorem gives a lower bound on the number of primes, which in
turn gives a lower bound on the number of semiprimes; alternately, we remark that one could use
Erdös’s version of Chebyshev’s theorem that the number of primes less than x is at most log 4 x

log x
and because log 4 < 2 this gives a contradiction. This completes the proof.

1.A. A comment on notation

Throughout this paper, we will use asymptotic notation. Since number theory, dynamics and analysis
sometime use different conventions, we take a moment here to fix notation. We will write

x =O(y)

to mean that there exists a constant C such that

|x| ≤Cy.

When we adorn these symbols with subscripts, the subscripts specify which variables the constants
are allowed to depend on. Thus

x =OA,B(y)

means that there exists a constant C which is allowed to depend on A and B such that

|x| ≤Cy.

We write

x =y +O(z)

to mean that

x− y =O(z).

We also adopt little o notation:

x =on→∞(y)

means that
lim
n→∞

x

y
= 0.

Occasionally, when the variable with respect to which the limit is being taken is clear from context,
we may simply write

x =o(y).
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As before, we write

x =y + on→∞(z)

to mean

x− y =on→∞(z).

If the expression x depends on more than one variables, say n, m and k, we may use subscripts to
make explicit that the rate of convergence implicit in the little o notation is allowed to depend on
more variables. Thus,

x =on→∞,m,k(y)

means that x
y tends to zero with n at a rate which may depend on m and k.

2. Proof of the prime number theorem

From number theory, we will use Mertens’ Theorem, in particular the version which states,∑
p≤x

1

p
= log log x+M +O

(
1

log x

)
for some constant M; we will also use Chebyshev’s Theorem, the Selberg Symmetry Formula, Landau’s
formulation of the prime number theorem (i.e. that the prime number theorem is equivalent to∑

n≤N µ(n) = oN→∞(N)) and a slightly modified version of the Turán-Kubilius inequality which we
will prove using the following Bombieri-Halász-Montgomery inequality.

Proposition 2.1. (Bombieri-Halász-Montgomery inequality [Bom71]) Let wi be a sequence of
nonnegative real numbers. Let u and vi be vectors in a Hilbert space. Then

n∑
i=1

wi|〈u, vi〉|2 ≤ ||u||2 ·

sup
i

n∑
j=1

wj |〈vi, vj〉|

 .

Proof. By duality, there exists ci such that

n∑
i=1

wi|ci|2 = 1

and

n∑
i=1

wi|〈u, vi〉|2 =

(
n∑

i=1

wici〈u, vi〉

)2

and therefore by conjugate bilinearity of the inner product

=

〈
u,

n∑
i=1

wicivi

〉2

.
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By Cauchy-Schwarz, this is at most

≤||u||2
∣∣∣∣∣∣∣∣ n∑

i=1

wicivi

∣∣∣∣∣∣∣∣2.
By the pythagorean theorem this is given by

=||u||2
n∑

i=1

n∑
j=1

wiwjcicj〈vi, vj〉.

The geometric mean is dominated by the arithmetic mean.

≤||u||2
n∑

i=1

n∑
j=1

wiwj
1

2
(|ci|+ |cj |)|〈vi, vj〉|.

By symmetry this is

=||u||2
n∑

i=1

wi|ci|2
n∑

j=1

wj |〈vi, vj〉|.

Because everything is nonnegative, we may replace the inner term with a supremum

≤||u||2
n∑

i=1

wi|ci|2 sup
k

n∑
j=1

wj |〈vk, vj〉|.

Using that
∑
wi|ci|2 = 1 completes the proof.

The next proposition applies the previous proposition in order to show that, for any bounded sequence,
the average of the sequence is the same as the average over the pth terms in the sequence for most
prime p.

Proposition 2.2. (Turán-Kubilius [Kub64]) Let S denote a set of primes less than some natural
number P . Let N be a natural number which is at least P 3. Let f be a 1-bounded function from N to
C. Then ∑

p∈S

1

p

∣∣∣∣∣∣ 1

N

∑
n≤N

f(n)(1− p1p|n)

∣∣∣∣∣∣
2

= O (1) .

Proof. We will apply Proposition 2.1: our Hilbert space is L2 on the space of function on the integers
{1, . . . , N} equipped with normalized counting measure; set wp = 1

p ; set vp = (n 7→ 1 − p1p|n) and
u = f ; thus, by Proposition 2.1

∑
p∈S

1

p

∣∣∣∣∣∣ 1

N

∑
n≤N

f(n)(1− p1p|n)

∣∣∣∣∣∣
2

≤ 1

N

∑
n≤N
|f(n)|2 · sup

p∈S

∑
q∈S

1

q

∣∣∣∣∣∣ 1

N

∑
n≤N

(1− p1p|n)(1− q1q|n)

∣∣∣∣∣∣ .
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Since f is 1-bounded, we may bound the L2 norm of f by 1. Thus,

≤ sup
p∈S

∑
q∈S

1

q

∣∣∣∣∣∣ 1

N

∑
n≤N

(1− p1p|n)(1− q1q|n)

∣∣∣∣∣∣ . (2.1)

For primes p and q,
1

N

∑
n≤N

(1− p1p|n)(1− q1q|n)

can be expanded into a signed sum of four terms

1

N

∑
n≤N

1− p1p|n − q1q|n + pq1p|n1q|n.

When p 6= q, we claim that each term is 1 +O
(
P 2

N

)
. The trickiest term is the last term

1

N

∑
n≤N

pq1p|n1q|n.

When p 6= q, we have that
1p|n1q|n = 1pq|n.

Of course, for any natural number m,

# of n ≤ N such that m divides n =
N

m
+O(1),

where the O(1) term comes from the fact that m need not perfectly divide N . Thus,

1

N

∑
n≤N

pq1p|n1q|n = pq

(
1

pq
+O

(
1

N

))
,

which is 1 + O
(
P 2

N

)
as claimed. A similar argument handles the three other terms. Altogether, we

conclude that
1

N

∑
n≤N

(1− p1p|n)(1− q1q|n) = O

(
P 2

N

)
,

when p 6= q. Inserting this bound into 2.1 and remembering that there are at most P terms in the
sum over q in S, we find

∑
p∈S

1

p

∣∣∣∣∣∣ 1

N

∑
n≤N

f(n)(1− p1p|n)

∣∣∣∣∣∣
2

≤ sup
p∈S

∑
q∈S

1

q

∣∣∣∣∣∣ 1

N

∑
n≤N

(1− p1p|n)(1− q1q|n)

∣∣∣∣∣∣
≤ sup

p∈S

1

p

∣∣∣∣∣∣ 1

N

∑
n≤N

(1− p1p|n)(1− p1p|n)

∣∣∣∣∣∣+O

(
P 3

N

)



R. McNamara, Dynamical Proof of the Prime Number Theorem 167R. McNamara, Dynamical Proof of the Prime Number Theorem 167

Expanding out the product, the main term is

sup
p∈S

1

p

∣∣∣∣∣∣ 1

N

∑
n≤N

p21p|n

∣∣∣∣∣∣ .
By the same trick as before, we may replace the average of 1p|n by 1

p plus a small error dominated
by the main term. Cancelling factors of p as appropriate, we are left with

= sup
p∈S

1

p

∣∣∣∣∣∣ 1

N

∑
n≤N

p2
1

p

∣∣∣∣∣∣ = O(1).

Of course, all the smaller terms can be bounded by the triangle inequality. This completes the proof.

Note that, ∑
p∈S

1

p

1

N

∑
n≤N

1 =
∑
p∈S

1

p
.

For instance, if S is the set of all primes less than P , Euler proved that∑
p≤P

1

p
→∞

as P tends to infinity. In fact, Mertens’ theorem states that this sum is approximately log logP .
Thus, Proposition 2.2 represents a real improvement over the trivial bound. Therefore, for S, P , N
and f as in the statement of Proposition 2.2∣∣∣∣∣∣ 1

N

∑
n≤N

f(n)(1− p1p|n)

∣∣∣∣∣∣
2

is small for “most” primes. This shows that most primes are “good” in the sense that

1

N

∑
n≤N

f(n) ≈ 1

N

∑
n≤N

f(n)p1p|n

This notion is captured in the following definition.

Definition 2.3. Let ε be a positive real number, let P be a natural number which is sufficiently large
depending on ε and let N be a natural number sufficiently large depending on P . Denote by `(N) the
quantity

`(N) =
∑
n≤N

1

n
.

Denote by S(N) the set of primes p ≤ P such that

1

N

∣∣∣∣∣∣
∑
n≤N

µ(n)−
∑
n≤N

µ(n)p1p|n

∣∣∣∣∣∣ ≥ ε.
Then we say a prime p is good if

1

`(N)

∑
n≤N

1

n
1p∈S(n) ≤ ε.

Otherwise, we say p is bad.
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From Proposition 2.2, we obtain the following corollary.

Corollary 2.4. Let ε be a positive real number, let P be a natural number which is sufficiently large
depending on ε and let N be a natural number sufficiently large depending on P . Then the set of bad
primes is small in the sense that ∑

p bad ≤P

1

p
= O(ε−3).

Proof. By Proposition 2.2, for each n sufficiently large,∑
p≤P

1

p
1p 6∈S(n) = O(ε−2).

Summing in n gives,

∑
p≤P

1

p

1

`(N)

∑
n≤N

1

n
1p 6∈S(n) = O(ε−2) + oN→∞,P (1).

We remark that for N sufficiently large depending on P , this second error term may be absorbed into
the first term. By definition, the set of bad primes is the set of primes such that

1

`(N)

∑
n≤N

1

n
1p 6∈S(n) ≥ ε.

But then by Chebyshev’s inequality (i.e. not his theorem on counting primes),∑
p bad ≤P

1

p
= O(ε−3).

as desired.

Next, we turn to the Selberg symmetry formula. To state Selberg’s symmetry formula, we need
to introduce the following function. Let Λ2 = log ·Λ + Λ ∗ Λ i.e.

Λ2(n) = log(n)Λ(n) +
∑
d|n

Λ(d)Λ
(n
d

)
,

where the von Mangoldt function Λ(n) when log p is n is a power of a prime p and 0 otherwise. Thus,
we remark that Λ2 is supported on prime powers and products of two prime powers. It is not too
hard to show that Λ2 is “mostly” supported on primes and semiprimes. Recall that the prime number
theorem is the statement that

1

N

∑
n≤N

Λ(n) = 1 + oN→∞(1)

and thus
1

N

∑
n≤N

Λ(n) log n = log(N)(1 + oN→∞(1)).

We are now ready to state the Selberg symmetry formula.

Theorem 2.5. (Selberg symmetry formula) The average of the second von Mangoldt function
defined above is

1

N

∑
n≤N

Λ2(n) = 2 logN(1 + oN→∞(1)).
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We will refer the reader to, for instance, [Taob] section 1 for the proof. The next proposition says
that, at each scale, there are either many primes or many semiprimes.

Proposition 2.6. Let ε > 0 be a sufficiently small number. Suppose that k0 is sufficiently large
depending on ε and let Ik denote the interval [(1 + ε)k, (1 + ε)k+1]. Then for every k ≥ k0,∑

p∈Ik

1

p
≥ 1

k

or ∑
p1p2∈Ik

pi≥exp(ε3k)

1

p1p2
≥ 1

k
.

Proof. This follows from the Selberg symmetry formula (Theorem 2.5): after all, by the Selberg
symmetry formula, for k0 sufficiently large, for all k ≥ k0,

1

(1 + ε)k

∑
n≤(1+ε)k

Λ2(n) =2 log(1 + ε)k(1 +O(ε2)).

The same holds for k replaced by k + 1.

1

(1 + ε)k+1

∑
n≤(1+ε)k+1

Λ2(n) =2 log(1 + ε)k+1(1 +O(ε2)).

Taking differences, and using that k log(1 + ε) = (k + 1) log(1 + ε)(1 +O(ε2)), for k ≥ k0 sufficiently
large, we find that

1

ε(1 + ε)k

∑
n∈Ik

Λ2(n) =2 log(1 + ε)k(1 +O(ε)). (2.2)

We aim to show that prime powers do not contribute very much to this sum. Notice that, if a prime
power contributes to the sum, then the corresponding prime must be at most the square root of
(1+ε)k+1 and there is at most one power of any prime in the interval Ik (because ε < 1). Also, notice
that Λ2(p

a) ≤ 2Λ(pa) log pa. Thus, we bound

1

ε(1 + ε)k

∑
n=pa,a>1

n∈Ik

Λ(n) log n =
1

ε(1 + ε)k

∑
n=pa,a>1

n∈Ik

log p log pa

≤ 1

ε(1 + ε)k

∑
p≤(1+ε)(k+1)/2

log p log(1 + ε)k+1.

Now the number of primes less than (1 + ε)(k+1)/2 is certainly less than (1 + ε)(k+1)/2, so

≤ 1

ε(1 + ε)k
(1 + ε)(k+1)/2 log(1 + ε)(k+1)/2 log(1 + ε)k+1.

=ok→∞,ε(1).

For instance, by choosing k0 large depending on ε, we can make this quantity

=O(ε)
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Similarly for products of a natural number m and a prime power,

1

ε(1 + ε)k

∑
n=pam,a>1

n∈Ik

Λ(p)Λ(m) ≤ 1

ε(1 + ε)k

∑
n=pam,a>1

n∈Ik

log p logm

≤ 1

ε(1 + ε)k

∑
p≤(1+ε)(k+1)/2

log p
∑

1<a≤logp(1+ε)k

∑
mpa∈Ik

Λ(m).

Now the inner most sum is bounded by Chebyshev’s inequality. We simplify slightly using the factor
of 1

ε(1+ε)k
out front.

≤C
∑

p≤(1+ε)(k+1)/2

log p
∑

1<a≤logp(1+ε)k

1

pa
.

≤C
∑

p≤(1+ε)(k+1)/2

log p

p2
.

=O(1).

Finally, we claim that when one of the prime factors of a semiprime is less than exp(ε3k) then that
semiprime does not contribute very much to the sum. Indeed,

1

ε(1 + ε)k

∑
p1p2∈Ik

p1≤exp(ε3k)

Λ(p1)Λ(p2) =
ε

(1 + ε)k

∑
p1p2∈Ik

p1≤exp(ε3k)

log p1 log p2.

Now we use that p1 is at most exp(ε3k) and p2 is at most (1 + ε)k+1.

≤ 1

ε(1 + ε)k

∑
p1p2∈Ik

p1≤exp(ε3k)

ε3k · log(1 + ε)k+1.

Summing over scales,

≤ 1

ε(1 + ε)k
ε3k · log(1 + ε)k+1

∑
m≤kε3

∑
m≤log p1≤m−1

p1p2∈Ik

1.

The number of terms in the inner sum is can be estimated using Chebyshev’s theorem. The outersum
has roughly kε3 many terms. Thus, for some constant C,

≤C 1

ε(1 + ε)k
· ε3k log(1 + ε)k+1 · ε3k · exp(ε3k)

ε3k

(1 + ε)k+1

log(1 + ε)k+1

Simplifying, this is

=O(ε2k)

=O(ε · log(1 + ε)k).

Altogether, we find that we can restrict 2.2 to primes and semiprimes where neither factor is too
small.

1

ε(1 + ε)k

∑
n∈Ik

n=p or n=p1p2
pi≥exp(ε3k)

Λ2(n) =2 log(1 + ε)k(1 +O(ε)).
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For any two numbers n and m in Ik, 1
n = 1

m · (1 +O(ε)), so

ε−1
∑
n∈Ik

n=p or n=p1p2
pi≥exp(ε3k)

Λ2(n)

n
=2 log(1 + ε)k(1 +O(ε)).

By the pigeonhole principle, either

ε−1
∑
p∈Ik

Λ2(p)

p
≥ log(1 + ε)k(1 +O(ε))

or

ε−1
∑

p1p2∈Ik
pi≥exp(ε3k)

Λ2(p1p2)

p1p2
≥ log(1 + ε)k(1 +O(ε)).

In the first case, moving the ε and log p ≈ log(1 + ε)k terms to the other side∑
p∈Ik

1

p
≥ ε

k log(1 + ε)
· (1 +O(ε)).

Taylor expanding the logarithm gives

≥1

k
· (1 +O(ε)),

as desired. In the second case,

ε−1
∑

p1p2∈Ik
pi≥exp(ε3k)

1

p1p2
k2 log2(1 + ε) ≥ log(1 + ε)k(1 +O(ε)).

Rearranging terms gives ∑
p1p2∈Ik

pi≥exp(ε3k)

1

p1p2
≥ ε

k log(1 + ε)
(1 +O(ε)).

Taylor expanding the logarithm again completes the proof.

Next, we show that we can actually find two nearby scales where both inequalities from Proposition
2.6 hold. The key idea is to use the connectedness of the interval.

Proposition 2.7. Let ε > 0 be a number sufficiently small. Suppose that k0 is sufficiently large
depending on ε and let Ik denote the interval (1 + ε)k to (1 + ε)k+1. Then there exists k and k′ such
that |k − k′| ≤ 1 with k and k′ in [k0, ε

−2 + k0] and such that∑
p∈Ik

1

p
≥ 1

2k

and ∑
p1p2∈Ik′

pi≥exp(ε3k′)

1

p1p2
≥ 1

2k′
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Proof. Suppose not. Then by Proposition 2.6, for each k in [k0, ε
−2 + k0] either∑

p∈Ik

1

p
≥ 1

2k

or ∑
p1p2∈Ik

pi≥exp(ε3k)

1

p1p2
≥ 1

2k
.

If both hold for some k, then by choosing k = k′, we could conclude that Proposition 2.7 holds. Thus,
we will assume that exactly one of ∑

p∈Ik

1

p
≥ 1

2k

or ∑
p1p2∈Ik

pi≥exp(ε3k)

1

p1p2
≥ 1

2k

hold for any choice of k. Whichever holds for k0 must also hold for k0 + 1 since otherwise we may
choose k = k0 and k′ = k0 + 1. Inductively, we may assume that for every k in [k0, ε

−2 + k0] either∑
p∈Ik

1

p
<

1

2k

or ∑
p1p2∈Ik

pi≥exp(ε3k)

1

p1p2
<

1

2k
.

Summing in k, we eventually obtain a contradiction with Mertens’ theorem: either∑
(1+ε)k0≤p≤(1+ε)k0+ε−2

1

p
<

1

10
·
(

log(k0 + ε−2)− log k0 +O

(
1

k0

))
(2.3)

or ∑
k∈[k0,ε−2+k0]

∑
p1p2∈Ik

pi≥exp(ε3k)

1

p1p2
<

1

2
·
(

log(k0 + ε−2)− log k0 +O

(
1

k0

))
. (2.4)

We remark that a Taylor expansion could simplify

log(k0 + ε−2)− log k0 +O

(
1

k0

)
= O

(
1

ε2k0

)
.

Note that Mertens’ theorem implies that∑
p≤x

1

p
= log log x+M +O

(
1

log x

)
,

for some constant M . Taking differences,∑
(1+ε)k0≤p≤(1+ε)k0+ε−2

1

p
= log log(1 + ε)k0+ε−2 − log log(1 + ε)k0 +O

(
1

k0 log(1 + ε)

)

= log(k0 + ε−2)− log(k0) +O

(
1

k0 log(1 + ε)

)
.

But 2.3 says that the sum on the left is 2 times smaller than that which gives a contradiction.
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In the next proposition, we show that this implies there are nearby primes and semiprimes which are
good.

Proposition 2.8. Let ε > 0. Let P be a natural number which is sufficiently large depending on ε.
Let N be a natural number which is sufficiently large depending on P . Then there exists p1, p2 and
p such that

p1p2
p

= 1 +O(ε)

with p1, p2 and p good in the sense of Definition 2.3 meaning p1, p2 and p are not in S(n) for “most”
n ≤ N (see Definition 2.3 for details). Furthermore, we can require that p1, p2 and p are all greater
than 1

ε .

Proof. By Proposition 2.7, it suffices to show that, for some k0 sufficiently large depending on ε with
the property that (1 + ε)k0+ε−2 ≤ P , we have∑

p∈[(1+ε)k0 ,(1+ε)ε
−2+k0 ]

p bad

1

p
≤ 1

10k0
(2.5)

and that ∑
p1p2∈[(1+ε)k0 ,(1+ε)ε

−2+k0 ]
p1 bad

pε
3

1 ≤p2≤pε
−3

1

1

p1p2
≤ 1

10k0
. (2.6)

After all, once we have shown this, we can argue as follows: by Proposition 2.7 there exists an interval
of the form k and k′ in [k0, k0 + ε−2] with |k − k′| ≤ 1 for which∑

p∈[(1+ε)k,(1+ε)k+1]

1

p
>

1

k

and ∑
p1p2∈Ik′

pi≥exp(ε3k′)

1

p1p2
≥ 1

k′
,

where Ik = [(1 + ε)k, (1 + ε)k+1] and similarly for Ik′ . By 2.5∑
p∈[(1+ε)k,(1+ε)k+1]

p good

1

p
> 0

and by 2.6 ∑
p1p2∈Ik′

pi≥exp(ε3k′)
p1,p2 good

1

p1p2
> 0.

Now any good p in Ik and any good p1p2 in Ik′ suffices to prove the result.
Now, for the sake of contradiction, suppose first that∑

p∈[(1+ε)k0 ,(1+ε)ε
−2+k0 ]

p bad

1

p
≥ 1

10k0
.
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Summing in k0 ≤ log logP , for P large enough we get that∑
p≤logN
p bad

1

p
≥ 1

20
log log logP

which contradicts Corollary 2.4. Second, suppose that∑
p1p2∈[(1+ε)k0 ,(1+ε)ε

−2+k0 ]
p1 bad

pε
3

1 ≤p2≤pε
−3

1

1

p1p2
≥ 1

10k0
.

Summing in k0 ≤ log logP gives, for P large enough∑
p1p2≤logN

p1 bad

pε
3

1 ≤p2≤pε
−3

1

1

p1p2
≥ 1

20
log log logP.

For each p1, by Mertens’ theorem, ∑
pε

3
1 ≤p2≤pε

−3
1

1

p2
≤ −10 log ε.

By Corollary 2.4, this implies ∑
p1p2≤logN

p1 bad

pε
3

1 ≤p2≤pε
−3

1

1

p1p2
= O

(
ε−3| log ε|

)

which yields a contradiction since for P large enough, 1
20 log log logP � ε−3| log ε|.

Finally, we show this implies the prime number theorem.

Theorem 2.9. The prime number theorem holds, i.e.

1

N

∑
n≤N

Λ(n) = 1 + oN→∞(1)

Proof. Let ε be a positive real number, let P be a natural number which is sufficiently large depending
on ε and let N be a natural number sufficiently large depending on P . By Proposition 2.8, there exist
primes p1, p2 and p all good and greater than 1

ε such that

p1p2
p

= 1 +O(ε).

By definition of a good prime,

1

M

∣∣∣∣∣∣
∑
n≤M

µ(n)−
∑
n≤M

µ(n)p1p|n

∣∣∣∣∣∣ ≥ ε,
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for at most a small set of M (exactly how small will be spelled out shortly). In particular, let S(M)
denote the set of primes such that

1

M

∣∣∣∣∣∣
∑
n≤M

µ(n)−
∑
n≤M

µ(n)p1p|n

∣∣∣∣∣∣ ≥ ε.
Then by definition of a good prime,

1

`(N)

∑
M≤N

1

M
1p1∈S(M)1p2∈S(M)1p∈S(M) = O(ε).

Thus, we may conclude that

1

`(N)

∑
M≤N

1

M

1

M

∣∣∣∣∣∣
∑
n≤M

µ(n)−
∑
n≤M

µ(n)p1p|n

∣∣∣∣∣∣ = O(ε).

Since µ(np) = −µ(n) for most n (including all but those O(1p) = O(ε) fraction of n which are not
divisible by p), we conclude that

1

`(N)

∑
M≤N

1

M

∣∣∣∣∣∣ 1

M

∑
n≤M

µ(n) +
p

M

∑
n≤M/p

µ(n)

∣∣∣∣∣∣ = O(ε).

Similarly, since p1 is good,

1

`(N)

∑
M≤N

1

M

∣∣∣∣∣∣ 1

M

∑
n≤M

µ(n) +
p1
M

∑
n≤M/p1

µ(n)

∣∣∣∣∣∣ = O(ε).

By change of variables,

1

`(N)

∑
M≤N

1

M

∣∣∣∣∣∣ p1M
∑

n≤M/p1

µ(n) +
p1p2
M

∑
n≤M/p1p2

µ(n)

∣∣∣∣∣∣ = O(ε) +O

(
log p1
logN

)
.

By the triangle inequality and since N is much larger than p1,

1

`(N)

∑
M≤N

1

M

∣∣∣∣∣∣ pM
∑

n≤M/p

µ(n) +
p1p2
M

∑
n≤M/p1p2

µ(n)

∣∣∣∣∣∣ = O(ε).

But since p1p2
p = 1 +O(ε),

1

`(N)

∑
M≤N

1

M

∣∣∣∣∣∣ pM
∑

n≤M/p

µ(n)

∣∣∣∣∣∣ = O(ε).

and therefore, again using that p is good,

1

`(N)

∑
M≤N

1

M

∣∣∣∣∣∣ 1

M

∑
n≤M

µ(n)

∣∣∣∣∣∣ = O(ε).

This is an averaged version on the equation we want. We want that∣∣∣∣∣∣ 1

N

∑
n≤N

µ(n)

∣∣∣∣∣∣ = O(ε),

for all N sufficiently large. Thus, we just need to prove
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Lemma 2.10. Let ε > 0, let N be sufficiently large depending on ε and suppose that

1

`(N)

∑
M≤N

1

M

∣∣∣∣∣∣ 1

M

∑
n≤M

µ(n)

∣∣∣∣∣∣ = O(ε).

Then ∣∣∣∣∣∣ 1

N

∑
n≤N

µ(n)

∣∣∣∣∣∣ = O(ε),

To prove this we use the identity
µ · log = −µ ∗ Λ.

Summing both sides up to N gives∑
n≤N

µ(n) log n = −
∑
n≤N

∑
d|n

µ
(n
d

)
Λ(d).

Now by switching the order of summation

= −
∑
d≤N

Λ(d)

 ∑
n≤N/d

µ(n)

 .

If it were not for the factor of Λ(d), this would be exactly what we want. Each
∑

n≤M µ(n) for an

integer M occurs in this sum the number of times that
⌊
N
d

⌋
= M where b·c denotes the floor which

is proportional to N
M2 . The factor of Λ(d) can be removed using the Brun-Titchmarsh inequality as

follows. First, we break up the sum into different scales

=−
∑

a∈(1+ε)N

∑
d≤N

a≤d<(1+ε)a

Λ(d)

 ∑
n≤N/d

µ(n)

 .

For all d between a and (1 + ε)a, the sums
∑

n≤N/d µ(n) all give roughly the same value. Therefore

=−
∑

a∈(1+ε)N

∑
d≤N

a≤d<(1+ε)a

Λ(d)

 ∑
n≤N/a

µ(n)



+O

 ∑
a∈(1+ε)N

a≤N

∑
a≤d<(1+ε)a

Λ(d)
∑

N
a(1+ε)

≤n≤N
a

1
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First, we focus on the error term.

O

 ∑
a∈(1+ε)N

a≤N

∑
a≤d<(1+ε)a

Λ(d)
∑

N
a(1+ε)

≤n≤N
a

1



=O

 ∑
a∈(1+ε)N

a≤N

∑
a≤d<(1+ε)a

Λ(d)

(
N

a
− N

a(1 + ε)

)

=O

 ∑
a∈(1+ε)N

a≤N

∑
a≤d<(1+ε)a

Λ(d)
Nε

a(1 + ε)


By the Brun-Titchmarsh inequality

=O

 ∑
a∈(1+ε)N

a≤N

εa
Nε

a(1 + ε)



=O

 ∑
a∈(1+ε)N

a≤N

Nε2


=O

(
Nε2 log1+εN

)
=O (εN logN)

where the last step involves Taylor expanding log(1 + ε) near ε = 0. Next, we turn our attention to
the main term. We begin by pulling out the sum over µ(n) which no longer depends on d.

−
∑

a∈(1+ε)N

∑
d≤N

a≤d<(1+ε)a

Λ(d)

 ∑
n≤N/a

µ(n)



=−
∑

a∈(1+ε)N

 ∑
n≤N/a

µ(n)


 ∑

d≤N
a≤d<(1+ε)a

Λ(d)

 .

By the Brun-Titchmarsh inequality, this is bounded in absolute value by

≤
∑

a∈(1+ε)N

a≤N

∣∣∣∣∣∣
∑

n≤N/a

µ(n)

∣∣∣∣∣∣ · (10εa) .

Earlier, we replaced a sum indexed by n ≤ N/d by a sum indexed by n ≤ N/a, showing these two
sums were close up to an error of size O(εN logN). Undoing this process, we find

=10
∑
d≤N

∣∣∣∣∣∣
∑

n≤N/d

µ(n)

∣∣∣∣∣∣+O(εN logN).



178 3. In what ways is this a dynamical proof?178 3. In what ways is this a dynamical proof?

Now we let M = N
d . The number of values of d such that

⌊
N
d

⌋
is the number of values of d such

that M ≤ N
d < M + 1 and therefore N

M+1 < d ≤ N
M . The number of such d’s is bounded by

N
M −

N
M+1 = N

M(M+1) . Thus

≤10
∑
M≤N

N

M2

∣∣∣∣∣∣
∑
n≤M

µ(n)

∣∣∣∣∣∣+O(εN logN).

But we already showed that this sum is bounded by

=O(εN`(N))

=O(εN logN).

Thus, ∑
n≤N

µ(n) log(n) = O(εN logN).

Since log n = logN(1 +O(ε)) for n between ε N
logN and N and ε sufficiently small we conclude that∑

n≤N
µ(n) = O(εN).

But this classically implies the prime number theorem.

3. In what ways is this a dynamical proof?

To begin the argument, we showed that for all N , for most p i.e. all p outside a bad set where∑
p bad

1

p
≤ Cε

we have that ∑
n≤N

µ(n) =
∑
n≤N

µ(n)p1p|n +O(ε).

We did this using an L2 orthogonality argument (Propositions 2.1 and 2.2). Alternately, we can argue
using a variant of Tao’s entropy decrement argument (the first version of this argument appeared in
[Tao16]; a different version of the entropy decrement argument appeared in [TT18] and [TT19]; the
version presented here is somewhat different from what appeared in those papers). Let n be a random
integer less than N . Let xi = µ(n+i) and let yp = n mod p. In probability and dynamics, a stochastic
process is a sequence of random variables (. . . , ξ−2, ξ−1, ξ0, ξ1, ξ2, . . .) such that

P((ξ1, . . . ξk) ∈ A) = P((ξ1+m, . . . ξk+m) ∈ A)

for any set A and for any m. In our setting (. . . ,x−2,x−1,x0,x1,x2, . . .) is approximately stationary
in the sense that

P((x1, . . .xk) ∈ A) ≈ P((x1+m, . . .xk+m) ∈ A)

where the two terms differ by some small error which is oN→∞,m(1). A stationary process is the same
as a random variable in a measure preserving system where ξi+1 is the transformation applied to ξi.
A key invariant of a stationary process is thus the Kolmogorov-Sinai entropy:

h(ξ) = lim
n→∞

1

n
H(ξ1, . . . , ξn)



R. McNamara, Dynamical Proof of the Prime Number Theorem 179R. McNamara, Dynamical Proof of the Prime Number Theorem 179

where
H(ξ1, . . . , ξn)

is the Shannon entropy of (ξ1, . . . , ξn). This limit exists because

1

n
H(ξ1, . . . , ξn) =

1

n

∑
i≤n

H(ξi|ξ1 . . . , ξi−1)

by the chain rule for entropy, which is equal to

=
1

n

∑
i≤n

H(ξ0|ξ−1 . . . , ξ−i+1)

by stationarity. This is a Caesaró average of a decreasing sequence which is therefore decreasing. Since
entropy is nonnegative, we can conclude that the limit exists. In our case, because (. . . ,x−1,x0,x1, . . .)
is almost stationary, we can conclude that

1

n
H(x1, . . . ,xn)

is almost decreasing in the sense that, for m > n,

1

m
H(x1, . . . ,xm) ≤ 1

n
H(x1, . . . ,xn) + oN→∞,n(1).

The same is true for the relative entropy

1

n
H(x1, . . . ,xn|yp1 , . . . ,ypk)

for any fixed set of primes p1, . . . , pk.
We define the mutual information between two random variables x and y as

I(x; y) = H(x)−H(x|y)

and more generally the conditional mutual information

I(x; y|z) = H(x|z)−H(x|y, z).

We assume for the rest of the explanation that all random variables take only finitely many values.
Mutual information measures how close two random variables are to independent. Two random
variables x and y are independent if and only if

I(x; y) = 0.

Intuitively, we think of x and y as close to independent if the mutual information is small. The crux
of the entropy decrement argument is that we can find primes p such that (x1, . . . ,xp) is close to
independent of yp. The argument is as follows. Let p1 < p2 < . . . < pk be a sequence of primes.
Consider the relative entropy

1

pk
H(x1, . . . ,xpk |yp1 , . . . ,ypk)

=
1

pk
H(x1, . . . ,xpk |yp1 , . . . ,ypk−1

)− 1

pk
I(x1, . . . ,xpk ; ypk |yp1 , . . . ,ypk−1

)
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and because the relative entropy is almost decreasing

=
1

pk−1
H(x1, . . . ,xpk−1

|yp1 , . . . ,ypk−1
)− 1

pk
I(x1, . . . ,xpk ; ypk |yp1 , . . . ,ypk−1

) + o(1).

Inductively, we find

≤H(x1)−
∑
j≤k

1

pj
I(x1, . . . ,xpj ; ypj |yp1 , . . . ,ypj−1) + o(1)

We conclude that the set of bad primes pj for which

I(x1, . . . ,xpj ; ypj |yp1 , . . . ,ypj−1) ≥ ε

satisfies ∑
pj bad

1

pj
≤ ε−1H(x1) + o(1) <∞.

Thus, for most primes,
I(x1, . . . ,xpj ; ypj |yp1 , . . . ,ypj−1) < ε.

In a slight abuse of terminology, we say such primes are good. Although this definition is apparently
different from Definition 2.3, we will show that this notion of good meaning small mutual information
essentially implies the “random sampling” version defined in Definition 2.3.

Intuitively, if p is good then x1, . . . ,xp and yp are nearly independent. This is formalized by
Pinsker’s inequality. Pinsker’s inequality states that

dTV (x,y) ≤ D(x||y)1/2

where dTV is the total variation distance and D is the Kullback-Leibler divergence. For our purposes,
the important thing about the Kullback-Liebler divergence is that if y′ is a random variable with the
same distribution as y which is independent of x then

D((x,y)||(x,y′)) = I(x; y).

Therefore, we conclude that
dTV ((x,y), (x,y′)) ≤ I(x; y)1/2.

Similarly, there is a relative version

dTV ((x,y, z), (x,y′, z)) ≤ I(x; y|z)1/2,

where now y′ has the same distribution as y but is relatively independent of x over z meaning that

P(x ∈ A,y ∈ B|z = c) = P(x ∈ A|z = c)P(y ∈ B|z = c).

Thus, for bounded function F ,

EF (x,y, z) = EF (x,y′, z) +O(I(x; y)1/2),

where again y′ is relatively independent of x over z and E denotes the expectation. In our case, for
a good prime p where

I(x1, . . . ,xp; yp|(yq)q<p) < ε

we note that
EF (x1, . . . ,xp,yp) = EF (x1, . . .xp,y

′
p) +O(ε1/2).
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for any bounded function F where y′p is relatively independent of (x1, . . . ,xp) over (yq)q<p. Since yp

and (yq)q<p are already very nearly independent by the Chinese remainder theorem (and in fact if N
is a multiple of the product of primes less than p, then yp and (yq)q<p are genuinely independent) we
can conclude that

EF (x1, . . . ,xp,yp) = EF (x1, . . .xp,y
′
p) +O(ε1/2),

where now y′p is genuinely independent of (x1, . . . ,xp). For example, if we want to evaluate

1

N

∑
n≤N

µ(n)

we could interpret this as
EF (x0)

where F (x) = x. Alternately, we can average

1

N

∑
n≤N

µ(n) ≈ 1

p

∑
i≤p

µ(n+ i),

which is
EF (x1, . . . ,xp)

where now F (x1, . . . , xp) = 1
p

∑
i≤p xi. Now let y′p as before be independent of (x1, . . . ,xp) and

uniformly distributed among residue classes mod p. Then this is also

EF (x1, . . . ,xp,y
′
p)

where

F (x1, . . . , xp, yp) =
1

p

∑
i≤p

xip1yp=−i.

As we noted, for p a good prime, this is approximately,

EF (x1, . . . ,xp,y
′
p) ≈ EF (x1, . . . ,xp,yp)

and unpacking definitions this is

EF (x1, . . . ,xp,yp) =
1

N

∑
n≤N

1

p

∑
i≤p

µ(n+ i)p1n=−1 mod p.

Undoing the averaging in i gives

≈ p

N

∑
n≤N

µ(n)1p|n.

Thus, the analogue of Corollary 2.4 can be proved using the entropy decrement argument, which can
be interpreted in the dynamical setting.

The rest of the proof can also be translated to the dynamical setting. The Furstenberg system
corresponding to the Möbius function can be constructed as follows. The underlying space is the set of
functions from Z to {−1, 0, 1}. We construct a random variable on this space. Consider a random shift
of the Möbius function. Formally, let n be a uniformly chosen random integer between 1 and N and
let XN denote the function µ (say extended by 0 to the left) shifted by n i.e. XN (i) = µ(i+n). Since
the underlying space of functions from Z to {−1, 0, 1} is compact, there is a subsequence of (XN )N
which converges weakly to a random variable X. Since the distribution of each random variable XN

is “approximately” shift invariant, the distribution of the limit X is actually shift invariant. Thus, we
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obtain a shift invariant measure ν on the space of functions from Z to {−1, 0, 1} with the property
that if f is the “evaluation at zero” map

f((an)n∈Z) = a0

then ∫
f(x)ν(dx) = Ef(X)

is a subsequential limit of terms of the form

1

N

∑
n≤N

µ(n).

Thus, we can encode questions about the average of µ or more generally shifts like µ(n)µ(n+ 1) in a
dynamical way.

In order to take advantage of the fact that µ is multiplicative, we need to impose extra structure
on the dynamical systems we associate to µ. This extra structure is implicit in [TT18] and [TT19]
and is explicitly described first in [Taoc]. See also [Saw] and [McN]. One key feature of multiplicative
functions is that they are statistically multiplicative in the sense that for any ε1, . . . , εk in {−1, 0, 1},

p

N
#{n ≤ N : µ(n+ pi) = εi for all i and p|n}

=
p

N
#{n ≤ N/p : µ(n+ i) = −εi for all i}+O

(
1

p

)
.

(This holds simply by changing variables and using that µ is multiplicative). For N in some subse-
quence, we can think of the right hand side as

p

N
#{n ≤ N/p : µ(n+ pi) = εi for all i} ≈ ν{x : f(T ipx) = εi}.

We would like a way of encoding this identity in our dynamical system. One solution is to use log-
arithmic averaging. Now let n denote a random integer between 1 and N which is not uniformly
distributed but which is logarithmically distributed meaning the probability that n = m is propor-
tional to 1

m for m ≤ N . Let XN (i) = µ(n+i) be a random translate of the Möbius function. Consider
the pair (XN ,n) in the space of pairs of functions from Z to {−1, 0, 1} and profinite integers. This
product space is compact so there is a weak limit (X,y) where X is a functions from Z to {−1, 0, 1}
and y is a profinite integer. Let T (x, y) = (n 7→ x(n+ 1), y + 1). Let ρ be the distribution of (X,y)
which is a T -invariant measure on our space. Consider the map Ip on pairs of functions and profinite
integers which are 0 mod p which dilates the function by p, multiplies the function by −1 and divides
the profinite integer by p i.e.

Ip(x, y) = (n 7→ −x(pn), y/p).

For a point (x, y) in our space, let M denote the projection onto the second factor

M(x, y) = y.

Let f be the “evaluation of the function at 0” function i.e.

f(x, y) = x(0).

Then the dynamical system has the following properties, where x is always a function from Z to
{−1, 0, 1}, p and q are primes and y is a profinite integer:
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1. For all p, for all x and y such that M(x, y) = 0 mod p,

Ip(T
p(x, y)) = T (Ip(x, y)).

2. For all p and q, for all x and y where M(x, y) is 0 mod pq, we have

Ip(Iq(x, y)) = Iq(Ip(x, y)).

3. For all p, and for all measurable functions on our space φ,∫
φ(x, y)ρ(dxdy) =

∫
p1M(x,y)=0 mod pφ(Ip(x, y))ρ(dxdy) +O

(
1

p

)
.

4. For all p and for all x and y such that M(x, y) = 0 mod p we have that

f(Ip(x, y)) = −f(x, y).

A tuple (X, ρ, T, f,M, (Ip)p) where (X, ρ, T ) is a measure preserving system and satisfying (1) through
(4) is a called a dynamical model for µ. Translating our argument over to the dynamical context,
there exists some p such that∫

f(x, y)ρ(dxdy) ≈
∫
f(x, y) · p1M(x,y)=0 mod p,

with an error term which we may make arbitrarily small by increasing p. On the other hand,∫
f(x, y) · p1M(x,y)=0 mod p =

∫
−f(Ip(x, y)) · p1M(x,y)=0 mod p

= −
∫
f(x, y).

We conclude that ∫
f = 0,

for any dynamical model for µ.
In [Taoc], Tao constructs a dynamical model where∫

f ≈ 1

logN

∑
n≤N

1

n
µ(n)

i.e. using logarithmic averaging and the Furstenberg correspondence principle. However using either
Corollary 2.4 or a version of the entropy decrement argument, we can argue as follows. Let ρN denote
the distribution of (XN ,n) in the space of pairs of functions Z → {−1, 0, 1} and profinite integers
and where n is a uniformly distributed random integer between 1 and N and XN (i) = µ(n + i). For
any ε in S1 and φ, define ε∗ρn by∫

φ(x, y)ε∗ρN (dxdy) =

∫
φ(ε · x, y)ρN (dxdy).

Choose εN so that

νm =

∑
n≤m

1

n

−1 ∑
N≤m

1

N
(εN )∗ρN ,
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satisfies ∫
f(x, y)νm(x, y) =

∑
n≤m

1

n

−1 ∑
N≤M

1

N

∣∣∣∣∣∣ 1

N

∑
n≤N

µ(n)

∣∣∣∣∣∣ ,
i.e. εN is the sign of

∑
n≤N µ(n). Using a version of Corollary 2.4 or the entropy decrement argument,

one can prove that for most p (except for a set of logarithmic size at most a constant depending on
ε),

(Ip)∗(p1M=0 mod p νm) ≈ νm +O

(
ε+

log p

logm

)
.

By the argument from before (see the proof of Theorem 2.9), this is enough to conclude the prime
number theorem.
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