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Partition Identities for Two-Color Partitions
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In memory of Srinivasa Ramanujan

Abstract. Three new partition identities are found for two-color partitions. The first relates to ordinary partitions into parts not
divisible by 4, the second to basis partitions, and the third to partitions with distinct parts. The surprise of the strangeness of

this trio becomes clear in the proof.
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1. Introduction.

The first paper on this topic [And87] appeared in 1987 to celebrate the 100th anniversary of Ramanu-
jan’s birth. It seems fitting to continue the study in this volume marking the 100th anniversary of his
death.

Two-color partitions are formed from two copies of the integers. We denote red integers with the
subscript r, and green integers with the subscript g. Thus there are five two-color partitions of 2,
namely 2r, 2g, 1r +1r, 1r +1g, 1g +1g. We shall say that two parts of a partition are distinct if they are
of different colors or different numerical values or both. We shall say that two parts are numerically
distinct if they have different numerical values.

The two partition identities proved in [And87] are these:

Theorem 1.1. Let L1(n) denote the number of two-color partitions of n into numerically
distinct parts wherein two summands cannot be consecutive integers of the same color. Let
L2(n) denote the number of two-color partitions of n in which all parts are odd and no
green parts are repeated. Then for all n,

L1(n) = L2(n).

Theorem 1.2. Let G(n) denote the number of two-color partitions of n in which the
largest part is red, the parts are numerically distinct, and each green part is at least 2
smaller than the next largest part. Let S1(n) denote the number of ordinary partitions
of n into parts that are either odd or congruent to ±4,±6,±8,±10 (mod 32). Let S2(n)
denote the number of ordinary partitions of n into parts that are either odd or congruent
to ±2,±8,±12,±14 (mod 32). Then for all n ≥ 1,

G(n) = S1(n) = S2(n− 1).

As Jeremy Lovejoy remarks in [Lov03, p. 395], L2(n) is essentially the number of overpartitions of n
into odd parts. While partition identities for overpartitions have flourished, there has not been any
follow-up revealing further partition identities for two-color partitions.
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The purpose of this paper is to give three further results of this nature. We define Ld(n) to be
the number of two-color partitions into numerically distinct parts with the added condition that red
parts are at least d larger than the next largest part and green parts are at least d + 1 larger than
the next largest part, and furthermore with no green part 1g or (d− 1)g.

Theorem 1.3. L1(n) equals the number of partitions of n in which no part is divisible by 4.

Theorem 1.4. L2(n) equals the number of basis partitions of n.

Theorem 1.4 was proved in [And15, sec. 4] by a slightly different approach. It should be noted that in
[And15, p. 67] five lines following equation (4.3) the word “smaller” should be “larger.” The theorem
in [And15] is stated in terms of the overpartitions, but the mapping of red parts to nonoverlined parts
and overlined parts to green parts yields the current Theorem 1.4.

Theorem 1.5. L3(n) equals the number of partitions of n into odd parts (i.e. no part is divisible by
2).

The next three sections will provide proofs of Theorems 1.3 -1.5. An alternative proof of Theorem 1.5
will be given in section 5. The final section will be devoted to a conjecture that arises naturally from
a corollary of Theorems 1.3 -1.5.

2. Proof of Theorem 1.2.

Proof. Let S1(N) denote the generating function for partitions of the type enumerated by L1(N) with
the added condition that each part is < N .

Then

S1(N) =


0 if N < 0
1 if N = 0 or 1
1 + q if N = 2
S1(N − 1) + qN−1(S1(N − 1) + S1(N − 2)) otherwise.

(2.1)

The first three lines in (2.1) are immediate. The last line follows by dividing the two-color partitions
enumerated by S1(N) into three classes: (i) those in which no part is numerically equal to N − 1, (ii)
those in which (N − 1)r is a part, (iii) those in which (N − 1)g is a part.

Now define
S1(x) :=

∑
N≥0

S1(N)xN .

Hence

S1(x) = 1 + x+ (1 + q)x2 +
∑
N≥3

(S1(N − 1)(1 + qN−1) + qN−1S1(N − 2)xN )

= 1 + x+ (1 + q)x2 +
∑
N≥2

S1(N)(1 + qN ) +
∑
N≥1

qN+1S1(N)xN+2

= 1 + x+ (1 + q)x2 + (xS1(x)− 1− x) + x(S1(xq)− 1− xq) + x2q(S1(xq)− 1)

= 1− x− qx2 + xS1(x) + x(1 + xq)S1(xq).

(2.2)

Consequently

S1(x) =
1− x− qx2

1− x
+
x(1 + xq)

1− x
S1(xq). (2.3)

Iterating (2.3), we obtain

S1(x) =
∑
n≥0

(1− xqn − x2q2n+1)xnq(
n
2)(−xq)n

(x)n+1
, (2.4)
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where (A)N = (A; q)N =
N−1∏
j=0

(1−Aqj). Now Abel’s lemma [And94, p. 190, Th. 14-7] reveals that

∑
n≥1

L1(n)qn = lim
x→1−

(1− x)S1(x)

=
∑
N≥0

(1− qN − q2N+1)q(
N
2 )(−q)N

(q)N

=
∑
N≥1

q(
N
2 )(−q)N
(q)N−1

−
∑
N≥0

q(
N
2 )+2N+1(−q)N

(q)N

=
∑
N≥0

q(
N+1

2 )(−q)N+1

(q)N
−
∑
N≥0

q(
N
2 )+2N+1(−q)N

(q)N

=
∑
N≥0

q(
N+1

2 )(−q)N (1 + qN+1 − qN+1)

(q)N

=
∑
N≥0

q(
N+1

2 )(−q)N
(q)N

= (−q2; q2)∞(−q)∞ (by [And76, p. 21, Cor. 2.7])

=
(q4; q4)∞

(q)∞
.

(2.5)

Since that latter product is the generating function for partitions in which no part is divisible by 4,
we see that the extremes of (2.5) establish Theorem 1.3.

3. Proof of Theorem 1.4.

Proof. Basis partitions were originally introduced by Hansraj Gupta. Their definition is rather com-
plicated, but all that is required here is the generating function due to Nolan, Savage, and Wilf
[Nol98]: ∑

n≥0

(−q)nqn
2

(q)n
. (3.6)

Let S2(N) denote the generating function for partitions of the type enumerated by L2(N) with the
added condition that each part is < N . Then

S2(N) =


0 if N < 0
1 if N = 0 or 1
S2(N − 1) + qN−1(S2(N − 2) + S2(N − 3)) otherwise

. (3.7)

The same reasoning as in the proof of Theorem 1.3 establishes (3.7).
Now define

S2(x) :=
∑
N≥0

S2(N)xN .
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Then

S2(x) = 1 + x+
∑
N≥2

(
S2(N − 1) + qN−1(S2(N − 2) + S2(N − 3))

)
xN

= 1 + x+
∑
N≥1

S2(N)xN+1 +
∑
N≥0

qN+1S2(N)xN+2 +
∑

N≥−1

qN+2S2(N)xN+3

= 1 + x+ x(S2(x)− 1) + x2q S2(xq) + x3q2 S2(xq)

= 1 + xS2(x) + x2q(1 + xq)S2(xq).

Consequently,

S2(x) =
1

1− x
+
x2q(1 + xq)

1− x
S2(xq). (3.8)

Iterating (3.8), we see that

S2(x) =
∑
n≥0

x2nqn
2
(−xq)n

(x)n+1
.

Again by Abel’s lemma [And94, p. 190, Th. 14-7],∑
n≥1

L2(n)qn = lim
x→1−

(1− x)S2(x) =
∑
n≥0

qn
2
(−q)n

(q)n
,

and Theorem 1.4 now follows from (3.6).

4. Proof of Theorem 1.5.

Proof. As is by now familiar and expected, we let S3(N) denote the generating function for partitions
of the type enumerated by L3(N) with the added condition that each part is < N . Then

S3(N) =


0 if N < 0
1 if N = 0 or 1
1 + q if N = 2
1 + q + q2 if N = 3
S3(N − 1) + qN−1(S3(N − 3) + S3(N − 4)) otherwise.

(4.9)

Note that the initial condition S3(3) = 1 + q + q2 follows from the fact that 2g is excluded from the
definition of La(n) when n = 3 by “no green part 1g or (d − 1)g.” The remaining justification for
(4.9) is precisely like that of the two previous theorems.

Hence, if we define

S3(x) =
∑
N≥00

S3(N)xN ,

Then

S3(x) = 1 + x+ x2(1 + q) + x3(1 + q + q2)

+
∑
N≥4

xN (S3(N − 1) + qN−1(S3(N − 3) + S3(N − 4)))

= 1 + x+ x2(1 + q) + x3(1 + q + q2) +
∑
N≥3

xN+1S3(N)

+
∑
N≥1

xN+3qN+2S3(N) +
∑
N≥0

xN+4qN+3S3(N)

= 1 + x+ x2(1 + q) + x3(1 + q + q2)

+ x(S3(x)− 1− x− x2(1 + q)) + x3(S(xq)− 1) + x4q3 S3(xq)
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Consequently,

S3(x) =
1 + x2q

1− x
+
x3q2(1 + xq)

1− x
S3(xq). (4.10)

Iterating (4.10), we see that

S3(x) =
∑
n≥0

x3n(1 + x2q2n+1)(−xq)nqn(3n+1)/2

(x)n+1
.

Finally, applying Abel’s lemma [And94, p. 190, Th. 14-7],

∑
n≥0

L3(n)qn = lim
x→1−

(1− x)S3(x) =
∑
n≥0

(1 + q2n+1)(−q)nqn(3n+1)/2

(q)n

= (−q)∞ (by [And76, p. 140, Th. 9.2,x = −1])

=
1

(q; q2)∞
(by [And76, p. 5, eq. (1.2.5)])

(4.11)

Now the final infinite product is the generating function for partitions into odd parts, and Theorem
1.5 follows from (4.11).

5. An Alternative Proof of Theorem 1.5.

Indeed, this entire study arose from examining the following two families of polynomials:

σn =
∑
j≥0

q(
j+1
2 )
[
n− j
j

]
,

and

τn =
∑
j≥0

q(
j
2)
[
n− j
j

]
,

where [
A

B

]
=

{
0 if B < 0 or B > A

(q)A
(q)B(q)A−B

if 0 ≤ B ≤ A.

Hence

σn − σn−1 =
∑
j≥0

q(
j+1
2 )
([
n− j
j

]
−
[
n− j − 1

j

])

=
∑
j≥0

q(
j+1
2 )qn−2j

[
n− j − 1

j − 1

]
(by [And76, p. 35, eq. (3.3.3)])

= qn−1
∑
j≥0

q(
j
2)
[
n− j − 2

j

]
= qn−1τn−2,

(5.12)
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and

τn − σn =
∑
j≥0

q(
j
2)
[
n− j
j

] (
1− q1−j)

=
∑
j≥0

q(
j
2)qn−2j

[
n− j − 1

j − 1

]
(1− qn−j)

=
∑
j≥0

q(
j+1
2 )
[
n− j − 2

j

]
(1− qn−1−j)

= σn−2 − qn−1τn−2.

(5.13)

Adding (5.12) and (5.13), we find
τn = σn−1 + σn−2, (5.14)

and substituting (5.14) into (5.12), we obtain

σn = σn−1 + qn−1(σn−3 + σn−4). (5.15)

Now (5.15) is precisely the recurrence that appears in (4.9). Additionally σn = 0 if n < 0, σ0 = σ1 =
1, σ2 = 1 + q, and σ3 = 1 + q + q2. Hence σn fulfills the defining conditions for S3(n) given in (4.9).
Therefore

σn = S3(n).

Hence ∑
n≥0

L3(n)qn = lim
n→∞

S3(n) = lim
n→∞

σ(n)

= lim
n→∞

∑
j≥0

q(
j+1
2 )
[
n− j
j

]

=
∑
n≥0

q(
j+1
2 )

(q)j

= (−q)∞ (by [And76, p. 19, eq. (2.2.6)])

=
1

(q; q2)∞
(by [And76, p. 5, eq. (1.2.5)]),

and Theorem 1.5 follows as before.

6. Conclusion

One obvious project is suggested by these results: prove each of the Theorems bijectively.
A more subtle observation arises from the fact that by their very definition

L1(n) ≥ L2(n) ≥ L3(n).

Hence by Theorems 1.3 -1.5, B(n), the number of basis partitions of n, satisfies

p4(n) ≥ B(n) ≥ p2(n),

where pk(n) is the number of partitions of n in which no part is divisible by k. So, is there an
inequality relating B(n) and p3(n)? In light of the fact that∑

n≥0

(p3(n)−B(n))qn = q4 + q5 + q6 + q7 + 3q8 + 3q9 + 6q10 + · · ·+ 1247q35 + · · · ,

we make the following:
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Conjecture. p3(n) ≥ B(n) with strict inequality if n > 3.

Finally, we note that since σn = sn, consequently

S3(x) =
∑
n≥0

x3n(1 + x2q2n+1)(−xq)nqn(3n+1)/2

(x)n+1

=
∑
n≥0

σnx
n

=
∑
n≥0

xn
∑

n≥2j≥0

q(
j+1
2 )
[
n− j
j

]

=
∑
n,j≥0

xn+2nq(
j+1
2 )
[
n+ j

j

]

=
∑
j≥0

x2jq(
j+1
2 )

(x)j+1
(by [And76, p. 36, eq. (3.3.7)])

(6.16)

a rather nice corollary from the two proofs of Theorem 1.5.
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