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S1. Experimental parameters and uncertainties11

In this section we summarize the parameters used in the experiments of Abramian et al. (1), show the results for each of the12

experimental runs, and describe how we estimate the river properties and their uncertainties.13

S.1.1. Details of the experimental runs. In Table S1, we show the experimental parameters and their uncertainties (uncertainties14

are estimated in Abramian et al. (1)). In Fig. S1, we show the depth and sediment flux profiles for each of the experiments of15

Abramian et al. (1) and compare them to our model predictions. In Table S2 and Fig. S2, we show the properties of these16

rivers.17

We can see that our model predicts rivers that are slightly wider than the experiments (by about 20%), while the depth,18

Dmax, is not biased in an obvious way. The width of the sediment flux profiles is captured quite accurately, but the experimental19

profiles seem to be somewhat higher (by about 30% for the maximum sediment flux).20

In our model, the bed slope at the river bank approximately equals the friction coefficient, D′|D=0 ≈ µt, since the stress,21

τ , vanishes when D = 0 and the sediment flux, qµexp[−ξ/λ], is negligible (Eq. 13 of the main text). However, some of the22

experiments show a high bank angle, unusual for granular material with irregular grains. This could be due to capillary forces23

acting near the bank, to rivers being not fully in equilibrium, to surface armoring by removing the loose grains (2), or to24

the fact that the fluid stress does not necessarily vanish near the bank. In fact, using the value µt = 1.2, combined with25

a length-scale, Ls, smaller by about 20% (which is within the experimental uncertainty), makes our model agree with the26

experiment well in all metrics. However, to avoid treating µt as a tuning parameter, we decided to use µt = 0.9, which is the27

largest value estimated in an independent experiment (3).28

S.1.2. Estimating the river properties and their uncertainties. We estimated all of the river properties based on the cross-sections29

of Fig. S1. In particular, we estimated the total sediment discharge, Qs, as the integral of the sediment flux profile found by30

grain tracking. We identify the uncertainty in the sediment discharge from the fluctuations of Qs about the mean, once the31

equilibrium is reached (Fig. 2 in Abramian et al. (1)). Next, we estimate the width, W , as the distance from one bank to32

the other, where we identify the banks by the sudden change of slope. In doing so, we introduce an error that is of the order33

of the grain size. However, we can also estimate the natural variability of the river width along its path from the overhead34

images of the experiment. We find it to be about 5% of the mean — an error larger than that introduced by the cross-section35

measurement. For this reason, we identify the uncertainty for the width with this natural variability. Next, we estimate the36

depth, Dmax, by taking the minimum of a parabola we fit to the the river bottom, in order to minimize the error due to bed37

roughness. Abramian et al. (1) estimate the measurement error of depth due to laser inaccuracy to be about 0.5 mm. We do38

not have access to the natural variability of the depth, although we can say that it is at least of the order of the grain size.39

Again, this natural variability is greater than the measurement error estimated by Abramian et al. (1), so we take the error of40

Dmax to be ds = 0.83 mm for all experiments. We follow a similar procedure to find the maximum sediment flux, qs,max —41

we fit a parabola around the center of the sediment flux profile, and take its maximum to be qs,max. Again, we do not have42

access to the natural variability of qs,max along the river’s path, so we take the error of qs,max to be the difference between the43

observed maximum sediment flux profile and the height of the fitted parabola.44

As we noted in section Dependence on Water and Sediment Discharge of the main text, the downstream slope cannot be45

measured directly. However, we can estimate it indirectly. The sediment flux at the river center, qs,max, is driven only by46

the fluid stress, which is about τ ≈ ρfgDmaxS in the shallow-water approximation. Therefore, dropping the contributions of47

momentum diffusion and gravity from Eq. 13 of the main text, we find DmaxS/Ls ≈ µt + qs,max/qµ, and we can estimate the48

slope in the experiment as49

S ≈ Ls
Dmax

(
µt + qs,max

qµ

)
. [S1]50

This is the estimate we show in Fig. S2. This estimate is not independent from our model. We can, nevertheless, use it to51

check the consistency between the parameters in our model and the experiments. We estimate the error for the slope calculated52

in this way as a combination of the errors for the quantities that enter Eq. S1.53

The quantities we described above are all point-measurements and, therefore, are sensitive to the roughness of the bed and54

measurement error. On the other hand, integral quantities such as the mean sediment flux, 〈qs〉, and transport width, WT , are55

robust against such errors. In this case, we expect that the uncertainty of 〈qs〉 and WT is mostly due to their natural variability56

in time and space, rather than by any measurement error. We, however, do not have access to measurements that would allow57

us to estimate the variability, so we assume that the natural variability of 〈qs〉 is of the same order as the variability of the58

sediment flux profile across the channel. Therefore, we take the uncertainty of 〈qs〉 to be equal to the uncertainty of qs,max — a59

conservative estimate. Finally, since WT = Qs/〈qs〉, we estimate its uncertainty as a combination of the uncertainty of the60

sediment discharge and that of the mean sediment flux.61
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Table S1. Table of parameters used in the experiments and the model.

Definition Notation Value Unit
Grain diameter ds 0.83 ± 0.2 mm
Fluid viscosity ν 10−5 m2s−1

Fluid density ρf 1160 ± 5 kg m−3

Sediment density ρs 1490 kg m−3

Fluid discharge Qw 0.97 ± 0.05 l min−1

Sediment discharge Qs (0, 60) grains s−1

Threshold Shields parameter θt 0.167 ± 0.003 None
Friction coefficient µt 0.9 ± 0.2 None

Sediment diffusion length λ 0.10 ± 0.03 mm
Sediment flux scale qµ 107 ± 30 grains cm−1s−1
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Fig. S1. Depth and sediment profiles for all experiments of Abramian et al. (1). The left column are the measured (brown lines) and modeled (blue dashed lines) depth profiles.
The right column are the measured (red lines) and modeled (blue lines) sediment flux profiles.
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Table S2. River properties for each of the experiments performed by Abramian et al. (1).

Experiment label Sediment discharge Unit
1 0

grains s−1
2 12.6 ± 1.2
3 24 ± 2.4
4 44.9 ± 4.5
5 59.7 ± 6.0

Quantity Experiment label Value Unit

Width, W

1 3.20 ± 0.16

cm
2 3.36 ± 0.17
3 3.53 ± 0.18
4 4.83 ± 0.24
5 4.56 ± 0.23

Depth, Dmax

1 0.744 ± 0.083

cm
2 0.748 ± 0.083
3 0.530 ± 0.083
4 0.474 ± 0.083
5 0.539 ± 0.083

Maximum sediment flux, qs,max

1 0

grains s−1cm−1
2 15.96 ± 0.09
3 24.65 ± 1.44
4 26.97 ± 3.07
5 27.42 ± 2.44

Transport width, WT

1 n/a

cm
2 1.01 ± 0.11
3 1.24 ± 0.22
4 2.16 ± 0.53
5 2.46 ± 0.49

Downstream slope, S

1 0.005 ± 0.002

None
2 0.006 ± 0.002
3 0.009 ± 0.004
4 0.011 ± 0.005
5 0.009 ± 0.004
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Fig. S2. Comparison of various river properties in dimensional units between our model and experiments of Abramian et al. (1). Slope in panel (c) is estimated using Eq. S1.
We only show the weak transport regime for the properties related to the sediment flux.
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S2. Fluid induced stress, τ62

In this section we will first derive Eq. 3 of the main text for the fluid stress, τ . Then, we will show that this stress can be63

written as a series expansion that assumes the aspect ratio of the channel is large. We will show that our model, Eq. 13 of the64

main text, is the first term in this expansion. Finally, we will test our approximation on several tractable examples.65

S.2.1. Deriving the fluid stress equation. In this section, following Devauchelle et al. (4), we derive equation 3 of the main text66

for the fluid stress, τ . To that end, we first integrate the Stokes’ flow equation, Eq. 2 of the main text, over the vertical to get67

ηv

∫ 0

−D

∂2u

∂y2 dz − τz = −ρfgSD , [S2]

where the z-component of the stress is τz ≡ −ηv ∂u
∂z

∣∣
z=−D

, and we have used the boundary condition that the stress vanishes68

at the surface, τz(z = 0) = 0. To get Eq. 3 of the main text, we need to pull the y-derivatives in Eq. S2 outside the integral.69

Doing this, we get70 ∫ 0

−D

∂2u

∂y2 dz = ∂2

∂y2

∫ 0

−D
udz + dD

dy
∂u

∂y

∣∣∣∣
z=−D

, [S3]

where we have used the boundary condition that the velocity vanishes at the boundary, u(z = −D) = 0. We can use this same71

condition to relate the term ∂u
∂y

∣∣
z=−D

to the shear stress, τz. Namely, differentiating the boundary condition, u(z = −D) = 0,72

yields73

∂u

∂y

∣∣∣∣
z=−D

= dD
dy

∂u

∂z

∣∣∣
z=−D

. [S4]

Substituting relations Eqs. S3 and S4 into Eq. S2, we find74

ηv
d2

dy2 (Dū)− τz

(
1 +

(
dD
dy

)2
)

= −ρfgSD , [S5]

where we have introduced ū(y) ≡ 1
D

∫ 0
−D udz. Equation S4 relates the y and z components of the stress as τy = D′τz. This75

means that the total stress, τ , is related to τz as76

τ =
(
τ2
z + τ2

y

)1/2 = τz
(
1 +D′2

)1/2
, [S6]

where prime stands for d/dy. Substituting Eq. S6 into Eq. S5, we can express τ as77

τ = ηv(Dū)′′ + ρfgSD

(1 +D′2)1/2 , [S7]

Identifying
(
1 +D′2

)−1/2 with cosφ, we finally retrieve Eq. 3 of the main text78

τ =
(
ηv(Dū)′′ + ρfgSD

)
cosφ , [S8]

So far, we made no approximation to get here from the original Stokes equation (Eq. 2 of the main text).79

S.2.2. The stress approximation as a series expansion. In the main text, we used the shallow-water velocity to approximate80

the fluid stress (Eqs. 12 and 13 of the main text). In this section, we will show that this approximation is the first term in a81

series expansion that assumes the aspect ratio of the river is large. In this way, this approximation may be systematically82

improved, assuming that the series converges.83

We begin with the Stokes equation84

∂2u

∂y2 + ∂2u

∂z2 = −gS
ν

[S9]

If the channel depth, D(y), varies smoothly, then the second y-derivative of velocity scales as U/W 2 while the second z-derivative85

scales as U/D2
max, where U is the velocity scale. Therefore, if the aspect ratio, W/Dmax, is large, the z-derivative is much86

larger than the y-derivative. We can make this obvious by rescaling the variables in the Stokes equation as87

ŷ = y

W
, ẑ = z

Dmax
, û ≡ u ν

gSD2
max

[S10]

In these new coordinates, the channel has unit width and depth, and the fluid is driven with a unit forcing. The Stokes equation88

then becomes89

D2
max

W 2
∂2û

∂ŷ2 + ∂2û

∂ẑ2 = −1 [S11]

We can then expand the velocity as90

û = û(0) + û(1) + û(2) + ... , [S12]
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where û(0) is the term of the order unity, û(1) is the term of the order D2
max/W

2, û(2) is the term of the order D4
max/W

4, etc.91

Equating orders in the Stokes equation, we get (back in the physical coordinates)92

∂2u(0)

∂z2 = −gS
ν

, [S13]

∂2u(0)

∂y2 + ∂2u(1)

∂z2 = 0 , ... [S14]

The boundary conditions for each term are the same — velocity at each order must vanish on the channel bed and its93

z-derivative must vanish on the fluid surface. From Eq. S13, we can see that the zeroth order term is in fact equal to the94

shallow-water velocity, u(0) ≡ usw. All of the terms in the expansion are polynomial in z, and we can easily find each term of95

order (n+ 1) based on the previous term of order (n) by performing integration over z. In this way, we find for the first two96

terms:97

u(0) = gS

2ν
(
D2 − z2) , [S15]

u(1) = gS

4ν
(
D2 − z2) (D2)′′ . [S16]

The term u(1) is inversely proportional to the square of the aspect ratio since the correcting factor, (D2)′′, is of order D2
max/W

2.98

From here, we can find the vertically averaged velocity as an expansion:99

ū = ū(0) + ū(1) + ... [S17]

ū(0) = gSD2

3ν , [S18]

ū(1) = gSD2

6ν (D2)′′ . [S19]

Equation S18 for the zeroth order velocity is the same as Eq. 12 of the main text for the shallow-water velocity. With this, we100

can find the fluid stress. Recall the exact equation for the stress, Eq. 3 of the main text,101

τ =
(
ρfgSD + ρfν(ūD)′′

)
cosφ . [S20]

We can also write the stress as an expansion102

τ = τ (0) + τ (1) + ... , [S21]

where τ (0) is the leading order term, and τ (1) is proportional to D2
max/W

2. Using the expansion for ū, we see that103

τ (0) = ρfgSD cosφ [S22]

τ (1) = ρfν(ū(0)D)′′ cosφ =
[
ρfgS

1
3
(
D3)′′] cosφ . [S23]

Since (D3)′′ ∼ D3
max/W

2, the first-order term is about D2
max/W

2 times smaller than the leading order term: τ (1) ∼104

τ (0)D2
max/W

2. The cosine term in the above equations is cosφ =
(
1 +D′2

)−1/2, and, since D′2 ∼ D2
max/W

2, this term could105

also be expanded in a series but, for convenience, we keep the entire term here.106

The zeroth order term, τ (0), with cosφ ≈ 1, is the shallow-water stress that was used previously to estimate the shape of107

inert rivers (5). Our approximation (Eq. 13 of the main text) amounts to truncating the τ -series at first order, τ ≈ τ (0) + τ (1).108

In the main text, we showed that the river is formed by the combined action of fluid stress and gravity. The gravity term in109

the force ratio, (D′)2, is of the order of D2
max/W

2, and is, therefore, of the same order of magnitude as τ (1). For this reason,110

keeping only the shallow-water term in the force ratio, µ, is inconsistent, since it neglects a stress term that is comparable to111

gravity.112

Although the expansion above may be corrected to arbitrary order, it is always local — the stress is always a function of the113

depth and its derivatives. To get non-local effects, whereby the stress depends on the entire bed shape, we would have to add114

infinitely many terms in the expansion.115

S.2.3. Testing the approximation. In the previous section we showed that the fluid velocity and stress can be found using a116

series expansion when the flow is shallow enough. In this section, we will explicitly test this expansion on several examples for117

which exact solutions exist.118

As a first example, we look at the flow over an inclined surface with an opening angle φ, that we assume to be small (Fig.119

S3a). In this case, the depth profile is given by120

D(y) = y tanφ . [S24]
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This problem is not well-posed since we do not specify the boundary condition on the open edge of the wedge. Nevertheless, if121

the conditions far away do not matter, the solution of Stokes equation and the corresponding stress should be122

u = gS

2ν
D2 − z2

1− (tanφ)2 , [S25]

τz = gSρfD

1− (tanφ)2 , [S26]

where τz is the vertical component of the stress. We can see that the exact solution has the same form as the shallow-water123

approximation with the correction factor 1− (tanφ)2. Our approximation to first order yields124

u = gS

2ν
(
D2 − z2) (1 + (tanφ)2) , [S27]

τz = gSρfD
(
1 + (tanφ)2) , [S28]

where we have expanded the cosine terms in Eq. S22 and S23 to first order in φ. Equations S27 and S28 show that our125

approximation is correct to first order in φ. We compare the stress in our approximation to the exact solution, and to the126

shallow-water stress in Fig. S3d. For tanφ ≥ 1, our approximation breaks down. In fact, the exact solution given by Eqs. S25127

and S28 also breaks down at tanφ = 1. For large angles, the exact solution we presented above is not viable because, in that128

case, the boundary condition at the far end cannot be ignored. This is an example of a non-local effect we mentioned in the129

previous section — for tanφ ≥ 1, our approximation breaks down because it can only relate the flow to the local bed shape.130

As our second example, we consider the flow in an elliptic channel with a ratio of semi-major to semi-minor axes equal to131

R = W/(2Dmax), that we assume to be large (Fig. S3b). The depth profile is given by132

D(y) = 1
R

√(
W

2

)2
− y2 , [S29]

The exact solution of the Stokes equation in such a channel is133

u = gS

2ν

(
D2 − z2)R2

(1 +R2) [S30]

τz = gSρfDR
2

1 +R2 , [S31]

Our approximation to first order gives134

u = gS

2ν
(
D2 − z2)(1− 1

R2

)
[S32]

τz = gSρfD
(

1− 1
R2

)
[S33]

Our approximation provides the correct first order when R is large, but fails when R ≥ 1. The reason is the same as before —135

in a narrow channel, rather than being controlled by the local depth configuration, the fluid velocity becomes dominated by the136

side walls. We compare our approximation with the exact solution and the shallow-water approximation in Fig. S3e.137

Finally, we consider the flow the flow over a sinusoidally perturbed bed (Fig. S3c). The depth profile in this case is given by138

D(y) = D0 + δ sin(ky) , [S34]
where δ is the amplitude and k is the wavenumber of the perturbation. If δ is small, the full Stokes equation can be linearized139

to find the stress. Abramian et al. (6) derived the expression for the stress in this case:140

τz = gSρfD0 + gSρfδ (1− kD0tanh(kD0)) sin(ky) . [S35]
We expect our approximation to work when the wavelength of the perturbation is large compared with the flow depth (i.e.141

when kD0 is small), but should not be limited by δ. Therefore, we can compare our approximation to the result of Abramian142

et al. (6) when both δ/D0 and kD0 are small. In this case, our approximation yields:143

τz = gSρfD0 + gSρfδ
(
1− (kD0)2) sin(ky) [S36]

Again, this is the correct first order expansion of Eq. S35 for small kD0. In the classical shallow-water theory, the stress,144

τz = gSρfD, is always in phase with the depth perturbation. Conversely, in the linearization of Abramian et al. (6), Eq. S35,145

the phase of the stress can reverse when the wavelength of the perturbation is small enough, so that the stress maximum146

is where the flow is shallowest. This feature of the full linearized equation is reproduced in our approximation. This shows147

that our approximation can capture qualitative effects of the cross-stream diffusion of momentum. We compare our first148

order approximation, linearization of Abramian et al. (6) (Eq. S35), and the shallow-water approximation for a sinusoidal149

perturbation in Fig. S3f.150

It is clear that our approximation cannot always work. For example, in a rectangular channel, our approximation predicts151

uniform stress and velocity above the entire flat bottom, to all orders of the approximation. This is clearly not the case in152

reality, since the fluid must slow down near the vertical walls. The effect of the walls is, again, an example of a non-locality —153

the velocity of the fluid is not only determined by the local depth and its derivatives, but is also affected by the far away walls.154

Therefore, in all cases we considered above, the failure of our approximation was related to the non-locality of the velocity field.155
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Fig. S3. Comparison of stress between our first order approximation (blue lines), shallow-water approximation (black dashed lines), and a analytical reference solution (red
lines) in examples for which an analytical solution is available. The upper row shows the channel shape, along with the velocity field of the analytical solution (lighter blue stands
for faster moving fluid). The lower row shows the normalized stress profile, τ(y/L)/ρfgSL, where L is a reference length scale that is different for each example. The spatial
coordinates, y and z, in upper and lower panels are also normalized by L. (a) and (d) Flow over an inclined surface of an opening angle φ = 25◦ (Eqs. S24 to S28). The
reference length scale in this case can be arbitrarily chosen. (b) and (e) Flow in an elliptic channel with a ratio of the semi-major to semi-minor axis R = 1.8 (Eqs. S29 to S33).
The reference length scale is the channel width, L = W . (c) and (f) Flow over a surface with a small-amplitude, large-wavelength perturbation, δ/D0 = 0.2 and kD0 = 0.9
(Eqs. S34 to S36). The reference length scale is the unperturbed channel depth, L = D0.
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S3. River profile as a function of water and sediment discharges156

As we mentioned in the main text, our model is completely determined by setting five parameters — µt, λ, Ls, S, and ξ. Of157

those, µt, λ, and Ls are directly measurable in the experiments, while S and ξ depend implicitly on discharges Qw and Qs. In158

this section we describe how we numerically find this relation to get the river profiles as a function of the discharges of water159

and sediment.160

S.3.1. Solving the boundary value problem. To get the river as a function of the discharges, we first need to be able to solve161

our model, Eq. 13 of the main text, for given values of the parameters µt, λ, Ls, S, and ξ. This presents a slight challenge. We162

described this model as a second order boundary value problem with boundary conditions D = 0 when y = 0, and D′ = 0163

when y = −W/2. There are two problems here — first, the second derivative, D′′, given by Eq. 13 of the main text, diverges164

when D → 0, and, second, the width of the river, W , is unknown a priori, so the second boundary condition is ill-defined. To165

deal with the first issue, we expand the solution near D = 0, so that we only consider depths larger than some small value,166

ε. Thus, we change the first boundary condition to D = ε when y = 0 (we can arbitrarily shift the solution along y due to167

translational invariance). To deal with the second issue, we replace the second boundary condition with a new condition for D′168

that, like the first boundary condition, starts at y = 0. In this way, instead of dealing with a boundary value problem, we can169

solve a simpler initial value problem. To do this, we need to approximate the slope near the river bank, D′, when the depth,170

D = ε, is small. We use the fact that D′′, which is a known function of D and D′, diverges when D → 0. In particular, on the171

left river bank (when D = ε and D′ > 0), D′′ → ∞ as ε → 0 for all solutions with D′ smaller than that of the river, while172

D′′ → −∞ for all solutions with D′ greater than that of the river. Therefore, for small D, the river approximately lies on173

the curve D′′(D,D′) = 0. We can thus invert the relation D′′(ε,D′) = 0 to find D′ when y = 0, therefore defining the second174

initial condition. In summary, we solve the initial value problem, D = ε and D′′(ε,D′) = 0 when y = 0, by forward stepping175

and we stop when we reach the river center, D′ = 0. Once we find the left bank, the right bank follows by symmetry.176

S.3.2. Interpolating the model. Once we can find a river for given model parameters, we fix µt, λ, and Ls to their experimental177

values and then solve our model (Eq. 13 of the main text) for multiple values of S and ξ to create a grid of solutions for a178

range of model parameters (Fig. S4a). For each numerical solution in this grid, we can find Qw and Qs using Eq. 15 of the179

main text. Interpolating over this grid, we then find S and ξ (or any other property of the river rivers such as the width or180

depth) as functions of Qw and Qs.181

One problem is how to choose the range of S and ξ for the solution grid. Namely, increases in the sediment discharge are182

controlled by minute differences of ξ̃ (on the order of 10−9) from ξ̃c, where ξ̃ ≡ ξS/Ls (see section 5 of the main text). To183

probe a significant range of sediment discharge, we need to explore ξ̃ in a very narrow range around ξ̃c. We do not know the184

value of ξ̃c a priori, and we have to find it numerically. Moreover, the value of ξ̃c changes with S, so for each S, we need to185

independently estimate ξ̃c to high precision. Since there are no river-like solutions below ξ̃c, we can easily identify whether a186

solution with given parameters S and ξ has ξ̃ > ξ̃c or ξ̃ < ξ̃c. Therefore, we can find ξ̃c by a shooting method. Moreover, in187

the process of approaching ξ̃c by interval halving, we solve our model for multiple values of ξ, so we can immediately use the188

solutions with ξ̃ < ξ̃c in our interpolation grid. This also has the useful property that exponentially approaching ξ̃c leads to189

approximately linearly increasing Qs. Therefore, by finding ξ̃c, we probe the space of sediment discharge more or less uniformly.190

Once we find ξ̃c for a given S, we add the solutions to the interpolation grid, we choose randomly a different S, and we repeat191

the procedure.192

To probe the relevant range of S that corresponds roughly to the fluid discharge in the experiments, Qw, we look at inert193

rivers (Qs = 0). Using Eq. 15 of the main text, we can write the fluid discharge as194

Qw = gL4
s

νS3

∫ W̃/2

−W̃/2

D̃3

3 dỹ , [S37]

where tildes stand for quantities made non-dimensional with the length scale, Ls/S, as defined in Eq. 16 of the main text. The195

term Q̃w =
∫
D̃3/3dỹ is the non-dimensional fluid discharge that depends on the shape of the river, but not its size. As we196

have discussed in section 5 of the main text, the shape of non-dimensional inert rivers only depends on µt. So, for an inert197

river, Q̃w,0(µt) is independent of the fluid discharge. Therefore, we find that198

S0 =
(
gL4

sQ̃w,0(µt)
νQw

)1/3

when Qs = 0 . [S38]

Based on this expression, we estimate the order of magnitude of the experimental slope. Then, taking values between, for199

example, S0/5 and 5S0, ensures that we cover the range S that is relevant for our experiment, even when the sediment discharge200

is finite.201

S.3.3. Dependence on water and sediment discharges. In Fig. S5, we show how several river properties depend on the202

discharges of fluid and sediment in our model. Namely, the aspect ratio increases with the sediment discharge, and only depends203

on the fluid discharge for large values of the sediment discharge.The shape of an inert river (Qs = 0) is independent of the fluid204

discharge. The maximum sediment flux, qs,max, increases with the sediment discharge and is largely independent of the fluid205

discharge. In fact, for large fluid discharge, Qw, the maximum sediment flux saturates at qµ(D̃max,0 − µt), as predicted by206
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the Parker regime. Figure S5f shows that the downstream slope, S, scales approximately as Q−1/3
w (for an inert river, this207

scaling is exact, Eq. S38). Therefore, the scale of the river, given by Ls/S roughly increases with fluid discharge as Q1/3
w . The208

sediment discharge affects the slope, S, and the size of the river only slightly (Fig. S5c).209
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Fig. S4. An interpolation grid of solutions used to find model dependence on discharges of fluid and sediment. Each grey point is a solution to our model with different values of
S and ξ (and fixed µt, λ, Ls). For visual clarity, we only show every fifth point. (a) Interpolation grid in the space of model parameters, ξ and S. The horizontal axis shows the
logarithm of the difference between ξ̃ and the limiting value ξ̃c which is approximately proportional to the sediment discharge. Solid lines correspond to constant sediment
discharge (red lines; numbers denote the value in grains s−1) and fluid discharge (blue lines; numbers denote the value in l min−1) found after interpolation. The non-smooth
appearance of some of these lines for small and large values of S is due to the sparseness of the grid. (b) Interpolation grid in the space of fluid and sediment discharge, Qw
and Qs. Each point on this grid has a corresponding point in panel (a). Solid lines correspond to constant aspect ratio (red lines) and width (blue lines; numbers denote the
value in cm).
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Fig. S5. (a-c) River properties in our model as a function of sediment discharge, Qs, for various values of fluid discharge, Qw . (a) Aspect ratio, Dmax/W . (b) Maximum
sediment flux, qs,max/qµ. (c) Downstream slope, S. (d-f) River properties in our model as a function of fluid discharge, Qw , for various values of sediment discharge, Qs.
(d) Aspect ratio, Dmax/W . (e) Maximum sediment flux, qs,max/qµ. (f) Downstream slope, S. The black dashed line corresponds to a curve S = (Q∗w/Qw)1/3, where
Q∗w ≡ gL

4
sQ̃w,0/ν ≈ 2.6× 10−7 l min−1 is the characteristic fluid discharge.
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S4. Non-dimensional river model210

In section Inert, active, and limiting river of the main text, we discussed our model in non-dimensional form (Eq. 17 of the211

main text). In this section, we discuss the mathematical properties of Eq. 17, such as its fixed points and its phase portrait.212

These properties clarify why an infinite, limiting river exists in our model. In addition, we support claims made in sections213

Inert, active, and limiting river and The Parker regime of the main text about inert and infinite rivers.214

S.4.1. Fixed points. Since Eq. 17 of the main text is of second order, the second derivative of the depth, D̃′′, is a function of D̃215

and D̃′. Thus, we can view it as a dynamical system that can be integrated by forward-stepping, starting from a given value of216

D̃ and D̃′.217

Fixed points of this equation are defined as points in the D̃-D̃′ space (the phase space), that give constant solutions under218

integration. This is satisfied when D̃′ = 0 and D̃′′ = 0. Inserting these conditions into Eq. 17 of the main text yields219

D̃ = µt + e(D̃−ξ̃)/λ̃ . [S39]

Solving this transcendental equation for D̃ yields the depths of the fixed points. For given values of the parameters µt, λ̃, and220

ξ̃, Eq. S39 has zero, one, or two solutions. We find that when ξ̃ = ξ̃bif, Eq. S39 has only one solution at depth D̃bif (the221

subscript “bif” stands for “bifurcation”), where222

ξ̃bif = µt + λ̃(1− ln λ̃) , [S40]
D̃bif = µt + λ̃ . [S41]

For ξ̃ < ξ̃bif, there is no fixed point, while for ξ̃ > ξ̃bif there are two (at depths D̃1 and D̃2; brown circle and star in Figs. S6223

and S7). These fixed points represent flat solutions that extend to infinity in the ỹ-direction (Fig. S6c).224

S.4.2. Phase portrait. We now explore how the shape of the river depends on the model parameters µt, λ̃, and ξ̃ by looking at225

the phase portrait, i.e. the trajectories described by Eq. 17 in the D̃-D̃′ space (7). In addition, we use the phase portrait to226

unambiguously show that there exists an infinite, limiting river.227

In Fig. S6a, we show an example of a phase portrait for given parameters µt, λ̃, and ξ̃. Each trajectory in the phase portrait228

corresponds to a bed profile that satisfies Eq. 17 under different boundary conditions (black lines in Fig. S6a). Depending229

on the boundary conditions, Eq. 17 has multiple, qualitatively different solutions (Fig. S6d-g). However, for a given set of230

parameters, µt, λ̃, and ξ̃, there exists only one channel-like solution of Eq. 17 with two banks where the depth vanishes (blue231

line in Fig. S6a and b). Such a solution is the only one that can represent a river transporting finite amounts of water and232

sediment.233

In Fig. S7, we show how the phase portrait changes as we change ξ̃, but keep µt and λ̃ fixed. For ξ̃ →∞ (Fig. S7a), the234

river is inert and reaches a maximum depth D̃max,0 > µt, while there exists only one fixed point at D̃1 → µt. Decreasing ξ̃ to235

finite values (Fig. S7b), the second fixed point appears, and the river depth lies between the two points, D̃1 < D̃max < D̃2. For236

a particular value ξ̃ = ξ̃c (Fig. S7c), the river solution passes through the second fixed point, D̃max,c = D̃2. Therefore, the river237

becomes infinite in the ỹ − z̃ space. The value of ξc depends on µt and λ̃, but it exists for any value of these parameters.238

Reducing ξ̃ below this critical value, ξ̃c, changes the phase portrait such that no river solution can exist anymore (Fig. S7d)239

— the river solution does not exist since the two banks (solutions starting at D̃ = 0) do not join at the center. Reducing ξ̃ even240

further, below ξ̃bif (Fig. S7e), the two fixed points merge and disappear so that there are neither river nor fixed point solutions.241

We show the positions of the fixed points, D̃1 and D̃2, and the river depth, D̃max, as a function of ξ̃ in the bifurcation242

diagram, Fig. S7f. There, we can see that, as ξ̃ decreases from ξ̃ →∞ to finite values, the river depth increases until it meets243

with D̃2 at ξ̃ = ξ̃c.244

The existence of ξ̃c implies a limiting flux qs,c of the river (section Inert, active, and limiting river of the main text). By the245

same reasoning, one would be tempted to conclude that the existence of ξ̃bif indicates a maximum sediment flux for a flat246

bed (that could be realized, for example, in a flume experiment). This is, however, not true — when ξ̃ →∞, the fixed points247

at D̃1 = µt and D̃2 →∞ have sediment fluxes qs,1 = 0 and qs,2 →∞. Decreasing ξ̃ to finite values, qs,1 increases while qs,2248

decreases until they meet, thereby covering the entire range of possible sediment flux values from 0 to ∞. A flat bed in a flume249

can, therefore, carry any sediment flux, at least in principle. In practice, however, some of these solutions may become unstable250

to perturbations (6).251

S.4.3. Inert river. In the Parker and weak transport regimes, the shape of the river is determined by that of an inert river. We252

cannot find the properties of an inert river in our model analytically; instead, to find its profile, D̃0(ỹ), we have to solve Eq. 17253

of the main text with ξ̃ →∞:254 √(
D̃0 + 1

3 (D̃3
0)′′
)2 + D̃′20 − µt = 0 . [S42]

The only parameter in this equation is µt, so the inert river shape only depends on this friction coefficient. In Fig. S8, we255

show how its properties — depth, D̃max,0, width, W̃0, non-dimensional fluid discharge, Q̃w,0, and aspect ratio, W̃0/D̃max,0 —256

depend on µt (blue lines in Fig. S8).257
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We can understand how these properties generally depend on µt by comparing them to the inert, shallow-water river whose258

shape can be found analytically (black dashed lines in Fig. S8). After neglecting the momentum diffusion, Eq. S42 becomes259 √
D̃2

sw,0 + D̃′2sw,0 − µt = 0 , [S43]

where D̃sw,0 is the depth of an inert shallow-water river. This equation has a simple solution (5)260

D̃sw,0 = µt cos ỹ . [S44]

From here, we find that the shallow-water inert river has D̃max,sw,0 = µt, W̃sw,0 = π, Q̃w,sw,0 = 4µ3
t/9, and an aspect ratio of261

W̃sw,0/D̃max,sw,0 = π/µt. These values represent bounds for our model — Fig. S8 shows that the inert river in our model has a262

depth greater than µt, a width greater than π, a non-dimensional fluid discharge greater than 4µ3
t/9, and an aspect ratio greater263

than π/µt. For small µt, our model approaches the shallow-water inert river, while, as we increase µt, the non-dimensional264

inert river in our model becomes less and less like the shallow-water one.265

S.4.4. Limiting river depth, D̃max,c. In the main text, we noted that the value of the non-dimensional depth of an infinite, flat266

river, D̃max,c, depends on parameters µt and λ̃ (section Inert, active, and limiting river of the main text), and we explained267

that for vanishing λ̃, D̃max,c equals the inert river depth, D̃max,0(µt) (section The Parker regime of the main text). In Fig.268

S9, we show how D̃max,c(λ̃, µt) depends on λ̃ with µt fixed. There, we numerically show that, for small λ̃, the depth D̃max,c269

behaves as270

D̃max,c(λ̃, µt) ≈ D̃max,0(µt) + λ̃ for λ̃� 1 . [S45]

For experimental parameters (µt = 0.9 and λ̃ = 0.02), we find that the relative error between D̃max,c and Eq. S45 is about271

0.06%. Although we do not understand exactly why this relationship holds, we found it to be true for all the values of µt we272

tested.273
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Fig. S6. (a) A phase portrait of Eq. 17 of the main text for µt = 0.9, λ̃ = 0.1, and ξ̃ = 1.37. The horizontal axis is the non-dimensional depth, D̃, and the vertical axis is its
ỹ-derivative, D̃′. Black dashed curves mark the boundaries of the region of D̃-D̃′ space on which Eq. 17 is well-defined. Black trajectories represent solutions to Eq. 17 for
different initial conditions. The blue line represents the river solution shown in panel (b), while the blue dot and blue squares represent the river center and banks. The river
solution is unique and acts as a separatrix between two regions of qualitatively different solutions in the phase space (streamwise streaks and underwater channels). Brown
circle and brown star represent the two fixed points at depths D̃1 and D̃2. Brown lines are solutions ending in the second fixed point and separate regions of the phase space
with qualitatively different solutions. A constant depth solution corresponding to the first fixed point, D̃1, is shown in panel (c). Different colored shadings are regions of the
phase space with qualitatively different solutions. An example of a solution from each of these regions is marked with a colored dotted line and shown in panels (d)-(g).
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Fig. S7. (a)-(e) Phase portraits of Eq. 17 of the main text for µt = 0.9, λ̃ = 0.1, and varying ξ̃. Notation is the same as in Fig. S6. (a) Inert river (ξ̃ →∞). There exists only
one fixed point at D̃1 = µt. (b) Active river (ξ̃ = 1.37 > ξ̃c). River solution passes between the two fixed points. (c) Infinite, limiting river (ξ̃ = 1.3237 ≈ ξ̃c). The river
solution reaches a maximum depth at the second fixed point, D̃max,c = D̃2. (d) No river solution, but fixed points still exist (ξ̃ = 1.3 < ξ̃c). The blue line shows the solutions
starting at D̃ = 0. These solutions do not represent a river since they do not join at the center. (e) No river or fixed point solutions (ξ̃ = 1.2 < ξbif ≈ 1.23). The two fixed
points merge and disappear. (f) The bifurcation diagram for µt = 0.9 and λ̃ = 0.1. The brown lines represent the depths of the fixed points as a function of ξ̃ — lower branch
corresponds to the first fixed point, D̃1 (brown circle in panels a-e), while the upper branch corresponds to the second fixed point, D̃2 (brown star in panels a-e). When ξ̃ →∞,
the first fixed point approaches the friction coefficient (D̃1 → µt), while the second tends to infinity (D̃2 →∞). The two fixed points meet at (ξ̃, D̃) = (ξ̃bif, D̃bif) (brown dot;
ξ̃bif ≈ 1.23, D̃bif = 1). The blue line corresponds to the river depth, D̃max (blue dot in panels a-e). When ξ̃ →∞, the river approaches the inert river depth, D̃max,0 (blue
triangle). The river meets the second fixed point at (ξ̃, D̃) = (ξ̃c, D̃max,c) (blue star; ξ̃c ≈ 1.3237, D̃max,c ≈ 1.21). At this point the river is flat and infinitely wide.
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Fig. S8. Properties of non-dimensional inert rivers as a function of the friction coefficient, µt. The blue lines correspond to our model (Eq. S42), while the black dashed lines
correspond to the shallow-water inert river (Eq. S44). (a) Difference between non-dimensional depth and the friction coefficient, D̃max,0 − µt. Black dashed line corresponds
to D̃max,0 − µt = 0. (b) Non-dimensional width, W̃0. Black dashed line corresponds to W̃0 = π. (c) Non-dimensional fluid discharge, Q̃w,0 ≡

∫
D̃3/3dỹ. Black dashed

line corresponds to Q̃w,0 = 4µ3
t/9. (d) Aspect ratio, W̃0/D̃max,0. Black dashed line corresponds to W̃0/D̃max,0 = π/µt.
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S5. Parker regime274

The Parker regime corresponds to a river with no sediment diffusion that splits its channel into inert banks and a flat, active275

bottom (section The Parker regime of the main text). Such a river has a rectangular sediment flux profile of width W (P )
T and276

height q(P )
s .277

In Fig. S10, we show that the Parker regime is, in fact, the limit of our model when λ→ 0. The sediment flux profile of Eq.278

13 of the main text approaches the rectangular shape of the Parker regime as λ decreases. This is to be expected — when the279

sediment diffusion length scale, λ, vanishes, the sediment flux, qs = qµ exp[(D − ξ)/λ], also vanishes for D < ξ, and becomes280

infinite for D > ξ. Therefore, to have a meaningful solution when λ→ 0, the river bottom must be flat with a depth, Dmax = ξ.281

Physically, vanishing sediment diffusion means that gravity pulls each moving grain of sediment towards the river bottom from282

which it cannot escape by random collisions with the bed. When λ is finite, the region over which inert banks transition to the283

flat bottom always has a finite size of the order λ. When the water and sediment discharges are large, both the bank width,284

W0, and the transport width, WT , are large too, so we can neglect the transition region: this is the gist of the Parker regime.285

The depth, sediment flux, transport width, and total width of a river in the Parker regime are (as we explained in section286

The Parker regime of the main text):287

D(P )
max = Ls

S(P ) D̃max,0 , q(P )
s = qµ(D̃max,0 − µt) , W

(P )
T = Qs

q
(P )
s

, W (P ) = Ls
S(P ) W̃0 + Qs

q
(P )
s

. [S46]

To get the above quantities, we need to find the downstream slope, S(P ). This follows from the fluid discharge constraint.288

According to Eq. 15 of the main text, the fluid discharge is289

Qw = gS(P )

ν

∫ W/2

−W/2

D3

3 dy = Qw,0 + gS(P )

ν

D
(P )3
max

3 W
(P )
T , [S47]

where Qw,0 ≡
∫W0/2
−W0/2

D3
0

3 dy is the contribution from the inert banks. A dimensional fluid discharge, Qw, can be related to the290

non-dimensional one, Q̃w =
∫
D̃3

3 dỹ, through291

Qw = gL4
s

νS3 Q̃w , [S48]

so that Eq. S47 becomes292

Qw = gL4
s

νS(P )3 Q̃w,0 + gS(P )

ν

D
(P )3
max

3 W
(P )
T , [S49]

where Q̃w,0 ≡
∫ W̃0/2
−W̃0/2

D̃3
0

3 dỹ depends only on µt. Combining Eq. S49 with Eqs. S46, we retrieve Eq. 24 of the main text293

Qw = gL4
s

νS(P )3

(
Q̃w,0 +

QsS
(P )D̃3

max,0

3qµLs(D̃max,0 − µt)

)
. [S50]

Depending on the physical parameters that enter it, Eq. S50 can have multiple solutions for S(P ), but there is always only one294

positive, real solution.295
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Fig. S10. Sediment flux profile of a river in our model with Qs = 30 grains s−1 and Qw = 1 l min−1 and the varying sediment diffusion length scale, λ. The blue lines are
the numerical sediment flux profiles for different values of λ, while the black dashed line is the Parker regime (Eqs. S46) in the limit λ→ 0.
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S6. Estimating sediment discharge based on river geometry296

Our model predicts a link between the river geometry and its sediment load. Here, we will use our experimental dataset to297

show how to estimate the sediment discharge of a river from the shape of its cross-section.298

Equation 22 of the main text relates the sediment discharge to river depth and width, assuming we know the universal299

quantities, such as the limiting sediment flux and the inert river aspect ratio (q(P )
s and W̃0/D̃max,0 in Eq. 22). Although these300

universal quantities follow from the theory, various approximations we made may make them inaccurate. Moreover, for a301

natural river, for which the theory is not yet available, these quantities are unknown a priori. On an ensemble of rivers with302

different water and sediment discharges, q(P )
s is the maximum allowed sediment flux while W̃0/D̃max,0 is the minimum allowed303

aspect ratio. Therefore, instead of using our theoretical predictions, here we estimate q(P )
s and W̃0/D̃max,0 as the maximum304

sediment flux and minimum aspect ratio from our experimental dataset. Thus, we estimate q(P )
s |exp. ≈ 27.4 grains cm−1s−1

305

and W̃0/D̃max,0|exp. ≈ 4.3. Using these values, we show in Fig. S11 that the sediment discharge estimated using Eq. 22 of the306

main text falls within the uncertainty range of the measurements.307
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Fig. S11. Comparing the measured sediment discharge (x-axis) to that estimated using Eq. 22 of the main text (y-axis). Black dashed line is a one-to-one line.
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S7. Effects of momentum diffusion308

In section The Parker regime of the main text, we claimed that momentum diffusion is essential for the existence of a steady-state309

channel with a non-vanishing sediment discharge, as first suggested by Parker (8). In this section, we will first illustrate this310

statement by comparing our model to the shallow-water river without momentum diffusion. Then, we will investigate the effect311

of momentum diffusion in detail by considering the forces acting on the river bed.312

S.7.1. Comparison with shallow-water rivers. The shallow-water model, which neglects the cross-stream diffusion of momentum313

entirely, is defined by a first order ordinary differential equation:314 √
D̃2

sw + D̃′2sw − µt = e(D̃sw−ξ̃)/λ̃ . [S51]

When ξ̃ →∞, the right-hand side vanishes and the model reduces to Eq. S43 for an inert shallow-water river, which has been315

successfully used to predict the shape of experimental inert rivers (5). We compare the inert shallow-water river with the316

experiment and our model in Figs. S12a, c, and e. There, we can see that, while there exists some difference between the317

models and the experiment, they are largely comparable to each other.318

However, when sediment transport is included (ξ̃ <∞), this model is insufficient to reproduce the experiments. We compare319

an active experimental river with our model and the shallow-water model in Figs. S12b, d, and f. We can see that, while our320

model and the experiment seem comparable to each other, the shallow-water model is nothing alike. This result may seem321

somewhat paradoxical — although we expect that the shallow-water approximation should work better for a wider river, we322

find that the wider the river, the worse the shallow-water approximation is. We resolve this apparent paradox in the next323

section.324

S.7.2. Momentum diffusion in the Parker regime. In this section, we look closely at the components of the force ratio, µ, to325

understand the role of momentum diffusion. We explain that momentum diffusion controls the sediment transport through a326

matching condition at the interface of the river banks and the flat bottom — a condition that does not depend on the width of327

the river.328

Figure S13a shows a river in the Parker regime (in non-dimensional coordinates, for convenience) — it is sharply split into329

curved, inert banks, and a flat, active bottom. Figure S13b shows how the various components of the force ratio, µ, depend on330

the position within this river. These components are331

µsw ≡ D̃ , [S52]

µmd ≡
1
3(D̃3)′′ , [S53]

µg ≡ D̃′ , [S54]
µ2 = (µsw + µmd)2 + µ2

g , [S55]

where µsw is the shallow-water contribution, µmd is the momentum diffusion contribution, and µg is the gravity contribution to332

the total force ratio. The banks are kept at threshold by the combined action of the shallow-water stress, momentum diffusion,333

and gravity, while the bottom only feels the shallow-water stress. At the point where banks and flat bottom connect the banks334

have a depth D̃ = D̃max, a slope D̃′ = 0, and a second derivative D̃′′ = −κ̃ < 0, where κ̃ is the curvature of the banks at335

their deepest point. The components of the force ratio are, correspondingly, µsw = D̃max, µg = 0, µmd = −D̃2
maxκ̃ < 0. The336

threshold condition for the banks is, thus, µsw + µmd = µt, which means that the depth must be greater than the friction337

coefficient, D̃max = µsw = µt − µmd > µt. The bottom feels only the shallow-water stress, and, therefore, must be above the338

threshold, µ|bottom = µsw = D̃max > µt.339

Therefore, the absence of sediment transport on the banks translates into excess stress on the flat bottom. The sediment340

flux on the bottom, qs/qµ = µ|bottom − µt = −µmd, corresponds to the jump in the momentum diffusion contribution due to341

the sudden disappearance of curvature. Thus, the sediment flux is driven by the boundary condition at the junction of the342

curved banks with the flat bottom.343

Written in terms of depth and its derivatives, the sediment flux is qs/qµ = D̃2
maxκ̃. The curvature, κ̃ ≡ −D̃′′, scales roughly344

as κ̃ ∼ D̃max,0/W̃
2
0 , so the sediment flux scales as qs/qµ ∼ D̃3

max,0/W̃
2
0 . Taking the depth, D̃max,0, to be of order one, the345

sediment flux is inversely proportional to the square of the aspect ratio of an inert river, W 2
0 /D

2
max,0. Parker (8) likewise found346

that the distance to threshold is inversely proportional to the aspect ratio squared — a signature of the cross-stream diffusion347

of momentum.348

Without cross-stream momentum diffusion, there can be no sediment transport in the limit λ→ 0 in our model. When λ is349

small but non-vanishing, the maximal sediment flux is qs,c/qµ ≈ D̃max,0(µt)− µt + λ̃, where we used Eq. S45 for the depth of350

the infinite, limiting river, D̃max,c. The first term in this equation, D̃max,0(µt)− µt, is the contribution to sediment transport351

from the momentum diffusion, while the second term, λ̃, is the contribution from the sediment diffusion. For experimental352

parameters (µt = 0.9 and λ̃ = 0.02), we thus find that momentum diffusion is responsible for about 90% of the sediment353

transport.354
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Fig. S12. River profiles in the experiment (panels (a) and (b)), our model (panels (c) and (d)), and shallow-water approximation (panels (e) and (f)). Profiles in the left column
(panels (a), (c), and (e)) are inert rivers, while profiles in the right column (panels (b), (d), and (f)) are active rivers with Qs = 24 grains s−1. Red lines in panels (b), (d), and
(f) represent the sediment flux profile where the zero, qs = 0, is vertically shifted in the plots to coincide with the river bottom. While inert rivers in both our model and the
shallow-water model are comparable with experiments, momentum diffusion is necessary to capture the shape of active rivers.
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Fig. S13. Explanation of the mechanism of sediment transport by momentum diffusion. (a) Half a river in our model for λ→ 0 and µt = 0.9. The river sharply splits into
curved, inert banks and a flat, active bottom. (b) Components of the force acting on the bed as a function of the position along the bed. The blue line represents the total

force ratio, µ =
√

(µsw + µmd)2 + µ2
g . The dashed brown line represents the shallow-water contribution to the stress, µsw = D̃. The solid brown line represents the

momentum diffusion contribution to the stress, µmd = (D̃3)′′/3. The dotted brown line represents the gravity contribution, µg = D̃′. On the banks, all three contributions are
non-vanishing and keep the banks at the threshold, µ = µt. On the bottom, only the shallow-water contribution exists and the force ratio is above threshold, µ > µt. The
shallow-water and gravity contributions transition continuously from the banks to the bed, but the momentum diffusion contribution experiences a jump which corresponds to a
jump in the force ratio, µ. This jump drives sediment transport.
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