Sediment load determines the shape of rivers

Predrag Popovi ća , Olivier Devauchelle a , Anaïs Abramian b , and Eric Lajeunesse a a Université de Paris, Institut de Physique du Globe de Paris, 1 rue Jussieu, CNRS, F-75005 Paris, France; b Sorbonne Université, CNRS -UMR 7190, Institut Jean Le Rond d'Alembert, F-75005 Paris, France This manuscript was compiled on [START_REF] Popović | [END_REF] Understanding how rivers adjust to the sediment load they carry is critical to predicting the evolution of landscapes. Presently, however, no physically based model reliably captures the dependence of basic river properties, such as its shape or slope, on the discharge of sediment, even in the simple case of laboratory rivers. Here, we show how the balance between fluid stress and gravity acting on the sediment grains, along with cross-stream diffusion of sediment, determines the shape and sediment flux profile of laminar laboratory rivers which carry sediment as bedload. Using this model, which reliably reproduces the experiments without any tuning, we confirm the hypothesis, originally proposed by Parker [START_REF] Parker | Self-formed straight rivers with equilibrium banks and mobile bed. part 2. the gravel river[END_REF], that rivers are restricted to exist close to the threshold of sediment motion (within about 20%). This limit is set by the fluid-sediment interaction and is independent of the water and sediment load carried by the river. Thus, as the total sediment discharge increases, the intensity of sediment flux (sediment discharge per unit width) in a river saturates, and the river can only transport more sediment by widening. In this large discharge regime, the cross-stream diffusion of momentum in the flow permits sediment transport. Conversely, in the weak transport regime, the transported sediment concentrates around the river center without significantly altering the river shape. If this theory holds for natural rivers, the aspect ratio of a river could become a proxy for sediment discharge -a quantity notoriously difficult to measure in the field. F lowing from mountains to oceans, rivers traverse immense distances across the land, eroding, transporting, and depositing sediment along the way, thereby shaping much of the landscape we see on Earth [START_REF] Schumm | Geomorphic thresholds: the concept and its applications[END_REF][START_REF] Seminara | Fluvial sedimentary patterns[END_REF][START_REF] Métivier | Alluvial landscape evolution: What do we know about metamorphosis of gravel-bed meandering and braided streams?[END_REF][START_REF] Phillips | Self-organization of river channels as a critical filter on climate signals[END_REF]. However, a precise understanding of how rivers adjust their shape to the amounts of sediment and water they transport is lacking. This is partly due to the difficulty of collecting sediment flux measurements in the field, and partly due to the complicated coupling between the flow and the sediment bed.

In rivers that carry a small amount of sediment, sediment grains are typically close to their threshold of motion -below this threshold, any sediment carried by a river would be deposited, building the river bed until it eventually reaches the threshold, while, above the threshold, uncompensated erosion of the bed would quickly bring the river back to the threshold [START_REF] Parker | On the cause and characteristic scales of meandering and braiding in rivers[END_REF]. For this reason, early theories were formulated for inert rivers (rivers that do not transport sediment) and assumed that such rivers construct their own bed so that the grains on the bed surface are exactly at the threshold of motion [START_REF] Glover | Stable channel profiles[END_REF][START_REF] Henderson | Stability of alluvial channels[END_REF][START_REF] Parker | Physical basis for quasi-universal relations describing bankfull hydraulic geometry of single-thread gravel bed rivers[END_REF][START_REF] Savenije | The width of a bankfull channel; lacey's formula explained[END_REF].

Under this assumption, they showed that the shape of the river channel is independent of its water discharge, which can only affect the size of the river. This threshold theory accounts for the observation that the width of rivers increases as the square root of their discharge, an empirical correlation known as Lacey's law [START_REF] Savenije | The width of a bankfull channel; lacey's formula explained[END_REF][START_REF] Métivier | Laboratory rivers: Lacey's law, threshold theory, and channel stability[END_REF].

In active rivers (those that transport sediment), sediment transport is driven only by a small departure of the shear 27 stress from its threshold value [START_REF] Phillips | Self-organization of river channels as a critical filter on climate signals[END_REF][START_REF] Parker | Physical basis for quasi-universal relations describing bankfull hydraulic geometry of single-thread gravel bed rivers[END_REF]. The minuteness of this 28 departure makes the study of active rivers challenging. It 29 means that, to find the sediment flux, one needs to measure 30 or calculate the stress with high precision -simple order-of-31 magnitude estimates are not sufficient [START_REF] Phillips | Bankfull transport capacity and the threshold of motion in coarse-grained rivers[END_REF]. This is a daunting 32 task, since the stress sensitively depends on the river shape, 33 which, in turn, adjusts to the stress distribution. 

47

Since field measurements are difficult, a good place to test 48 our understanding of rivers is the laboratory [START_REF] Malverti | Small is beautiful: Upscaling from microscale laminar to natural turbulent rivers[END_REF]. However, 49 even laboratory investigations have been a challenge in them-50 selves (14-16) -stable single-thread rivers were only recently 51 produced in a laboratory setting [START_REF] Seizilles | Width of laminar laboratory rivers[END_REF](18)[START_REF] Abramian | Laboratory rivers adjust their shape to sediment transport[END_REF]. Nevertheless, these 52 experiments have been enlightening -by focusing on straight, 53 laminar, stationary rivers, they presented strong support for 54 the threshold hypothesis of inert rivers. So far, however, they 55 have not been compared to Parker's theory for active rivers.

56

Another key insight that arose from experiments is that the 57 grains that are carried as bedload (i.e. that are dragged along 58

Significance Statement

Rivers carry and deposit sediment, thereby shaping most landscapes around us. In doing so, their malleable channels change shape to accommodate the sediment load. Here, we show how fluid stress, gravity, and the erratic trajectories of traveling grains combine together to determine the shape of a river. We find that the stress on the bed of a river cannot be significantly above the critical value for sediment motion, which bounds the intensity of sediment transport and, thus, forces the river to widen as its sediment load increases. Although our results relate directly only to experimental, laminar rivers, they likely also apply qualitatively to natural ones, potentially allowing us to use the shape of a river as a proxy for its sediment discharge.

the river bed) [START_REF] Bagnold | The nature of saltation and of ?bed-load?transport in water[END_REF] diffuse laterally by randomly hitting other grains on the bed surface along their way [START_REF] Seizilles | Cross-stream diffusion in bedload transport[END_REF][START_REF] Abramian | Boltzmann distribution of sediment transport[END_REF]. In analogy with a gas placed in a gravitational field, the balance between gravity and diffusion distributes the transported grains over the bed so that the concentration of moving grains exponentially falls off with increasing elevation above the channel centerline [START_REF] Abramian | Boltzmann distribution of sediment transport[END_REF]. This Boltzmann distribution of the moving grains relates the sediment flux to the shape of the river. The role of sediment diffusion was recognized early in rivers that transport their sediment in suspension [START_REF] Parker | Self-formed straight rivers with equilibrium banks and mobile bed. part 1. the sand-silt river[END_REF], but these experiments have shown that this mechanism also applies to bedload transport.

In this paper, we use the experiments of Abramian et al. Therefore, the problem can be solved self-consistently, at least in principle. However, this problem is difficult since the fluid stress anywhere on the bed depends on the entire shape of the river.

We bypass this issue by simplifying the equation for the fluid stress, assuming that the aspect ratio of a river (ratio of width to depth) is large (section 3). We then formulate a model for the steady-state shape of a straight, laminar river with bedload transport by using this minimal representation for the stress, and including the Boltzmann distribution for the moving grain density. This model takes the form of a second-order boundary value problem (BVP) which can be analyzed numerically (section 4) and analytically (section 5).

We note that this is a well defined problem only for a river in equilibrium (steady-state), so that it does not answer how the river reaches this equilibrium.

In the limit of large water and sediment discharge, the river in our model splits into inert banks and a flat active bottom, exactly as prescribed in Parker's (1) model. We, thus, show how Parker's (1) model arises as a limit of our theory.

We call this limit the "Parker regime" (section 6), and we define a condition for reaching it. Like Parker (1), we find that laminar rivers cannot exist far from the threshold of sediment motion and, thus, cannot accommodate a sediment flux (discharge per unit width) larger than a maximum. We find that this maximum depends only on the friction coefficient of the sediment, µt. Since the sediment flux is bounded, a river in the Parker regime has to widen to accommodate a larger sediment discharge. Moreover, we find that momentum diffusion in the flow plays a key role in sediment transport.

We compare our results with laboratory experiments and find good agreement without any tuning. In this way, for the first time, we provide support for Parker's hypothesis in a controlled setting. However, we also discover another qualitatively different regime, which applies to rivers with large water but small sediment discharge. In this "weak transport regime" (section 7), sediment transport relies on the diffusion of sediment, and a higher load is accommodated by increasing the sediment flux without altering the shape of the river which carries it. In both theory and experiments, we find that the aspect 120 ratio of a river strongly depends on its sediment discharge. 121 This suggests that, in the field, the shape of the river could be 122 used as a proxy for its sediment load. To verify this, however, 123 our theory would have to be adapted for turbulent flows -a 124 task we leave for the future.

125

We also leave the mathematical details, tables for exper-126 imental runs, and other results that are not necessary to 127 understand the main points of the paper to the Supplementary 128 Information (SI). In this section, we briefly describe the experiments of Abramian 131 et al. [START_REF] Abramian | Laboratory rivers adjust their shape to sediment transport[END_REF], which inspired the present theory. A schematic 132 and a photograph of the experiment are shown in Fig. 1, and 133 experimental parameters are summarized in Table S1 of the 134 SI.

135

The setup consisted of an inclined tank, 190 cm × 90 cm × 136 10 cm in size, filled with plastic sediment made up of grains of 137 diameter ds = 0.83 ± 0.2 mm and density ρs = 1490 kg m -3 . 138 At the inlet, a mixture of water and glycerol was pumped 139 x z y φ ). The transport width, W T = Qs/ qs , with qs given by Eq. 1, as well as the maximum sediment flux, qs,max, are marked with arrows in panel (d). The downstream slope, S, could not be measured accurately, but it is approximately S ≈ 0.005 for the inert river and S ≈ 0.01 for the active one.
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into the tank, at a discharge Qw ≈ 1 l min -1 , which was kept as constant as possible during all experimental runs. The The fluid found its way to the outlet at the opposite end of the tank, meanwhile carving its own channel through the sediment.

Additionally, dry sediment was injected into the system at a prescribed rate, Qs. Abramian et al. [START_REF] Abramian | Laboratory rivers adjust their shape to sediment transport[END_REF] The river channel typically appears to be roughly straight with only minor sinuosity, and, once formed, it does not move significantly. Moreover, the steady-state river is insensitive to the initial setup of the experiment -it selects its own width, W , depth, Dmax, and downstream slope, S, regardless 174 of the initial conditions. Beyond a certain value of sediment 175 discharge (about Qs ≈ 90 grains s -1 ), the channel destabilizes 176 into intertwined threads that form a braided river. The range 177 of Qs explored in these experiments covered the entire range 178 of sediment discharge for which a stable single-thread river 179 can form.

180

To characterize the shape of these experimental rivers, 181 Abramian et al. [START_REF] Abramian | Laboratory rivers adjust their shape to sediment transport[END_REF] measured the sediment bed elevation 182 along a cross-section with a laser sheet. They constantly 183 monitored the river using an overhead camera, and tracked 184 the trajectories of moving colored grains, which allowed them 185 to measure the profile of sediment flux, qs, across the river (to 186 avoid possible confusion, we emphasize here that the sediment 187 discharge, Qs, is the integral of the sediment flux, qs, over 188 the cross-section of the river). We show two rivers and their 189 sediment flux profiles in Fig. 2; profiles for the other runs 190 are shown in Fig. S1 and their properties are summarized 191 in Table S2 of the SI. Most sediment concentrates near the 192 channel center over a well-defined bed section of width WT . We 193 define this transport width, WT , as the width that relates the 194 sediment discharge and the mean sediment flux, Qs = WT qs . 195 To make WT a robust quantity resistant to experimental noise, 196 we define qs to be the average sediment flux over a probability 197 density function qs/Qs, so that

198 qs ≡ 1 Qs W/2 -W/2
q 2 s (y)dy . 
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The mechanisms that shape a river

Keeping in mind the rivers of Abramian et al. [START_REF] Abramian | Laboratory rivers adjust their shape to sediment transport[END_REF], the goal of the present paper is to understand how an active laminar river adapts its own depth and sediment flux profiles, D(y) and qs(y), to the fluid and sediment discharges, Qw and Qs, it carries. In this section, we will start by reviewing the equations which govern the flow and the transport of sediment in such a river. Throughout the paper, x will represent the downstream, y the cross-stream, and z the vertical coordinate, measured with respect to the surface of the river (Fig. 2a).

We restrict our attention to a straight river that is uniform in the x-direction. Accordingly, we only need to consider its cross-section in the (y, z) plane.

Stokes flow.

In a straight river, the flow is forced by gravity that pushes the fluid down a slope, S. This slope is usually very small (for the experiments of Abramian et al. [START_REF] Abramian | Laboratory rivers adjust their shape to sediment transport[END_REF], S ∼ 0.01).

The laminar flow in such a river obeys the Stokes equation

ν∆u = -gS , [ 2 
]
where u is the downstream component of the velocity, g = 9.81 m s -2 is the gravitational acceleration, S is the slope in the downstream (x) direction, and ∆ ≡ ∂ 2 ∂y 2 + ∂ 2 ∂z 2 is the Laplacian operator in the (y, z) plane. The boundary conditions are that the velocity vanishes on the bed (u = 0 when z = -D) and that there is no shear stress on the free surface (∂u/∂z = 0 when z = 0).

The term gS in Eq. 2 is the force driving the fluid flow. In the experiments, the slope is not prescribed a priori. Instead, the river selects it while forming its own bed. It depends on the river's discharges and we cannot prescribe it arbitrarily. 230 Importantly, the Stokes flow is scale-invariant -the flow in 231 two channels of a different size but the same shape looks the 232 same, and one can find one from the other by simple rescaling 233 of lengths and velocity.

234

If we can find the velocity in the channel by using Eq. 2, we 235 can also get the stress, τ , shearing the bed surface. This stress 236 is proportional to the gradient of u in the direction normal to 237 the bed surface, with the dynamic viscosity, ρ f ν, acting as a 238 constant of proportionality. To get an idea of how the stress 239 depends on the channel shape, we integrate Stokes law, Eq. 2, 240 along the vertical direction, and find an equation for τ :

241 τ = ρ f gSD + ρ f ν(ūD) cos φ , [3] ū ≡ 1 D 0 -D udz , [4]
where primes denote y-derivatives, ū is the vertically averaged 242 flow velocity, and φ is the angle between the vector normal to 243 the bed's surface and the vertical (see SI section S2.1 for a de-244 tailed derivation). Equation 3 follows without approximation 245 from the Stokes equation. The first term of Eq. 3, ρ f gSD, 246 is simply proportional to the weight of the water column. It 247 corresponds to the stress that the fluid would exert on a per-248 fectly flat surface. It ignores the transfer of momentum across 249 stream and we will call it the "shallow-water component", in 250 reference to the celebrated shallow-water approximation. The 251 second term, ρ f ν(ūD) , accounts for the viscous transfer of 252 momentum across the stream (along y), and we will call it 253 the "momentum diffusion component". Finally, the term cos φ 254 accounts for the orientation of the bed surface. Equation 3255

is not closed -in order to find τ , we still need to solve the Stokes equation for u to get the vertically averaged velocity, ū.

Since we hope to bypass the solution of the Stokes equation, Eq. 3 is not very useful in its present form; we will, however, close it by assuming the river is much wider than it is deep (section 3).

Sediment transport. If the forces acting to dislodge sediment grains are too weak, the grains remain trapped on the river bed, and there is no sediment transport [START_REF] Shields | Application of similarity principles and turbulence research to bed-load movement[END_REF]. The existence of this threshold force is an instance of Coulomb's law of friction [START_REF] Seizilles | Width of laminar laboratory rivers[END_REF].

On a flat bed, the fluid acts tangentially to the bed surface, dislodging the grains, while gravity acts normally, anchoring the grains to the bed. In such a case, the sediment flux depends on the so-called Shields parameter, θ, which is proportional to the ratio F f /Fg of the fluid force acting on a single grain,

F f ∝ τ d 2 s
, and the grain's weight, Fg ∝ (ρs -ρ f )gd 3 s (24):

θ ≡ τ (ρs -ρ f )gds . [5]
The onset of sediment transport is a complicated phenomenon under active investigation [START_REF] Houssais | Onset of sediment transport is a continuous transition driven by fluid shear and granular creep[END_REF][START_REF] Pähtz | The physics of sediment transport initiation, cessation, and entrainment across aeolian and fluvial environments[END_REF][START_REF] Salevan | Determining the onset of hydrodynamic erosion in turbulent flow[END_REF]. However, a simple representation of sediment transport is to assume that on a flat bed, there exists a threshold Shields parameter, θt, below which there is no sediment transport, while for small deviations above this threshold, the sediment flux, qs, increases linearly with the distance to the threshold [START_REF] Lobkovsky | Erosion of a granular bed driven by laminar fluid flow[END_REF],

qs = q0(θ -θt) for θ > θt . [6]
The values of θt and q0 can be directly measured in experiments.

The pre-factor q0 is of the order of the ratio of the velocity, vs, of a moving grain to its area, d 2 s -q0 ∝ vs/d 2 s , where vs is proportional to the Stokes settling velocity, vs ∝ (ρs - [START_REF] Charru | Erosion and deposition of particles on a bed sheared by a viscous flow[END_REF][START_REF] Charru | Selection of the ripple length on a granular bed sheared by a liquid flow[END_REF].

ρ f )d 2 s g/ρ f ν
On a rounded bed (as in Figs. 2a andb), we cannot simply use the Shields parameter as a criterion for grain motion, since gravity has both a normal and a tangential component with respect to the bed surface. Grains in such a configuration begin to move when the ratio, µ, of tangential forces acting to dislodge the grains to normal forces acting to keep them in place becomes greater than a certain value, µt, which we can roughly interpret as the friction coefficient [START_REF] Seizilles | Width of laminar laboratory rivers[END_REF]. We can estimate this friction coefficient independently from θt in experiments, e.g. by building a heap of sediment and finding the angle at which its grains begin to topple. Abramian et al. (18) hypothesized that the transport law for the flat bed can be generalized to a curved bed -i.e. that the flux, qs, is proportional to the distance of µ to threshold, µt:

qs = qµ(µ -µt) for µ > µt . [7]
To keep this expression consistent with Eq. 6 for the flat bed, we must have qµ ≡ q0θt/µt, since, on a flat bed, µ = µtθ/θt [START_REF] Seizilles | Width of laminar laboratory rivers[END_REF]. Although Eq. 7 is difficult to test independently in an experiment, we will show that it is consistent with the experiments of Abramian et al. [START_REF] Abramian | Laboratory rivers adjust their shape to sediment transport[END_REF]. Parameters θt, µt, and q0 depend on the grain shape and on the Reynolds number at the grain scale. Abramian et al. (18) found them to be θt = 0.167±0.003, µt = 0.9±0.2, and q0 = 544±48 grains cm -1 s -1

in their experiments.

To find µ, we need to consider the forces acting on a grain 308 of sediment -the fluid force, F f , acts tangentially, while 309 gravity has both a tangential (downhill) component, Fg sin φ, 310 and a component normal to the bed, Fg cos φ. Because the 311 downstream slope of a channel, S, is small, the gravitational 312 force is approximately perpendicular to the fluid shear force, 313 F f , and the force ratio, µ, is therefore

314 µ = F f Fg cos φ 2 + (tan φ) 2 , [ 8] 
The ratio of fluid force to gravity, F f /Fg, is proportional to 315 the Shields parameter. In particular, we must have F f /Fg = 316 µtθ/θt, since, on a flat bed, µ = µt when θ = θt. With this 317 relation, using Eq. 3 for stress, and relating φ to depth as 318 tan φ = D , we can express the force ratio µ from Eq. 8 as

319 µ = µtρ f S θt(ρs -ρ f )ds 2 D + ν gS (ūD) 2 + D 2 , [ 9] 
Neglecting the cross-stream momentum diffusion, (ūD) , 320 yields a purely shallow-water model, which Seizilles et al. 321 [START_REF] Seizilles | Width of laminar laboratory rivers[END_REF] used to find the shape of inert rivers.

322

Sediment diffusion. Due to random interactions with the river 323 bed, grains traveling downstream also diffuse laterally, towards 324 areas of the bed where sediment transport is less intense 325 [START_REF] Seizilles | Cross-stream diffusion in bedload transport[END_REF]. This cross-stream diffusion of sediment opposes gravity, 326 which pulls the grains down towards the center of the channel. 327 Abramian et al. [START_REF] Abramian | Boltzmann distribution of sediment transport[END_REF] showed that, in equilibrium, the downhill 328 flux of sediment due to gravity is balanced by this uphill 329 diffusive flux of sediment. Like the Boltzmann equilibrium 330 of a gas in a gravitational field, this balance leads to the 331 exponential distribution of the moving grains as a function of 332 the flow depth:

333 qs = q B e D/λ . [10]
The last parameter in this equation, λ, is the characteristic 334 scale for sediment diffusion, and is analogous to the tempera-335 ture in a gas. Since sediment diffusion is driven by the bed 336 roughness, λ scales with the grain size (λ ≈ 0.12ds ± 20% 337 [START_REF] Abramian | Boltzmann distribution of sediment transport[END_REF]).

338

The prefactor, q B , is the sediment flux at the banks of 339 the river (D = 0). Since the flux at the banks is very small 340 compared with the flux at the bottom, q B does not yield 341 the correct scale for the sediment flux (qs,max/q B ∼ 10 23 for 342 the experiment with Qs = 60 grains s -1 ). For this reason, 343 we rewrite Eq. 10 in a more convenient form by defining a 344 parameter ξ with units of depth, such that q B ≡ qµe -ξ/λ , 345 where qµ is the prefactor of the sediment transport law, Eq. 7. 346 In this way, qµ gives the correct scale for the sediment flux, 347 while ξ is of the order of the maximum depth of an active river 348 (qs,max/qµ ∼ 0.2 and ξ/Dmax ∼ 1.05 for the experiment with 349 Qs = 60 grains s -1 ). As we will see below, the maximum river 350 depth, Dmax, is generally less than ξ, so the maximum flux in 351 a river is typically less than qµ. With this, Eq. 10 becomes 352 qs = qµe (D-ξ)/λ . [START_REF] Métivier | Laboratory rivers: Lacey's law, threshold theory, and channel stability[END_REF] The parameter ξ controls the intensity of sediment flux and 353 ensures that the sediment discharge is the integral of the flux, 354 Qs = qµ exp((D -ξ)/λ)dy. As an integration constant, its 355 value depends on the discharges transported by the river, but it is not immediately obvious how. A vanishing sediment discharge in rivers corresponds to ξ → ∞, while finite values of the sediment discharge correspond to smaller values of ξ.

Sediment transport in a river is significant when the difference, Dmax -ξ, between the river depth and ξ, is of the order of λ.

This is why ξ of active rivers is of the order of the maximum depth, while it is much greater than the depth of inert ones. In the experiments of Abramian et al. [START_REF] Abramian | Laboratory rivers adjust their shape to sediment transport[END_REF], ξ is not set a priori, but only becomes measurable after the river has formed, and, in that sense, plays a similar role as the slope, S.

Equation 11 relates the sediment flux, qs, to the river shape, D(y), and has been confirmed repeatedly in experiments [START_REF] Seizilles | Cross-stream diffusion in bedload transport[END_REF][START_REF] Abramian | Boltzmann distribution of sediment transport[END_REF]. We note that, unlike the gas which simply adjusts to the external field, the river selects its own potential (i.e. its own shape), D(y).

Boundary value problem

The relations for the flow, sediment flux, and sediment diffusion we introduced above combine to determine the equilibrium shape of a river. In particular, the Stokes law, Eq. 2, relates the river depth profile, D(y), to the vertically averaged fluid velocity profile, ū(y). Then, the sediment flux equations, Eqs. 7 and 9, relate this fluid velocity to the sediment flux profile. Finally, the Boltzmann distribution, Eq. 11, relates the sediment flux back to the depth profile, thereby closing the system of equations for D(y). However, solving these equations simultaneously to get a self-consistent depth and sediment flux profiles is a difficult task -one needs to solve a two-dimensional, partial differential equation with a moving boundary. Instead, in order to make sense of these equations, we propose to approximate the average velocity, ū.

Seizilles et al. [START_REF] Seizilles | Width of laminar laboratory rivers[END_REF] showed that the shallow-water approximation accounts for the equilibrium shape of inert laminar rivers. This approximation, which assumes that there is no transfer of momentum between adjacent fluid columns, i.e.

that we can neglect the y-derivatives of u in the Stokes equation, is exact when the bed is completely flat. It also works well when depth variations occur on length scales that are much longer than the depth itself. In the case of our river, this would apply when the aspect ratio of the river is large.

Neglecting the y-derivatives in Eq. 2, we find that the vertically averaged shallow-water velocity, ūsw, is proportional to the square of the depth, a result known as the lubrication approximation (31

) ūsw = gSD 2 3ν . [12]
On a flat bed, where Eq. 12 is exact, the fluid stress, τ , would only contain the shallow-water contribution proportional to depth, τsw = ρ f gSD (Eq. 3). Approximating stress in this way would allow us to close the system of equations for the river shape, in a way similar to Seizilles et al. [START_REF] Seizilles | Width of laminar laboratory rivers[END_REF]. However, it turns out that keeping only the shallow-water contribution to the stress yields unrealistic profiles for active rivers (i.e.

when Qs > 0) (SI section S7.1). Parker (1) first suggested that the cross-stream diffusion of momentum plays an important role for bedload sediment transport in rivers. In line with his suggestion, we keep the momentum diffusion term, (ūD) , in the expression for the stress, but approximate ū with the shallow-water velocity, ūsw, given by Eq. 12. Then, combining Eqs. 7, 9, and 11, we get an ordinary differential equation 413 expressed solely in terms of the depth and its derivatives:

414 S 2 L 2 s D + 1 3 (D 3 ) 2 + D 2 -µt = e (D-ξ)/λ , [13]
where we have introduced a length scale of the order of the 415 grain size, Ls, that is a combination of parameters directly 416 measurable in our experimental setup:

417 Ls ≡ θt(ρs -ρ f )ds µtρ f . [14]
We discuss this approximation in detail in the SI sections S2.2 418 and S2.3, where we show that it is the first term in a series 419 expansion for large aspect ratio, W/Dmax -it corrects the 420 shallow water stress with a term of order D 2 max /W 2 . There, 421 we also show that the contribution of momentum diffusion, 422 (D 3 ) /3, in Eq. 13 is of the same order as the contribution 423 of gravity, D , so that it should not be neglected in a self-424 consistent model of a river (SI section S2.2). Recognizing that 425 momentum diffusion is essential to form active rivers, and 426 finding a suitable approximation for it, is a major theoretical 427 contribution of our paper. In principle, Eq. 13 could fail to 428 be a meaningful approximation of the stress in a channel with 429 an aspect ratio of order one, but, in our case, it meaningfully 430 corrects the stress for rivers under all experimental conditions 431 we tested (even in the case of inert rivers with W/Dmax ∼ 4). 432

Equation 13 is an ordinary differential equation. To solve 433 this second-order problem, we need to specify two boundary 434 conditions. For a solution of Eq. 13 to be a river, the depth 435 needs to vanish on the banks and the center needs to be flat. 436 Therefore, Eq. 13 is a boundary value problem (BVP) with 437 boundary conditions D(y = -W/2) = 0 and D (y = 0) = 0. 438 There are several parameters that enter our equation, some of 439 which are directly measurable in our experimental setup (µt, 440 λ, and Ls), while others depend implicitly on the discharges 441 of fluid and sediment and become apparent only after the 442 river has formed (S and ξ). Although the river width, W , is 443 unknown a priori, it is not an independent parameter -it 444 can be inferred through solving Eq. 13 for a given choice of 445 other parameters (SI section S3.1). We emphasize that Eq. 13 446 describes the equilibrium river profile, and, therefore, does not 447 convey anything about transient, time-dependent processes 448 that occur as the river approaches the equilibrium. 

Dependence on water and sediment discharge 450

If we choose the parameters µt, λ, Ls, S and ξ, we can nu-451 merically solve Eq. 13 to get a unique river profile, D(y) (SI 452 section S3.1). However, since S and ξ are not directly measur-453 able in our experiment, we cannot immediately determine the 454 shape of the river by simply prescribing the discharge of fluid 455 and sediment in the same way as we would in an experiment. 456 The dependence of S and ξ on the discharges is complicated, 457 and, on the theoretical grounds, we can only say that the 458 inert river, Qs = 0, corresponds to ξ → ∞, while active rivers 459 correspond to smaller values of ξ. Nevertheless, we can find 460 this dependence numerically as follows. For each solution, 461 D(y), of our equation that corresponds to a particular choice 462 of S and ξ, we can find the discharges of fluid and sediment as 463

Qw = W/2 -W/2 gSD 3 3ν dy , Qs = W/2 -W/2
qµe (D-ξ)/λ dy , [START_REF] Schumm | Experimental fluvial geomorphology[END_REF] where we relate the fluid discharge, Qw = Dūdy, to the depth profile by approximating ū with the shallow-water velocity, ūsw (Eq. 12), and use the Boltzmann distribution (Eq. 11) to relate the sediment flux to depth. Keeping µt, λ, and Ls fixed to their experimental values, Qw and Qs are only functions of the parameters S and ξ. Inverting these relations numerically yields the model parameters as functions of the discharges of water and sediment, S(Qw, Qs) and ξ(Qw, Qs). This allows us to directly compare our theory to the experiments (SI section S3.2). We find that the theoretical cross-sections and sediment flux profiles resemble their experimental counterparts, without any fitting parameter (Fig. 2).

Encouraged by this result, we now describe how our theoretical rivers depend on Qw and Qs (see also SI section S3.3).

As we increase the water discharge, Qw, the width and depth of the river increase approximately as

Q 1/3
w , while its slope decreases roughly as Q -1/3 w (SI Fig. S5f), in accordance with the result of Seizilles et al. [START_REF] Seizilles | Width of laminar laboratory rivers[END_REF] for inert rivers. This 1/3 exponent is a signature of the laminar flow in our rivers, in contrast with natural turbulent ones which scale with the 1/2 exponent of the empirical Lacey's law [START_REF] Savenije | The width of a bankfull channel; lacey's formula explained[END_REF][START_REF] Métivier | Laboratory rivers: Lacey's law, threshold theory, and channel stability[END_REF]. Though the size of a river in our model may vary by orders of magnitude under varying Qw, its shape, described for example by the aspect ratio, does not change much unless the river transports a significant amount of sediment. On the other hand, increasing Qs while keeping Qw fixed makes the river wider and shallower, while affecting its overall scale only slightly. In short, the water discharge sets the size of the river, while the sediment discharge sets its shape.

In Fig. 3, we show that our predictions fall within the uncertainty range of observations of Abramian et al. [START_REF] Abramian | Laboratory rivers adjust their shape to sediment transport[END_REF].

The aspect ratio and the transport width, WT , increase with sediment discharge in both the model and the experiments (Figs. 3a andd). The sediment flux increases and saturates for large sediment discharge (Fig. 3c). This explains why the river becomes wider as we increase Qs -if the sediment flux, qs, saturates, the river needs to widen to accommodate a larger sediment discharge. At the same time, this widening forces the river to become shallower in order to maintain a constant fluid discharge, Qw, so that its overall size does not change much while its aspect ratio grows. The simple, nearly linear relationship between the aspect ratio and the sediment discharge shown in Fig. 3a means that this basic geometric property of the river shape can be used to infer the sediment load, at least in the case of straight, laminar, single thread rivers.

Since the downstream slope, S, is very small, it cannot be measured directly in the experiments. Nevertheless, our theory makes a prediction for it, which we show in Fig. 3b: the predicted slope is of the order of 0.01, and increases almost linearly with Qs.

Inert, active, and limiting river

We can simplify our model by making Eq. In terms of these non-dimensional parameters, Eq. 13 becomes: 520

D + 1 3 ( D3 ) 2 + D 2 -µt = e ( D-ξ)/ λ , [ 17 
]
where, now, the primes stand for derivatives with respect to 521 ỹ. The non-dimensional depth, D, is of order one, regardless 522 of the size of the original river. Therefore, Eq. 17 describes 523 the river shape, while the ratio Ls/S sets its size. The river 524 shape depends on only three non-dimensional parameters -525 µt, λ, and ξ.

526

When ξ → ∞ (Fig. 4a, SI section S4.3), the river becomes 527 inert as the exponential on the right-hand side of Eq. 17 528 vanishes. In this case, the dependence on ξ and λ vanishes, 529 so the river shape depends only on the friction coefficient, 530 µt. Since the friction coefficient is a fixed property of the 531 sediment grains, the fluid discharge, Qw, cannot change the 532 shape of such a river. Instead, the fluid discharge can only 533 affect its size by changing the scale factor, Ls/S. Physically, 534 this is because the laminar flow is scale-free, which makes 535 the inert river shape independent of its size. An inert river, 536 thus, reaches a maximum depth Dmax,0(µt). To calculate 537 its value, we need to numerically solve Eq. 17, but unlike 538 the complete theory of section 3, this is a straightforward 539 problem since it depends on a single, directly measurable 540 parameter. For µt = 0.9 which corresponds to the experiments, 541 we numerically find Dmax,0(µt) ≈ 1.1. From Eq. 17, we can 542 express this depth as Dmax,0 = µt -1 3 ( D3 ) |center, since the 543 gravity contribution, D , vanishes at the river center. Thus, 544 the momentum diffusion contribution to the stress (the term 545 1 3 ( D3 ) in Eq. 17) ensures that the dimensionless inert river 546 depth is greater than the friction coefficient ( Dmax,0 > µt) 547 -had we ignored the momentum diffusion, the inert river 548 Weak transport regime (Q s = 5 grains s -

Bank Bank Flat bottom

q s = 0 q s = 0 q s > 0 Parker regime (Q s = 40 grains s -1 ) (b) -3 -2 -1 0 1 2 3 y [cm] 0.0 0.1 0.2 0.3 q s /q µ Numerical solution Weak transport regime (c) -3 -2 -1 0 1 2 3 y [cm]
Parker regime (d) show river depth profiles in our model. The brown lines are numerical solutions of Eq. 13 for two values of sediment discharge, Qs. The numerical and asymptotic depth profiles are not distinguishable by eye and the error is of the order λ (or about 2% of the maximum depth) -the maximum deviation of the asymptotic approximation from the numerical solution is about 0.05 mm ≈ 0.5λ in panel (a) and about 0.15 mm ≈ 1.5λ in panel (b). The vertical black lines in panel (b) split the river in three parts used to construct the Parker river. Lower row panels ((c) and (d)) show the dimensionless sediment flux profiles, qs/qµ, that correspond to upper panels. Blue lines are numerical solutions.

depth would have been exactly µt. Physically, the diffusion of momentum relieves some of the stress from the river center, so, to remain at the threshold of sediment motion, the river has to be deeper than it would be without momentum diffusion.

In the next section, we will show that this fact is crucial for the transport of sediment.

As ξ decreases to finite values, the river becomes active (Fig. 4b). The banks of such a river largely retain the shape of the inert one, but its bottom part, which carries most of the sediment, widens, and the discharge of sediment increases.

For a particular value of ξ, say ξc, which depends on µt and λ, the river becomes infinitely wide and transports an infinite amount of sediment (Fig. 4c, SI section S4.2). Such a river has a finite, well-defined depth, Dmax,c(µt, λ). This means that, for given values of λ and µt, there exists a river-solution with a highest possible sediment flux, qs,c = qµ( Dmax,c -µt).

The existence of this limiting flux explains the saturation of qs for large values of total sediment discharge, Qs, that we see in Fig. 3c. It also means that, in our model, the distance to threshold in a river, µ -µt, is always less than Dmax,c -µt.

Numerically, we find Dmax,c -µt ≈ 0.22 for experimental parameters (µt = 0.9 and λ = 0.02). In the next section, we will estimate the limiting flux, qs,c, by assuming sediment diffusion is weak (λ → 0), in which case qs,c only depends on the friction coefficient, µt.

The Parker regime

Moving grains accumulate at the bottom of the river due to gravity, while they climb back onto the banks by diffusion [START_REF] Abramian | Boltzmann distribution of sediment transport[END_REF].

The Boltzmann distribution, Eq. 11, implies that diffusion can pull the grains up by a height that is of the order of the length scale λ. Therefore, the region of the bed over which transport occurs has a depth that is within several λ of the 580 maximum, Dmax. Since λ is small (less than the grain size), 581 rivers that transport a significant amount of sediment need a 582 wide, and essentially flat bottom. Moreover, a small λ means 583 the sediment transport decreases rapidly towards the banks, 584 so the banks are nearly inert and, thus, close to the threshold 585 of sediment motion. If, following this reasoning, we neglect 586 sediment diffusion altogether by taking the limit λ → 0, the 587 river sharply separates into a flat, active bottom and curved, 588 inert banks (Fig. 5b). We will call this simplified configuration 589 the "Parker regime," after Parker (1) who constructed a similar 590 model for natural gravel-bed rivers. The limit λ → 0 is 591 equivalent to assuming that the fluid discharge is large (to 592 ensure that λ is small compared with the width of the inert 593 banks), and that the sediment discharge is large (to ensure 594 that λ is small compared with the width of the active, flat 595 bottom).

596

We begin the investigation of this regime by first finding 597 the depth, D (P ) max , of a Parker river (denoted by the superscript 598 (P )). The banks in this approximation are inert and, thus, 599 satisfy our model, Eq. 17, with the right-hand side set to zero. 600 Therefore, their non-dimensional depth matches that of an 601 inert river, Dmax,0(µt), and we can set, D(P ) max = Dmax,0(µt). 602 In dimensional units, this becomes 603

D (P ) max =
Ls Dmax,0(µt) S (P ) . [18] We note that this dimensional depth of a Parker river differs 604 from that of an inert river, since the slope of a Parker river, 605 S (P ) , is different from the slope of an inert river, S0 -these 606 slopes depend on the shape of the entire channel, not only 607 on the banks. The non-dimensional inert river depth, Dmax,0, 608 depends only on the friction coefficient, µt (section 5). For 609 this reason, the river depth given by Eq. 18 is inversely proportional to its slope, D (P ) max ∝ 1/S (P ) , regardless of the fluid and sediment discharges. This is consistent with the original model of Parker, as well as with observations in natural rivers [START_REF] Parker | Self-formed straight rivers with equilibrium banks and mobile bed. part 2. the gravel river[END_REF][START_REF] Andrews | Bed-material entrainment and hydraulic geometry of gravel-bed rivers in colorado[END_REF].

Once we know the depth of a Parker river, we can find its sediment flux. Since the bottom is flat, the cross-sectional profile of the sediment flux is a rectangle of height q (P ) s and width W (P ) T (black dashed line in Fig. 5d). The flat bottom feels only the shallow-water component of the stress so the force ratio on the bottom is µ = D(P ) max (Eq. 9). According to the transport law, Eq. 7, this yields a sediment flux

q (P ) s qµ = Dmax,0(µt) -µt , [ 19 
]
where we used D(P ) max = Dmax,0(µt). Therefore, the sediment flux, and, correspondingly, the distance to threshold, µ -µt, depend only on the friction coefficient, µt, and have the same value regardless of the discharges of fluid and sediment -this is the gist of the Parker regime. Numerically solving Eq. 17 for an inert river (with µt = 0.9), we find Dmax,0 -µt ≈ 0.2. The sediment flux of a Parker river, q

(P )
s , is an approximation of the limiting flux, qs,c, we discussed in section 5 -in fact, q (P ) s is the limit of qs,c as λ → 0. For typical experimental parameters (µt = 0.9 and λ = 0.02), qs,c is less than 10% higher than q (P ) s , so the Parker regime approximates the numerical solution well.

The sediment flux q (P ) s ≈ 0.2qµ we find for a laminar river corresponds to a fluid-induced stress on the river bottom that is about 22% higher than critical. Interestingly, this value of the stress is comparable to observations in natural rivers, and to the original Parker's theory for turbulent rivers [START_REF] Parker | Self-formed straight rivers with equilibrium banks and mobile bed. part 2. the gravel river[END_REF][START_REF] Dunne | What sets river width?[END_REF]. There is no reason to expect that this proportion should be exactly the same for laminar and turbulent flows.

However, that it is independent from the water and sediment discharges, and of order one, is likely not a coincidence. The scale-independence of the flow ensures that the bank shape (i.e. Dmax,0(µt)) is independent of the discharges (section 5).

Thus, the discharge-independent sediment flux likely results from the scale-independence of the flow, under both laminar and turbulent conditions.

The difference Dmax,0 -µt vanishes in the classical shallowwater approximation (section 5). As a consequence, if we ignored momentum diffusion, the river could not carry any sediment -sediment transport in the Parker regime is only possible because momentum diffuses across the stream. Indeed, this tends to homogenize the distribution of shear stress over the bed, especially on the banks, where the bed is curved.

As a consequence, the deeper parts of the banks hand over some of the momentum to the shallower parts of the banks.

This means that, in order to stay at the threshold of sediment motion, the banks need to be deeper than they would be in the absence of momentum diffusion. This increased depth then causes excess stress on the flat river bottom, which only feels the shallow-water component of the stress, thereby driving sediment transport (SI section S7). This is why we need to keep track of momentum diffusion, even in a minimal model of a river.

The weakness of sediment diffusion, characterized by a small diffusion length, λ, ensures that rivers remain close to the threshold. For a small but finite λ, we numerically find that the maximal distance to threshold is approximately = Qs/q (P ) s .

[20]

The total width of a Parker river, W (P ) = W (P )

T +W (P ) 0

, is then 681 the sum of W (P ) T and the bank width, W (P ) 0 = W0Ls/S (P ) . 682 Here, W0 is the non-dimensional width of an inert river that 683 is only a function of µt (numerically, we find W0 ≈ 6.4 for 684 µt = 0.9).

685

From here, we can find the aspect ratio of a Parker river as 686

W (P ) D (P ) max = W0 Dmax,0 + Qs q (P ) s D (P ) max . [21]
This equation shows how the geometry of a river can be used 687 to infer its sediment load. Namely, from Eq. 21, the sediment 688 discharge is 689 Qs = q (P ) s D (P ) max

W (P ) D (P ) max - W0 Dmax,0 . [22] 
The quantities q (P ) s and W0/ Dmax,0 are universal in that they 690 only depend on the properties of the sediment and the general 691 properties of the flow (such as its laminarity). As such, they are 692 independent of the discharges of fluid and sediment. All other 693 quantities on the right hand side of Eq. 22 are geometric (D (P ) max 694 and W (P ) ). Therefore, one can estimate the sediment load of 695 a river in the Parker regime by simply measuring its width and 696 depth. Equation 22 follows from general considerations that 697 allow the Parker regime to exist -such as, for example, that 698 the river splits into an active bottom and inert banks whose 699 shape is independent of the discharges. It is likely that these 700 conditions also apply to turbulent rivers. So, we speculate 701 that Eq. 22 holds for natural rivers in the Parker regime, 702 although with different values of q (P ) s and W0/ Dmax,0. On an 703 ensemble of rivers with varying fluid and sediment discharge, 704 q (P ) s would represent the maximum observed sediment flux, 705 while W0/ Dmax,0 would be the minimum observed aspect ratio. 706 So, to estimate the sediment load of a natural river, one could 707 begin by estimating the minimum aspect ratio and maximum 708 sediment flux on a large dataset of rivers, and then measuring 709 the width and depth of a particular river. We demonstrate 710 the validity of this method on our experimental dataset in the 711 SI section S6.

712

The transport width of a Parker river becomes com-713 parable to the river size when the sediment discharge is 714 Qs ≈ q (P ) s Ls/S (P ) where we approximated the slope with that of an inert river (Eq. S38 of the SI) and neglected dimensionless factors of order one.

When the sediment discharge is much greater than Q * s , the aspect ratio of a river grows with the sediment discharge, while for Qs much smaller than Q * s , it becomes that of the inert river.

In the experiments, we find Q * s ≈ 74 grains s -1 . Interestingly, this value is close to the discharge Qs ≈ 90 grains s -1 at which the experimental rivers destabilize into braids, suggesting that Q * s may define an upper bound for the sediment load a single channel can carry. Determining this would, however, require an analysis that is beyond the scope of this paper.

Finally, to find the slope of the Parker river, S (P ) , we first compute its water discharge, Qw (Eq. 15). The water discharge of a Parker river is a sum of the the bank and the flat bottom contributions. In particular, we find (SI section S5)

Qw = gL 4 s νS (P )3 Qw,0 + QsS (P ) D3 max,0 3q (P )
s Ls [START_REF] Shields | Application of similarity principles and turbulence research to bed-load movement[END_REF] where Qw,0 ≡ , so the Parker river inherits the basic scaling of laminar rivers [START_REF] Seizilles | Width of laminar laboratory rivers[END_REF].

In Figs. 5b andd, we show that the cross-section and sediment flux profiles of rivers in the Parker regime capture well the numerical solutions of our model, Eq. 13, when the sediment discharge is large. In Fig. 3, we compare the Parker river properties to numerical solutions of the full theory and experiments (black dashed lines in Fig. 3). The slope and shape of numerical solutions are well approximated by the Parker regime for the entire range of sediment discharge (Figs. 3a andb). Conversely, the sediment flux profile (qs and WT )

for the Parker river is a good approximation of the full theory only when the sediment discharge is large enough. This is not surprising, since, according to the Boltzmann distribution, Eq.

11, the flux is a sensitive function of the depth so, to get a reasonable estimate of the flux, we need to estimate the depth accurately with a precision that is of the order of the diffusion length, λ.

When the sediment discharge is small, sediment diffusion becomes important, and the Parker regime cannot account for the sediment transport (Fig. 5c). In the next section, we consider this weak transport regime.

Weak transport regime

When the sediment discharge is small, the sediment flux concentrates about the center of the river, and does not significantly alter its shape. The sediment flux profile in this case is analogous to the density of an ideal gas in a fixed potential -the fixed bed shape sets the potential well in which the traveling grains distribute themselves.

A random walker that makes steps of length λ in a fixed potential well with a characteristic size L would spend the majority of its time moving around in an area with a size of the order of √ λL. Therefore, we expect the sediment grains in this weak transport regime to concentrate in a region of a size WT ∼ λLs/S0, where Ls/S0 is the characteristic size 773 of an inert river. As a consequence, the sediment flux would 774 be about qs ∼ Qs S0/λLs. Thus, unlike the Parker river 775 which changes its width to accommodate its sediment load, 776 the weak-transport river adjusts its sediment flux.

777

We can formalize this argument by first assuming that the 778 depth profile is approximately that of an inert river, D0. Close 779 enough to the center, we can approximate this depth with a 780 parabola, 781 D0 ≈ Dmax,0 -κ 2 y 2 , [START_REF] Houssais | Onset of sediment transport is a continuous transition driven by fluid shear and granular creep[END_REF] where κ ≡ -D 0 |center is the curvature of the bed at the center. 782 If only this quadratic part of the depth profile is relevant, the 783 Boltzmann distribution of traveling grains, Eq. 11, becomes a 784 Gaussian:

785 qs = qs,maxe -κ 2λ y 2

.

[26]

Here, qs,max is a constant that depends on qµ, λ, and ξ. This 786 approximation is valid when the sediment discharge is small 787 enough to leave the depth profile unaltered, and when the 788 fluid discharge is large enough to keep λ/κ small compared 789 with the river size.

790

To specify the sediment flux profile, we first relate the 791 curvature at the river bottom, κ, to the depth of an inert river, 792 Dmax,0, using Eq. 13. Then, by integrating the sediment flux 793 profile, Eq. 26, we can find the maximum flux, qs,max, and 794 the transport width, WT = Qs/ qs , as functions of Qs (we 795 find qs through Eq. 1): S0( Dmax,0 -µt) , [START_REF] Lobkovsky | Erosion of a granular bed driven by laminar fluid flow[END_REF] where S0 can be estimated from the fluid discharge, Eq. 15, 797 using the inert river profile (Eq. S38 of the SI). We can see that 798 qs,max ∝ Qs S0/λLs and WT ∝ λLs/S0, as anticipated.

799

Unlike the Parker regime, the weak transport regime re-800 quires sediment diffusion -it does not exist when λ vanishes. 801 .

[29]

For the experiments we are considering, we find Qs,t ≈ 809 8.6 grains s -1 . A large river (with λS/Ls → 0) remains in 810 the weak transport regime when Qs Qs,t, and enters the 811 Parker regime if Qs Qs,t. When λ vanishes, the tran-812 sitional discharge tends to zero, and the river is always in 813 the Parker regime. Interestingly, the experiments span both 814 regimes -one experimental run of Abramian et al. [START_REF] Abramian | Laboratory rivers adjust their shape to sediment transport[END_REF] has 815 Qs ≈ 12.6 grains s -1 , comparable to Qs,t. This means that 816 λ in the experiments is small enough for the two regimes to 817 be valid approximations, but still large enough for the weak 818 transport regime to be visible.

Conclusions
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34 Parker ( 1 )

 341 first addressed the question of active rivers with 35 a model in which a turbulent river splits into inert banks 36 and a flat, active bottom. He found that the cross-stream 37 diffusion of momentum, which distributes stress from faster 38 flowing regions to slower ones, is essential to enable sediment 39 transport in a stable river channel. His model qualitatively 40 agreed with real rivers -he found that the stress on the river 41 bed is at most about 20% above critical, which limits the 42 intensity of sediment transport. It is, however, unclear why a 43 river should sharply split into inert banks and a flat bottom, 44 as required by Parker's model. Moreover, it is unclear how a 45 river transitions from an inert, threshold channel to a singular 46 configuration of Parker as its sediment discharge increases.

( 19 )

 19 (section 1) to understand what sets the channel shape of active rivers. In our theory, the above mechanisms combine to shape the river -the shape of the channel determines the stress, the stress determines the sediment flux, while the Boltzmann distribution relates the sediment flux back to the shape (section 2). In equilibrium, these mechanisms are all coupled together, and their simultaneous coexistence determines a unique river channel for given discharges of water and sediment (assuming the channel is straight and single-thread).

Fig. 1 .

 1 Fig. 1. (a) Experimental setup of Abramian et al. (19). (b) Photograph of the sediment bed taken with the overhead camera. Brown lines represent trajectories of tracked grains.

Fig. 2 .

 2 Fig. 2. (a) and (b) River cross-sections from the experiments of Abramian et al. (19) (brown line) and the present model (blue lines). Aspect ratio is preserved. (c) and (d)Corresponding sediment flux profiles, qs(y), for the experiments (red lines) and our model (blue lines). Panels on the left ((a) and (c)) correspond to an inert river (no sediment discharge, Qs = 0), while the right panels ((b) and (d)) correspond to an active one (sediment discharge Qs ≈ 44 grains s -1 ). The transport width, W T = Qs/ qs , with qs given by Eq. 1, as well as the maximum sediment flux, qs,max, are marked with arrows in panel (d). The downstream slope, S, could not be measured accurately, but it is approximately S ≈ 0.005 for the inert river and S ≈ 0.01 for the active one.

  density and viscosity of the fluid were ρ f = 1160 ± 5 kg m -3 and ν = 10 -5 m 2 s -1 . The high fluid viscosity, achieved by adding glycerol to the mixture, kept the fluid flow laminar (the Reynolds number remained below about 10 in all experiments).

performed 5 experimental

 5 runs in which they varied the sediment discharge between 0 and 60 grains s -1 . A typical river forms as follows. First, the experiment goes through a transient during which the fluid erodes more sediment than is injected at the inlet. At this stage, a single channel of width W ∼ 5 cm quickly forms, whose downstream slope, S, slowly changes over time until it reaches steady-state at S ∼ 0.01. The duration of this transient, T , roughly corresponds to the time to build a sediment channel of constant slope, S, and width, W , over the entire length of the tank, L ∼ 2 m, by exchanging sediment at a rate Qs ∼ 100 grains s -1 with the bed. A simple scaling analysis yields T ∼ L 2 W S/(d 3 s Qs) ∼ 5 h, consistent with typical transients in the experiments. The exact duration of the transient depends on the initial setup of the experiment and can be shortened by, for example, setting the initial inclination of the tank close to the steady-state slope of the river. After reaching steady-state, the river transports as much sediment along its bed as is delivered by the sediment feeder. Sediment travels as bedload -grains roll, slip, and bounce on the sediment bed.

[ 1 ]Figure 3

 13 Figure 3 and Fig. S2 of the SI illustrate how the characteristics 199 of laboratory rivers change as the sediment discharge, Qs, 200 increases: the rivers become wider, shallower, steeper, and 201 transport sediment more intensely.

Fig. 3 .

 3 Fig.3. River properties as a function of the sediment discharge, Qs, normalized by the characteristic discharge, Q * s ≈ 74 grains s -1 , given by Eq. 23. Red dots represent the experiments (error bars estimated in SI section S1). Blue lines represent the numerical solutions to Eq. 13 using the experimental parameters (see Table S1 of the SI). Light blue shading corresponds to the uncertainty in the parameter estimates (TableS1of the SI). The numerical solutions transition from the weak transport regime (black dotted line) to the Parker regime (black dashed line) when Qs ∼ Qs,t ≈ 8.6 grains s -1 (Eq. 29). (a) River aspect aspect ratio, W/Dmax. The weak transport regime assumes a fixed bed shape so the aspect ratio is constant. (b) Downstream slope, S. The slope is too small for direct measurement. As in panel (a), the fixed bed shape in the weak transport regime leads to a constant slope, while the Parker regime follows from Eq. 24. (c) Normalized maximum sediment flux, qs,max/qµ, where qµ is the prefactor of the sediment transport law (Eq. 7). The weak transport regime corresponds to Eq. 27 while the Parker regime corresponds to Eq. 19. (d) Transport width, W T ≡ Qs/ qs , normalized by the total width, W . The weak transport regime corresponds to Eq. 28, while the Parker regime follows from Eqs.19, 20, and 24. 
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Fig. 4 .

 4 Fig. 4.River solutions in the non-dimensional ỹ-z space for µt = 0.9, λ = 0.1, and varying ξ. Black dashed lines in panels (b) and (c) represent the inert river from the upper panel. Aspect ratio is preserved. (a) Inert river ( ξ → ∞). Brown dot marks the non-dimensional inert river depth, Dmax,0. This depth is greater than the friction coefficient, Dmax,0 > µt, marked by the horizontal dotted line. (b) Active river ( ξ = 1.33 > ξc). Brown dot marks the depth, Dmax. (c) Infinite limiting river ( ξ = 1.3237 ≈ ξc). Brown dot marks the limiting depth, Dmax,c.
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Fig. 5 .

 5 Fig. 5. Asymptotic regimes. Black dashed lines correspond to the Parker regime while the black dotted lines correspond to the weak transport regime. Top row panels ((a) and (b)) show river depth profiles in our model. The brown lines are numerical solutions of Eq. 13 for two values of sediment discharge, Qs. The numerical and asymptotic depth profiles are not distinguishable by eye and the error is of the order λ (or about 2% of the maximum depth) -the maximum deviation of the asymptotic approximation from the numerical solution is about 0.05 mm ≈ 0.5λ in panel (a) and about 0.15 mm ≈ 1.5λ in panel (b). The vertical black lines in panel (b) split the river in three parts used to construct the Parker river. Lower row panels ((c) and (d)) show the dimensionless sediment flux profiles, qs/qµ, that correspond to upper panels. Blue lines are numerical

Figures 3

 3 and 5 show that the sediment flux profile in the 802 numerical model transitions smoothly from the weak transport 803 regime to the Parker regime. This transition happens when Qs 804 approximately equals qµ λLs/S0, at which point the weak 805 transport sediment flux overcomes the limiting flux of the 806 Parker regime. This defines a transitional sediment discharge, 807 Qs,t, given by 808 Qs,t = qµ λ 3 νQw gLs 1/6

  Dmax,c -µt ≈ Dmax,0(µt) -µt + Sλ/Ls (SI section S4.4). 668 The term Sλ/Ls is negligible for large rivers with a small 669 slope, such as the ones in the experiments we are considering 670 (Sλ/Ls ≈ 0.022 for highest experimental Qs). The fact that 671 rivers tend towards the Parker regime as the fluid and sediment 672 discharges increase is, thus, the reason they do not exceed the 673 threshold significantly more than Dmax,0(µt) -µt. In short, 674 it is the combination of significant momentum diffusion with 675 weak bedload diffusion that maintains the laboratory rivers of 676 Abramian et al.[START_REF] Abramian | Laboratory rivers adjust their shape to sediment transport[END_REF] near the threshold.

				677
	Once we have identified the sediment flux, q	(P ) s , all other 678
	properties follow straightforwardly. In particular, we can get 679
	the width of the active bottom, W	(P ) T , as	680
	W	(P ) T	

  . This defines a characteristic discharge 715 in the Parker regime, Q * s :

					716
	Q * s = qµ	νQw gLs	1/3	,	[23]
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In this paper, we relied on a recent experimental success in 821 obtaining single-thread laminar rivers, and we developed a 822 physical theory that correctly represents the shape of a river 823 as a function of its water and sediment discharges. In steady-824 state, the balance between gravity and the stress induced by a river becomes comparable to its size. In the future, this 873 may help us identify a mechanism for braiding, which is still 874 debated [START_REF] Seminara | Fluvial sedimentary patterns[END_REF][START_REF] Parker | On the cause and characteristic scales of meandering and braiding in rivers[END_REF][START_REF] Leopold | River channel patterns: braided, meandering, and straight[END_REF].

875

Our model provides a link between the shape of the river 876 and its sediment load. It, thus, presents an opportunity for 877 field measurements, whereby one could estimate the sediment 878 discharge of a river by measuring its width and depth. Before 879 this method can bed applied to natural rivers reliably, we 880 should first extend the present theory to the case of turbulent flow, which will be the focus of future work.
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