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Strictly Proper Control Design for the Stabilization of

2×2 Linear Hyperbolic ODE-PDE-ODE Systems

David Bou Saba1, Federico Bribiesca-Argomedo1, Michael Di Loreto1 and Damien Eberard1

Abstract— In this paper, we consider the problem of L
2-

exponential stabilization of a coupled ODE-hyperbolic PDE-
ODE system, where actuation is available through one ODE.
Based on the backstepping technique, the system is mapped into
an equivalent delay form which allows for the construction of a
strictly proper controller realized as a full-state feedback. The
result extends previous control designs, lifting some restrictions
on the structure of the ODEs under consideration and guar-
anteeing a non-zero delay margin for the closed-loop system.

I. INTRODUCTION

Since its introduction [1], the infinite-dimensional back-

stepping method has been successfully exploited to provide

constructive control designs for a wide variety of systems

modeled by partial differential equations (PDEs). A good

introduction to this method can be found in the textbook

[2].

In this paper we are interested in systems modeled by

hyperbolic PDEs, an active research topic, an overview of

which can be found in [3]. More precisely, we are interested

in systems where couplings between the PDEs and some

ODE dynamics are present. Many systems of practical in-

terest can be modeled by hyperbolic PDEs. Some examples

include drilling applications [4], incompressible flows [5].

Notably, in [6], a backstepping-based output feedback design

was experimentally validated in a pneumatic system.

Some previous works considering coupled hyperbolic

PDEs and ODEs include [7], for disturbance rejection with

a cascaded structure, as well as the observation problem in

[8]. For fully interconnected systems (not cascades) some

results include [9] for PDE-ODE interconnections, as well

as [10], [11] and [12] for ODE-PDE-ODE interconnections

and a related result in [13] for a wave equation with dynamic

boundary conditions. Recently, however, a great deal of

attention has been given to addressing robustness issues

present in these designs. Namely, all of these designs, even

though mathematically correct, possess a zero robustness

margin, as shown in [14]. Delay-robust designs have since

been developed for the PDE-ODE interconnection [15].

In this paper, we develop a dynamic full-state feedback

control for the stabilization of a class of 2 × 2 linear

hyperbolic ODE-PDE-ODE systems. Unlike previous control

designs for this class of systems, the proposed control law

is strictly proper, which guarantees a non-zero delay margin
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in closed-loop. Furthermore, the assumptions made on the

structure of the ODE components are less restrictive than

those existing in the literature. In particular, stabilizability

instead of controllability is required and the ODE on which

the control acts does not need to be of relative degree 1 nor be

written in a specific canonical form. Also, since the controller

is strictly proper, we can consider weak L2 solutions to the

PDEs without compatibility conditions on the initial states

while still having a continuous control signal.

The paper is organized as follows: In Section II, we state

the specific control problem under consideration, as well as

the hypotheses required for our control design. In Section

III, we present a backstepping transform that allows us to

equivalently reformulate the stabilization problem in terms

of a target system which, in Section IV, is rewritten in time-

delay form. In Section V, a general stabilization result is

given for the system as a consequence of the stabilization

of a precise output and a particular, constructive, stabilizing

controller design for this output is constructed. The resulting

controller for the original system can be realized as a

strictly proper, dynamic full-state feedback. Finally, Section

VI presents numerical simulation results including a small

delay in the control input in order to illustrate the proposed

control design.

Notation

Throughout this paper we will use the following notation

for a triangular domain in R2

T
.
= {(x, y) ∈ [0, 1]× [0, 1], y ≥ x}.

Furthermore, given a set Ω ⊆ R2, its characteristic

function will be denoted

1{Ω}(x, y)
.
=

{

1 if (x, y) ∈ Ω
0 otherwise.

The euclidean norm of a vector ϕ ∈ R
r, r ∈ N \ {0}

will be denoted by ‖ϕ‖Rr
.
= (ϕ⊺ϕ)

1/2
. For a function in

L2([0, 1];R), its norm will be taken in the usual sense

‖φ‖L2 =

(
∫ 1

0

φ2(s)ds

)1/2

.

The notation Ir will represent the r × r identity matrix

(if the dimensions are not ambiguous the subindex will be

omitted). We denote by f̂(s) the Laplace transform of f(t).
For any proper and stable transfer matrix G(s), σ̄(G(jω))
stands for the largest singular value of G(jω) at frequency

ω, and the H∞-norm of G is

‖G‖∞= ess supω∈R
σ̄(G(jω)).
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Fig. 1: Schematic representation of the coupled ODE-PDE-ODE system (1)

II. PROBLEM STATEMENT

In this paper, we tackle the stabilization problem of a linear

interconnected ODE-PDE-ODE system where actuation is

only available in one of the component ODEs and the PDE

is a 2× 2 hetero-directional hyperbolic PDE, as depicted in

Figure 1. This system structure can represent, for example,

systems with wave-like propagation between an actuator

(with non-negligible dynamics) and a load to be stabilized.

More precisely, we consider systems of the form:

Ẋ(t) = A0X(t) + E0v(t, 0) +B0U(t) (1a)

u(t, 0) = qv(t, 0) + C0X(t) (1b)

ut(t, x) = −λux(t, x) + σ+(x)v(t, x) (1c)

vt(t, x) = µvx(t, x) + σ−(x)u(t, x) (1d)

v(t, 1) = ρu(t, 1) + C1Y (t) (1e)

Ẏ (t) = A1Y (t) + E1u(t, 1) (1f)

for a.e. (t, x) ∈ [0,+∞) × [0, 1]. The states of the

system are (X(t), u(t, ·), v(t, ·), Y (t)) ∈ X
.
= Rn ×

L2([0, 1];R)2×Rm with associated norm ‖(X,u, v, Y )‖X
.
=

‖X‖Rn+‖u‖L2+‖v‖L2+‖Y ‖Rm (i.e., the norm of each

component is the usual Euclidean or L2 norm). The control

input is U(t) ∈ Rp. The initial conditions are taken as

(X0, u0, v0, Y0) ∈ X and we consider weak solutions to (1).

In this paper we are interested in exponential stabilization of

the system (to zero) in this norm.

The coefficients λ, µ > 0 represent the transport speeds

associated to the two transport equations (convecting in

opposite directions). σ+, σ− are sufficiently regular (in this

paper, we will assume C([0, 1];R)) in-domain couplings

between the PDEs. A0 ∈ Rn×n, E0 ∈ Rn×1, B0 ∈ Rn×p,

C0 ∈ R1×n, q ∈ R, A1 ∈ Rm×m, E1 ∈ Rm×1, C1 ∈ R1×m,

and ρ ∈ R.

Note that the results in this paper could be extended to

space-dependent transport speeds in a similar manner to

[16]. For simplicity, we have chosen to consider the constant

transport speed case. The fact that we do not consider

diagonal coupling terms in the PDEs is not restrictive, since,

via a change of variables like that in [17], these coefficients

can be transferred to the anti-diagonal terms.

In order to design our controller, the following assump-

tions are made:

Assumption 1: The coefficients ρ, q satisfy |ρq|< 1 and

ρ 6= 0.

Assumption 2: The pairs (A0, B0) and (A1, E1) are sta-

bilizable (i.e. there exist F0 ∈ R
p×n F1 ∈ R

1×m such that

Ā0
.
= A0 +B0F0 and Ā1

.
= A1 + E1F1 are Hurwitz).

Assumption 3: The matrices (A0, B0, C0) satisfy

rank

([

sI −A0 B0

C0 01×p

])

= n+ 1

for all s ∈ C, Re(s) ≥ 0.

Remark that the first condition in Assumption 1 (|ρq|< 1)

is required in order to be able to robustly stabilize system

(1) in the sense of [18], [14], [15]. If this condition is not

verified, any linear control law developed for the system

will lead to a zero delay margin. The second condition in

this Assumption (ρ 6= 0) is required by the structure of

the backstepping transform and target systems chosen in

this paper and does not seem particularly restrictive in an

application since, for a wave-like equation, a zero reflection

requires perfect impedance matching between the PDE and

the ODE load at the end. It is possible that the method

described in this paper can be adapted for this case, but it is

outside the scope of the current article.

Assumption 2 is not overly conservative since without the

stabilizability of (A1, E1), it becomes impossible to ask for

stabilization of the Y subsystem in (1) independently of the

PDE or interconnection structure. The stabilizability assump-

tion on (A0, B0) allows for a simpler stabilizing design (no

modes of the X subsystem are stabilized indirectly through

the load) and to set conditions that can be easily tested.

Assumption 3 serves several purposes. In particular it

implies that C0 is not identically zero (which would obstruct

the stabilization of the PDE and Y subsystems through X).

It is also equivalent (under Assumption 2) to asking that the

transfer matrix P0(s)
.
= C0(sI− Ā0)

−1B0 (with Ā0 defined

in Assumption 2) does not have any zeros in the complex

right-half plane that are common to all its components. This

Assumption is directly used in the constructive design of a

control law and can be tested in a simple way (either in

the matrix form or in the equivalent transfer matrix form

P0). More details on the relevance and conservatism of this

hypothesis will be given in Section V. It is less restrictive

than other hypotheses in the literature in terms of relative

degree of the actuator (such as invertibility of B0 [10] or

of C0B0 [11]), extends naturally to multi-input systems and

does not require the system to be written in any particular

form [12].

III. BACKSTEPPING TRANSFORM AND DELAY SYSTEM

A. Backstepping Transform

In order to stabilize system (1) we begin by transforming

it using the backstepping method. We need to find a linear

bounded (and boundedly invertible) transform

(2a)
X(t) = ξ(t) +

∫ 1

0

K12(y)α(t, y)dy

+

∫ 1

0

K13(y)β(t, y)dy +K14η(t)



(2b)
u(t, x) = α(t, x) +

∫ 1

x

K22(x, y)α(t, y)dy

+

∫ 1

x

K23(x, y)β(t, y)dy +K24(x)η(t)

(2c)
v(t, x) = β(t, x) +

∫ 1

x

K32(x, y)α(t, y)dy

+

∫ 1

x

K33(x, y)β(t, y)dy +K34(x)η(t)

(2d)Y (t) = η(t)

that maps a target system

(3a)

ξ̇(t) = Ā0ξ(t)− λK12(0)C0ξ(t) + Ē1α(t, 1)

+ Ē0β(t, 0) +Mη(t) +B0Ũ(t)

+

∫ 1

0

Mα(y)α(t, y)dy +

∫ 1

0

Mβ(y)β(t, y)dy

(3b)α(t, 0) = qβ(t, 0) + C0ξ(t)

(3c)αt(t, x) = −λαx(t, x)

(3d)βt(t, x) = µβx(t, x)

(3e)β(t, 1) = ρα(t, 1)

(3f)η̇(t) = Ā1η(t) + E1α(t, 1)

with corresponding initial conditions (ξ0, α0, β0, η0) ∈ X
into (1). Ā0 and Ā1 are taken as defined in Assumption 2

and the other coefficients are defined as

(4a)Ē0 = E0 − qλK12(0) + µK13(0)

(4b)Ē1 = λK12(1)−K14E1 − ρµK13(1)

(4c)M = A0K
14 −K14Ā1 + E0K

34(0)

(4d)Mα(y) = E0K
32(0, y) +A0K

12(y)− λK12
y (y)

(4e)Mβ(y) = E0K
33(0, y) +A0K

13(y) + µK13
y (y).

The new control input Ũ in (3a) is defined as

(5)Ũ(t)
.
= U(t)− F0ξ(t).

Following the backstepping procedure, we find that the

backstepping kernels must satisfy the following PDEs

(6a)λK22
x (x, y) + λK22

y (x, y) = σ+(x)K32(x, y)

(6b)λK23
x (x, y)− µK23

y (x, y) = σ+(x)K33(x, y)

(6c)µK32
x (x, y)− λK32

y (x, y) = −σ−(x)K22(x, y)

(6d)µK33
x (x, y) + µK33

y (x, y) = −σ−(x)K23(x, y)

with boundary conditions

(7a)K22(x, 1) =
1

λ

(

K24(x)E1 + ρµK23(x, 1)
)

(7b)K23(x, x) = −
σ+(x)

λ+ µ

(7c)K32(x, x) =
σ−(x)

λ+ µ

(7d)K33(x, 1) =
1

µρ

(

λK32(x, 1)−K34(x)E1

)

as well as the set of ODEs

(8a)K24
x (x) =

1

λ

(

−K24(x)Ā1 + σ+(x)K34(x)
)

(8b)K34
x (x) =

1

µ

(

K34(x)Ā1 − σ−(x)K24(x)
)

with boundary conditions

(9a)K24(1) = F1

(9b)K34(1) = C1 + ρF1.

And, finally, the set of algebraic relations are fulfilled

(10a)C0K
12(y) = K22(0, y)− qK32(0, y)

(10b)C0K
13(y) = K23(0, y)− qK33(0, y)

(10c)C0K
14 = K24(0)− qK34(0).

Notice in particular that a solution to the set of algebraic

equations can be obtained using the Moore-Penrose right-

inverse of C0, C+
0

.
= CT

0 (C0C
T
0 )

−1. This can be done since,

by Assumption 3, C0 is necessarily full-row rank (with rank

equal to 1). In the remainder of the article, we solve these

algebraic relations using this right-inverse (which makes the

solution unique).

This set of PDEs and ODEs have a unique continuous

solution in their respective domains: K22,K23,K32,K33 ∈
C(T ;R) and K24,K34 ∈ C([0, 1];R1×p) (row vectors). This

follows, with minor adaptations, from the results in [9]

and [19] and the regularity of the coefficients (the required

adaptations in the proof are similar in spirit to those in [10],

even though the kernel equations obtained here are simpler).

More regularity can be obtained, if necessary, by increasing

the regularity of the coefficients. For the purposes of this

article, continuous solutions are enough for all the terms in

the transform and the target system to be adequately defined.

Then, we can solve equation (10) using the Moore-Penrose

right-inverse to obtain a specific value for K12,K13 ∈
C([0, 1];Rn×1) (column vectors) and K14 ∈ Rn×m.

B. Boundedness and Invertibility of the Transform

Boundedness of the transform is a direct consequence of

the structure of the transform (identities, integral operators

and matrices) and the regularity of the backstepping kernels

(continuous in this case). As for invertibility, it follows

from the structure of the transform, which is block upper-

triangular with the blocks on the diagonal being either

identities (for the ODEs) or (invertible) Volterra operators

(for the PDEs). The inverse transform will again present a

block upper-triangular structure analogous to the one of the

direct transform. The computation of the inverse transform

follows standard backstepping procedures and will not be

detailed in this article.

IV. TARGET SYSTEM IN DELAY FORM

Using the method of characteristics, the solution of (3c)

and (3d) satisfies, for any t > max( 1λ ,
1
µ ) and x ∈ [0, 1],



(11a)α(t, x) = α
(

t−
x

λ
, 0
)

,

(11b)β(t, x) = β

(

t−
1− x

µ
, 1

)

.

Substituting these expressions in (3b) and (3e), and denoting

τ = 1
µ + 1

λ , we obtain, for any t > τ ,

(12a)α(t, 0) = ρqα (t− τ, 0) + C0ξ(t),

(12b)β(t, 1) = ρqβ (t− τ, 1) + ρC0ξ(t−
1

λ
).

In the target system, the transport equations are then equiv-

alent to a set of two continuous-time difference equations

acting on the boundaries and coupled to the state ξ(t). The

stabilizing control will be designed in the frequency domain,

using Laplace transform. For brevity, and without any loss

of generality for the asymptotic stable behavior of the plant,

we assume all zero initial conditions. The Laplace transform

applied to (12) leads to

(13a)(1− ρqe−τs)α̂(s, 0) = C0ξ̂(s)

(13b)(1− ρqe−τs)β̂(s, 1) = ρC0e−
s
λ ξ̂(s).

The Laplace transform of (3f) writes as

(14)(sI − Ā1)η̂(s) = e−
s
λE1α̂(s, 0).

The Laplace transform of (3a) becomes, incorporating

therein (11), (13) and (14),

(1− ρqe−τs)(sI − Ā0)ξ̂(s)

= −(1− ρqe−τs)λK12(0)C0ξ̂(s) + e−
s
λ Ē1C0ξ̂(s)

+ ρe−τsĒ0C0ξ̂(s) +M(sI − Ā1)
−1E1e−

s
λC0ξ̂(s)

+

∫ 1

λ

0

λMα(λθ)e−sθdθ C0ξ̂(s)

+

∫ 1

µ

0

ρµMβ(1 − µθ)e−sθdθ e−
s
λC0ξ̂(s)

+ (1− ρqe−τs)B0
ˆ̃
U(s).

(15)

From Assumption 1, the quasipolynomial (1 − ρqe−τs) is

nonsingular for any s ∈ C, Re(s) ≥ 0, as well as is the

matrix polynomial (sI − Ā1) from Assumption 2. Using

these invertibility properties, identity (15) can be written

equivalently, for any s ∈ C with Re(s) ≥ 0, as

(16)(sI − Ā0)ξ̂(s) = G(s)C0 ξ̂(s) +B0
ˆ̃
U(s),

where

G(s) = −λK12(0)

+ (1− ρqe−τs)−1

[

(

Ē1 +M(sI − Ā1)
−1E1

)

e−
s
λ

+ ρe−τsĒ0 +

∫ τ

0

M ξ(θ)e−sθdθ

]

(17)

and

(18)

M ξ(θ) = λMα(λθ)1[0, 1

λ
](θ)

+ ρµMβ
(

1− µθ +
µ

λ

)

1( 1

λ
,τ ](θ).

V. TARGET SYSTEM STABILIZATION

The objective of this section is the design of a stabilizing

control law for the target system, described by (16). As a

preliminary remark, a well-known necessary and sufficient

condition for (spectral) stabilization of the target plant is that

rank
[

sI − Ā0 −G(s)C0 B0

]

= n,

for all s ∈ C, Re(s) ≥ 0 [20]. The transfer function matrix

G(s) in (17) is related to the interconnection of a neutral

time-delay system (with stable difference operator) and an

LTI system, where the interconnection involves pointwise

and distributed delays, the last having a kernel which is

realized numerically solving a set of PDEs. This complexity

makes this stabilization condition not reliable for numerical

analysis and constructive design purposes. In order to over-

come the intrinsic difficulties related to spectral stabilization,

we propose to decompose the problem in two steps. First, we

deal with the stabilization problem for the output of the first

ODE subsystem, namely y(t)
.
= C0ξ(t). Then, we show that

exponential stabilization of this output implies exponential

stabilization of the whole target system (which, based on

the properties of the backstepping transform is equivalent to

exponential stabilization of the original system).

Since we defined y(t)
.
= C0ξ(t), we have that, using (16),

(19)ŷ(s) = C0(sI − Ā0)
−1G(s)ŷ(s) + P0(s)

ˆ̃
U(s)

where
(20)P0(s)

.
= C0(sI − Ā0)

−1B0.

The rank of the matrix in Assumption 3 is conserved for the

triple (Ā0, B0, C0) since
[

sI − Ā0 B0

C0 0

]

=

[

sI −A0 B0

C0 0

] [

I 0
−F0 I

]

.

Furthermore, using the following expression
[

sI − Ā0 B0

C0 0

]

=

[

I G(s)
0 I

] [

sI − Ā0 −G(s)C0 B0

C0 0

]

,

we can conclude that Assumption 3 implies that the afore-

mentioned necessary and sufficient condition holds, i.e.

rank
[

sI − Ā0 −G(s)C0 B0

]

= n,

for all s ∈ C, Re(s) ≥ 0.

Notice that Assumption 3 is equivalent to the existence

of a right inverse for P0(s) defined in (20), whose entries

have no unstable poles (remark that such an inverse is not

proper) [21]. We denote P+
0 (s) any such right inverse. A

possible choice is given by the Moore-Penrose right inverse

P+
0 (s) = PT

0 (s)(P0(s)P
T
0 (s))−1.

Before proceeding with the construction of a stabilizing

feedback for the output y(t), we state the following stability

result for the target system.

Theorem 1: Assume that y(·) is exponentially stabilized

by a dynamic output feedback of the form

(21)
ˆ̃
U(s) = F (s)ŷ(s),



where F (s) is a stable (proper) transfer matrix. Then, under

Assumptions 1–3, the target system (3) is exponentially

stable in the X -norm.

Proof: Assume that y(·) is exponentially stable.

From (16), the closed-loop dynamics for ξ(·) are described

by

ξ̂(s) = (sI − Ā0)
−1(G(s) +B0F (s))ŷ(s). (22)

By Assumption 2, Ā1 is Hurwitz and, by Assumption 1,

(1 − ρqe−τs) has a stable inverse. It follows that G(s)
in (17) is a stable, proper transfer matrix, as is F (s).
Since Assumption 2 also guarantees that Ā0 is Hurwitz,

stabilization of ξ(·) is implied by the previous equality.

The stability of α(·, 0), β(·, 1) is deduced from (13), which

implies exponential convergence to zero of α and β in the

L2-norm (this can be seen using (11)). Stability of η(·) is

obtained from identity (14).

In the following, we describe the construction of a stabiliz-

ing output feedback of the form (21). For this, we decompose

G(s) in (17) into

(23)G(s) = w(s)G(s) + (1− w(s))G(s),

with w(s) a (SISO) stable low-pass filter of sufficient order

to be designed. A candidate (proper) controller can therefore

be defined as

(24)F (s) = −P+
0 (s)

[

C0(sI − Ā0)
−1w(s)G(s)

]

.

We show in the following result that the low-pass filter w(s)
can always be chosen in order to make F (s) a stabilizing

controller for y(·).
Proposition 2: Let w(s) be any low-pass filter, with suf-

ficiently high relative degree, such that

(25)∀ω ∈ R, |1− w(jω)|<
1

‖G‖∞σ̄(C0(jωI − Ā0)−1)
.

Then the dynamic output feedback (21) with F (s) given

in (24) exponentially stabilizes y(·).
Proof: First, remark that the relative degree of w(s) can

always be chosen such that F (s) in (24) is strictly proper.

Plugging (23)-(24) into (19), the closed-loop dynamics of

y(·) is governed by

(26)(1 − Φ(s))ŷ(s) = 0,

where

(27)Φ(s)
.
= (1− w(s))C0(sI − Ā0)

−1G(s).

Since G(s) given in (17) is uniformly bounded in the right-

half complex plane, we have σ̄(G(jω)) ≤ ‖G‖∞ for all ω.

Noting that Φ(s) is stable and strictly proper (Ā0 is Hurwitz

by Assumption 2), we have by (25) that

σ̄(Φ(jω)) ≤ |1 − w(jω)|‖G‖∞σ̄(C0(jωI − Ā0)
−1)

< 1,

for all ω ∈ R. This implies that ‖Φ‖∞< 1, which is a

sufficient condition for exponential stability of y(·) in (26).

Theorem 1 and Proposition 2 prove that there exists a

dynamic feedback in the form (21) such that the target

system (3) is exponentially stable, that is ‖(ξ, α, β, η)‖X
converges exponentially to zero for any initial condition in

X .

Given a stabilizing control input Ũ for the target system,

the corresponding control input for the original system (1)

can be obtained from (5) as

U(t) = Ũ(t) + F0ξ(t).

The implementation of this controller requires some re-

alization of F (s) in (24), as well as the inverse of the

backstepping transform (2) in order to reconstruct ξ and y

from the original system variables (X,u, v, Y ) ∈ X .

Remark that the controller has been chosen as strictly

proper (we do not use the image of C0B0 to compensate

any terms directly) which means that our controller is robust

to small delays in the input, which is not the case in some

designs that include derivative terms. The proof follows the

same ideas as that in [14].

VI. NUMERICAL SIMULATION

The proposed control was simulated using Matlab and

Simulink. The transport PDEs were discretized using an

explicit in time, first-order, upwind finite difference method

with 101 spatial discretization points (and a CFL number of

0.5). The transfer functions in the control law were trans-

formed to a state-space representation for implementation.

The numerical values used were: λ = 2, µ = 0.7, σ+ = 1,

σ− = 0.5, ρ = 0.5, q = 1.2,

A0 =









0 0.14 0 0.1
0 0 0.14 0

0.29 −0.43 0.57 0.2
0 0 0 −1.1









, B0 =









0 0
0 −1
1 −1
0 0









,

C0 =
[

1 0 0 −0.5
]

, E0 =









2
−1
0.1
0









,

F0 =

[

41.71 5.43 −1.93 0
42 5 0.14 0

]

,

A1 =





0.29 0.14 0
0.14 0 0.1
0 0 −0.9



 , E1 =





−1
1
0





C1 =
[

0 1 0.5
]

, F1 =
[

12 8.71 0
]

.

Notice that the system verifies Assumptions 1–3 and that

C0B0 =
[

0 0
]

. Furthermore, the ODE systems are only

stabilizable in this case and need not be transformed into

any particular standard form. Also, each ODE and the

PDE subsystem are independently unstable (and remain so

when interconnected). Also, an input delay of 0.025s was

introduced in the control action to show the robustness of

the design to small delays in the loop. The chosen w(s)
is a simple 4th order low-pass filter with a bandwidth of

approximately 100 rad/s.
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Fig. 2: Evolution of the norm ‖(X, u, v, Y )‖X of the states in closed-loop
with an input delay of 0.025s.
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Fig. 3: Evolution of the control input U in closed-loop with an input delay
of 0.025s.

The states of the system converge to zero, as ex-

pected, despite the input delay. The evolution of the norm

‖(X,u, v, Y )‖X of the states is given in Figure 2. The control

action is shown in Figure 3. It is interesting to notice that,

unlike in [10], we no longer require any compatibility in

the initial conditions for the ODEs and PDEs in order to

guarantee a continuous control signal.

VII. CONCLUSION AND PERSPECTIVES

In this paper, a strictly proper dynamic full-state feedback

controller was designed for the stabilization of a class of 2×2
linear hyperbolic ODE-PDE-ODE systems. The proposed

approach is based on a backstepping transform that allows

us to reformulate the stabilization problem in terms of a

time-delay system with pointwise and distributed delays. By

restricting the bandwidth of the control with an adequate

low-pass filter we are able to guarantee the delay-robustness

of the resulting controller. Future works will focus on the

extension of these results to the output-feedback case.
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