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I. INTRODUCTION

I N recent years, the number of portable wireless biomed- ical systems have grown exponentially facilitating better health care monitoring and earlier diagnosis [START_REF] Wong | An integrated wearable wireless vital signs biosensor for continuous inpatient monitoring[END_REF]. As a result, high volumes of data are produced with increasing number of biomedical sensors and long-term monitoring. In these biomedical signal monitoring systems, the energy consumption of wireless communication modules generally exceeds all other modules combined, for example in [START_REF] Chen | Energyaware design of compressed sensing systems for wireless sensors under performance and reliability constraints[END_REF], [START_REF] Tlili | Level-crossing ADC design and evaluation methodology for normal and pathological electrocardiogram signals measurement[END_REF], it is reported that the wireless module consumes up-to two-thirds of the total power on-chip. To reduce energy consumption, on-chip feature extraction and compression techniques are applied after sampling from an analog-to-digital converter (ADC) [START_REF] Yin | A 2.63 w ecg processor with adaptive arrhythmia detection and data compression for implantable cardiac monitoring device[END_REF]- [START_REF] Deepu | A 3-lead ecg-on-chip with qrs detection and lossless compression for wireless sensors[END_REF]. Recently, a new class of ADCs, called levelcrossing ADCs (LC-ADCs), has been developed which embed compression into the data acquisition stage [START_REF] Van Assche | Power Efficiency Comparison of Event-Driven and Fixed-Rate Signal Conversion and Compression for Biomedical Applications[END_REF]- [START_REF] Zhao | A 13.34 µW Event-Driven Patient-Specific ANN Cardiac Arrhythmia Classifier for Wearable ECG Sensors[END_REF]. LC-ADCs utilize the time-domain sparsity of signals, such as, electrocardiogram (ECG) signals, which remain inactive for large time intervals. LC-ADCs produce asynchronous samples of data triggered by the threshold crossings of the analog signal. This reduces the sampling in low-activity regions of the signal, thus reducing the data rate and energy consumption on-chip. LC-ADCs have the advantage of built-in compression and a corresponding potential reduction in processing costs in comparison with Nyquist sampling ADCs.

The energy efficiency of a LC-ADC and traditional successive-approximation (SAR) ADC using various biosignals was studied in [START_REF] Van Assche | Power Efficiency Comparison of Event-Driven and Fixed-Rate Signal Conversion and Compression for Biomedical Applications[END_REF]. They concluded that LC-ADCs are more energy-efficient than SAR ADCs for low-to-medium resolution applications, while also producing less data for transmission.Many low-power LC-ADC architectures have been proposed in recent years for various biomedical applications, such as biomedical signal acquisition [START_REF] Tlili | Level-crossing ADC design and evaluation methodology for normal and pathological electrocardiogram signals measurement[END_REF], [START_REF] Li | A sub-microwatt asynchronous level-crossing adc for biomedical applications[END_REF]- [START_REF] Weltin-Wu | An event-driven clockless level-crossing ADC with signal-dependent adaptive resolution[END_REF], ultrasound measurement systems [START_REF] Kozmin | Level-crossing adc performance evaluation toward ultrasound application[END_REF], ECG signal acquisition [START_REF] Marisa | Pseudo asynchronous level crossing adc for ecg signal acquisition[END_REF], low-power QRS detection in ECG signals [START_REF] Zhang | A 300-mV 220-nW Event-Driven ADC With Real-Time QRS Detection for Wearable ECG Sensors[END_REF], [START_REF] Ravanshad | A Level-Crossing Based QRS-Detection Algorithm for Wearable ECG Sensors[END_REF], low data rate image sensors [START_REF] Darwish | 1-level crossing sampling scheme for low data rate image sensors[END_REF], and a reconfigurable event-driven wake-up system [START_REF] Wang | A 148-nw reconfigurable event-driven intelligent wake-up system for aiot nodes using an asynchronous pulse-based feature extractor and a convolutional neural network[END_REF]. Moreover, classification algorithms have been widely designed for various biomedical applications using traditional SAR ADCs. A detailed review of classification algorithms, their hardware designs and power consumption is presented in [START_REF] Wei | A review of algorithm & hardware design for ai-based biomedical applications[END_REF]. Recently, ECG signals have also been used for low-power authentication of devices which also utilizes neural networks and compression techniques [START_REF] Cherupally | Ecg authentication hardware design with low-power signal processing and neural network optimization with low precision and structured compression[END_REF]. Using event-driven data from LC-ADCs, an artificial neural network based arrhythmia classification has been presented in [START_REF] Zhao | A 13.34 µW Event-Driven Patient-Specific ANN Cardiac Arrhythmia Classifier for Wearable ECG Sensors[END_REF].

This article builds on the work presented in [START_REF] Saeed | Event-driven ecg classification using an open-source, lcadc based non-uniformly sampled dataset[END_REF], which evaluated several level-crossing ADC models for cardiac arrhythmia classification and compression performance. To the best of our knowledge, no other performance analysis of LC-ADC models for event-driven ECG classification is found in the literature. In this article, we propose a new design strategy for modeling LC-ADC parameters inspired by the work presented in [START_REF] Tlili | Level-crossing ADC design and evaluation methodology for normal and pathological electrocardiogram signals measurement[END_REF] and apply it to low-power event-driven cardiac arrhythmia classification. In this context, the major contributions of this paper are as follows: a) a new design technique for modeling level-crossing ADC parameters is presented that improves sampling accuracy and reduces data stream rate from the LC-ADC, b) several LC-ADC models are simulated and their performance is analyzed in terms of signal quality and compression using the MIT-BIH Arrhythmia dataset [START_REF] Goldberger | Physiobank PhysioToolkit and PhysioNet components of a new research resource for complex physiologic signals[END_REF], c) a deep learning model is proposed for eventdriven cardiac arrhythmia classification and, d) an open-source event-driven ECG database derived from MIT-BIH database using the proposed LC-ADC models with arrhythmia annotations is presented.

The rest of the paper is organized as follows. Section II presents the principles of event-driven sampling for ECG applications including, LC-ADC architecture, and performance metrics for evaluation of LC-ADC models. Section III proposes a new design methodology for modeling LC-ADC parameters and evaluates several models using performance metrics. Section IV proposes a deep learning model for classification of cardiac arrhythmias using event-driven ECG Fig. 2: (a) The proposed new methodology for selecting LC-ADC design parameters, inspired by the work presented in [START_REF] Tlili | Level-crossing ADC design and evaluation methodology for normal and pathological electrocardiogram signals measurement[END_REF]. The three design parameters (M, N, Fc) must meet the respective design conditions before the LC-ADC can be evaluated for acceptable SDR and CR. (b) The LC-ADC evaluation methodology. ECG input is converted to event-driven signal using selected design parameters, reconstructed using linear interpolation and assessed for SDR and CR performance. data. A complexity comparison with uniformly sampled data is presented. An event-driven ECG dataset is also presented in Section IV. Finally, in Section V, conclusions are drawn.

II. EVENT-DRIVEN ECG SAMPLING

This section presents the principles of level-crossing sampling with an LC-ADC architecture and the performance metrics for compression and signal-quality evaluation of LC-ADC Models.

A. LC-ADC Architecture

The LC-ADC architecture is presented in Fig. 1a. The ECG signal range is divided into a fixed number of quantization levels. The LC-ADC sampling processing is implemented by continuously comparing against an upper and lower threshold voltage, U QL and L QL respectively, each of which is quantized into LSBs each having size q Volts:

q ≜ A F S 2 M (1)
where A F S is the full-scale voltage range of the ECG signal, M is the resolution of the LC-ADC and 2 M is the total number of quantization levels. The dynamic range of 10mVpp is used as the full-scale voltage throughout this study, which ensures industry standard of ambulatory equipment [START_REF] Tlili | Level-crossing ADC design and evaluation methodology for normal and pathological electrocardiogram signals measurement[END_REF] and matches the dynamic range of the MIT-BIH Arrhythmia dataset [START_REF] Ravanshad | A Level-Crossing Based QRS-Detection Algorithm for Wearable ECG Sensors[END_REF] used to evaluate models in this study. The difference between the upper and lower threshold voltages, ∆v, is usually a fixed integer number of LSBs:

∆v = k * q (2)
where k ≥ 1 ∈ Z. Typically k = 1, but for higher resolution LC-ADCs k is often larger so as to maintain a ∆v that is greater than the noise thereby avoiding excessive threshold crossings.

Whenever the ADC's input signal crosses U QL a sample is taken, i.e. we set ECG out = U QL and both threshold are increased by q Volts (i.e. +1 LSB). Similarly when L QL is crossed we set ECG out = L QL and decrease the two thresholds by q Volts (i.e. -1 LSB). The control logic block in Fig. 1 manages this process. This way, an LC-ADC creates continuous-in-time discrete-in-amplitude ECG signals.

Compared to a uniform sampling ADC where the timestamp associated with each sample is implicit, a LC-ADC however must output both the amplitude level ECG out and the associated time, or equivalently the Time Interval (TI) between each sample, as a tuple (ECG out , T I) n , where n is an index meaning the n th tuple in time. In practice the Time Interval TI is quantized w.r.t. a clock having frequency F c and is represented using an N bit word. Whenever the Time Interval counter rolls-over, i.e. after (2 N -1) Fc sec during which time there were no level crossing events, an extra sample is output where the previous amplitude is simply repeated.

Using a 7-bit LC-ADC, the analog ECG signal (ECG in ) with event-driven samples (ECG out ) are presented in Fig. 1b. The horizontal grid lines represent the quantization levels spaced at q volts. The gray highlighted region on the third QRS peak is further illustrated in Fig. 1c with an LSB size of ∆v = 3q volts. While the distance between U QL and L QL is always maintained at 3q volts, whenever a threshold crossing occurs, the two thresholds are increased or decreased by 1q volts only. Furthermore, it is worth noting the difference in time intervals between the six event-driven samples illustrated in Fig. 1c.

B. Performance metrics

To measure the signal distortion and compression in the LC-ADC output, its output samples are interpolated using linear interpolation to reconstruct the ECG signal, as in [START_REF] Tlili | Level-crossing ADC design and evaluation methodology for normal and pathological electrocardiogram signals measurement[END_REF]. The two performance parameters are as follows:

1) Compression Ratio (CR): The compression ratio is the ratio of the average number of bits/sec in the signal obtained from a uniform ADC to the average number of bits/sec in the signal obtained from a LC-ADC. 2) Signal-to-Distortion Ratio (SDR): The temporal signalto-distortion ratio evaluates the distortion between the original signal, x, and the reconstructed signal, x is defined as: having units of decibels (dB). In [START_REF] Zigel | The weighted diagnostic distortion (WDD) measure for ECG signal compression[END_REF], the clinically acceptable values for SDR in ECG signal reconstruction are also reported. "Good" quality signals must follow the following criteria:

SDR =10 log 10 (x -x) 2 -10 log 10 (x -x) 2 (3) 
SDR ≥ 21dB (4) 

III. LEVEL-CROSSING ADC MODELING AND EVALUATION

This section presents a new LC-ADC design and evaluation methodology. In order to accurately model an LC-ADC, the following design parameters must be considered: the resolution of the LC-ADC, M , the counter clock frequency, F c, and the counter clock resolution N . These parameters simultaneously impact the sampling accuracy of the level-crossing ADC as well as accurate time tracking between two consecutive eventdriven samples. First, the resolution, M , maps the number of quantization levels (2 M ) in the LC-ADC. If M is too high, too many level-crossings are triggered which might produce more data than an SAR ADC [START_REF] Van Assche | Power Efficiency Comparison of Event-Driven and Fixed-Rate Signal Conversion and Compression for Biomedical Applications[END_REF]. If M is too low, important level-crossings will be missed and the signal-to-distortion ratio will be significantly decreased. For a fair evaluation, in this section, we design and evaluate ten LC-ADC models using resolutions M = 2, 3, . . . , 11, respectively. For each of these resolutions, the ideal counter frequency and counter resolution are modeled as presented in the following subsections.

A. Selecting the Counter Clock Frequency

The fastest signal variations in ECG signals can be seen around the QRS complex as shown in Fig. 1b. In fact, these amplitude variations are larger in ECG signals with pathological abnormalities than normal conditions. The counter clock frequency should be able to keep up with these fast amplitude variations between two consecutive LC-ADC samples. Violation of this condition will lead to clipped shapes in the QRS complex [START_REF] Tlili | Level-crossing ADC design and evaluation methodology for normal and pathological electrocardiogram signals measurement[END_REF]. Furthermore, F c should also be fast enough to minimize time-quantization errors in mapping T I as described in Section IIA. In [START_REF] Tlili | Level-crossing ADC design and evaluation methodology for normal and pathological electrocardiogram signals measurement[END_REF], a maximal slope condition is used to determine F c. In general the maximal obtained from any random sample can be a statistically unreliable measure and could lead to significant over or under estimates of the typical maximum which is what, we argue, one should design according to. Thus the approach we adapt here is to estimate the CDF (Cumulative Distribution Function) of the ECG slopes and take the 99.9% level as being a reliable estimate of the typical maximum slope.

Consider the vector ⃗ x containing the magnitude of slopes in the entire MIT-BIH arrhythmia dataset. Through a cumulative distributive function, find the value, x o , in ⃗ x, for which the magnitude of slopes in the dataset are less than or equal to x o , 99.9% of the time. Therefore, x o and corresponding F c can be calculated as:

P dECG in dt ≤ x o ≃ 0.999 (5) 
⇒ F c ≥ x o q (6)
Fig. 3 shows the cumulative distributive function of magnitude of slopes in the MIT-BIH dataset with x o shown at 99.9%. Fig. 4 shows the value of F c obtained in this manner as a function of the LC-ADC resolution (M ) obtained by simulation over the entire MIT-BIH Arrhythmia dataset. These result are also summarized in Section IIIC, Table I. As M is increased, the LSB size, q decreases, thereby increasing the counter clock frequency required to capture fast slopes in the ECG signal. At M = 8 bits, the minimum required Fc is 4744.24Hz, which is less than half of that used in [START_REF] Tlili | Level-crossing ADC design and evaluation methodology for normal and pathological electrocardiogram signals measurement[END_REF] for the same LC-ADC resolution.

B. Determining the Counter Clock Resolution

Lastly, the final design parameter, counter clock resolution (N), directly impacts the number of bits per second generated by the LC-ADC, defined as the stream-bit-rate (sbr). Mostly, sbr is dominated by the level-crossing rate (lcrate), which is the average sampling rate (i.e. the average level crossing rate) of the LC-ADC. However, as described in Section IIA, the LC-ADC design presented in this study can also output a tuple at every clock rollover i.e, every (2 N -1) Fc seconds if there has been no level crossing during this time 1 . If N is chosen to be very small, too many tuples are generated. Similarly, if N is too high, the size of T I (N-bit word) will be large. In other words, the number of bits per tuple increases linearly as N is increased. It is worth noting that this approach does not add any additional overhead in terms of the tuple transfer rate as it occurs quite infrequently. We propose to find the optimal value of N for which the sbr is minimum. The sbr can be defined as,

tuple rate = max F c 2 N , lcrate (7) 
sbr =tuple rate * (M + N )

We simulated sbr over N = 3, 4, . . . , 16 using the resolutions, M and counter clock frequency, F c, pairs estimated in the previous subsections. Fig. 5 shows the sbr for varying counter clock resolution (N) over different LC-ADC resolutions (M).

In each sub-figure, the optimal choice of N for which sbr is minimum is marked as N o . It can be observed that as N grows large, sbr grows linearly. When M and N are both small, sbr is large due the tuple rate being dominated by the clock rollover samples. When M is large enough, however, tuple rate is dependent on the LSB size. Fig. 6 summarizes the optimal N choice for each resolution of the LC-ADC. It can be observed that when M is big enough and the sbr is largely dependent on the LSB size (q), the counter clock resolution (N) does not need to be too large. However, when M is small, N must be chosen higher so as not to generate too many tuples from counter clock roll-over.

In the next subsection, the three chosen design parameters, i.e. counter clock frequency (F c) and counter clock resolution (N ) for each LC-ADC resolution (M ) are evaluated for compression performance and signal quality.

C. Evaluation of LC-ADC Models

The LC-ADC design parameters and the respective design conditions they must meet are summarized in Fig. 2a. It also presents the LC-ADC evaluation criteria using the two performance metrics, compression ratio (CR) and signal-todistortion ratio (SDR), introduced in Section IIB. These can help designers choose the right LC-ADC model for their application. Fig 2b shows the LC-ADC evaluation methodology used in this subsection. We converted the 48 recordings in the MIT-BIH Arrhythmia dataset to event-driven data using the ten (M, Fc, N) value sets summarized in Table I, then reconstructed the signals to Fc using linear interpolation and evaluated them using CR and SDR. The aim is to select LC-ADC models that maximize the SDR subject to a CR greater than 1.5. Fig. 7 shows the compression ratio at different resolutions of M. A CR of 1 indicates no compression, while for CR ≤ 1, the LC-ADC model generates more samples than a Nyquist Sampling ADC. A compression ratio greater than 1.5 would indicate acceptable compression. It can be observed that for M > 7 bits, the CR is less than 1, which means a Nyquist sampling ADC will be better for high-resolution applications. For models with M ≤ 7, good compression can be observed.

Ideally, an LC-ADC must maximize the SDR for a given CR. We extend this condition to also include the signal quality criteria presented in eq. ( 4). However, it must be noted that for some ECG applications, an SDR less than 21dB might also be acceptable. Fig. 8 shows the SDR at different resolutions of M. The models with M ≥ 7 have SDR close to the 21dB criteria. However, the most promising trade-off between CR and SDR can be observed at M = 7. To study this LC-ADC resolution further, we looked into varying the counter clock resolution (N). The MIT-BIH Arrhythmia dataset is originally sampled at 360Hz using an 11-bit ADC. In order, to sample close to the Fc of 2372.12 Hz for M= 7 bits, we first upsample the entire database to 38160Hz. From this up-sampled database, we then sample at Fc = 2385Hz, which is 0.54% greater than the minimum required Fc at this resolution. Then using M= 7 bits and Fc = 2385Hz, we varied N from 4 to 8-bits to search over the curve created with these values (see M=7 bits in Fig. 5). Beyond 8-bit counter clock resolution, the sbr starts increasing linearly and therefore, excluded from analysis here. The results are summarized in Table II.

In all N we simulated the case where the step-size between the two LC-ADC thresholds, ∆v, was set to q (i.e. 1 LSB) but additionally for the N = 6 to 8 bits models were also evaluated at ∆v = 2q as they have SDR > 21dB. From the eight models summarized in this table, MDL6, MDL7, and MDL8 follow the criteria of eq. ( 4). However, MDL8 gives the most ideal CR and SDR trade-off at a slightly higher sbr of 1320.92 bps. Moreover, MDL4, MDL5, and MDL6b, MDL7b, and MDL8b with ∆v = 2q might still be acceptable for certain applications with SDR > 20dB. All of these models are evaluated for eventdriven arrhythmia classification in the following section.

IV. CARDIAC ARRHYTHMIA CLASSIFICATION USING

EVENT-DRIVEN ECG In this section, a new deep learning based classifier is presented and the eight LC-ADC models summarized in Ta- 

A. Deep Learning Based Classifier

We designed a one-dimensional convolutional neural network as illustrated in Fig. 9. This 1D-CNN model has three convolutional layers followed by two fully-connected layers. Each convolutional layer has 64 filters of size 3, each. A stride of 1 is maintained throughout the network. Batch normalization and max pooling is applied after each convolutional layer to accelerate training and to reduce over-fitting. Max pooling also helps reduce complexity of the network in subsequent layers. To further ensure that over-fitting is minimized a dropout of 50% probability is applied between the two fully connected layers. Sparse categorical cross-entropy is used as the loss function with an ADAM optimizer and a learning rate of 0.001. The exponential decay rate for the 1st and 2nd moment estimates is set to 0.9 and 0.99, respectively.

The size of the input layer varies for each model based on the number of features. The output layer uses a softmax layer and classifies each beat into one of the following four categories: normal beat (N), supraventricular ectopic beats (S), ventricular ectopic beats (V), and fusion beats (F). The prominent morphological features of an ECG beat is contained in approximately an 800ms window [START_REF] Zhao | A 13.34 µW Event-Driven Patient-Specific ANN Cardiac Arrhythmia Classifier for Wearable ECG Sensors[END_REF] centered around the QRS peak as shown in Fig. 1b. For every model, we take Fig. 9: Proposed one-dimensional CNN for event-driven ECG classification 300ms before the R peak and 400ms after the R peak as a feature set, the size of which is indicated by f eatures variable of the input vector in Fig. 9. For event-driven models, a second channel containing time at each sample relative to the R peak is added. The number of channels are indicated as depth of the input vector in Fig. 9. Finally, to handle the extreme classimbalance inherent in the dataset, we use Synthetic Minority Oversampling TEchnique (SMOTE) to statistically balance the training set.

B. Classification Performance

A global training and verification approach is applied for classification of arrhythmias in the MIT-BIH Arrhythmia dataset. The four paced records 102, 104, 107 and 217 are excluded from the analysis as recommended by the Association for the Advancement of Medical Instrumentation (AAMI) [START_REF] Ec ; | Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms[END_REF]. All the beats from the remaining records are split into 65% training set, 10% validation set, and 25% test set. For a fair comparison, we have also tested the classifier on uniformly-sampled data using the MIT-BIH database as is, named MDL0 from here on. The MIT-BIH database is sampled at 360Hz using an 11-bit ADC. Since time information is implicit in uniformly sampled data, we only use the amplitudes at each sample as input to the 1D-CNN. The input feature vector for the uniform model is of the size 238x1 (features, depth). While, all event-driven models have an input vector size of 120x2 (features, depth). Accuracy (ACC), sensitivity (SEN), positive predictivity (+PV), and false positive rate (FPR) are used to assess the classifier performance and are defined as follows:

ACC = (T P + T N ) (T P + F P + F N + T N ) (9) 
SEN = T P (T P + F N ) (10) 
+P V = T P (T P + F P )

F P R = F P (F P + T N ) (11) 
where TP, TN, FP, and FN are the number of true positives, true negatives, false positive and false negatives per class.

The classification results for each using the eight event-driven models and the uniformly sampled, MDL0, are summarized in Table III. The classification performance of MDL0 is the benchmark for comparison with ACC, SEN and +PPV, all above 92%. In terms of overall performance considering all four classification parameters, MDL5 has the closest performance to MDL0. This is closely followed by MDL7b, MDL4 and MDL6b. If overall sensitivity is considered, MDL6b and MDL5 at 89.99% and 89.98% SEN, respectively, are closest in performance to MDL0. The overall sensitivity performance of event-driven models can be further improved by using a better class-balancing technique. Next, the overall +PV is greater than 90% for all event-driven models except MDL8b, while the FPR is lowest for MDL5 from all event-driven models. Classification performance by itself is not a good indicator for evaluation of event-driven models. We must also consider the complexity, therefore, we now present complexity analysis in the next subsection.

C. Accuracy-Complexity Trade-off

Table IV summarizes the complexity analysis of eventdriven and uniformly sampled 1D-CNN models. Since all event-driven models summarized in Table II use an LC-ADC resolution of 7 bits, their feature sets can be roughly captured in 120 features with 2 channels (depth). Therefore, the number of trainable parameters for the 1D-CNN classifier are consistently 132,676 for all event-driven models. The uniformly sampled model takes 238 features with 1 channel (depth), yet the number of trainable parameters are doubled at 255,748 compared to the event-driven models. We also calculated the number of floating point operations per second (FLOPS) required by the event-driven and uniformly sampled models. The uniformly sampled model requires 4883224 FLOPS, while the event-driven models only require 49% of this at 2397144 FLOPS. As expected, the uniformly sampled model has superior classification performance compared to all event-driven models. In order to better understand the accuracy-complexity tradeoff in event-driven models, we have analyzed the four most important parameters for a comparative analysis, namely the classification performance and complexity of the classifier as well as the compression and the signal quality of the ECG data. Fig. 10 shows the comparison with sensitivity of all models with their respective compression ratios. The models that follow the signal quality criteria of eq. ( 4) are colored blue, while those that do not are colored orange. Fig. 11 and Fig. 12 present a similar comparison using accuracies and positive predictive values of all models. In terms of accuracy, in Fig. 11, MDL6 offers the best accuracy and a In terms of positive predictive value, in Fig. 12, MDL6 still offers the best compression to signal-quality trade-off with excellent +PV and SDR greater than 21dB. This is closely followed by MDL4 and MDL7b, both of which have less than 21dB SDR. However, at CR=1.59, MDL4 offers the lowest compression. If higher signal compression is desired, MDL7b offers a better trade off with SDR of 20.75dB, which would still be acceptable for many applications. This higher compression can be attributed to the larger step-size between the upper and lower thresholds of the LC-ADC. It must be noted that higher compression rates imply lesser sampling by the LC-ADC and thereby, lesser power consumption in the circuit.

For biomedical applications, sensitivity is often considered the most important parameter as the cost of a misclassified true positives is much higher than the cost of misclassified true negatives. Therefore, in terms of sensitivity of different sampling schemes presented in Fig. 10, MDL5, MDL6 and MDL8b offer the best classification-compression trade off. All Fig. 11: Accuracy vs CR vs FLOPS for LC-ADC models Fig. 12: Positive predictivity vs CR vs FLOPS for LC-ADC models three of these models offer greater than 20dB SDR. With sensitivity at approximately 90%, MDL5 and MDL6 offer a compression of 2.34 and 2.93, respectively. In comparison with the uniformly sampled MDL0, MDL8b has 2.89% less SEN but offers a CR of 4.94. Overall, considering all three parameters, MDL6, offers the best performance with CR of 2.92 and SDR of 21.19. Therefore, a 7-bit LC-ADC with a 2385Hz counter clock frequency and a 6-bit counter clock resolution will offer comparative classification performance to a Nyquist ADC at 11-bits and 360Hz. The LC-ADC will save power by reducing the average sampling rate while maintaining good signal quality. Classification using the LC-ADC will require only 49% of the FLOPS required by data generated from a Nyquist sampling ADC.

D. Open-Source Event-Driven ECG Dataset

To the best of our knowledge, there is no publicly available non-uniformly sampled ECG dataset with arrhythmia labels for researching event-driven data processing and classification. Therefore, in this study, we used the popular MIT-BIH arrhythmia database and different LC-ADC models to derive a nonuniformly sampled event-driven ECG dataset. The dataset is generated using a MATLAB script and can generate LC-ADC data at different LC-ADC resolutions, clock frequencies and counter clock resolutions. The event-driven ECG dataset with arrhythmia annotations and corresponding MATLAB scripts is open-sourced in authors' website 2 to enable further research on the topic.

V. CONCLUSIONS

A new LC-ADC design and evaluation methodology was presented. For a given LC-ADC resolution, the minimum required counter clock frequency was estimated using the standard deviation means of 99.9 percentile magnitude of slopes. Furthermore, the counter clock resolution was chosen based on the number of bits that produce the minimum streambit-rate per second. The stream-bit-rate was estimated using the clock roll-over frequency, the average sampling rate of the LC-ADC and the size of the tuples generated by the LC-ADC. Using these design methodologies, ten different event-driven models were analyzed in terms of compression and signal-todistortion ratio. Since the 7-bit LC-ADC model offered the best compression and signal-quality, this model was further analyzed at different counter clock resolutions and different gaps between the LC-ADC thresholds. Then, a new 1D-CNN model was for cardiac arrhythmia classification. The event-driven models and a uniformly sampled model analyzed classification performance using the 1D-CNN. Then a thorough accuracy-complexity analysis was presented. It was concluded that a 7-bit LC-ADC at 2385Hz counter clock frequency and a 6-bit counter clock resolution offers the best accuracy-compression-complexity trade off. With classification performance comparable to a Nyquist sampled ADC, this LC-ADC model offers 3x data compression while maintaining the signal-to-distortion ratio of more than 21dB. Furthermore, this model requires only 49% FLOPS for classification in comparison with a uniformly sampled model. Therefore, the new LC-ADC evaluation and design methodology presented in this paper is a good tool for designers to choose an appropriate LC-ADC model for their event-driven applications, which may not be limited to ECG data. Finally, we developed an opensource event-driven ECG database with arrhythmia annotations for enabling further research on non-uniformly sampled data processing. 
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 1 Fig. 1: (a) a level-crossing ADC architecture (b) event-driven ECG samples (ECG out ), the analog ECG signal (ECG in ), and horizontal lines indicating the quantization levels using a 7-bit LC-ADC. (c) illustrated threshold crossings with LSB size, ∆v = 3q.
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 3 Fig. 3: The CDF of magnitude of slopes in the MIT-BIH dataset with x o shown at 99.9%.
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 4 Fig. 4: Minimum Fc required to accurately model event-driven data at different LC-ADC resolutions (M).
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 5 Fig. 5: The stream-bit-rate for varying counter clock resolution (N) over different LC-ADC resolutions (M).
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 6 Fig. 6: Counter clock resolution (N) that minimizes the streambit-rate over different LC-ADC resolutions (M).
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 7 Fig. 7: The compression ratio (CR) over the different LC-ADC resolutions (M). A CR of 1 represents no compression.
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 8 Fig. 8: SDR vs LC-ADC resolutions (M). SDR = 21dB represents the cross over line for 'good' quality signals.
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 10 Fig. 10: Sensitivity vs CR vs FLOPS for LC-ADC models
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TABLE I :

 I Compression and Signal Quality Analysis of LC-ADC Models

	M	Fc (Hz)	N	CR	SDR (dB)
	2	74.13	8	83.96	-2.93
	3	148.26	8	60.04	-1.10
	4	296.51	7	30.34	2.72
	5	593.03	7	13.11	9.06
	6	1186.06	7	6.46	15.61
	7	2372.12	4	1.59	19.91
	8	4744.24	3	0.46	24.94
	9	9488.49	3	0.23	29.92
	10	18976.97	3	0.12	34.54
	11	37953.94	3	0.06	38.68

TABLE II :

 II Compression and Signal Quality Analysis of LC-ADC Models at M = 7 bits and Fc = 2385 Hz

	Model	N	LSB	CR	SDR (dB)	sbr (bps)
	MDL4	4	q	1.59	19.91	1036.82
	MDL5	5	q	2.34	20.46	1074.44
	MDL6	6	q	2.92	21.19	1147.75
	MDL7	7	q	3.25	21.99	1233.14
	MDL8	8	q	3.38	22.57	1320.92
	MDL6b	6	2q	3.66	20.66	-
	MDL7b	7	2q	4.45	20.75	-
	MDL8b	8	2q	4.94	20.25	-

ble II are analyzed for event-driven ECG classification. Then, a complexity analysis in terms of floating point operations per second for each model is presented and a comparison is made with uniformly sampled data. Lastly, an open-source event-driven ECG dataset is summarized based on the best performing LC-ADC models from this study.

TABLE III :

 III Arrhythmia Classification Summary

	Model	Class	ACC	SEN	+PV	FPR
		N	99.09	99.59	99.40	5.10
		S	99.45	86.97	92.46	0.20
	MDL0	V	99.65	97.73	97.29	0.20
		F	99.80	85.71	90.00	0.08
		Average	99.49	92.40	94.78	1.39
	MDL4	N	98.39	99.48	98.72	10.87
		S	98.94	72.65	86.55	0.32
		V	99.49	94.85	97.84	0.16
		F	99.75	82.86	86.57	0.11
		Average	99.14	87.46	92.42	2.86
	MDL5	N	98.53	99.20	99.14	7.19
		S	99.03	81.48	83.04	0.47
		V	99.51	96.88	96.12	0.29
		F	99.76	82.38	88.26	0.09
		Average	99.20	89.98	91.64	2.01
	MDL6	N	98.57	99.55	98.86	9.71
		S	99.13	76.98	90.01	0.37
		V	99.49	95.19	97.45	0.19
		F	99.74	80.48	87.56	0.10
		Average	99.23	88.05	93.47	2.59
	MDL7	N	98.34	99.32	98.82	9.97
		S	98.96	75.68	84.90	0.37
		V	99.42	95.07	96.06	0.16
		F	99.69	78.51	83.33	0.13
		Average	99.10	87.14	90.77	2.66
	MDL8	N	98.31	99.36	98.75	10.57
		S	98.93	76.55	83.31	0.43
		V	99.43	94.22	97.53	0.18
		F	99.71	77.61	86.70	0.10
		Average	99.09	86.92	90.42	2.82
	MDL6b	N	98.50	99.20	99.12	7.42
		S	99.07	81.91	83.98	0.44
		V	99.44	95.98	96.09	0.29
		F	99.71	82.86	82.86	0.14
		Average	99.18	89.99	90.51	2.07
	MDL7b	N	98.53	99.53	98.83	9.94
		S	99.13	75.40	91.24	0.20
		V	99.43	95.02	96.83	0.23
		F	99.72	81.43	84.24	0.13
		Average	99.20	87.84	92.78	2.62
	MDL8b	N	98.23	99.01	99.01	8.36
		S	98.92	81.04	80.00	0.57
		V	99.37	95.13	95.89	0.31
		F	99.69	82.86	80.93	0.16
		Average	99.05	89.51	88.95	2.35

TABLE IV :

 IV Complexity Analysis of Event-Driven and Uniformly Sampled 1D-CNN Models

	Type	Input Vector	Parameters	FLOPS
	Event-Driven	120x2	132,676	2397144
	Uniform	238x1	255,748	4883224

Other design options include increasing N such that the smallest slope in the ECG signal can be captured or to add an overflow flag in the hardware design. However, these would add further complexity in the downstream processing. Repeating a tuple is a simpler solution which adds very little complexity.

The open-source event-driven ECG dataset is available at https://github.com/jedaiproject/Open-Source-Event-Driven-ECG-Dataset
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