## 톨 <br> $\underset{\substack{\text { République } \\ \text { FRANçise }}}{ } \mid \mathbf{N R} A Q$

Liberté
Egalité
Fraternité

## Calage par régularisation d'un modèle GR semi-distribué

$4^{\text {es }}$ Rencontres HydroGR 2021

Alban de Lavenne
7-8 décembre 2021

INRAE, HYCAR, Antony, France

## GRSD: A semi-distributed hydrological model based on GR models



- Based on GR5J: 5 parameters for each modeling unit
- Mixing gauged and ungauged catchments
- Lead to the definition of Intermediary Contributing Area (ICA)


## INRAE

## Traditional sequential calibration strategy [Lerat et al., 2012]

## Upstream catchment 1




1. Upstream catchments are calibrated first

## Traditional sequential calibration strategy [Lerat et al., 2012]



1. Upstream catchments are calibrated first

## Traditional sequential calibration strategy [Lerat et al., 2012]



1. Upstream catchments are calibrated first
2. Simulated outflow is routed to downstream station (parameter C)

## Traditional sequential calibration strategy [Lerat et al., 2012]



1. Upstream catchments are calibrated first
2. Simulated outflow is routed to downstream station (parameter C)
3. Contribution of downstream ICA (intermediary sub-catchment) is calibrated

## Traditional sequential calibration strategy [Lerat et al., 2012]



1. Upstream catchments are calibrated first
2. Simulated outflow is routed to downstream station (parameter C)
3. Contribution of downstream ICA (intermediary sub-catchment) is calibrated
4. Repeat steps $1,2,3$ to the last outlet

## Implementation over France



Spatial resolution 1305 gauged catchments, 250 $\mathrm{km}^{2}$ /modeling units

Temporal resolution Daily
time step
Period 1980-2010, split in 2 sub-periods

## A leave-one-out evaluation for ungauged catchments



- Gauged stations considered ungauged one after another during calibration INRAC


## A leave-one-out evaluation for ungauged catchments



- Gauged stations considered ungauged one after another during calibration INRAC


## A leave-one-out evaluation for ungauged catchments



- Gauged stations considered ungauged one after another during calibration INRAC


## Performance of streamflow simulation



Gauged Robust perf., similar to GR5J

Ungauged Better with GR5J, especially for small catchments

## Why poor performance at ungauged locations?

## Sensitivity issues of the sequential calibration



## Sensitivity issues of the sequential calibration




N
$\mathbf{4}$

## Sensitivity issues of the sequential calibration



## INRAE

## Sensitivity issues of the sequential calibration



## INRAE

## Sensitivity issues of the sequential calibration



## The concept idea of regularization

Adding information, and use both:

1. Observation of $Q$ Discharge at the outlet of the ICA
2. A priori on $\theta$ on parameters' values

Update the objective function:
Optimised parameter set of a reference catchment

$\operatorname{CRIT}\left(\theta_{\text {opt }}\right)=(1-k) \cdot \operatorname{KGE}\left(\theta_{\text {opt }}\right)-k \cdot \operatorname{DIST}\left(\theta_{\text {ref }}, \theta_{\text {opt }}\right)$

## The concept idea of regularization

Adding information, and use both:

1. Observation of $Q$ Discharge at the outlet of the ICA
2. A priori on $\theta$ on parameters' values

Update the objective function:
Optimised parameter set of a reference catchment

$\operatorname{CRIT}\left(\theta_{\text {opt }}\right)=(1-k) \cdot \operatorname{KGE}\left(\theta_{\text {opt }}\right)-k \cdot \operatorname{DIST}\left(\theta_{\text {ref }}, \theta_{\text {opt }}\right) \cdot \operatorname{MAX}\left(0, \operatorname{KGE}\left(\theta_{\text {ref }}\right)\right)$

## The concept idea of regularization

Adding information, and use both:

1. Observation of $Q$ Discharge at the outlet of the ICA
2. A priori on $\theta$ on parameters' values

Update the objective function:
Optimised parameter set of a reference catchment

$\operatorname{CRIT}\left(\theta_{\text {opt }}\right)=(1-k) \cdot \operatorname{KGE}\left(\theta_{\text {opt }}\right)-k \cdot \sqrt{\sum_{i=1}^{n}\left(\frac{\theta_{\text {ref }}^{i}-\theta_{\text {opt }}^{i}}{\theta_{\text {range }}}\right)^{2}} \cdot \operatorname{MAX}\left(0, \operatorname{KGE}\left(\theta_{\text {ref }}\right)\right)$

## How to define the a priori and move away from it?



1. Calibrate upstream catchments

## How to define the a priori and move away from it?



1. Calibrate upstream catchments

## How to define the a priori and move away from it?



1. Calibrate upstream catchments

A rescaled Ghosh distance:

[de Lavenne et al., 2016]
2. Associate each sub-catchments to a reference calibrated catchment

## How to define the a priori and move away from it?



1. Calibrate upstream catchments
2. Associate each sub-catchments to a reference calibrated catchment
3. Calibrate a distance to their reference

## Impact of regularization on model performance at ungauged catchments

Model - Semi-distri. $=-$ Lumped


- Significant performance improvement on small catchments
- Best compromise of both information ( $Q_{o b s}$ and a priori) depends on catchments size


## Impact of regularization on model performance at ungauged catchments



- Significant performance improvement on small catchments
- Best compromise of both information ( $Q_{o b s}$ and a priori) depends on catchments size


## Impact of regularization on model performance at gauged catchments

Model - Semi-distri. -- Lumped


- No significant impacts at gauged locations (median KGE $=0.90$ during validation)


## Impact of regularization on model performance at gauged catchments



- No significant impacts at gauged locations (median KGE $=0.90$ during validation)


## Conclusion

- A semi-distributed GR model running at national scale
- The benefit of semi-distributed model is not straightforward
- High perf. at gauged sites may hide low perf. at ungauged sites

Optimised parameter set of a reference catchment


Regularization strategy:

- Improves performance at ungauged sites with little compromise at gauged sites
- Reduces the sensitivity issues by adding new information (a priori)
- Could be extended to any kinds of a priori


## Thank you for your attention

## For more details:

## AGU100 <br> EARVANCING EARTH AND

## Water Resources Research

## RESEARCH ARTICLE <br> 10.1029/2018WR024266 <br> A Regularization Approach to Improve the Sequential

Key Points:

- Sequential calibration without
regularization yields low
performance in small ungauged
catchments
Sequential calibration constrained
by regularization strategy helps
improving model regionalization
Regularization benefits from a
priori parameter values of
eighboring catchments Calibration of a Semidistributed Hydrological Model

${ }^{1}$ HYCAR Research Unit, Irstea, Antony, France, ${ }^{2}$ Swedish Meteorological and Hydrological Institute (SMHI), Norrköping, Sweden

Abstract In semidistributed hydrological modeling, sequential calibration usually refers to the calibration of a model by considering not only the flows observed at the outlet of a catchment but also the different gauging points inside the catchment from upstream to downstream. While sequential calibration

## References

de Lavenne, A., V. Andréassian, G. Thirel, M.-H. Ramos, and C. Perrin (2019). "A Regularization Approach to Improve the Sequential Calibration of a Semidistributed Hydrological Model". In: Water Resources Research 55. ISSN: 0043-1397. DOI: 10.1029/2018WR024266.

R
de Lavenne, A., G. Thirel, V. Andréassian, C. Perrin, and M.-H. Ramos (May 2016). "Spatial variability of the parameters of a semi-distributed hydrological model". In: 7th International Water Resources Management Conference of ICWRS. Oral presentation + PIAHS paper. Bochum, Germany.
Lerat, J., V. Andréassian, C. Perrin, J. Vaze, J. M. Perraud, P. Ribstein, and C. Loumagne (2012). "Do internal flow measurements improve the calibration of rainfall-runoff models?" In: Water Resour. Res. 48.2, W02511. ISSN: 1944-7973. DOI: 10.1029/2010WR010179.

