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ABSTRACT

Image restoration has long been one of the key research top-
ics in image processing. Many mathematical approaches
have been developed to solve this problem, e.g., variational
methods, wavelet techniques, or Bayesian methods. With the
widespread of neural network (NN) models in all the subdo-
mains of data science, the performance limits of these meth-
ods are further pushed. One of the most successful strategies
consists of plugging NNs in existing optimization algorithms.
However, so doing raises several mathematical and practical
challenges. One of the main issues is to secure the conver-
gence of the resulting iterative scheme. Further questions
concerning the characterization of the reached limit are also
worth being addressed. In this paper, we show that the the-
ory of maximally monotone operators allows us to bring
insightful answers to these problems and to design firmly
nonexpansive NNs; combining these with postprocessing
NNs leads to excellent global restoration quality.

Index Terms— Neural networks, forward-backward al-
gorithm, plug-and-play algorithm, image restoration

1. INTRODUCTION

Image restoration problems can often be formulated as in-
verse problems where the objective is to recover an original
unknown image x, assumed to belong to a real Hilbert space
H, from degraded measurements z ∈ H given by

z = Hx+ e, (1)

with H : H → H a degradation linear operator and e ∈ H the
realization of an additive random noise. A standard way of
solving (1) is to define the estimate x̂ ∈ H of x as a minimizer
of the sum of two functions: a data-fidelity term f ∈ Γ0(H)1
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1Γ0(H) denotes the set of convex, proper and lower-semicontinuous

function fromH to ]−∞,+∞].

related to the noise distribution in (1), and a regularization
term g ∈ Γ0(H) incorporating a priori information one has
on the target image. For many standard noise distributions
(e.g. Gaussian, Poisson-Gauss, or logistic), f corresponds
to a µ-Lipschitz differentiable function. Under qualifications
conditions, this minimization problem is equivalent to

find x̂ ∈ H such that 0 ∈ ∇f(x̂) + ∂g(x̂). (2)

This problem can be solved efficiently using proximal meth-
ods (see e.g., [1]). In particular, a standard approach consists
in using a forward-backward (FB) algorithm [2, 3, 4]:

(∀n ∈ N) xn+1 = Jγ∂g (xn − γ∇f(xn)) , (3)

where 0 < γ < 2/µ, and Jγ∂g is the resolvent of γ∂g,
corresponding to the proximity operator of g. The sequence
(xn)n∈N is known to converge (weakly) to a solution to (2).

The regularization term g is often necessary to avoid ill-
posedness problems, and many works have been dedicated to
the choice of this term. It often tends to promote the smooth-
ness of the solution or to enforce its sparsity. Good exam-
ples of such regularization functions are the total variation
semi-norm [5] and its various extensions [6, 7], and sparsity-
promoting functions leveraging wavelet decomposition [8].
Recently, Plug-and-Play (PnP) approaches [9] suggested to
replace the proximity operators naturally arising in proximal
algorithms used for solving (2) by a denoiser. This strat-
egy has since then become the state-of-the-art in many ap-
plications [10, 11], in particular with the recent progress of
learning-based denoisers and Neural Networks (NNs).

The theoretical convergence of sequences generated by
PnP algorithms has drawn a lot of attention in the last years
[12, 13, 14, 15]. However, it often relies on strong structural
constraints on the denoiser (e.g. NNs without residual skip
connection) [14, 15], and/or the limit point is not clearly char-
acterized [12, 13].

In this work, we employ a technique to train any NN as
the resolvent of a maximally monotone operator, ensuring the
convergence of the resulting PnP algorithm to a solution to a
variational inclusion problem. Leveraging this technique, we
develop a convergent PnP-FB algorithm, paired with a post-
processing approach. We show that the resulting enhanced



PnP method leads to very competitive results compared to
the most advanced (but heuristic) NN-based image restora-
tion methods.

The paper is organized as follows: our approach is given
in Section 2. Then, in Section 3 we show the high quality of
the results achieved with our method in image deconvolution
problems. Finally, we draw some brief conclusions.

2. PROPOSED METHOD

In this section we detail the proposed method, in three steps.
We first define the PnP-FB algorithm, providing convergence
guaranties. We then give the proposed training scheme to en-
sure the convergence of the PnP-FB algorithm. Finally, we
develop a post-processing technique to improve the final re-
construction results.

2.1. Convergent PnP algorithms

To build a PnP algorithm based on the FB iteration (3), we
need to replace the resolvent operator Jγ∂g by a denoising
operator J̃ : H → H, leading to the following PnP-FB algo-
rithm:

(∀n ∈ N) xn+1 = J̃ (xn − γ∇f(xn)) . (4)

It is well known from fixed point theory that a sufficient con-
dition for (4) to converge is to have J̃ firmly nonexpansive
[4]. Recall that the operator J̃ is firmly nonexpansive if, for
every (x, y) ∈ H2, ‖J̃x− J̃y‖2 6

〈
x− y | J̃x− J̃y

〉
.

To build such operator J̃ , we can leverage the following
classical result from monotone operator theory [4].

Proposition 2.1. Let A : H ⇒ H. A is a maximally mono-
tone operator if and only if its resolvent is firmly nonexpan-
sive, i.e. there exists a nonexpansive (i.e. 1-Lipschitzian) op-
erator Q : H → H such that

JA : H → H : x 7→ x+Q(x)

2
. (5)

In turn, A = 2(Id +Q)−1 − Id.

This proposition has two important consequences. First,
according to (5), to build a firmly nonexpansive operaor J̃ ,
one can build a 1-Lipschitzian operatorQ = (2J̃−Id) instead
and then deduce J̃ . Second, if J̃ is firmly nonexpansive, then
there exists a maximally monotone operator A such that J̃ =
JA. Using this second statement, we can deduce the following
proposition, the proof of which is given in [16], stating the
convergence of sequences (xn)n∈N generated by the PnP-FB
algorithm (4).

Proposition 2.2. Let µ ∈ ]0,+∞[ and let γ ∈]0, 2/µ[.
Let f : H → R be a convex differentiable function with µ-
Lipschitzian gradient. Let J̃ be a neural network such that

J̃ is firmly nonexpansive as in (5). Let Ã be the maximally
monotone operator equal to (J̃−1 − Id). Assume that the set
Sγ of zeros of ∇f + γ−1Ã is nonempty. Then, the sequence
(xn)n∈N generated by iteration (4) converges (weakly) to
x̂ ∈ Sγ , i.e., x̂ satisfies

0 ∈ ∇f(x̂) + γ−1Ã(x̂). (6)

Conversely, if x̂ is a solution to (6) and Ã is an arbitrary sta-
tionary maximally monotone operator, then its resolvent can
be approximated as closely as desired by some firmly nonex-
pansive neural network.

Three remarks can be made on Proposition 2.2. First, the
variational inclusion (6) is more general than the one arising
from the traditional Bayesian formulation (2). Indeed, un-
like (2), (6) does not necessarily correspond to a minimiza-
tion problem. Second, the variational inclusion (2) depends
on the stepsize γ. This has an interesting echo in the PnP lit-
erature where the dependency of the solution to the algorithm
parameters has long been acknowledged [17, 18]. Last, the
final part of the proposition constitutes a universal approxi-
mation result showing that neural networks can provide good
approximations to the resolvents of a wide class of maximally
monotone operators.

2.2. Training firmly nonexpansive networks

We propose to train J̃ as a denoiser and to ensure its firm
nonexpansiveness.

Let x = (xi)16i6I be a dataset of I images inH. For ev-
ery i ∈ {1, . . . , I}, we build a noisy observation of xi, given
by yi = xi+σwi, where σ > 0 andwi ∈ H is a realization of
a standard normal i.i.d. random variable. To ensure the firm
nonexpansiveness of the trained NN J̃ , we consider a regular-
ized loss, incorporating an appropriate Lipschitz constraint on
Qθ = (2J̃θ−Id) where θ ∈ RM are the learnable parameters.
This constraint is applied to points x̃i = %ixi+(1−%i)J̃(yi),
randomly selected on the segments [xi, J̃(yi)], where %i is a
realization of a random variable with uniform distribution on
[0,1]. The training loss then reads

Φi(θ) = ‖J̃θ(yi)−xi‖2+λmax
{
‖∇∇∇Qθ(x̃i)‖2S, 1− ε

}
, (7)

where λ > 0 and ε > 0 are fixed parameters, ‖ · ‖S is the
spectral norm, and the regularization on the Jacobian aims
at enforcing the nonexpansiveness of Qθ. Training the net-
work then amounts to minimize

∑I
i=1 Φi(θ), which is differ-

entiable and can thus be minimized using standard training
algorithms such as, e.g., Adam [11].

2.3. Postprocessing network

In order to improve the reconstruction results, we propose
to introduce a postprocessing step carried out by a specifi-
cally trained networkG for the problem of interest. Precisely,
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Fig. 1. Illustration of the proposed algorithm, relying on a firmly
nonexpansive denoising network J̃ , and on a restoration network G.
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Fig. 2. Impact of the postprocessing along the iterations of Algo-
rithm 8 on the BSD68 sample from Fig. 3.

defining x̂ the limit of (xn)n∈N, we apply the network G as

û = G(x̂). (8)

The proposed algorithm (4)-(8) is summarized in Fig. 1. Mo-
tivated by the success of UNets in a variety of image recon-
struction and image-to-image translation tasks, we adopt the
residual UNet architecture, similarly to [19].

3. EXPERIMENTS

3.1. Simulation setting

We apply our method to a deconvolution problem, which is
an instance of (1) where H = RK , and H models a blurring
operator implemented as a circular convolution with impulse
response h, and e ∈ RK is a realization of an additive white
Gaussian random noise with standard deviation ν > 0.

In this work, we consider the same four problem settings
presented in [20]: the Motion A (M. A) and Motion B (M.
B) setups, i.e. h is the eighth and third motion test kernels
respectively from [21] with ν = 0.01, the Gaussian A (G. A)
setup, i.e., h is a Gaussian kernel with standard deviation of
1.6 pixel and ν = 0.008, and the Square (S.) setup, i.e., h is a
square kernel of width of 7 pixels and ν = 0.01.

3.2. Dataset and training

We choose the same DnCNN-based architecture as in [16]
for J̃ and we train it following the procedure described in
Section 2.2. Precisely, we set (λ, ε) = (10−5, 5 × 10−2) in
(7) and we optimize the weights of the network J̃ using Adam
on pairs of groundtruth/noisy patches of size 50 × 50 (with
σ = 0.007) built on the 50, 000 test images from ImageNet.

Regarding the training of the postprocessing UNet G, we
create a dataset consisting of 6700 images with 200 images
from the BSD training set [22], 1000 images from the COCO
training set [23], 4500 images from the Waterloo dataset [24],

1000 images from the Div2K dataset [25]. For each image of
our training set and in each of the 4 setups described above,
we generate degraded measurements as in (1). We then solve
each problem with 1000 iterations of the PnP-FB algorithm
(4), thus obtaining a dataset of estimates (x̂i)16i6I . The net-
workG is trained by minimizing the `1-loss between the pairs
(G(x̂i), xi)16i6I with the Adam algorithm for 8× 105 itera-
tions on randomly cropped patches of size 128× 128, with a
batch size of 16. The learning rate is set to 10−4 and is divided
by 2 every 105 iterations. Eventually, we test our method on
the 256 × 256 centered-crop Flickr30 and BSD500 datasets
from [20], and both BSD68 and Kodak24 datasets [26].

3.3. Experimental results

For the sake of analyzing the interest of the postprocessing as
a function of the number of iteration, we study the reconstruc-
tion results when one applies G at each iteration with un =
G(xn). Since sequence (xn)n∈N converges to x̂, (un)n∈N
converges to û = G(x̂) if G is a continuous mapping. In
Fig. 2, we show the behavior of Algorithm 8 on one image of
the BSD68 dataset. The graph on the left shows the values of
cn = ‖xn−xn−1‖/‖x0‖ for the two sequences (xn)n∈N and
(un)n∈N and confirms the convergence of both sequences.
The graph on the right shows that the positive effect of the
postprocessing un = G(xn) can be observed from iteration
200, i.e. long before the number of iteration used for training
of G.

We compare our method with different state-of-the-art
methods. First, we consider pure optimization methods with
either a TV prior (VAR method from [20]) or a constrained
`1-minimization problem inducing sparsity in a redundant
wavelet dictionary, inspired from [27]. Second, we compare
our results with the unfolded network iRestNet [20]. Third,
we consider PnP algorithms IRCNN [10], and DPIR [19], as
well as a PnP-BM3D algorithm (i.e. algorithm (4) where J̃
is replaced by BM3D [28]). We also compare with LMMO
[16], that is the convergent PnP-FB algorithm (4) without the
postprocessing step.

Table 1 gives average metrics on the Flickr30 and BSD500
test sets for the 4 different setups described in Section 3.1.
Our method significantly improves over all methods, and
performs on par with DPIR. Notice that our method tends to
perform better than DPIR for more difficult Gaussian (G. A)
and Square (S.) kernels, and sligthly worse than DPIR for
the simpler motion blurs M. A and M. B. We can also notice
the strong improvement over the LMMO method, i.e. our
method without postprocessing, underlining the importance
of the postprocessing step in the reconstruction quality.

Further comparisons are given in Table 2 on the BSD68
and Kodak24 test sets. On these datasets, we notice the lower
performance of our method in terms of PSNR metric in the
G. A and S. setups, while it continues to deliver state-of-the-
art SSIM values. We believe that this might be due to a dif-



(a) Groundtruth (b) Observed (c) TV/`1∗ (d) PnP-BM3D (e) IRCNN [10] (f) DPIR [19] (g) Proposed

(PSNR, SSIM) (22.86, 0.704) (26.07, 0.853) (28.05, 0.869) (29.82, 0.907) (29.69, 0.910) (30.84, 0.927)

(PSNR, SSIM) (19.79, 0.531) (28.41, 0.849) (29.67, 0.871) (32.62, 0, 910) (33.35, 0.917) (33.13, 0.917)

Fig. 3. Reconstructions on a Flickr30 sample (top row) in the G. A setup, and on a BSD68 sample (bottom row) in the M. A setup, for
different methods. Best metrics are indicated in red, second best in blue and the blur kernel is shown in the top left corner of each observed
image. ∗In column (c), the top row gives the TV solution and the second row gives the `1 solution. The TV result is borrowed from [20].

TV PnP-BM3D iRestNet [20] LMMO [16] IRCNN [10] DPIR [19] Proposed

Flickr30

G.A 27.77/0.857 27.71/0.852 27.99/0.892 29.23/0.886 29.36/0.885 29.16/0.893 30.00/0.899
M.A 28.22/0.856 29.91/0.885 30.49/0.919 32.18/0.923 32.50/0.927 33.40/0.938 33.14/0.937
M.B 28.74/0.869 30.11/0.887 30.50/0.930 32.46/0.928 32.81/0.930 33.69/0.941 33.52/0.939
S. 26.99/0.818 27.62/0.832 28.36/0.886 29.66/0.883 29.86/0.886 30.33/0.898 30.43/0.899

BSD500

G.A 27.30/0.804 27.02/0.785 27.94/0.853 28.43/0.833 28.66/0.840 28.45/0.844 28.73/0.854
M.A 28.02/0.819 28.88/0.828 30.48/0.898 31.19/0.895 31.65/0.902 32.36/0.912 32.12/0.909
M.B 28.41/0.829 29.01/0.827 30.83/0.910 31.46/0.900 31.96/0.907 32.58/0.916 32.51/0.915
S. 26.38/0.756 26.53/0.749 27.90/0.840 28.40/0.822 28.74/0.834 28.90/0.837 29.04/0.845

Table 1. Average metrics on the Flickr30 and BSD500 datasets for the 4 different setups considered. Best values are indicated in red, second
best in blue. Metrics for the TV prior and iRestNet are borrowed from [20].

`1 IRCNN [10] DPIR [19] Proposed

B
SD

68

G.A 27.33/0.776 29.32/0.841 29.14/0.844 28.92/0.856
M.A 28.38/0.814 32.04/0.901 32.67/0.910 32.39/0.909
M.B 28.82/0.825 32.40/0.907 32.95/0.914 32.83/0.914
S. 26.71/0.745 29.26/0.832 29.40/0.833 29.38/0.845

K
od

ak
24

G.A 28.03/0.789 30.36/0.851 30.02/0.856 28.54/0.863
M.A 28.92/0.810 33.14/0.897 33.88/0.907 33.55/0.904
M.B 29.67/0.826 33.62/0.904 34.28/0.914 34.06/0.912
S. 28.05/0.768 30.67/0.846 30.92/0.850 30.01/0.857

Table 2. Average metrics on the BSD68 and Kodak24 datasets for
the 4 different setups considered. Best values are indicated in red,
second best in blue.

ficulty of our UNet to generalize on images much larger than
the 128× 128 patches on which it was trained.

Fig. 3 shows a visual reconstruction results for a G. A
setup on a sample from Flickr30 (top row) and M. A setup
on a sample from BSD68 (bottom row). We observe that our

method reconstructs fine details and shows more features than
reconstructions by other methods. This is visible for instance
at the bottom of the BSD68 sample, where the original image
shows a trembling reflection of the castle in the water: our
method leads to the nicer visual estimate for this effect.

4. CONCLUSION

In this paper, we have proposed an approach for building con-
vergent PnP algorithms. This is done by leveraging maxi-
mally monotone operator theory, and constraining the Lips-
chitz constant of the denoiser during the training process. We
proposed to pair the resulting PnP-FB algorithm with a post-
processing network trained on the problem of interest. We ap-
plied our method on several image deconvolution problems,
showing that it leads to outstanding restoration quality, com-
parable with the most advanced state-of-the-art methods.
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