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Image restoration has long been one of the key research topics in image processing. Many mathematical approaches have been developed to solve this problem, e.g., variational methods, wavelet techniques, or Bayesian methods. With the widespread of neural network (NN) models in all the subdomains of data science, the performance limits of these methods are further pushed. One of the most successful strategies consists of plugging NNs in existing optimization algorithms. However, so doing raises several mathematical and practical challenges. One of the main issues is to secure the convergence of the resulting iterative scheme. Further questions concerning the characterization of the reached limit are also worth being addressed. In this paper, we show that the theory of maximally monotone operators allows us to bring insightful answers to these problems and to design firmly nonexpansive NNs; combining these with postprocessing NNs leads to excellent global restoration quality.

INTRODUCTION

Image restoration problems can often be formulated as inverse problems where the objective is to recover an original unknown image x, assumed to belong to a real Hilbert space H, from degraded measurements z ∈ H given by

z = Hx + e, (1) 
with H : H → H a degradation linear operator and e ∈ H the realization of an additive random noise. A standard way of solving [START_REF] Patrick | Proximal splitting methods in signal process[END_REF] is to define the estimate x ∈ H of x as a minimizer of the sum of two functions: a data-fidelity term f ∈ Γ 0 (H) 1 related to the noise distribution in [START_REF] Patrick | Proximal splitting methods in signal process[END_REF], and a regularization term g ∈ Γ 0 (H) incorporating a priori information one has on the target image. For many standard noise distributions (e.g. Gaussian, Poisson-Gauss, or logistic), f corresponds to a µ-Lipschitz differentiable function. Under qualifications conditions, this minimization problem is equivalent to find x ∈ H such that 0 ∈ ∇f ( x) + ∂g( x).

(

) 2 
This problem can be solved efficiently using proximal methods (see e.g., [START_REF] Patrick | Proximal splitting methods in signal process[END_REF]). In particular, a standard approach consists in using a forward-backward (FB) algorithm [START_REF] George | Convergence rates in forward-backward splitting[END_REF][START_REF] Patrick | Signal recovery by proximal forward-backward splitting[END_REF][START_REF] Heinz | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]:

(∀n ∈ N) x n+1 = J γ∂g (x n -γ∇f (x n )) , (3) 
where 0 < γ < 2/µ, and J γ∂g is the resolvent of γ∂g, corresponding to the proximity operator of g. The sequence (x n ) n∈N is known to converge (weakly) to a solution to [START_REF] George | Convergence rates in forward-backward splitting[END_REF]. The regularization term g is often necessary to avoid illposedness problems, and many works have been dedicated to the choice of this term. It often tends to promote the smoothness of the solution or to enforce its sparsity. Good examples of such regularization functions are the total variation semi-norm [START_REF] Leonid I Rudin | Nonlinear total variation based noise removal algorithms[END_REF] and its various extensions [START_REF] Bredies | Total generalized variation[END_REF][START_REF] Condat | Semi-local total variation for regularization of inverse problems[END_REF], and sparsitypromoting functions leveraging wavelet decomposition [START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF]. Recently, Plug-and-Play (PnP) approaches [START_REF] Singanallur V Venkatakrishnan | Plug-and-play priors for model based reconstruction[END_REF] suggested to replace the proximity operators naturally arising in proximal algorithms used for solving (2) by a denoiser. This strategy has since then become the state-of-the-art in many applications [START_REF] Zhang | Learning deep CNN denoiser prior for image restoration[END_REF][START_REF] Zhang | Deep plug-andplay super-resolution for arbitrary blur kernels[END_REF], in particular with the recent progress of learning-based denoisers and Neural Networks (NNs).

The theoretical convergence of sequences generated by PnP algorithms has drawn a lot of attention in the last years [START_REF] Stanley H Chan | Plugand-play ADMM for image restoration: Fixed-point convergence and applications[END_REF][START_REF] Ryu | Plug-and-play methods provably converge with properly trained denoisers[END_REF][START_REF] Terris | Building firmly nonexpansive convolutional neural networks[END_REF][START_REF] Hertrich | Convolutional proximal neural networks and plug-and-play algorithms[END_REF]. However, it often relies on strong structural constraints on the denoiser (e.g. NNs without residual skip connection) [START_REF] Terris | Building firmly nonexpansive convolutional neural networks[END_REF][START_REF] Hertrich | Convolutional proximal neural networks and plug-and-play algorithms[END_REF], and/or the limit point is not clearly characterized [START_REF] Stanley H Chan | Plugand-play ADMM for image restoration: Fixed-point convergence and applications[END_REF][START_REF] Ryu | Plug-and-play methods provably converge with properly trained denoisers[END_REF].

In this work, we employ a technique to train any NN as the resolvent of a maximally monotone operator, ensuring the convergence of the resulting PnP algorithm to a solution to a variational inclusion problem. Leveraging this technique, we develop a convergent PnP-FB algorithm, paired with a postprocessing approach. We show that the resulting enhanced PnP method leads to very competitive results compared to the most advanced (but heuristic) NN-based image restoration methods.

The paper is organized as follows: our approach is given in Section 2. Then, in Section 3 we show the high quality of the results achieved with our method in image deconvolution problems. Finally, we draw some brief conclusions.

PROPOSED METHOD

In this section we detail the proposed method, in three steps. We first define the PnP-FB algorithm, providing convergence guaranties. We then give the proposed training scheme to ensure the convergence of the PnP-FB algorithm. Finally, we develop a post-processing technique to improve the final reconstruction results.

Convergent PnP algorithms

To build a PnP algorithm based on the FB iteration (3), we need to replace the resolvent operator J γ∂g by a denoising operator J : H → H, leading to the following PnP-FB algorithm:

(∀n ∈ N) x n+1 = J (x n -γ∇f (x n )) . (4) 
It is well known from fixed point theory that a sufficient condition for (4) to converge is to have J firmly nonexpansive [START_REF] Heinz | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]. Recall that the operator J is firmly nonexpansive if, for every (x, y) ∈ H 2 , Jx -Jy 2

xy | Jx -Jy .

To build such operator J, we can leverage the following classical result from monotone operator theory [START_REF] Heinz | Convex analysis and monotone operator theory in Hilbert spaces[END_REF].

Proposition 2.1. Let A : H ⇒ H. A is a maximally monotone operator if and only if its resolvent is firmly nonexpansive, i.e. there exists a nonexpansive (i.e. 1-Lipschitzian) operator Q : H → H such that

J A : H → H : x → x + Q(x) 2 . ( 5 
)
In turn,

A = 2(Id +Q) -1 -Id.
This proposition has two important consequences. First, according to [START_REF] Leonid I Rudin | Nonlinear total variation based noise removal algorithms[END_REF], to build a firmly nonexpansive operaor J, one can build a 1-Lipschitzian operator Q = (2 J -Id) instead and then deduce J. Second, if J is firmly nonexpansive, then there exists a maximally monotone operator A such that J = J A . Using this second statement, we can deduce the following proposition, the proof of which is given in [START_REF] Pesquet | Learning maximally monotone operators for image recovery[END_REF], stating the convergence of sequences (x n ) n∈N generated by the PnP-FB algorithm (4). Proposition 2.2. Let µ ∈ ]0, +∞[ and let γ ∈]0, 2/µ[. Let f : H → R be a convex differentiable function with µ-Lipschitzian gradient. Let J be a neural network such that J is firmly nonexpansive as in [START_REF] Leonid I Rudin | Nonlinear total variation based noise removal algorithms[END_REF]. Let A be the maximally monotone operator equal to ( J -1 -Id). Assume that the set S γ of zeros of ∇f + γ -1 A is nonempty. Then, the sequence (x n ) n∈N generated by iteration (4) converges (weakly) to x ∈ S γ , i.e., x satisfies

0 ∈ ∇f ( x) + γ -1 A( x). (6) 
Conversely, if x is a solution to (6) and A is an arbitrary stationary maximally monotone operator, then its resolvent can be approximated as closely as desired by some firmly nonexpansive neural network.

Three remarks can be made on Proposition 2.2. First, the variational inclusion ( 6) is more general than the one arising from the traditional Bayesian formulation [START_REF] George | Convergence rates in forward-backward splitting[END_REF]. Indeed, unlike ( 2), ( 6) does not necessarily correspond to a minimization problem. Second, the variational inclusion (2) depends on the stepsize γ. This has an interesting echo in the PnP literature where the dependency of the solution to the algorithm parameters has long been acknowledged [START_REF] Meinhardt | Learning proximal operators: Using denoising networks for regularizing inverse imaging problems[END_REF][START_REF] Wei | Tuning-free plugand-play proximal algorithm for inverse imaging problems[END_REF]. Last, the final part of the proposition constitutes a universal approximation result showing that neural networks can provide good approximations to the resolvents of a wide class of maximally monotone operators.

Training firmly nonexpansive networks

We propose to train J as a denoiser and to ensure its firm nonexpansiveness.

Let x = (x i ) 1 i I be a dataset of I images in H. For every i ∈ {1, . . . , I}, we build a noisy observation of x i , given by y i = x i +σw i , where σ > 0 and w i ∈ H is a realization of a standard normal i.i.d. random variable. To ensure the firm nonexpansiveness of the trained NN J, we consider a regularized loss, incorporating an appropriate Lipschitz constraint on Q θ = (2 J θ -Id) where θ ∈ R M are the learnable parameters. This constraint is applied to points x i = i x i + (1i ) J(y i ), randomly selected on the segments [x i , J(y i )], where i is a realization of a random variable with uniform distribution on [0,1]. The training loss then reads

Φ i (θ) = J θ (y i )-x i 2 +λ max ∇ ∇ ∇Q θ ( x i ) 2 S , 1 -ε , (7) 
where λ > 0 and ε > 0 are fixed parameters, • S is the spectral norm, and the regularization on the Jacobian aims at enforcing the nonexpansiveness of Q θ . Training the network then amounts to minimize

I i=1 Φ i (θ)
, which is differentiable and can thus be minimized using standard training algorithms such as, e.g., Adam [START_REF] Zhang | Deep plug-andplay super-resolution for arbitrary blur kernels[END_REF].

Postprocessing network

In order to improve the reconstruction results, we propose to introduce a postprocessing step carried out by a specifically trained network G for the problem of interest. Precisely, defining x the limit of (x n ) n∈N , we apply the network G as

u = G( x). (8) 
The proposed algorithm ( 4)-( 8) is summarized in Fig. 1. Motivated by the success of UNets in a variety of image reconstruction and image-to-image translation tasks, we adopt the residual UNet architecture, similarly to [START_REF] Zhang | Plug-and-play image restoration with deep denoiser prior[END_REF].

EXPERIMENTS

Simulation setting

We apply our method to a deconvolution problem, which is an instance of ( 1) where H = R K , and H models a blurring operator implemented as a circular convolution with impulse response h, and e ∈ R K is a realization of an additive white Gaussian random noise with standard deviation ν > 0.

In this work, we consider the same four problem settings presented in [START_REF] Bertocchi | Deep unfolding of a proximal interior point method for image restoration[END_REF]: the Motion A (M. A) and Motion B (M. B) setups, i.e. h is the eighth and third motion test kernels respectively from [START_REF] Levin | Understanding and evaluating blind deconvolution algorithms[END_REF] with ν = 0.01, the Gaussian A (G. A) setup, i.e., h is a Gaussian kernel with standard deviation of 1.6 pixel and ν = 0.008, and the Square (S.) setup, i.e., h is a square kernel of width of 7 pixels and ν = 0.01.

Dataset and training

We choose the same DnCNN-based architecture as in [START_REF] Pesquet | Learning maximally monotone operators for image recovery[END_REF] for J and we train it following the procedure described in Section 2.2. Precisely, we set (λ, ε) = (10 -5 , 5 × 10 -2 ) in (7) and we optimize the weights of the network J using Adam on pairs of groundtruth/noisy patches of size 50 × 50 (with σ = 0.007) built on the 50, 000 test images from ImageNet.

Regarding the training of the postprocessing UNet G, we create a dataset consisting of 6700 images with 200 images from the BSD training set [START_REF] Martin | A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[END_REF], 1000 images from the COCO training set [START_REF] Lin | Microsoft COCO: common objects in context[END_REF], 4500 images from the Waterloo dataset [START_REF] Ma | Waterloo Exploration Database: New challenges for image quality assessment models[END_REF], 1000 images from the Div2K dataset [START_REF] Agustsson | Ntire 2017 challenge on single image super-resolution: Dataset and study[END_REF]. For each image of our training set and in each of the 4 setups described above, we generate degraded measurements as in [START_REF] Patrick | Proximal splitting methods in signal process[END_REF]. We then solve each problem with 1000 iterations of the PnP-FB algorithm (4), thus obtaining a dataset of estimates ( x i ) 1 i I . The network G is trained by minimizing the 1 -loss between the pairs (G( x i ), x i ) 1 i I with the Adam algorithm for 8 × 10 5 iterations on randomly cropped patches of size 128 × 128, with a batch size of 16. The learning rate is set to 10 -4 and is divided by 2 every 10 5 iterations. Eventually, we test our method on the 256 × 256 centered-crop Flickr30 and BSD500 datasets from [START_REF] Bertocchi | Deep unfolding of a proximal interior point method for image restoration[END_REF], and both BSD68 and Kodak24 datasets [START_REF] Franzen | Kodak lossless true color image suite[END_REF].

Experimental results

For the sake of analyzing the interest of the postprocessing as a function of the number of iteration, we study the reconstruction results when one applies G at each iteration with u n = G(x n ). Since sequence (x n ) n∈N converges to x, (u n ) n∈N converges to u = G( x) if G is a continuous mapping. In Fig. 2, we show the behavior of Algorithm 8 on one image of the BSD68 dataset. The graph on the left shows the values of c n = x nx n-1 / x 0 for the two sequences (x n ) n∈N and (u n ) n∈N and confirms the convergence of both sequences. The graph on the right shows that the positive effect of the postprocessing u n = G(x n ) can be observed from iteration 200, i.e. long before the number of iteration used for training of G.

We compare our method with different state-of-the-art methods. First, we consider pure optimization methods with either a TV prior (VAR method from [START_REF] Bertocchi | Deep unfolding of a proximal interior point method for image restoration[END_REF]) or a constrained 1 -minimization problem inducing sparsity in a redundant wavelet dictionary, inspired from [START_REF] Rafael E Carrillo | Sparsity averaging for compressive imaging[END_REF]. Second, we compare our results with the unfolded network iRestNet [START_REF] Bertocchi | Deep unfolding of a proximal interior point method for image restoration[END_REF]. Third, we consider PnP algorithms IRCNN [START_REF] Zhang | Learning deep CNN denoiser prior for image restoration[END_REF], and DPIR [START_REF] Zhang | Plug-and-play image restoration with deep denoiser prior[END_REF], as well as a PnP-BM3D algorithm (i.e. algorithm (4) where J is replaced by BM3D [START_REF] Mäkinen | Collaborative filtering of correlated noise: Exact transform-domain variance for improved shrinkage and patch matching[END_REF]). We also compare with LMMO [START_REF] Pesquet | Learning maximally monotone operators for image recovery[END_REF], that is the convergent PnP-FB algorithm (4) without the postprocessing step. Table 1 gives average metrics on the Flickr30 and BSD500 test sets for the 4 different setups described in Section 3.1. Our method significantly improves over all methods, and performs on par with DPIR. Notice that our method tends to perform better than DPIR for more difficult Gaussian (G. A) and Square (S.) kernels, and sligthly worse than DPIR for the simpler motion blurs M. A and M. B. We can also notice the strong improvement over the LMMO method, i.e. our method without postprocessing, underlining the importance of the postprocessing step in the reconstruction quality.

Further comparisons are given in Table 2 on the BSD68 and Kodak24 test sets. On these datasets, we notice the lower performance of our method in terms of PSNR metric in the G. A and S. setups, while it continues to deliver state-of-theart SSIM values. We believe that this might be due to a dif- ficulty of our UNet to generalize on images much larger than the 128 × 128 patches on which it was trained. Fig. 3 shows a visual reconstruction results for a G. A setup on a sample from Flickr30 (top row) and M. A setup on a sample from BSD68 (bottom row). We observe that our method reconstructs fine details and shows more features than reconstructions by other methods. This is visible for instance at the bottom of the BSD68 sample, where the original image shows a trembling reflection of the castle in the water: our method leads to the nicer visual estimate for this effect.

CONCLUSION

In this paper, we have proposed an approach for building convergent PnP algorithms. This is done by leveraging maximally monotone operator theory, and constraining the Lipschitz constant of the denoiser during the training process. We proposed to pair the resulting PnP-FB algorithm with a postprocessing network trained on the problem of interest. We applied our method on several image deconvolution problems, showing that it leads to outstanding restoration quality, comparable with the most advanced state-of-the-art methods.
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 12 Fig. 1. Illustration of the proposed algorithm, relying on a firmly nonexpansive denoising network J, and on a restoration network G.

Fig. 3 .

 3 Fig. 3. Reconstructions on a Flickr30 sample (top row) in the G. A setup, and on a BSD68 sample (bottom row) in the M. A setup, for different methods. Best metrics are indicated in red, second best in blue and the blur kernel is shown in the top left corner of each observed image. * In column (c), the top row gives the TV solution and the second row gives the 1 solution. The TV result is borrowed from [20].

Table 1 .

 1 Average Kodak24 G.A 28.03/0.789 30.36/0.851 30.02/0.856 28.54/0.863 M.A 28.92/0.810 33.14/0.897 33.88/0.907 33.55/0.904 M.B 29.67/0.826 33.62/0.904 34.28/0.914 34.06/0.912 S. 28.05/0.768 30.67/0.846 30.92/0.850 30.01/0.857

TV

PnP-BM3D iRestNet

[START_REF] Bertocchi | Deep unfolding of a proximal interior point method for image restoration[END_REF] 

LMMO

[START_REF] Pesquet | Learning maximally monotone operators for image recovery[END_REF] 

IRCNN

[START_REF] Zhang | Learning deep CNN denoiser prior for image restoration[END_REF] 

DPIR [19] Proposed Flickr30 G.A 27.77/0.857 27.71/0.852 27.99/0.892 29.23/0.886 29.36/0.885 29.16/0.893 30.00/0.899 M.A 28.22/0.856 29.91/0.885 30.49/0.919 32.18/0.923 32.50/0.927 33.40/0.938 33.14/0.937 M.B 28.74/0.869 30.11/0.887 30.50/0.930 32.46/0.928 32.81/0.930 33.69/0.941 33.52/0.939 S. 26.99/0.818 27.62/0.832 28.36/0.886 29.66/0.883 29.86/0.886 30.33/0.898 30.43/0.899 BSD500 G.A 27.30/0.804 27.02/0.785 27.94/0.853 28.43/0.833 28.66/0.840 28.45/0.844 28.73/0.854 M.A 28.02/0.819 28.88/0.828 30.48/0.898 31.19/0.895 31.65/0.902 32.36/0.912 32.12/0.909 M.B 28.41/0.829 29.01/0.827 30.83/0.910 31.46/0.900 31.96/0.907 32.58/0.916 32.51/0.915 S. 26.38/0.756 26.53/0.749 27.90/0.840 28.40/0.822 28.74/0.834 28.90/0.837 29.04/0.845 metrics on the Flickr30 and BSD500 datasets for the 4 different setups considered. Best values are indicated in red, second best in blue. Metrics for the TV prior and iRestNet are borrowed from [20]. 1 IRCNN [10] DPIR [19] Proposed BSD68 G.A 27.33/0.776 29.32/0.841 29.14/0.844 28.92/0.856 M.A 28.38/0.814 32.04/0.901 32.67/0.910 32.39/0.909 M.B 28.82/0.825 32.40/0.907 32.95/0.914 32.83/0.914 S. 26.71/0.745 29.26/0.832 29.40/0.833 29.38/0.845

Table 2 .

 2 Average metrics on the BSD68 and Kodak24 datasets for the 4 different setups considered. Best values are indicated in red, second best in blue.
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