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Abstract

We consider the control of McKean-Vlasov dynamics (or mean-field control) with probabilistic
state constraints. We rely on a level-set approach which provides a representation of the constrained
problem in terms of an unconstrained one with exact penalization and running maximum or integral
cost. The method is then extended to the common noise setting. Our work extends (Bokanowski,
Picarelli, and Zidani, SIAM J. Control Optim. 54.5 (2016), pp. 2568–2593) and (Bokanowski,
Picarelli, and Zidani, Appl. Math. Optim. 71 (2015), pp. 125–163) to a mean-field setting.

The reformulation as an unconstrained problem is particularly suitable for the numerical resolution
of the problem, that is achieved from an extension of a machine learning algorithm from (Carmona,
Laurière, arXiv:1908.01613 to appear in Ann. Appl. Prob., 2019). A first application concerns the
storage of renewable electricity in the presence of mean-field price impact and another one focuses
on a mean-variance portfolio selection problem with probabilistic constraints on the wealth. We also
illustrate our approach for a direct numerical resolution of the primal Markowitz continuous-time
problem without relying on duality.

Keywords: mean-field control, state constraints, neural networks.

AMS subject classification: 49N80, 49M99, 68T07, 93E20.

1 Introduction

The control of McKean-Vlasov dynamics, also known as mean-field control problem, has attracted a
lot of interest over the last years since the emergence of the mean-field game theory. There is now an
important literature on this topic addressing on one hand the theoretical aspects either by dynamic
programming approach (see [33, 38, 37, 21]), or by maximum principle (see [14]), and on the other hand
the numerous applications in economics and finance, and we refer to the two-volume monographs [15, 16]
for an exhaustive and detailed treatment of this area.

In this paper, we aim to study control of McKean-Vlasov dynamics under the additional presence of
state constraints in law. The consideration of probabilistic constraints (usually in expectation or in target
form) for standard stochastic control has many practical applications, notably in finance with quantile
and CVaR type constraints, and is the subject of many papers, we refer to [41, 11, 28, 19, 36, 4] for an
overview.
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There exists some recent works dealing with mean-field control under some specific law state con-
straints. For example, the paper [18] solves mean-field control with delay and smooth expectation termi-
nal constraint (and without dependence with respect to the law of the control). In the case of mean field
games, state constraints are considered by [12, 13, 26, 31, 3]. In these cited works the state belongs to a
compact set, which corresponds to a particular case of our constraints in distribution. Related literature
includes the recent work [10] which studies a mean-field target problem where the aim is to find the initial
laws of a controlled McKean-Vlasov process satisfying a law constraint, but only at terminal time. The
paper [23] also studies these terminal constraint in law for the control of a standard diffusion process.
Next, it has been extended in [24] to a running law constraint for the control of a standard diffusion pro-
cess with McKean-Vlasov type cost through the control of a Fokker-Planck equation. Several works also
consider directly the optimal control of Fokker-Planck equations in the Wasserstein space with terminal
or running constraints, such as [8, 9] through Pontryagin principle, in the deterministic case without
diffusion.

In this paper, we consider general running (at discrete or continuous time) and terminal constraints
in law, and extend the level-set approach [6, 7] (see also [2] in the deterministic case) to our mean-
field setting. This enables us to reformulate the constrained McKean-Vlasov control problem into an
unconstrained mean-field control problem with an auxiliary state variable, and a running path-dependent
supremum cost or alternatively a non path-dependent integral cost over the constrained functions. Such
equivalent representations of the control problem with exact penalization turns out to be quite useful for
an efficient numerical resolution of the original constrained mean-field control problem. We shall actually
adapt the machine learning algorithm in [17] for solving two applications in renewable energy storage
and in portfolio selection.

The outline of the paper is organized as follows. Section 2 develops the level-set approach in our
constrained mean-field setting with supremum term. We present in Section 3 the alternative level-set
formulation with integral term, and discuss when the optimization over open-loop controls yields the
same value than the optimization over closed-loop controls. This will be useful for numerical purpose in
the approximation of optimal controls. The method is then extended in Section 4 to the common noise
setting. Finally, we present in Section 5 the applications and numerical tests.

2 Mean-field control with state constraints

Let (Ω,F ,P) be a probability space on which is defined a d-dimensional Brownian motion W with
associated filtration F = (Ft)t augmented with P-null sets. We assume that F0 is “rich enough” in
the sense that any probability measure µ on Rd can be represented as the distribution law of some F0-
measurable random variable. This is satisfied whenever the probability space (Ω,F0,P) is atomless, see
[15], p.352.

We consider the following cost and dynamics:

J(X0, α) = E
[ ∫ T

0

f
(
s,Xα

s , αs,P(Xαs ,αs)

)
ds+ g

(
Xα
T ,PXαT

)]
(2.1)

Xα
t = X0 +

∫ t

0

b
(
s,Xα

s , αs,P(Xαs ,αs)
) ds+

∫ t

0

σ(s,Xα
s , αt,P(Xαs ,αs)

)
dWs, (2.2)

where P(Xαs ,αs)
is the joint law of (Xα

s , αs) under P and X0 is a given random variable in L2(F0,Rd).
The control α belongs to a set A of F-progressively measurable processes with values in a set A ⊆ Rq.
The coefficients b and σ are measurable functions from [0, T ] × Rd×A × P2(Rd×A) into Rd and Rd×d,
where P2(E) is the set of square integrable probability measures on the metric space E, equipped with
the 2-Wasserstein distance W2. We make some standard Lipschitz conditions on b, σ in order to ensure
that equation (2.2) is well-defined and admits a unique strong solution, which is square-integrable. The
function f is a real-valued measurable function on [0, T ]× Rd×A× P2(Rd×A), while g is a measurable
function on Rd×P2(Rd), and we assume that f and g satisfy some linear growth condition which ensures
that the functional in (2.1) is well-defined.

Furthermore, the law of the controlled McKean-Vlasov process X is constrained to verify

Ψ(t,PXαt ) ≤ 0, 0 ≤ t ≤ T, (2.3)
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here Ψl, l = 1, . . . , k, are given functions from [0, T ] × P2(Rd) into R, and Ψ := max1≤l≤k Ψl. In other
words, the constraint Ψ(t, µ) ≤ 0 means that Ψl(t, µ) ≤ 0, l = 1, · · · , k. The problem of interest is
therefore

V := inf
α∈A

{
J(X0, α) : Ψ(t,PXαt ) ≤ 0, ∀ t ∈ [0, T ]

}
.

By convention the infimum of the empty set is +∞. When needed, we will sometimes use the notation
V Ψ to emphasize the dependence of the value function on Ψ. Clearly, Ψ ≤ Ψ′ implies V Ψ ≤ V Ψ′ .

Remark 2.1. This very general type of constraints includes for instance:

• Controlled McKean-Vlasov process X constrained to stay inside a non-empty closed set Kt ⊆ Rd
with probability larger than a threshold pt ∈ [0, 1], namely

P(Xα
t ∈ Kt) ≥ pt, ∀ t ∈ [0, T ],

with Ψ : (t, µ) 7→ pt − µ(Kt). With pt = 1, ∀t ∈ [0, T ] it yields almost sure constraints.

• Almost sure contraints on the state, Xα
t ∈ Kt, ∀t ∈ [0, T ] P a.s., with

Ψ : (t, µ) 7→
∫
Rd
dKt(x) µ(dx),

where dKt is the distance function to the non-empty closed set Kt.

• The case of a Wasserstein ball constraint around a benchmark law ηt in the form W2(PXαt , ηt) ≤ δt
with

Ψ : (t, µ) 7→ W2(µ, ηt)− δt.

This is the constraint considered in [35] at terminal time.

• A terminal constraint in law ϕ(PXαT ) ≤ 0 as in [23] with

Ψ : (t, µ) 7→ ϕ(µ)1t=T .

• Terminal constraint in law PXαT ∈ K ⊂ P2(Rd) as in [10] with

Ψ : (t, µ) 7→ (1− 1µ∈K)1t=T .

• The case of discrete time constraints φ(ti,PXαti ) ≤ 0 for t1 < · · · < tk with

Ψ : (t, µ) 7→ φ(t, µ)1t∈{t1,··· ,tk}.

Even though this problem seems much more involved than the standard stochastic control problem
with state constraints investigated in [7], thanks to an adequate reformulation, it turns out that we can
adapt the main ideas from this paper to our framework and construct similarly an unconstrained auxiliary
problem (in infinite dimension).

2.1 A target problem and an associated control problem

Given z ∈ R, and α ∈ A, define a new state variable

Zz,αt := z − E
[ ∫ t

0

f
(
s,Xα

s , αs,P(Xαs ,αs)

)
ds
]

= z −
∫ t

0

f̂
(
s,P(Xαs ,αs)

)
ds, 0 ≤ t ≤ T, (2.4)

where f̂ is the function defined on [0, T ]×P2(Rd×A) by f̂(t, ν) =
∫
Rd×A f

(
t, x, a, ν

)
ν(dx,da). We also

denote by ĝ the function defined on P2(Rd) by ĝ(µ) =
∫
Rd g(x, µ)µ(dx).
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Lemma 2.2. The value function admits the deterministic target problem representation

V = inf{z ∈ R | ∃ α ∈ A s.t. ĝ(PXαT ) ≤ Zz,αT , Ψ(s,PXαs ) ≤ 0, ∀ s ∈ [0, T ]}.

Proof. We first observe from the definition of V in (2.3) that it can be rewritten as

V = inf{z ∈ R | ∃ α ∈ A s.t. J(X0, α) ≤ z, Ψ(t,PXαt ) ≤ 0, ∀ t ∈ [0, T ]}.

Next, by noting that the cost functional is written as

J(X0, α) =

∫ T

0

f̂
(
t,P(Xαt ,αt)

)
dt+ ĝ(PXαT ),

the result then follows immediately by the definition of Zz,α in (2.4).

We want to link this representation to the zero-level set of the solution of an auxiliary unconstrained
control problem. Define the auxiliary unconstrained deterministic control problem:

YΨ : z ∈ R 7→ inf
α∈A

[
{ĝ(PXαT )− Zz,αT }+ + sup

s∈[0,T ]

{Ψ(s,PXαs )}+
]
, (2.5)

with the notation {x}+ = max(x, 0) for the positive part. We see that YΨ(z) ≥ 0.
By classical estimates on McKean-Vlasov equations we can obtain continuity and growth conditions

on YΨ. The proof of Proposition 2.3 is given in Section 2.3.

Proposition 2.3. YΨ verifies

1. YΨ is 1-Lipschitz. For any z, z′ ∈ R

|YΨ(z)− YΨ(z′)| ≤ |z − z′|.

2. YΨ is non-increasing. Thus if YΨ(z0) = 0 then YΨ(z) = 0 for all z ≥ z0.

Define the infimum of the zero level-set

ZΨ := inf{z ∈ R | YΨ(z) = 0}. (2.6)

We prove a first result linking the auxiliary control problem with the original constrained problem.
Solving this easier problem provides bounds on the value function, by making the constraint function
vary.

Theorem 2.4. 1. If for some z ∈ R ∃ α ∈ A s.t. ĝ(PXαT ) ≤ Zz,αT , Ψ(s,PXαs ) ≤ 0, ∀ s ∈ [0, T ] then

YΨ(z) = 0.

2. If V Ψ is finite then YΨ(V Ψ) = 0. Thus ZΨ ≤ V Ψ.

3. We have the upper bound
V Ψ ≤ inf

ε>0
ZΨ+ε.

To sum up, when V Ψ < +∞, Theorem 2.4 provides the bounds

ZΨ ≤ V Ψ ≤ inf
ε>0
ZΨ+ε. (2.7)

The proof of Theorem 2.4 is given in Section 2.3.

Remark 2.5. In the easier case where optimal controls exist for the auxiliary problem, as assumed in [7],
similar arguments as in [7] (and Section 4) directly prove that ZΨ = V Ψ and that an optimal control α∗

associated to the auxiliary problem YΨ(V ) is optimal for the original problem. However some difficulties
arise when trying to remove this assumption.
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Remark 2.6. If there exists ε0 > 0 such that V Ψ+ε0 < +∞ then ZΨ+ε0 ≤ V Ψ+ε0 < +∞ by Theorem
2.4. Thus the right-hand side of (2.7) is finite.

On the other hand, we need to be careful about the form of the constraint function if we want to
use (2.7). There are cases in which one choice of Ψ gives a infinite right-hand side in this equation but
another representation of the constraint gives an finite right-hand side. Let us consider for instance a
one-dimensional terminal constraint in law ϕ(PXαT ) ≤ 0, represented by

Ψ : (t, µ) 7→ ϕ(µ)1t=T .

We see that the constraint Ψ(t, µ) + ε ≤ 0 would never be verified for any t < T and any ε > 0, hence
V Ψ+ε = +∞ and ZΨ+ε = +∞. In that case there would be a gap in (2.7) and one wouldn’t be able to
conclude that V Ψ = ZΨ.

In view of the above example in Remark 2.6, we introduce a modified constraint function in order to
deal with discrete time constraints, and also with a.s. constraints. Given a constraint function Ψ(t, µ),
we define

Ψκ(t, µ) := Ψ(t, µ)− κ1{Ψ(t,µ)≤0}, (2.8)

with κ > 0. By observing that Ψκ(t, µ) ≤ 0 ⇔ Ψ(t, µ) ≤ 0, it follows that

V Ψ = V Ψκ , YΨ = YΨκ , ZΨ = ZΨκ . (2.9)

Remark 2.7. Notice that by taking ε0 < κ, and assuming that V Ψ <∞, we have ZΨκ+ε0 < ∞. Indeed,

by applying Theorem 2.4 to Ψκ, we have ZΨκ+ε0 ≤ V Ψκ+ε0 . Moreover, by observing that an admissible
control for the original problem V Ψ is also admissible for the auxiliary problem with constraint function

Ψκ + ε0, by definition of Ψκ, this implies that V Ψκ+ε0 < ∞.

2.2 Representation of the value function

Now we prove under some assumptions on the constraints the continuity property ZΨκ = infε>0ZΨκ+ε

in order to obtain a characterization of the original value function V Ψ. The result relies on convexity
arguments, and holds true within the linear-convex model assumption:

Assumption 2.8 (Lin-Conv). The coefficients b valued in Rd, σ = (σj)1≤j≤d valued in Rd×d of the
controlled mean-field equation are in the linear form:

b(t, x, a, ν) = β(t) +B(t)x+ C(t)a+ B̄(t)

∫
xν(dx, da) + C̄(t)

∫
aν(dx,da)

σj(t, x, a, ν) = γj(t) +Dj(t)x+ Fj(t)a+ D̄j(t)

∫
xν(dx, da) + F̄j(t)

∫
aν(dx, da),

for (t, x, a, ν) ∈ [0, T ] × Rd×A × P2(Rd×A), with A convex set of Rq, and with bounded measurable
function β, γj B, Dj, C, Fj, B̄, D̄j, C̄, and F̄j, j = 1, . . . , d, on [0, T ], valued respectively on Rd, Rd,

Rd×d, Rd×d, Rd×q, Rd×q, Rd×d, Rd×d, Rd×q, Rd×q.
The cost functions f , g and the constraint functions Ψl, l = 1, . . . , k, are in the form:

f(t, x, a, ν) = f̃
(
t, x, a,

∫
xν(dx, da),

∫
aν(dx, da)

)
g(x, µ) = g̃

(
x,

∫
xµ(dx)

)
,

Ψl(t, µ) = Ψ̃l

(
t,

∫
xµ(dx)

)
.

for (t, x, a, µ, ν) ∈ [0, T ] × Rd×A × P2(Rd) × P2(Rd×A), where f̃(t, .) is convex on Rd×Rq ×Rd×Rq,
and g̃, Ψ̃l(t, .) are convex on Rd×Rd.
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Lemma 2.9. Under Assumption 2.8, the function (z, ε) ∈ R×R 7→ YΨ+ε(z) is convex.

The proof of Lemma 2.9 is given in Section 2.3.

Proposition 2.10. Let Assumption 2.8 hold. Then, YΨ being convex, positive and non-increasing, if
ZΨ <∞ then YΨ is decreasing on (−∞,ZΨ] and YΨ(z) = 0 on [ZΨ,∞).

Proof. By contradiction, if YΨ(a) = YΨ(b) > 0 with a < b then by monotonicity YΨ([a, b]) = {YΨ(a)} and
0 ∈ ∂YΨ(a) thus YΨ(x) ≥ YΨ(a) > 0, ∀x ∈ R which is not the case because ZΨ <∞. As a consequence,
YΨ is decreasing. Then by continuity of YΨ and definition of ZΨ we obtain YΨ(ZΨ) = 0.

Theorem 2.11. Under Assumption 2.8, assume that −∞ < V Ψ < ∞. Then we have the representation

ZΨ = V Ψ.

Moreover ε-optimal controls αε for the auxiliary problem YΨ(V Ψ) are ε-admissible ε-optimal controls for
the original problem in the sense that

J(X0, α
ε) ≤ V Ψ + ε, sup

0≤s≤T
Ψ(s,PXαεs ) ≤ ε.

Proof of Theorem 2.11. We prove the continuity of ZΨκ along the curve ZΨκ+ε for ε ∈ R where Ψκ is
defined in (2.8).

Let κ > 0 and ε0 < κ. By Remark 2.7, we know that ZΨκ+ε0 <∞. We consider the function

Φ(ε) := ZΨκ+ε = inf{z ∈ R : YΨκ+ε(z) ≤ 0} < ∞, ε < ε0,

and observe by direct verification that it is convex on (−∞, ε0), using Lemma 2.9. Moreover, by (2.7)
applied to Ψ̄κ, and (2.9), we have Φ(ε) = ZΨ̄κ+ε ≥ V Ψ̄κ = V Ψ > −∞. Therefore, Φ is a convex, and
finite function on (−∞, ε0), hence it is continuous (see e.g. Corollary 10.1.1 in [40]), in particular at ε =

0. As a consequence ZΨκ = infε>0ZΨκ+ε, and by Theorem 2.4 applied to Ψκ, we obtain ZΨκ = V Ψκ .

Then recalling that ZΨ = ZΨκ , V Ψ = V Ψκ , the result follows.
Concerning the controls, take ε > 0, and consider an ε-optimal control αε ∈ A such that

{ĝ(Pα
ε

T )− ZZ
Ψ,αε

T }+ + sup
s∈[0,T ]

{Ψ(s,PXαεs )}+ ≤ ε.

The two terms on the l.h.s. being non-negative, they both are smaller than ε and thus

ĝ(Pα
ε

T ) ≤ ZZ
Ψ,αε

T + ε, and Ψ(s,PXαεs ) ≤ ε, ∀ s ∈ [0, T ].

Hence J(X0, α
ε) ≤ ZΨ + ε = V Ψ + ε and Ψ(s,PXαεs ) ≤ ε, ∀ s ∈ [0, T ].

2.3 Proofs

Proof of Proposition 2.3. 1) By the inequalities | infuA(u)−infuB(u)| ≤ supu |A(u)−B(u)|, | supuA(u)−
supuB(u)| ≤ supu |A(u)−B(u)| we obtain for any z, z′ ∈ R

|YΨ(z)− YΨ(z′)|

=
∣∣∣ inf
α∈A

[
{ĝ(PXαT )− Zz,αT }+ + sup

s∈[t,T ]

{Ψ(s,PXαs )}+
]

− inf
α∈A

[
{ĝ(PXαT )− Zz

′,α
T }+ + sup

s∈[t,T ]

{Ψ(s,PXαs )}+
]∣∣∣

≤ sup
α∈A

∣∣∣{ĝ(PXαT )− Zz,αT }+ − {ĝ(PXαT )− Zz
′,α
T }+ + sup

s∈[t,T ]

{Ψ(s,PXαs )}+ − sup
s∈[t,T ]

{Ψ(s,PXαs )}+
∣∣∣

≤ sup
α∈A

∣∣∣Zz,αT − Zz
′,α
T

∣∣∣ = |z − z′|,
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by 1-Lipschitz continuity of x 7→ {x}+.
2) Denote by

LΨ(z, α) = {ĝ(PXαT )− Zz,αT }+ + sup
s∈[0,T ]

{Ψ(s,PXαs )}+,

so that YΨ(z) = infα∈A L
Ψ(z, α). Then, it is clear that

z ≤ z′ =⇒ LΨ(z′, α) ≤ LΨ(z, α)

hence by minimizing, the same monotonicity property holds also for the value function

z ≤ z′ =⇒ YΨ(z′) ≤ YΨ(z).

Proof of Theorem 2.4. 1) ∃ α ∈ A, ĝ(PXαT ) ≤ Zz,αT and Ψ(s,PXαs ) ≤ 0, ∀ s ∈ [0, T ]. Therefore

{ĝ(PXαT )− Zz,αT }+ + sup
s∈[0,T ]

{Ψ(s,PXαs )}+ = 0

and by non-negativity of Y we obtain YΨ(z) = 0

2) By continuity of Y (Proposition 2.3) and 1), we obtain YΨ(V Ψ) = 0 by taking admissible ε-optimal
controls for the original problem and taking the limit ε→ 0. By definition of ZΨ the property is estab-
lished.

3) We assume that exists ε0 > 0 such that ZΨ+ε0 < +∞. If it is not the case then infε>0ZΨ+ε = +∞
and the inequality is verified. Let 0 < ε < ε0 satisfying ZΨ+ε <∞. By continuity of Y in the z variable
(Proposition 2.3), YΨ+ε(ZΨ+ε) = 0. Then by definition of YΨ+ε, for 0 < ε′ ≤ ε, ∃ αε′ ∈ A such that

{ĝ(Pα
ε′

T )− ZZ
Ψ+ε,αε

′

T }+ + sup
s∈[0,T ]

{Ψ(s,P
Xαε

′
s

) + ε}+ ≤ ε′.

The two terms on the l.h.s. being non-negative, they both are smaller than ε′ and thus

ĝ(Pα
ε′

T ) ≤ ZZ
Ψ+ε,αε

′

T + ε′, and Ψ(s,PXαs ) ≤ ε′ − ε ≤ 0, ∀ s ∈ [0, T ].

Hence
J(αε

′
) ≤ ZΨ+ε + ε′

and
Ψ(s,PXαs ) ≤ 0, ∀ s ∈ [0, T ].

Therefore by arbitrariness of ε′ verifying 0 < ε′ < ε we conclude that V Ψ ≤ ZΨ+ε. By arbitrariness of ε
verifying 0 < ε < ε0 it follows

V Ψ ≤ inf
ε∈(0,ε0)

ZΨ+ε = inf
ε>0
ZΨ+ε,

where the last equality comes from the non-increasing property of ZΨ+ε w.r.t. ε.

Proof of Lemma 2.9. Under Assumption 2.8 on the linear dynamics of the controlled state process, we
have for all α ∈ A, z ∈ R, ε ∈ R+,

LΨ+ε(z, α) =
{
E
[
g̃(Xα

T ,E[Xα
T ]) +

∫ T

0

f̃(s,Xα
s , αs,E[Xα

s ],E[αs]) ds
]
− z
}

+

+ sup
s∈[0,T ]

{
Ψ̃(s,E[Xα

s ]) + ε
}

+
.

Let α1, α2 be two arbitrary controls in A, z1, z2 ∈ R, ε1, ε2 ∈ R+, and λ ∈ (0, 1). Define α = λα1 + (1−
λ)α2, and notice by the linear mean-field dynamics in Assumption 2.8 that Xα = λXα1

+ (1 − λ)Xα2

.
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Then, by the convexity assumption on f̃ , g̃, and Ψ̃ in Assumption 2.8, and the convexity of x 7→ {x}+,
we have

LΨ+λε1+(1−λ)ε2(λz1 + (1− λ)z2, α) ≤ λLΨ+ε1(z1, α1) + (1− λ)LΨ+ε2(z2, α2).

By taking the infimum over α1, α2 in the r.h.s. of the above inequality, we deduce the required convexity
result:

YΨ+λε1+(1−λ)ε2(λz1 + (1− λ)z2) ≤ LΨ+λε1+(1−λ)ε2(λz1 + (1− λ)z2, α)

≤ λYΨ+ε1(z1) + (1− λ)YΨ+ε2(z2).

2.4 Potential extension towards dynamic programming

If one wants to use dynamic programming in order to solve the auxiliary control problem, it requires to
write it down under a Markovian dynamic formulation. Define

Xt,ξ,α
s = ξ +

∫ s

t

b
(
u,Xt,ξ,α

u , αu,P(Xt,ξ,αu ,αu)) du+

∫ s

t

σ(u,Xt,ξ,α
u , αu,P(Xt,ξ,αu ,αu)

)
dWu,

for t ∈ [0, T ], and ξ ∈ L2(Ft,Rd), and notice that we have the flow property

Xt,ξ,α
r = X

s,Xt,ξ,αs ,α
r , PXt,ξ,αr

= P
X
s,X

t,ξ,α
s ,α

r

, ∀ 0 ≤ s ≤ r ≤ T,

coming from existence and pathwise uniqueness in (2.2). We thus consider the cost function

J(t, ξ, α) := E
[ ∫ T

t

f
(
s,Xt,ξ,α

s , αs,P(Xt,ξ,αs ,αs)

)
ds+ g

(
Xt,ξ,α
T ,PXt,ξ,αT

)]
,

and the value function

V (t, ξ) := inf
α∈A
{J(t, ξ, α) | Ψ(s,PXt,ξ,αs

) ≤ 0, ∀ s ∈ [t, T ]}.

Then we introduce the auxiliary state variable

Zt,ξ,z,αr := z − E
[ ∫ r

t

f
(
s,Xt,ξ,α

s , αs,P(Xt,ξ,αs ,αs)

)
ds
]

= z −
∫ r

t

f̂
(
s,P(Xt,ξ,αs ,αs)

)
ds, t ≤ r ≤ T,

and the auxiliary value function is given by

YΨ(t, ξ, z) = inf
α∈A

[
{ĝ(PXt,ξ,αT

)− Zαt,ξ,z(T )}+ + sup
s∈[t,u]

{Ψ(s,PXt,ξ,αs
)}+
)]

=: inf
α∈A

LΨ(t, ξ, z, α). (2.10)

We can treat the non-Markovian formulation of this problem by introducing as in [6] an additional state

variable Y t,ξ,α,mu =
(

sups∈[t,u]{Ψ(s,PXt,ξ,αs
)}+
)
∨m ≥ 0 for u ≥ t with m ∈ R and the value function

ỸΨ(t, ξ, z,m) = inf
α∈A

[
{ĝ(PXt,ξ,αT

)− Zαt,ξ,z(T )}+ + Y t,ξ,α,mT

]
=: inf

α∈A
L

Ψ
(t, ξ, z,m, α).

The two problems are related by

YΨ(t, ξ, z) = ỸΨ(t, ξ, z, {Ψ(t,PXt,ξ,αt
)}+).

With this formulation, the problem (2.10) becomes a Mayer-type Markovian optimal control problem in
the augmented state space [0, T ] × L2(F0,Rd) × R×R. As mentioned in [6], this procedure is used for
instance for hedging lookback options in finance, see e.g. [27]. Now the infimum of the zero level-set is
given by

ZΨ(t, ξ) := inf{z ∈ R | ỸΨ(t, ξ, z, 0) = 0}.
Indeed note that ỸΨ(t, ξ, z,m) = 0 ⇐⇒ m ≤ 0 and ỸΨ(t, ξ, z, 0) = 0.
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The Lipschitz and convexity properties of the value function are proven exactly as in Proposition 2.3
but we detail here the continuity in space and in the running maximum variable m.

Assumption 2.12. Ψ, f, g, b, σ are Lipschitz continuous uniformly with respect to to other variables.
Namely exists [Ψ], [f ], [g], [b], [σ], L > 0 and locally bounded functions h, `,L : [0,+∞) 7→ [0,+∞) such
that for any t ∈ [0, T ], x, x′ ∈ Rd, µ ∈ P2(Rd), ν, ν′ ∈ P2(Rd×A), a ∈ A

|Ψ(t, µ)−Ψ(t, µ′)| ≤ [Ψ]W2(µ, µ′)

|f(t, x, a, ν)− f(t, x′, a, ν′)| ≤ [f ](|x− x′|+W2(ν, ν′))

|g(x, µ)− g(x, µ′)| ≤ [g](|x− x′|+W2(µ, µ′))

|b(t, x, a, ν)− b(t, x′, a, ν′)| ≤ [b](|x− x′|+W2(ν, ν′))

|σ(t, x, a, ν)− σ(t, x′, a, ν′)| ≤ [σ](|x− x′|+W2(ν, ν′))

|b(t, 0, a, δ0 ⊗ µ)|+ |σ(t, 0, a, δ0 ⊗ µ)|+ |f(t, 0, a, δ0 ⊗ µ)| ≤ L
|f(t, x, a, ν)| ≤ h(‖ν‖2)(1 + |x|2)

|g(x, µ)| ≤ `(‖µ‖2)(1 + |x|2)

|Ψ(t, µ)| ≤ L(‖µ‖2).

Proposition 2.13. Under Assumption 2.12 ỸΨ is Lipschitz continuous: there exists C > 0 such that
for any t ∈ [0, T ], ξ, ξ′ ∈ L2(Ft,Rd),m,m′ ∈ R

|ỸΨ(t, ξ, z,m)− ỸΨ(t, ξ′, z′,m′)| ≤ |z − z′|+ |m−m′|+ C
√

E|ξ − ξ′|2.

Proof of Proposition 2.13. By the inequalities | infuA(u)− infuB(u)| ≤ supu |A(u)−B(u)|, | supuA(u)−
supuB(u)| ≤ supu |A(u) − B(u)|, and |a ∨ b − c ∨ d| ≤ |a − c| ∨ |b − d| ≤ |a − c| + |b − d| we obtain for
any ξ, ξ′ ∈ L2(Ft,Rd) (if Ψ is not continuous consider ξ = ξ′)

|ỸΨ(t, ξ, z,m)− ỸΨ(t, ξ′, z′,m′)|

≤ sup
α∈A
|{ĝ(PXt,ξ,αT

)− Zt,ξ,z,αT }+ − {ĝ(P
Xt,ξ

′,α
T

)− Zt,ξ
′,z′,α

T }++

sup
s∈[t,T ]

{Ψ(s,PXt,ξ,αs
)}+ ∨m− sup

s∈[t,T ]

{Ψ(s,P
Xt,ξ

′,α
s

)}+ ∨m′|

≤ sup
α∈A

(|ĝ(PXt,ξ,αT
)− ĝ(P

Xt,ξ
′,α

T

)|+ |Zt,ξ,z,αT − Zt,ξ
′,z′,α

T |+ | sup
s∈[t,T ]

{Ψ(s,PXt,ξ,αs
)}+ − sup

s∈[t,T ]

{Ψ(s,P
Xt,ξ

′,α
s

)}+|

+ |m−m′|)

≤ sup
α∈A

(
|E[g(Xt,ξ,α

T ,PXt,ξ,αT
)− g(Xt,ξ′,α

T ,P
Xt,ξ

′,α
T

)]|+ |z − z′|

+
∣∣∣E[ ∫ T

t

f
(
s,Xt,ξ,α

s , αs,P(Xt,ξ,αs ,αs)

)
ds−

∫ T

t

f
(
s,Xt,ξ′,α

s , αs,P(Xt,ξ
′,α

s ,αs)

)
ds
]∣∣∣)

+ sup
α∈A

sup
s∈[t,T ]

|{Ψ(s,PXt,ξ,αs
)}+ − {Ψ(s,P

Xt,ξ
′,α

s
)}+|+ |m−m′|

≤ [ĝ] sup
α∈A

(E|Xt,ξ,α
T −Xt,ξ′,α

T |+W2(PXt,ξ,αT
,P
Xt,ξ

′,α
T

)) + |z − z′|+ |m−m′|+ [Ψ] sup
α∈A

sup
s∈[t,T ]

W2(PXt,ξ,αs
,P
Xt,ξ

′,α
s

)

+ T [f ] sup
α∈A
{E[ sup

s∈[t,T ]

|Xt,ξ,α
s −Xt,ξ′,α

s |] + sup
s∈[t,T ]

W2(PXt,ξ,αs
,P
Xt,ξ

′,α
s

)},

by Lipschitz continuity of Ψ, x 7→ {x}+. We recall the estimates

sup
s∈[t,T ]

W2(PXt,ξ,αs
,P
Xt,ξ

′,α
s

) =
√

sup
s∈[t,T ]

W2(PXt,ξ,αs
,P
Xt,ξ

′,α
s

)2 ≤ C
√
E|ξ − ξ′|2

E[ sup
s∈[t,T ]

|Xt,ξ,α
s −Xt,ξ′,α

s |] ≤ CE|ξ − ξ′| ≤ C
√
E|ξ − ξ′|2,
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obtained by standard arguments (see e.g. the proof of Proposition 3.3 in [21]). Then the result follows.

Proposition 2.14 (Law invariance properties). Under Assumption 2.12, we have law invariance of ỸΨ

and ZΨ, namely if ξ, η are Ft-adapted square integrable with the same law, for any (t, z,m) ∈ [0, T ]×R×R

ỸΨ(t, ξ, z,m) = ỸΨ(t, η, z,m)

ZΨ(t, ξ) = ZΨ(t, η).

Therefore we can define the lifted functions yΨ, zΨ on [0, T ]×P2(Rd)×R (respectively [0, T ]×P2(Rd) by
yΨ(t,Pξ, z,m) := ỸΨ(t, ξ, z,m) and zΨ(t,Pξ, z,m) := ZΨ(t, ξ, z,m).

Proof. Apply the same arguments as in Theorem 3.5. from [20] to the unconstrained Markovian value
function YΨ on the extended state space. In particular use the continuity of YΨ from Proposition 2.3
and notice for a given control α that in Step 1 of Theorem 3.5. from [20] the equality in law

((Xt,ξ,α
s )s∈[t,T ], (Z

t,ξ,z,α
s )s∈[t,T ], (Y

t,ξ,α,m
u )s∈[t,T ], (αs)s∈[t,T ])

L
= ((Xt,η,β

s )s∈[t,T ], (Z
β,t,η,z)s∈[t,T ], (Y

t,η,β,m
u )s∈[t,T ], (βs)s∈[t,T ]),

holds true with as defined in Lemma B.2. from [20] (verifying in particular the equality in law αs =
as(ξ, Uξ)) and βs = as(η, Uη) where Uη (respectively Uξ) is a Ft-adapted uniform random variable on
[0, 1] independent of η (respectively ξ). Then use the definition (2.6) to obtain the same law invariance
property for ZΨ too.

Theorem 2.4 and Theorem 2.11 are still valid in the the dynamic case, by applying the exact same
arguments. More precisely for any (t, ξ) ∈ [0, T ]× L2(Ft,Rd), if V Ψ(t, ξ) <∞ then

ZΨ(t, ξ) ≤ V Ψ(t, ξ) ≤ inf
ε>0
ZΨ+ε(t, ξ).

Similarly, arguments like in Theorem 2.11 prove that

ZΨ(t, ξ) = V Ψ(t, ξ),

if V Ψ(t, ξ) <∞.
If the value function is law invariant (see Proposition 2.14) and Theorem 2.11 holds true, we expect

y to be formally (by combining arguments from [6, 21]) characterized by a Master Bellman equation in
Wassertein space with oblique derivative boundary conditions.

3 An alternative auxiliary problem

We study the constrained McKean-Vlasov control problem

V := inf
α∈A

{
J(X0, α) : Ψ(t,PXαt ) ≤ 0, ∀ t ∈ [0, T ], ϕ(PXαT ) ≤ 0

}
,

where we now assume that the running constraint Ψ is continuous (hence, no discrete time constraints,
see Remark 4.4), and with a terminal constraint function ϕ. We now consider an alternative auxiliary
control problem as in [7]:

w(z) := inf
α∈A

[
{ĝ(PXαT )− Zz,αT }+ +

∫ T

0

{Ψ(s,PXαs )}+ ds+ {ϕ(PXαT )}+
]
. (3.1)

Compared to the control problem (2.5) of the previous section, the penalization term of the constrained
function Ψ is in integral form instead of a supremum form. It follows that this problem is is Markovian with
respect to the variables Xt, PXt and Zt, and we shall show that it also provides a similar representation
of the value function by its zero level set:

V = inf{z ∈ R : w(z) = 0},
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but under the additional assumption that optimal controls do exist. Actually, we prove this result in the
more general case with common noise in the next section.

The mean-field control problem (3.1) is Markovian with respect to the state variables (Xα
t , PXαt , Zz,αt ),

and it is known from [20] that the infimum over open-loop controls α in A can be taken equivalently
over randomized feedback policies, i.e. controls α in the form: αt = a(t,Xα

t ,PXαt , Z
z,α
t , U), for some

deterministic function a from [0, T ]×Rd×P(Rd)×R×[0, 1] into A, where U is an F0-measurable uniform
random variable on [0, 1].

Let us now discuss conditions under which the infimum in (3.1) can be taken equivalently over (deter-
ministic) feedback policies, i.e. for controls α in the form: αt = a(t,Xα

t ,PXαt , Z
z,α
t ), for some deterministic

function a from [0, T ]× Rd×P(Rd)× R into A. This will be helpful for numerical purpose in Section 5.
We assume on top of Assumption 2.12 that the running cost f , the drift b and the volatility coefficient
σ do not depend on the law of the control process. We also assume that the running cost f = f(t, x, µ)
does not depend on the control argument. The terminal constraint function ϕ should also verify the
same assumptions as the terminal cost function g, namely Lipschitz continuity and local boundedness
(see Assumption 2.12).

In this case, the corresponding dynamic auxiliary problem of (3.1) is written as

w(t, µ, z) = inf
α∈A

[
{ĝ(PXt,ξ,αT

)− Zt,ξ,z,αT }+ +

∫ T

0

{Ψ(s,PXt,ξ,αs
)}+ ds+ {ϕ(PXt,ξ,αT

)}+
]

(3.2)

Xt,ξ,α
r = ξ +

∫ r

t

b
(
s,Xt,ξ,α

s , αs,PXt,ξ,αs
) ds+

∫ r

t

σ
(
s,Xt,ξ,α

s , αt,PXt,ξ,αs

)
dWs, ξ ∼ µ,

Zt,ξ,z,αr = z −
∫ r

t

f̄
(
s,PXt,ξ,αs

)
ds, r ≥ t,

where f̄ is the function defined on [0, T ] × P2(Rd) by f̄(t, µ) =
∫
Rd f

(
t, x, µ

)
µ(dx). Note that we have

applied Theorem 3.5 from [20] to obtain the law invariance of the auxiliary value function which can be
written as a function of the measure µ. From Theorem 3.5, Proposition 5.6. 2), and equation (5.17) in
[20] (see also Remark 5.2. from [21] and Section 6 in [37]) we see that the Bellman equation for problem
(3.2) is:

∂tw(t, µ, z) + E[infa∈A{b
(
t, ξ, a, µ)∂µw(t, µ, z)(ξ)− f̄(t, µ)∂zw(t, µ, z)

+ 1
2Tr(σσ>

(
t, ξ, a, µ)∂x∂µw(t, µ, z)(ξ))}] + {Ψ(t, µ)}+ = 0 for (t, µ, z) ∈ [0, T ]× P2(Rd)× R

w(T, µ, z) = {ĝ(µ)− z}+ + {ϕ(µ)}+ for (µ, z) ∈ P2(Rd)× R .
(3.3)

By assuming that w is a smooth solution to this Bellman equation, and when the infimum in

inf
a∈A
{b
(
t, x, a, µ)∂µw(t, µ, z)(x)− f̄(t, µ)∂zw(t, µ, z) +

1

2
Tr(σσ>

(
t, x, a, µ)∂x∂µw(t, µ, z)(x))}

is attained for some measurable function â(t, x, µ, z) on [0, T ]×Rd×P(Rd)×R, we get an optimal control

for (3.1) given in feedback form by α∗t = â(t,Xα∗

t ,PXα∗t , Zz,α
∗

t ), 0 ≤ t ≤ T , which shows that one can

restrict in (3.1) to deterministic feedback policies.

4 Extension to the common noise setting

We briefly discuss how the state constraints can be extended to mean-field control problems with common
noise. In this case, in contrast with the previous section, we need to assume the existence of optimal
control for the auxiliary unconstrained problem. It is similar to the assumption made by [7]. Let W 0 be
a p-dimensional Brownian motion independent of W , and denote by F0 = (F0

t )t the filtration generated
by W 0. We consider the following cost and dynamics:

J(α) = E
[ ∫ T

0

f
(
t,Xα

t , αt,PW
0

(Xαt ,αt)

)
dt+ g

(
Xα
T ,PW

0

XT

)]
dXα

t = b
(
t,Xα

t , αt,PW
0

(Xαt ,αt)

)
dt+ σ

(
t,Xα

t , αt,PW
0

(Xαt ,αt)

)
dWt + σ0

(
t,Xα

t , αt,PW
0

(Xαt ,αt)

)
dW 0

t ,
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where PW 0

(Xαt ,αt)
is the joint conditional law of (Xα

t , αt) given W 0. The control process α belongs to a set

A of F-progressively measurable processes with values in a set A ⊂ Rq.
The controlled McKean-Vlasov process X is constrained to verify Ψ(t,PW0

Xαt
) ≤ 0 and ϕ(PW0

XαT
) ≤ 0.

The proofs still follow the arguments from [7] but are slightly more involved than in Section 2 due to the
additional noise appearing in the conditional law with respect to the common noise. We refer to [38, 25]
for the dynamic programming approach to these problems. The problem of interest is

V 0 = inf
α∈A
{J(α) | Ψ(t,PW0

Xαt
) ≤ 0, ∀ t ∈ [0, T ], ϕ(PW0

XαT
) ≤ 0 }.

4.1 Representation by a stochastic target problem and an associated control
problem

Given z ∈ R, α ∈ A, and β ∈ L2(F0,Rp), the set of Rp-valued F0-adapted processes β s.t. E[
∫ T

0
|βt|2dt]

< ∞, define

Zz,α,βt := z −
∫ t

0

f̂(s,PW
0

(Xαs ,αs)
) ds+

∫ t

0

βs dW 0
s , 0 ≤ t ≤ T. (4.1)

Lemma 4.1. The value function admits the stochastic target problem representation

V 0 = inf{z ∈ R | ∃ (α, β) ∈ A× L2(F0,Rp) s.t. ĝ(PW
0

XαT
) ≤ Zz,α,βT ,

Ψ(t,PW
0

Xαt
) ≤ 0, ∀ t ∈ [0, T ], ϕ(PW

0

XαT
) ≤ 0, P a.s.}.

Lemma 4.1 is proven in Section 4.2.
Define the auxiliary unconstrained control problem

U(z) := inf
(α,β)∈A×L2(F0,Rp)

E
[
{ĝ(PW

0

XαT
)− Zz,α,βT }+ +

∫ T

0

{Ψ(s,PW
0

Xαs
)}+ ds+ {ϕ(PW

0

XαT
)}+
]

(4.2)

for z ∈ R. We notice that U(z) ≥ 0.

Proposition 4.2. U is 1-Lipschitz. For any z, z′ ∈ R

|U(z)− U(z′)| ≤ |z − z′|.

Proposition (4.2) is proven exactly as (2.3).

Assumption 4.3. Problem (4.2) admits an optimal control for any z ∈ R and the constraint function
(t, µ) ∈ [0, T ]× P2(Rd) 7→ Ψ(t, µ) is continuous.

Remark 4.4. Notice that the integral penalization in (4.2) does not allow to consider discrete times con-
straints (except at terminal time) because the contribution to the integral would be null and the constraint
function Ψ would be discontinuous in time. We could consider discrete time constraints in the objective
of the auxiliary problem by adding a sum of functions of PW 0

Xαti
for some (ti)i ∈ [0, T ] but it would lose its

standard Bolza form.

Define Z = inf{z ∈ R | U(z) = 0}.

Theorem 4.5. 1. If ∃ (α, β) ∈ A × L2(F0,Rp), ĝ(PW 0

XαT
) ≤ Zz,α,βT , Ψ(s,PW 0

Xαs
) ≤ 0, ∀ s ∈ [0, T ], and

ϕ(PW 0

XαT
) ≤ 0, P a.s. then U(z) = 0. Hence Z ≤ V 0.

2. The value function verifies V 0 ≤ Z thus V 0 = Z. Moreover optimal controls for the problem
U(Z) = 0 are optimal for the original problem.

Theorem 4.5 is proven in Section 4.2.
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4.2 Proofs in the common noise framework

Proof of Lemma 4.1. We first observe that

V 0 = inf{z ∈ R | ∃ α ∈ A s.t. E
[ ∫ T

0

f̂(s,PW
0

(Xαs ,αs)
) ds+ ĝ(PW

0

XαT
)
]
≤ z,

Ψ(s,PW
0

Xαs
) ≤ 0, ∀ s ∈ [0, T ], P0 a.s.}.

We need to prove that for z ∈ R

∃ (α, β) ∈ A×L2(F0,Rp) s.t. ĝ(PW
0

XαT
) ≤ Zz,α,βT , Ψ(s,PW

0

Xαs
) ≤ 0, ∀ s ∈ [0, T ], ϕ(PW

0

XαT
) ≤ 0, P0 a.s., (4.3)

and

∃ α ∈ A s.t. E
[ ∫ T

0

f̂(s,PW
0

(Xαs ,αs)
) ds+ ĝ(PW

0

XαT
)
]
≤ z, Ψ(s,PW

0

Xαs
) ≤ 0, ∀ s ∈ [0, T ], ϕ(PW

0

XαT
) ≤ 0, P0 a.s.,

(4.4)
are equivalent. It is immediate to see that (4.3) =⇒ (4.4) by taking the expectation and noticing that
the Itô integral is a true martingale. Conversely, assuming (4.4), the martingale representation theorem

provides a process β̂ such that

z ≥ E
[ ∫ T

0

f̂(s,PW
0

(Xαs ,αs)
) ds+ ĝ(PW

0

XαT
)
]

=

∫ T

0

f̂(s,PW
0

(Xαs ,αs)
) ds+ ĝ(PW

0

XαT
)−

∫ T

0

β̂s dW 0
s .

Thus by (4.1)

Zz,α,β̂T ≥ ĝ(PW
0

XαT
), P0 a.s.,

and we see that (4.4) =⇒ (4.3). Then the result follows.

Proof of Theorem 4.5. 1) ∃ (α, β) ∈ A × L2(F0,Rp), ĝ(PW 0

XαT
) ≤ Zz,α,βT , Ψ(s,PW 0

Xαs
) ≤ 0, ∀ s ∈ [0, T ] and

ϕ(PW 0

XαT
) ≤ 0, P0 a.s.. Therefore

{ĝ(PW
0

XαT
)− Zz,α,βT }+ +

∫ T

0

{Ψ(s,PW
0

Xαs
)}+ ds+ {ϕ(PW

0

XαT
)}+ = 0, P0 a.s.

and by non-negativity of U we obtain U(z) = 0. Then with optimal controls α∗, β∗ we obtain U(V 0) = 0.
By definition of Z the property is established.

2) By 1) and the continuity given by Proposition 4.2, we obtain U(Z) = 0. Then by Assumption 4.3
∃ (α, β) ∈ A× L2(F0,Rp) such that

E0
[
{ĝ(PW

0

XαT
)− ZZ,α,βT }+ +

∫ T

0

{Ψ(s,PW
0

Xαs
)}+ ds+ {ϕ(PW

0

XαT
)}+
]

= 0.

The three terms on the l.h.s. being non-negative, they are in fact null P a.s. Thus

(PW
0

XαT
, ZZ,α,βT ) ∈ Epi(ĝ), Ψ(s,PW

0

Xαs
) ≤ 0 ∀ s ∈ [0, T ], andϕ(PW

0

XαT
) ≤ 0 P a.s.

by continuity of Ψ and of s 7→ PW 0

Xαs
, which means V 0 ≤ Z. By 1) it yields V 0 = Z. As a consequence

the previous proof provides an optimal control α for the original problem.
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5 Applications and numerical tests

We design several machine learning methods to solve this problem. We discretize the problem in time,
parametrize the control by a neural network and directly minimize the cost. When the constraints are
almost sure, we can sometimes enforce them by choosing an appropriate neural network architecture,
for instance in storage problems. A more adaptive alternative is to solve the unconstrained auxiliary
problem. We propose an extension of the first algorithm from [17] to achieve this task. Thus we obtain
a machine learning method able to solve state constrained mean field control problems.

5.1 Algorithms

We solve the auxiliary problem in the simpler case without common noise with a first algorithm. We fix
a relevant line segment K of R on which we are going to explore the potential values of the problem. For
instance we know that the value is greater than the value of the unconstrained problem V therefore it
is useless to compute the auxiliary value function for z ≤ V . We discretize the problem in time on the
grid tk := kT

N . We call ∆t := kT
N and the Brownian increment ∆Wi := Wti+1

−Wti . For j = 1, · · · , N ,

∆W j
i (respectively Xj

0) correspond to samples from N independent Brownian motions W j (respectively
from N independent random variables with law µ0). For training we discretize K by using N points. We
choose ε as a small parameter, typically smaller than 10−8. In our tests we took ε = 10−8 but we notice
that with the level of discretization we chose for K, with 25 points, the obtained values for w decrease to
around 10−5 and 10−6 before reaching exactly zero so any value of ε < 10−8 yields the same result on our
examples. We refer to [5] for results on the numerical approximation of level sets with a given threshold
in the context of constrained deterministic optimal control. We propose the following extension of the
Method 1 from [17]. It is tested in Subsection 5.2. It can indeed also be used to solve unconstrained
problem.

Remark 5.1. We point out that adding an additional parameter Λ > 0 in front of the constraint function
does not modify the representation results. In that case we solve the following auxiliary problem

YΨ
Λ := z ∈ R

7→ inf
α∈A

[
{ĝ(PXαT )− Zz,αT }+ + Λ

∫ T

0

{Ψ(s,PXαs )}+ ds+ Λ{ϕ(PXαT )}+
]
. (5.1)

We discretize the problem in time and use a neural network by time step, since a single network
taking time as input is usually not sufficient enough for complex problems, as shown in [43]. In view of
the discussion about closed-loop controls in Section 3, the neural network representing the control at each
time step takes as inputs the current states X and Zz,αi where z is taken on a discretization of K. The
method is described in Algorithm 1 with an example in Section 5.2. Solving (3.3) with the approach of
[29] would provide another numerical method for mean-field control with state constraints. The extension
to the common noise case, where we aim to solve the auxiliary problem

YΨ
Λ := z ∈ R

7→ inf
(α,β)∈A×L2(F0,Rp)

[
{ĝ(PW

0

XαT
)− Zz,αT }+ + Λ

∫ T

0

{Ψ(s,PW
0

Xαs
)}+ ds+ Λ{ϕ(PW

0

XαT
)}+
]
. (5.2)

is given in Algorithm 2 where the neural network for the control at each time step ti takes in addition
as input the current value of the common noise W 0

ti . Notice that in general, the control may depend on
the past values of the common noise, which could be taken into account in the neural network by taking
as inputs the past increments of the common noise ∆W 0

0 , . . . ,∆W
0
i−1, where ∆W 0

i = W 0
ti+1
−W 0

ti . The

neural network for the auxiliary control β at each time ti takes as inputs the current state Zz,αi and the
current value of the common noise. An illustration is given in Section 5.3.
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Algorithm 1: Algorithm to solve mean-field control problem (5.1)

Input parameters: Λ, M , N , NT , ε. For a discretization z1 < · · · < zM of K, minimize over
neural networks (αi)i∈0,··· ,NT−1: Rd×R → Rq the loss function

M∑
m=1

wΛ(zm)

with wΛ defined by

wΛ(z) := E
[
{ 1

N

N∑
l=1

g
(
X l
NT ,

1

N

N∑
j=1

δXjNT

)
− Zz,αNT }+ + Λ

NT∑
i=1

{Ψ
(
ti,

1

N

N∑
j=1

δXji

)
}+ ∆t

+ Λ{ϕ
( 1

N

N∑
j=1

δXjNT

)
}+
]
.

/* Auxiliary problem */

and for i = 0, · · · , NT − 1, j = 1, · · · , N

Xj
i+1 = Xj

i + b
(
ti, X

j
i , αi(X

j
i , Z

z,α
i ), µi

)
∆t+ σ

(
ti, X

j
i , αi(X

j
i , Z

z,α
i ), µi

)
∆W j

i , Xj
0 ∼ µ0

Zz,αi+1 = Zz,αi − 1

N

N∑
l=1

f
(
ti, X

l
i , αi(X

l
i , Z

z,α
i ), µi

)
∆t, Zz,α0 = z

µi =
1

N

N∑
j=1

δ(Xji ,αi(X
j
i ,Z

z,α
i ))

/* Particle approximations */

Define α∗ as the solution to this minimization problem.
Then, compute V0 = inf{zi, i ∈ J1,MK | wΛ(zi) ≤ ε} with α = α∗ in the dynamics.

/* Recovering the cost of the original problem */

Return the value V0 and the optimal controls α̂i : x 7→ α∗i (x, Z
V0,α

∗

i ) for i = 0, · · · , NT − 1.
/* Recovering the control of the original problem */

5.2 Mean-variance problem with state constraints

We consider the celebrated Markowitz portfolio selection problem where an investor can invest at any
time t an amount αt in a risky asset (assumed for simplicity to follow a Black-Scholes model with constant
rate of return r and volatility σ > 0), hence generating a wealth process X = Xα with dynamics

dXt = αtr dt+ αtσ dWt, 0 ≤ t ≤ T, X0 = x0 ∈ R .

The goal is then to minimize over portfolio control α the mean-variance criterion :

inf
α

J(α) = λVar(Xα
T )− E[Xα

T ] (5.3)

where λ > 0 is a parameter related to the risk aversion of the investor. We will add to this standard
problem a conditional expectation constraint in the form

E[Xα
t | Xα

t ≤ θ] ≥ δ, if P(Xα
t ≤ θ) > 0,

with δ < θ, which can be reformulated as

0 ≥ (δ − E[Xα
t | Xα

t ≤ θ])P(Xα
t ≤ θ).
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Algorithm 2: Algorithm to solve mean-field control problem (5.2)

Input parameters: Λ, M , N , NT , ε. For a discretization z1 < · · · < zM of K, minimize over
neural networks (αi)i∈0,··· ,NT−1: Rd×R×Rp → Rq and (βi)i∈0,··· ,NT−1: R×Rp → Rp the loss
function

M∑
m=1

wΛ(zm)

with wΛ defined by

wΛ(z) := E
[
{ 1

N

N∑
l=1

g
(
X l
NT ,

1

N

N∑
j=1

δXjNT

)
− Zz,α,βNT

}+ + Λ

NT∑
i=1

{Ψ
(
ti,

1

N

N∑
j=1

δXji

)
}+ ∆t

+ Λ{ϕ
( 1

N

N∑
j=1

δXjNT

)
}+
]
.

/* Auxiliary problem */

and for i = 0, · · · , NT − 1, j = 1, · · · , N

Xj
i+1 = Xj

i + b
(
ti, X

j
i , αi(X

j
i , Z

z,α,β
i ,W 0

ti), µi
)
∆t+ σ

(
ti, X

j
i , αi(X

j
i , Z

z,α,β
i ,W 0

ti), µi
)
∆W j

i

+ σ0

(
ti, X

j
i , αi(X

j
i , Z

z,α,β
i ,W 0

ti), µi
)
∆W 0

i , Xj
0 ∼ µ0

Zz,α,βi+1 = Zz,α,βi − 1

N

N∑
l=1

f
(
ti, X

l
i , αi(X

l
i , Z

z,α,β
i ,W 0

ti), µi
)

∆t+ βi(Z
z,α,β
i ,W 0

ti) ∆W 0
i , Zz,α,β0 = z

µi =
1

N

N∑
j=1

δ(Xji ,αi(X
j
i ,Z

z,α,β
i ,W 0

ti
))

/* Particle approximations */

Define (α∗, β∗) as the solution to this minimization problem.
Then, compute V0 = inf{zi, i ∈ J1,MK | wΛ(zi) ≤ ε} with α = α∗ and β = β∗ in the dynamics.

/* Recovering the cost of the original problem */

Return the value V0 and the optimal controls α̂i : x 7→ α∗i (x, Z
V0,α

∗,β∗

i ,W 0
ti) for i = 0, · · · , NT − 1.

/* Recovering the control of the original problem */
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The auxiliary deterministic unconstrained control problem is therefore

YΛ(z) := inf
α∈A

[
{λVar(Xα

T )− E[Xα
T ]− z}+ + Λ

∫ T

0

{(δ − E[Xα
s | Xα

s ≤ θ])P(Xα
s ≤ θ)}+ ds

]

with the dynamics dXα
s = αsr ds + αsσ dWs, which corresponds to the constraint function Ψ(t, µ) 7→

(δ −Eµ[ξ | ξ ≤ θ])µ((−∞, θ]). We have the representation J(α∗) = Z = inf{z ∈ R | YΛ(z) = 0}. Indeed
we see that the null control is admissible with the modified constraint E[Xα

t | Xα
t ≤ θ]P(Xα

t ≤ θ) = 0 ≥
(δ + ε)P(Xα

t ≤ θ) = 0, ∀t ∈ [0, T ] for any 0 < ε < θ − δ because x0 ≥ θ hence P(Xα
t ≤ θ) = 0 so we

can apply Theorem 2.11. For practical application, other constraints could be considered like almost sure
constraints on the portfolio weights as in [42]. Instead of the dualization method used by [34], constraints
on the law of the tracking error with respect to a reference portfolio could be enforced.

For numerical tests we take r = 0.15, σ = 0.35, λ = 1. We choose x0 = 1, θ = 0.9, δ = 0.8 and solve

inf
α
J(α) = λVar(Xα

T )− E[Xα
T ] (5.4)

dXt = αtr dt+ αtσ dWt,

(0.8− E[Xα
t | Xα

t ≤ 0.9])P(Xα
t ≤ 0.9) ≤ 0, ∀t ∈ [0, T ].

We compare the controls from Algorithm 1 with the exact optimal ones in the unconstrained case for which
we have an analytical value. We also solve without constraints for comparison and plot the final time
histograms. We solve the unconstrained case with algorithm 1 and the one from [17] for comparison. We
take 50 time steps for the time discretization and a batch size of 20000. We use an feedforward architecture
with two hidden layers of 15 neurons. We perform 15000 gradient descent iterations with Adam optimizer
(see [32]) thanks to the Tensorflow library. The true value v = J(α∗) is -1.05041 without constraints. We
also have the upper bound −1. for the value in the constrained case, corresponding to the identically null
control and wealth process Xt = 1 ∀t ∈ [0, T ]. With constraint we choose K = [−1.047,−1.041], without
constraint we take K = [−1.07,−1.03], discretized by regular grids with 25 points.

Problem (5.4) No constraint, problem (5.3)

Figure 1: Sample path of the controlled process Xα
t , with the analytical optimal control (for the uncon-

strained case) and the computed control. On the left figure we don’t have the true control but plot the
unconstrained one for comparison. Here Λ = 100
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Problem (5.4) No constraint, problem (5.3)

Figure 2: Histogram of Xα
T for 50000 samples. Here Λ = 100.

Problem (5.4) No constraint, problem (5.3)

Figure 3: Auxiliary value function YΛ(z) for several values of Λ in the constrained case, auxiliary value
function Y(z) in the unconstrained case
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Problem (5.4) No constraint, problem (5.3)

Figure 4: Conditional expectation E[Xα
t | Xα

t ≤ 0.9] estimated with 50000 samples. The black line
corresponds to δ = 0.8. Here Λ = 100

In Figure 2 we observe the shift of the distribution of the final wealth thanks to the constraint (on
the left) with less probable large losses but also less probable large gains. Indeed Figure 4 confirms that
the conditional expectation constraint is verified when we solve the corresponding problem through our
level set approach. We see in Figure 3 that the more Λ is large the more the auxiliary value function
becomes affine before reaching zero. Additional results are presented in Table 1.

Our method can also handle directly the primal of the mean-variance problem, that is to maximize
over portfolio control α the expected terminal wealth under a terminal variance constraint:

inf
α
J̄(α) = −E[Xα

T ] (5.5)

dXt = αtr dt+ αtσ dWt,

Var(Xα
T ) ≤ ϑ.

which give the same optimal control as Problem (5.3) under the correspondence λ =
√

exp(σ−2r2T )−1
4ϑ .

This problem allows us to consider a constrained problem with an analytical solution. In this case
Var(Xα∗

T ) = ϑ thus J(α∗) = λVar(Xα∗

T ) + J̄(α∗) = λϑ + J̄(α∗). For comparison with Problem (5.3) we

thus report λϑ+ J̄(α∗) for Problem (5.5) in Table 1 and choose ϑ = exp(σ−2r2T )−1
4λ2 = 0.0504. In this case

the auxiliary deterministic unconstrained control problem is now

UΛ(z) = inf
α∈A

[
{−E[Xα

T ]− z}+ + Λ{Var(Xα
T )− ϑ}+

]
dXt = αtr dt+ αtσ dWt,

which corresponds to the constraint function Ψ(t, µ) 7→ (Var(µ) − ϑ)+1t=T and the modified constraint
function Ψη(t, µ) 7→ (Var(µ) − ϑ)+1t=T − η1t<T (see Remark 2.6). Theorem 2.11 still applies as far as
the null control is admissible with the modified constraint (Var(µ) − ϑ)+1t=T + ε − η1t<T ≤ 0 for any
0 < ε < η and any t ∈ [0, T ].
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Figure 5: Sample trajectory of the controlled process Xα
t and the control for problem (5.5) (left). Variance

Var(Xt) estimated with 50000 samples for problem (5.5) (right) with Λ = 10

Figure 6: Auxiliary value function UΛ(z) for several values of Λ

Figure 5 shows that we recover the optimal control for the problem and that the terminal variance
constraint is satisfied. We see in Figure 6 that similarly as in Figure 3, for large values of Λ the auxiliary
value function is affine before reaching zero. In this case the exact solution is −1.10 which is very close
to the point in which the affine part reaches zero.

Problem Average Std Tr. val. Error E[Xα∗

T ] Tr. E[Xα∗

T ] Var(Xα∗

T ) Tr. Var(Xα∗

T )
(5.4) Λ = 1. -1.044 0.0010 Not avail. Not avail. 1.07 Not avail. 0.026 Not avail.
(5.4) Λ = 10. -1.044 0.0005 Not avail. Not avail. 1.07 Not avail. 0.026 Not avail.
5.4 Λ = 100. -1.045 0.0005 Not avail. Not avail. 1.07 Not avail. 0.027 Not avail.
(5.5) Λ = 10. -1.048 0.0017 -1.050 0.22 1.10 1.10 0.049 0.050

(5.3) -1.050 0.0009 -1.050 0.07 1.10 1.10 0.050 0.050
(5.3) [17] -1.052 0.0022 -1.050 0.13 1.10 1.10 0.053 0.050

Table 1: Estimate of the solution with maturity T = 1. Average and standard deviation observed over 10
independent runs are reported, with the relative error (in %). We also report the terminal expectation
and variance of the approximated optimally controlled process for a single run. ’Not avail. ’ means that
we don’t have a reference value and ’Tr.’ means true. For problem (5.5), we take Λ = 10 and for problem
(5.4) we illustrate the values obtained for Λ ∈ {1., 10., 100}.

In Table 1 we observe that our method gives a small variance for the results over several runs. In
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the case where an analytical solution is known, the value of the control problem is computed accurately
with less than 0.5% of relative error. The expectation and variance of the terminal value of the op-
timally controlled process are also very close to their theoretical values. In the case of a conditional
expectation constraint, even though we don’t have an exact solution we notice that the value is close to
the unconstrained value hence since our solution is admissible, we expect to be near optimality. On the
unconstrained problem (5.3) our scheme and the one from [17] give similar results.

5.3 Optimal storage of wind-generated electricity

We consider N wind turbines with N associated batteries. Define the productions P it , storage levels Xi
t ,

storage injection αit for which we provide a typical range1. We consider the following constraints{
0 ≤ Xi

t ≤ Xmax −→ limited storage capacity (1kWh− 10 MWh)

α ≤ αit ≤ α −→ limited injection/withdrawal capacity (10 kW − 10MW)

with Xmax ≥ 0, α ≤ 0 ≤ α. Define the spot price of electricity St without wind power, S̃t the price with
wind production. Selling a quantity P it − αit on the market, producer i obtains a revenue S̃t(P

i
t − αit) (if

P it − αit < 0 the producer is buying from the market) where the market price is affected by linear price
impact

S̃t = St −
Θ(N)

N

N∑
i=1

(P it − αit),

modeling the impact of intermittent renewable production on the market. Θ is positive, non-decreasing
and bounded. We call Θ∞ = limN→∞Θ(N) < ∞. We consider N + 2 independent Brownian motions
W 0
t , B

0
t ,W

1
t , · · · ,WN

t and the following dynamics for the producers i = 1, · · · , N state processes
dXi

t = αit dt

dP it = ι(φPmax − P it ) dt+ σp(Pt ∧ {Pmax − P it })+(ρ dW 0
t +

√
1− ρ2 dW i

t )

dF (t, T ) = F (t, T )σfe
−a(T−t)dB0

t

St = F (t, t),

for some positive constants κ, φ, Pmax, σp σf , and ρ ∈ [−1, 1]. In the production dynamics, the common
noises W 0

t , B
0
t corresponds to the global weather and the market price randomness whereas the idiosyn-

cratic noises W i
t for i > 1 model the local weather, independent from one wind turbine to another. We

call F0 the filtration generated by W 0
t , B

0
t . The productions P it are bounded processes and the price St is

positive. Of course the modified price S̃t in the presence of renewable producers can become negative, as
empirically observed in some overproduction events. However it stays bounded by below in our model.
Producer i gain function to maximize is

J i(α1, · · · , αN ) = E
[ ∫ T

0

{St(P it − αit)−
Θ(N)

N
(P it − αit)

N∑
j=1

(P jt − α
j
t )} dt

]
.

The related mean field control problem for a central planner is therefore

− inf
α∈A

E
[ ∫ T

0

{−St(Pt − αt) + Θ∞(Pt − αt)E[Pt − αt|F0]} dt
]

dXt = αt dt

dPt = ι(φPmax − Pt) dt+ σp(Pt ∧ {Pmax − Pt})+(ρ dW 0
t +

√
1− ρ2 dW 1

t )

dF (t, T ) = F (t, T )σfe
−a(T−t)dB0

t

St = F (t, t)

0 ≤ Xt ≤ Xmax P a.s.

1https://css.umich.edu/factsheets/us-grid-energy-storage-factsheet
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Here the state is (Xt, Pt, St) ∈ R3 hence the distribution of the state lives in P2(R3). The set A
corresponds to progressively measurable controls with values in the compact set [α, α]. A similar problem
is solved by [1] without any storage constraints by Pontryagin principle. With constraints but without
mean-field interaction, a close problem is solved by [39]. For instance Xmax = 0 corresponds to the much
simpler problem without storage nor control of the valuation of a wind power park. See also [22, 43]. To
represent the almost sure constraint 0 ≤ Xt ≤ Xmax we choose as constrained function

Ψ : µ ∈ P2(R3) 7→
∫
R
{(−x)2

+ + (x−Xmax)2
+} µ1(dx),

where µ1 is the first marginal law of the measure µ.
The auxiliary unconstrained control problem is therefore

w(z) := − inf
α,β0,1,β0,2∈A×L2×L2

E
[
{
∫ T

0

E[−St(Pt − αt) + Θ∞(Pt − αt)E[Pt − αt|F0]|F0] dt− z (5.6)

−
∫ T

0

β0,1
s dW 0

s −
∫ T

0

β0,2
s dB0

s}+ +
1

ε

∫ T

0

E[(−Xs)
2
+ + (Xs −Xmax)2

+] ds
]

dXt = αt dt

dPt = ι(φPmax − Pt) dt+ σp(Pt ∧ {Pmax − Pt})+ (ρ dW 0
t +

√
1− ρ2 dW 1

t )

dF (t, T ) = F (t, T )σfe
−a(T−t)dB0

t

St = F (t, t)

where ε is a small term used to force the a.s. constraints.

We consider the standard stochastic control benchmark with only common noise for the production
(ρ = 1). It corresponds to a single very large wind farm where all wind turbines produce the same power.
The problem degenerates as

− inf
α∈A

E
[ ∫ T

0

{(−St + Θ∞(Pt − αt))(P − αt)} dt
]

dXt = αt dt

dPt = ι(φPmax − Pt) dt+ σp(Pt ∧ {Pmax − Pt})+ dW 0
t

dF (t, T ) = F (t, T )σfe
−a(T−t)dB0

t

St = F (t, t)

0 ≤ Xt ≤ Xmax P a.s. (5.7)

and equation (5.6) gives

w(z) := − inf
α,β∈A×L2

E
[
((Y α,β − z)+ +

1

ε

∫ T

0

E[(−Xs)
2
+ + (Xs −Xmax)2

+] ds
]

dXt = αt dt

dPt = ι(φPmax − Pt) dt+ σp(Pt ∧ {Pmax − Pt})+ dW 0
t

dF (t, T ) = F (t, T )σfe
−a(T−t)dB0

t

St = F (t, t)

where

Y α,β =

∫ T

0

(−St + Θ∞(Pt − αt))(Pt − αt) dt−
∫ T

0

β0,1
s dW 0

s −
∫ T

0

β0,2
s dB0

s . (5.8)
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The solution of our optimization problem is then z∗ = sup{z | ŵ(z) = 0} where ŵ(z) := −w(z). Remark

now that (5.8) will be estimated discretizing the integral
∫ T

0
β0,1
s dW 0

s and
∫ T

0
β0,2
s dB0

s using an Euler
scheme for the underlying processes and therefore ŵ(z) will be above 0 except for low values of z due to
the variance of the Y α∗,β estimator that cannot be reduced to 0.
In order to reduce the variance of Y α,β , we propose to modify Y α,β as follows :

Y α,β =

∫ T

0

(−St + Θ∞(Pt − αt))(Pt − αt) dt−
∫ T

0

(−St + Θ∞(Pt − α̂t))(Pt − α̂t) dt+

E[

∫ T

0

(−St + Θ∞(P − α̂t))(Pt − α̂t) dt]−
∫ T

0

β0,1
s dW 0

s −
∫ T

0

β0,2
s dB0

s

where α̂t is the rough estimation of the optimal deterministic command maximizing the gain.
We take T = 40, NT = 40 time steps, Xmax = 1, X0 = 0.5, P0 = 0.12, F (0, t) = 30+5 cos( 2πt

N )+cos( 2πt
7 ),

σf = 0.3, a = 0.16, ι = 0.2, σp = 0.2, φ = 0.3, Pmax = 0.2, −0.2 ≤ α ≤ 0.2, Θ(N) = 10.
The network depends on Pt, St, Xt and z where z takes some deterministic values on a grid with the same
spacing. The global curve is therefore approximated by a single run.
The grid is taken from 107 to 127 with a spacing of 0.5. The neural networks have two hidden layers
with 14 neurons on each layer. We take a ε parameter equal to 10−4. The number of gradient iterations
is set to 50000 with a learning rate equal to 2× 10−3 We give the ŵ function on figure 7.

Figure 7: ŵ function value for the storage problem

Using Dynamic Programming with the StOpt library [30], we get an optimal value equal to 117.28
while a direct optimization of (5.7) using some neural networks as in [43], [17] we get a value of 117.11.
Encouraged by Remark 5.1, Figure 3, Figure 6 and the related comments, we empirically estimate the
value function by the point where the linear part of the auxiliary function reaches zero when Λ = 1

ε is
sufficiently large. The estimated value is 116.75, close to the reference solutions. On figure 8, we compare
trajectories obtained by Dynamic Programming and by the Level Set approach : they are accurately
calculated.

Figure 8: Storage trajectories with the Level Set and Dynamic Programming method.
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