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Abstract. Quantifying the uncertainty attached to Deep Learning models pre-
dictions can help their interpretation, and thus their acceptance in critical fields.
Yet, current standard approaches rely on multi-steps approaches, increasing the
inference time and memory cost. In clinical routine, the automated prediction
has to integrate into the clinical consultation timeframe, raising the need for
faster and more efficient uncertainty quantification methods. In this work, we
propose a novel model, named as BEHT, and evaluate it on an automated seg-
mentation task of White-Matter Hyperintensities from T2-weighted FLAIR MRI
sequences of Multiple-Sclerosis (MS) patients. We demonstrate that this ap-
proach outputs predictive uncertainty much faster than the state-of-the-art Monte
Carlo Dropout approach, with a similar — and even slightly better — accu-
racy. Interestingly, our approach distinguishes 2 distinct sources of uncertainties,
namely aleatoric and epistemic uncertainties.

1 Introduction
The ever-growing usage of Deep Learning (DL) models in the industry, as well as their

potential impact on human lives, is raising concerns regarding the opacity of their predictions.
Thus, many studies have been focusing on producing explainable DL models to facilitate their
interpretation by end-users (Arrieta et al., 2018). Among the large variety of explanations that
can be provided along with a given prediction, Uncertainty Quantification (UQ) techniques
stand out as one of the most popular amongst clinicians (Tonekaboni et al., 2019). UQ meth-
ods complement a prediction with an uncertainty score, providing the user with additional
information regarding the model confidence in its own prediction.

Predictive uncertainty, i.e. the uncertainty attached to the output of a DL model for a given
query input, is traditionally decomposed in 2 parts: (i) aleatoric and (ii) epistemic uncertainties
(Gal, 2016). Aleatoric uncertainty (i) relates to random effects impacting the prediction, such
as the presence of noise or artifacts in the input data. This part is irreducible, meaning that
introducing extra data will not diminish it. Aleatoric uncertainty can be further split in two
categories : homoscedastic uncertainty, which is constant for each input, and heteroscedastic
that depends on the input. On the other hand, epistemic uncertainty (ii) is linked to the choice
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of the model parameters. It represents the lack of knowledge of the model and can be reduced
given additional and complementary data.

Various methods have been proposed in the literature to quantify uncertainty attached to DL
predictions (Abdar et al., 2021). Popular approaches rely on a multi-step process, either based
on the computation of multiple predictions from the same stochastic model (Blundell et al.,
2015; Gal and Ghahramani, 2016), or alternatively based on the aggregation of predictions
from multiple models (Lakshminarayanan et al., 2017). This results in a prolonged inference
process, representing a significant obstacle for the full acceptance of these solutions in the
clinical field, where time is a critical variable.

In this work, we propose a new DL model that quantifies both aleatoric and epistemic un-
certainties attached to DL prediction, with a single forward pass. We illustrate our framework
on an automatic segmentation task to detect White-Matter Hyperintensities (WMH) from T2-
weighted FLAIR MRI sequences of Multiple-Sclerosis (MS) patients, and compare it with the
Monte Carlo Dropout (MC-Dropout) state-of-the-art approach.

2 Related Work

2.1 Aleatoric and Epistemic Uncertainty
Distinguishing between aleatoric and epistemic uncertainties is challenging, as both sources

are usually mixed up in the final estimated uncertainty (Hüllermeier and Waegeman, 2021).
Yet, this distinction is particularly important in the medical domain. For example, a radiologist
could react differently in response to a high predictive uncertainty if informed that it is caused
by a lack of knowledge of the model about the observed pathology (epistemic uncertainty),
or by the presence of an artifact or noise in the MRI input data (aleatoric uncertainty) (Senge
et al., 2014).

Previous work has attempted to make such a distinction. Kendall and Gal (2017) imple-
mented a Monte Carlo Dropout network with 2 outputs: one for the predictive mean ŷ and
one for the predictive variance σ̂2. Such a model is trained with Dropout, which is kept on
at inference. As a result, multiple forward passes through the Neural Network (NN) yield to
different predictions, as the Dropout mask is stochastically sampled at each pass. Additionally,
they used a special loss to learn the variance σ̂2 during training and interpret it as the aleatoric
uncertainty. At inference, T Monte Carlo Dropout samples were computed for each input
query x, resulting in a set {ŷt, σ̂2

t }Tt=1. The final voxel-wise predictive uncertainty PU(x),
combining an epistemic and an aleatoric part, was obtained with :

PU(x) =
1

T

T∑
t=1

ŷ2t −

(
1

T

T∑
t=1

ŷt

)2

︸ ︷︷ ︸
epistemic

+
1

T

T∑
t=1

σ̂2
t︸ ︷︷ ︸

aleatoric

(1)

Similarly, Kwon et al. (2020) used a MC-Dropout model to quantify the two types of un-
certainty. They proposed 2 distinct estimators to evaluate epistemic and aleatoric uncertainties
based solely on the output predicted probabilities {p̂t}Tt=1 , obtained after applying the Soft-
max function to a set of Monte Carlo Dropout samples. For a given input x, the predictive
uncertainty is obtained as :
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PU(x) =
1

T

T∑
t=1

(p̂t − pt)
⊗2

︸ ︷︷ ︸
epistemic

+
1

T

T∑
t=1

diag(p̂t)− p̂⊗2
t︸ ︷︷ ︸

aleatoric

(2)

where pt =
∑T

t=1 p̂t/T and v⊗2 = vvT .

Depeweg et al. (2018) implemented a Bayesian NN by placing distributions over the model
weights w. At inference, they approximated the predictive distribution p(y|x,D) associated
with the training dataset D by sampling the weight distribution using a Monte Carlo approach.
The authors further computed the total predictive uncertainty as the entropy of the predictive
distribution H[p(y|x)]. This term includes both the epistemic and aleatoric sources. By fixing
a set of weights, the epistemic term disappears, meaning that the expectation over the entropies
can be used as an estimator of the aleatoric uncertainty. Finally, both sources can be obtained
as follows:

H[y|x]− Ew|D H[p|y, x)︸ ︷︷ ︸
aleatoric

= I(y, w)︸ ︷︷ ︸
epistemic

(3)

2.2 Efficient Uncertainty Quantification Methods
Methods presented in the previous section — such as MC-Dropout or Bayesian NN —

require sampling at inference, highly extending the inference time. In a similar way, Deep
Ensemble (Lakshminarayanan et al., 2017), another popular approach for UQ based on the
inference of multiple models, drastically increases the computational and memory cost during
both training and testing. In clinical routine, e.g for MS follow-up, the DL-based assistance
is useful only when the automatic analysis is fast enough to be integrated into the clinical
consultation. This motivates the need for efficient and fast UQ methods. In the following, we
review several techniques that tend toward this goal. Each of these methods, when applied to
a 3D image segmentation task, provide one measure of uncertainty per voxel.

Wen et al. (2020) proposed an efficient alternative to Deep Ensemble called BatchEnsem-
ble, which highly reduces its memory cost. The method proposes to train an ensemble of NN
within a single architecture. To achieve this result, the weights of the NN are expressed as the
Hadamard product of a shared weight among all ensemble members (called as slow weights)
and member-specific rank-one matrices (called as fast weights). This special formulation re-
sults in different weight configurations for each member, hence modeling the possible variance
of the weights, and thus the epistemic uncertainty. For an ensemble of 4 models, BatchEnsem-
ble reduces test time and memory by up to 3 times, compared to Deep Ensemble.

Similarly, an effective approach to quantify heteroscedastic aleatoric uncertainty was pro-
posed in McKinley et al. (2020). As in Kendall and Gal (2017), the model output is divided in
two parts: the prediction and the uncertainty. Authors proposed a Labelflip loss, which is used
to learn the uncertainty associated with input images without labels. This forces the model
to learn the Labelflip probability, i.e. the probability the predicted label and the ground truth
label differ. This method thus outputs the prediction and the associated aleatoric uncertainty in
a single forward step.
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Alternative works have directly used the output predicted probabilities as a measure of un-
certainty, with no further computation. This very simple and efficient approach was success-
fully applied to detect misclassified and out-of-distribution images (Hendrycks and Gimpel,
2017), as well as adversarial examples (Zhang et al., 2020).

These methods, although being more efficient regarding inference time or memory cost,
yet fail at distinguishing between aleatoric and epistemic uncertainties. In the next section,
we propose a new method addressing this challenge, that we call BEHT for BatchEnsemble
Heteroscedastic Tiramisu.

3 Methods

In this section, we introduce a novel approach to quantify both epistemic and aleatoric
uncertainties in an fast and efficient manner. This is achieved by combining a BatchEnsemble
approach with a Heteroscedastic model, starting from a baseline Tiramisu 2.5D architecture.
We named this compound model as the BatchEnsemble Heteroscedastic Tiramisu, or BEHT.

3.1 Dataset

We illustrate our proposed approach on a supervised segmentation task. We use a propri-
etary brain dataset composed of 238 T2-weighted FLAIR MRI sequences of MS patients, with
ground truth segmentations of WMH. The dataset is split into 187 scans for training and 51
for testing. The images are rigidly registered to a template and resampled to a 1mm isotropic
resolution of 160×192×160 to focus on brain tissue. Intensities are normalized to zero mean
and unit variance.

3.2 Baseline 2.5D Architecture

We start with a standard Tiramisu Convolutional Neural Network (CNN) for image seg-
mentation, originally proposed for 2D images semantic segmentation (Jégou et al., 2017). Pro-
cessing 3D biomedical image is challenging, as the input data has a high dimensionality and
requires large memory capabilities. To circumvent this limitation, we implement an interme-
diate 2.5D version of the Tiramisu network. In this setting, the segmentation model focuses
on one slice, with several upper and lower slices provided to the model. More precisely, 3D
images of shape H×W ×D are processed sequentially. At each step, C consecutive 2D slices
are extracted from the volume and stacked as distinct image channels, resulting in a C×H×W
input. We use C = 5 in our experiments. Our Tiramisu 2.5D networks is composed of the
same construction blocks than the original 2D Tiramisu, with a succession of Dense Blocks
(DB), Transition Down (TD) and Transition Up (TU) layers (see Jégou et al. (2017) for im-
plementation details). This baseline model is made of a total of 51 convolutional layers and
950k parameters. The model produces for each voxel a unique probability of being in the le-
sion class. Probabilities are obtained by applying the Sigmoid function to the predicted logits.
Details of the proposed architecture are presented in Table 1.

The Tiramisu 2.5D network and following models are implemented using the Pytorch DL
library (Paszke et al., 2019). Training is performed using the ADAM optimizer (Kingma and
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Architecture Details
Input

3x3 Conv + DB block (1 layer)
DB block (3 layers) + TD
DB block (5 layers) + TD
DB block (7 layers) + TD

TD + DB block (10 layers) + TU
TU + DB block (7 layers)
TU + DB block (5 layers)
TU + DB block (3 layers)

DB block (1 layer) + 1x1 Convolution
Sigmoid

TAB. 1 – Architecture details of the baseline Tiramisu 2.5D model used in the experiments.
Conv=Convolution 2D, DB=Dense Blocks, TD=Transition Down, TU=Transition UP

Ba, 2015) until convergence, with a learning rate of 5e−4. We use a batch-size of 48, and train
on a single NVIDIA T4 GPU.

3.3 Modeling Epistemic Uncertainty with BatchEnsemble

Building on the baseline architecture, we model epistemic uncertainty using the BatchEnsem-
ble framework presented in Wen et al. (2020). We obtain a BatchEnsemble of N = 6 members
from a single Tiramisu 2.5D by replacing each convolutional weights by :

Wi = W ◦ Fi (4)

where W is a common weight matrix shared by each ensemble member (slow weight) and
Fi is a rank-one matrix specific to each of the i-th ensemble members (fast weight). Learning
of these weights is parallelized within a single GPU device using a mini-batch approach. We
divide the batch of length b = 48 in N = 6 sub-batches of length M = 8, such as b = N ×M .
Each member’s weight Wi receives a single sub-batch during training, allowing to train the
BatchEnsemble with an optimal vectorized approach. At inference, the input is repeated i
times, so that each member processes it in parallel. Lastly, we take the mean of the prediction
as the final output. These steps are illustrated in Figure 1

Writing {pn}Nn=1 the set of lesion probabilities obtained with each member of the BatchEnsem-
ble for a given input image x, the epistemic uncertainty Ep(x) is obtained by computing the
variance of this set :

Ep(x) =
1

N

N∑
n=1

p2n −

(
1

N

N∑
n=1

pn

)2

(5)
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FIG. 1 – Illustration of the training and inference stages in a BatchEnsemble model. In this
example, a batch of 16 samples is distributed to 4 members during training. At inference, a
batch of 4 is duplicated and distributed to each member weight.

3.4 Modeling Aleatoric Uncertainty with the Labelflip loss

We transform our model into a heteroscedastic one by following the steps of (McKinley
et al., 2020). In addition to the lesion probability for each voxel, the NN also predicts its
attached uncertainty q in a single forward pass. To learn the uncertainty part during training, the
Labelflip loss is employed. Writing x the binary ground truth label, w = (1−x)∗q+x∗(1−q),
and z the disagreement indicator between the predicted class and the ground truth, the labelflip
loss is defined as :

FocalKL(w∥p) +BCE(q, z) (6)

with FocalKL(w∥p) = (p− w)2(wlog(w)− wlog(p)) (7)

This function forces the model to output a high uncertainty in areas where the segmentation
is not confident. The use of a Kullback–Leibler divergence term guarantees that uncertain
voxels remain close to the decision boundary. We used the Dice loss in conjonction of the
Labelflip loss to train the model.
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Reminding that BEHT outputs a distinct prediction per member of the BatchEnsemble, we
obtained a set of {qn}Nn=1 uncertainties for each input image. The final aleatoric uncertainty is
formulated as the mean of this ensemble :

Al(x) =
1

N

N∑
n=1

qn (8)

3.5 Predictive Uncertainty Quantification using the BEHT approach

The overall predictive uncertainty is obtained by summing the aleatoric and epistemic con-
tributions. Yet, both quantities have distinct numeric ranges due to the different methods em-
ployed to compute them, which makes normalization step necessary. To do so, we first com-
pute epistemic and aleatoric uncertainty maps for each test image, and extract the minimum
and maximum voxel uncertainties across the test dataset. We then normalize each map in the
range [0, 1] by subtracting by the minimum and dividing by the range. The final predictive
uncertainty PU(x) for a given query image x is finally obtained with :

PU(x) =
1

2
[Ep[0,1](x) +Al[0,1](x)] (9)

4 Experiments

We evaluated our proposed model with respect to 3 aspects: the quality of uncertainty esti-
mates, the performance of the segmentation, and the inference time. To compare these results
with state-of-the-art method, we also implemented a MC-Dropout Tiramisu 2.5D. Starting
from the baseline model, a dropout rate of 20% is applied in the Dense-Blocks and Transition-
Down layers, as proposed in (Jégou et al., 2017). The model is trained with a combination of
the Dice and the Binary Cross-entropy losses. At inference, epistemic and aleatoric uncertain-
ties are obtained using Equation 2 with T = 20 Monte Carlo samples. For each method, we
compute segmentation masks and uncertainty maps. Representative examples of the obtained
predictions are presented in Figure 2.

4.1 Evaluating Uncertainty Estimates

To evaluate the performance of the different uncertainty maps — epistemic, aleatoric, and
predictive — generated by the 2 competing approaches, we implement a stratification ap-
proach. The desired uncertainty quantification highlights unconfident predictions, which are
more likely to be incorrect. Thus, we expect uncertainty to be higher for incorrect predic-
tions (IP) than for correct predictions (CP). By filtering predictions based on their certainty,
we should remove more IP than CP.

To evaluate this property, we progressively filter out predicted voxels based on their cer-
tainty and monitor the variation of CP and IP. More precisely, at each step, we remove the X%
most uncertain predicted voxels, where X is a threshold varying in the set [0, 100]. As a result,
we obtain of couple (CP, IP ) for each threshold X , used to draw a Stratification Curve.
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FIG. 2 – Representative examples of the segmentation masks and uncertainty maps obtained
using each method.

As the evaluated methods have varying segmentation performances, the CP and IP counts
are different. Thus, we normalize the CP and IP counts in the range [0, 1] so that the segmen-
tation performance does not impact the evaluation of the uncertainty estimates. A CP of 1
corresponds to the maximum number of CP, obtained when no filtering is applied. A CP of 0.5
indicates that 50% of the CP are filtered out. To obtain a single quantitative score, we use the
Area Under the Stratification Curve (AUSC).

4.2 Segmentation Performance

The desired UQ method should provide useful uncertainty estimates, while also preserving
a satisfying segmentation performance. To evaluate this property, we assess the segmentation
performance using Dice scores, a measure of overlap between the predicted segmentation and
the ground truth. Segmentation quality improves as the Dice score increases.
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FIG. 3 – Evaluation of incertainty estimates. A, B: Variation of Correct (CP) and Incorrect
(IP) Predictions counts, respectively, with respect to the uncertainty threshold; C: Correspond-
ing Stratification Curve and associated AUSC scores. Ep: Epistemic uncertainty; Al: Aleatoric
uncertainty; PU: Predictive Uncertainty.
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BEHT MC-Dropout
Dice 0.785± 0.076 0.777± 0.083

TAB. 2 – Segmentation performance. For each method, we provide the mean Dice and the
standard deviation. Top performing method is highlighted in green.

4.3 Inference time

Lastly, for smooth integration in clinical practice, the method should be as fast as possible.
We compute the Mean Inference Time (MIT), representing the total duration in seconds of the
computations steps for a single 3D volume. This represents the iterative segmentation of the
volume using the 2.5D model, as well as the uncertainty quantification. The fastest method is
the one that minimises the MIT.

BEHT MC-Dropout
MIT 5.434± 0.062 16.535± 0.485

TAB. 3 – Inference time performance. For each method, we provide the MIT and the associ-
ated standard deviation. Top performing method is highlighted in green.

5 Results and Discussion
Overall, BEHT outperforms the MC-Dropout approach on all 3 metrics. Regarding the UQ

task, Figure 3 reveals that the AUSC score of the predictive uncertainty obtained with BEHT is
slighty better than for MC-Dropout : 0.839 versus 0.834. Furthermore, the proposed approach
also achieve the best segmentation quality as shown in Table 2. Finally, the most impressive
improvement comes from the inference time, as the BEHT approach is 3-times faster than the
MC-Dropout one, as presented in Table 3. In summary, our new BEHT method reaches —
and even slightly overpasses — the UQ and segmentation performance of the state-of-the-art
MC-Dropout approach, while drastically reducing the inference time.

Interestingly, for both approaches, combining the aleatoric and epistemic uncertainties re-
sults in improving the quality of the uncertainty estimates, demonstrated by the improvement of
the AUSC score (see Figure 3). This suggests that taking into account both uncertainty sources
is important and can actually provide more robust uncertainty estimates. Finally, our model
provide robust uncertainty estimates without sacrificing segmentation performance, reaching a
Dice score of 0.785 on the test dataset.

6 Future Directions
The proposed 2.5D approach is efficient regarding memory consumption, yet the 3D vol-

ume is processed sequentially, which prolonged the inference process and also limits the seg-
mentation quality. Our future work will consist in the implementation of a fully 3D model
which could reduce the inference time.
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Résumé
Quantifier l’incertitude liée aux prédictions des modèles Deep Learning permet d’améliorer

leur interprétation, favorisant ainsi l’acceptation de ces algorithmes. Cependant, les méthodes
actuelles reposent sur des approches multi-étapes, ce qui augmente le temps d’inférence ainsi
que les coûts en mémoire. En routine clinique, l’utilisation d’outils prédictifs nécessite une
intégration dans le temps de la consultation clinique, ce qui motive le développement de nou-
velles méthodes rapides et efficaces pour quantifier l’incertitude des modèles Deep Learning.
Dans ce travail, nous proposons un nouveau modèle nommé BEHT, que nous évaluons sur une
tâche de segmentation automatique d’hyper-intensités de la matière blanche, sur des séquences
T2-FLAIR d’IRM de patients atteints de Sclérose en plaques. Nous démontrons que cette ap-
proche quantifie l’incertitude prédictive beaucoup plus rapidement que la méthode classique
du Monte Carlo Dropout, avec une performance équivalente — et même légèrement supé-
rieure. De façon intéressante, notre méthode permet de distinguer entre 2 sources d’incertitude
différentes, à savoir les incertitudes aléatoire et épistémique.


