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Abstract.15

Purpose Clinical data warehouses (CDW) provide access to massive amounts of medical images, but these images16

are often heterogeneous. They can for instance include images acquired both with or without the injection of a17

gadolinium-based contrast agent. Harmonizing such data sets is thus fundamental to guarantee unbiased results,18

for example when performing differential diagnosis. Furthermore, classical neuroimaging software tools for feature19

extraction are typically applied only to images without gadolinium. The objective of this work is to homogenize20

images from a CWD and enable the extraction of consistent features from brain MR images, no matter the initial21

presence or absence of gadolinium.22

Approach We propose and compare different 3D U-Net and conditional GAN models to convert contrast-enhanced23

T1-weighted (T1w-ce) into non-contrast-enhanced (T1w-nce) brain MRI. These models were trained using 230 image24

pairs and tested on 77 image pairs from the CDW of the Greater Paris area.25

Results Validation using standard image similarity measures demonstrated that the similarity between real and26

synthetic T1w-nce images was higher than between real T1w-nce and T1w-ce images for all the models compared.27

The best performing models were further validated on a segmentation task. We showed that tissue volumes extracted28

from synthetic T1w-nce images were closer to those of real T1w-nce images than volumes extracted from T1-ce29

images.30

Conclusions We showed that deep learning models could synthesize T1w-nce from T1w-ce images and that31

reliable features could be extracted from the synthetic images, thus demonstrating the ability of such methods to32

homogenize a data set coming from a CDW.33

Keywords: Image translation, Clinical data warehouse, Gadolinium injection, Anatomical MRI, Brain, Deep learning.34
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1 Introduction37

Clinical data warehouses, gathering hundreds of thousands of medical images from numerous38

hospitals, offer unprecedented opportunities for research. They can for example be used to develop39

and validate machine learning and deep learning algorithms for the computer-aided diagnosis of40

neurological diseases. However, they also pose important challenges, a major challenge being their41

heterogeneity. Neurological diseases can result in a variety of brain lesions that are each studied42

with specific magnetic resonance imaging (MRI) sequences. For example, T1-weighted (T1w)43

brain MR images enhanced with a gadolinium-based contrast agent are used to study lesions such44

as tumors, and T1w images without gadolinium are used to study neurodegenerative diseases.45

To perform differential diagnosis using classification algorithms, homogeneous features must46

be extracted from the images, no matter the disease, otherwise a link could be established between47

MRI sequence and pathology, which would create bias. This is critical as differential diagnosis in48

a clinical setting can be more challenging than in a research setting as different diseases may co-49

exist. Software tools such as SPM,1 ANTs2 or FSL3 have been widely used for feature extraction50

but they were largely validated using structural T1w MRI without gadolinium, to the best of our51

knowledge, and their good performance on images with gadolinium is thus not guaranteed. A52

solution could then be to convert contrast-enhanced T1w (T1w-ce) into non-contrast-enhanced53

T1w (T1w-nce) brain MRI before using such tools.54

Deep learning has been widely used in the image translation domain. The U-Net and condi-55

tional generative adversarial networks (GANs) appear as the two most popular options. The U-Net56

was originally proposed for image segmentation:4 an encoder with convolutional and downsam-57

pling blocks is followed by a decoder with upsampling and convolutional layers. The skip con-58
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nections linking the encoder and decoder blocks at the same level enable the reconstruction of59

fine-grained details, explaining the popularity of this architecture for image translation.5–12 Con-60

ditional GANs consist of a generator, which may adopt the U-Net architecture, followed by a61

discriminator in charge of distinguishing synthetic from real images and challenging the generator62

so that it improves the quality of the generated images. The good results obtained with conditional63

GANs explain their wide use for image translation.13–22
64

Both U-Net like models and conditional GANs have been proposed for diverse applications.65

Some aim to enhance the quality of the input images, for example by reducing noise in MRI23–25 or66

positron emission tomography26 images or by performing super-resolution.13, 15, 27–29 Other works67

aim to translate an image of a particular modality into another modality, such as an MRI into68

an X-ray computed tomography (CT)7, 8, 12, 17, 18, 30 or a particular MRI sequence into another se-69

quence.19–22 The U-Net architecture has also been used for the data harmonization: Dewey et al.31
70

built Deep-Harmony that aims to homogenize the contrast between images coming from different71

sites.72

Closer to our application, various deep learning models have been developed for the synthesis73

of images with gadolinium from images without gadolinium: they include reinforcement learning74

for liver MRI,32 or Gaussian mixture modeling for CT images.33 As for the other image translation75

tasks, 3D U-Net like models have also been used to convert T1w-nce into T1w-ce images.34–36 In76

two studies,34, 35 multimodal MRI sequences were used as input of the 3D U-Net that was trained77

and tested on patients with brain cancers. More specifically, the 3D U-Net proposed in the first78

study35 predicts patches of T1w-ce, while the one in the second study34 directly predicts the full 3D79

T1w-ce image. The residual attention U-Net described in the last work36 outputs synthetic T1w-ce80

that are used for the evaluation of cerebral blood volume in mice, instead of the real T1w-ce.81
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Our objective in this work was to obtain a homogeneous data set of T1w-nce images from very82

heterogeneous images coming from a clinical data warehouse. This homogenization step should83

enable a consistent extraction of features that would later be used for computer-aided diagnosis in84

a clinical setting. We thus developed and compared different deep learning models that rely on85

typical architectures used in the medical image translation domain to convert T1w-ce into T1w-86

nce images. In particular, we implemented 3D U-Net like models with the addition of residual87

connections, attention modules or transformer layers. We also used these 3D U-Net like models88

in a conditional GAN setting. We trained and tested our models using 307 pairs of T1w-nce and89

T1w-ce images coming from a very large clinical data warehouse (39 different hospitals of the90

Greater Paris area). We first assessed synthesis accuracy by comparing real and synthetic T1w-nce91

images using standard metrics. We tested our models both on images of good or medium quality92

and on images of bad quality to ensure that deep learning models could generate accurate T1w-93

nce images no matter the quality of the input T1w-ce images. We then compared the volumes of94

gray matter, white matter and cerebrospinal fluid obtained by segmenting the real T1w-nce, real95

T1w-ce and synthetic T1w-nce images using SPM37 in order to verify that features extracted from96

synthetic T1w-nce were reliable. Preliminary work is accepted for publication in the proceedings97

of the SPIE Medical Imaging 2022 conference.38 Contributions specific to this paper include the98

development of additional models (a 3D U-Net like model with the addition of transformer layers,99

and three conditional GAN models using 3D U-Net like models as generators and a patch-based100

discriminator) and an extended validation of the segmentation task with a deeper analysis the tissue101

volume differences.102
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2 MATERIALS AND METHODS103

2.1 Data set description104

This work relies on a large clinical data set containing all the T1w brain MR images of adult105

patients scanned in one of the 39 hospitals of the Greater Paris area (Assistance Publique-Hôpitaux106

de Paris [AP-HP]). The data were made available by the AP-HP data warehouse and the study107

was approved by the Ethical and Scientific Board of the AP-HP. According to French regulation,108

consent was waived as these images were acquired as part of the routine clinical care of the patients.109

Images were acquired as part of the routine clinical care in the different hospital sites and gath-110

ered in a central hospital PACS. Images relevant to the research project were copied to the research111

PACS and pseudonymized. They always remain within the hospital network that we accessed re-112

motely. Images from this clinical data warehouse are very heterogeneous:39 they include images113

of patients with a wide range of ages (from 18 to more than 90 years old) and diseases, acquired114

with different scanners (more than 30 different models) from 1980 up to now.115

In a previous work,39 we developed a quality control framework to identify images that are not116

proper T1w brain MRIs, to identify acquisitions for which gadolinium was injected, and to rate117

the overall image quality defined based on three characteristics: motion, contrast and noise. We118

did so by manually annotating 5500 images (out of a batch of 9941 images that were available) to119

train and test convolutional neural network (CNN) classifiers. The graphical interface used to man-120

ually annotate the images is publicly available (https://github.com/SimonaBottani/121

Quality_Control_Interface).122

The data set used in this work is composed of 307 pairs of T1w-ce and T1w-nce images that123

were extracted from the batch of 9941 images made available by the AP-HP data warehouse. We124
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first selected all the images of low, medium and good quality, excluding images that were not125

proper T1w brain MRI,39 resulting in 7397 images. This selection was based on manual quality126

control for 5500 images and on automatic quality control for the remaining 4441 images.39 In the127

same way, the presence or absence of gadolinium-based contrast agent was manually noted for128

5500 images, while it was obtained through the application of a CNN classifier for the remaining129

4441 images. We then considered only patients having both a T1w-ce and a T1w-nce image at the130

same session, with a T1w-nce image of medium or good quality. Finally, to limit heterogeneity131

in the training data set, we visually checked all the images and excluded 52 image pairs that were132

potential outliers because of extremely large lesions. Among the selected images, 256 image pairs133

were of medium and good quality, and 51 image pairs had a T1w-ce of low quality and a T1w-nce134

of good or medium quality. In total the data set comprises 614 images: 534 images were acquired135

at 3 T and 80 at 1.5 T, 556 images were acquired with a Siemens machine (with seven different136

models) and 58 with a GE Healthcare machine (with five different models).137

2.2 Image preprocessing138

All the images were organised using the Brain Imaging Data Structure (BIDS).40 We applied the139

following pre-processing using the ‘t1-linear’ pipeline of Clinica,41 which is a wrapper of the ANTs140

software.2 Bias field correction was applied using the N4ITK method.42 An affine registration to141

MNI space was performed using the SyN algorithm.43 The registered images were further rescaled142

based on the min and max intensity values, and cropped to remove background resulting in images143

of size 169×208×179, with 1 mm isotropic voxels.44 Finally all the images were resampled to144

have a size of 128×128×128 using trilinear interpolation in Pytorch.145
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2.3 Network architecture146

To generate T1w-nce from T1w-ce images, both 3D U-Net like models and conditional GANs were147

developed and compared. The code used to implement all the architectures and perform the experi-148

ments is openly available (https://github.com/SimonaBottani/image_synthesis).149

2.3.1 3D U-Net like structures150

We implemented three models derived from the 3D U-Net:4 a 3D U-Net with the addition of151

residual connections (called Res-U-Net), a 3D U-Net with the addition of attention mechanisms152

(called Att-U-Net), a 3D U-Net with both transformer and convolutional layers (called Trans-U-153

net). The U-Net structure allows preserving the details present in the original images thanks to the154

skip connections4 and has shown good performance for image-to-image translation.5–12 Here we155

detail the three architectures, which are also shown in Figure 1.156

Res-U-Net The Res-U-Net we implemented is based on the architecture first proposed by Milletari157

et al.45 and later used in Bône et al.34 The five descending blocks are composed of 3D con-158

volutional layers followed by an instance normalization block and a LeakyReLU (negative159

slope coefficient α = 0.2). The four ascending blocks are composed of transposed con-160

volutional layers followed by a ReLU. The final layer is composed of an upsample module161

(factor of 2), a 3D convolutional block and a hyperbolic tangent module. Each descending or162

ascending block is followed by a residual module, which can vary from one to three blocks163

composed of a 3D convolutional layer and a LeakyReLU (α = 0.2). Residual blocks were164

introduced to avoid the problem of the vanishing gradients in the training of deep neural165

network:46 they ease the training since they improve the flow of the information within the166

network.167
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Fig 1: Architectures of the proposed 3D U-Net like models. The models take as input a real
T1w-nce image of size 128×128×128 and generate a synthetic T1w-nce of size 128×128×128.
Res-U-Net: images pass through five descending blocks, each one followed by a residual module,
and then through four ascending blocks and one final layer. Att-U-Net: images pass through five
descending blocks and then through four ascending blocks and one final layer. One of the input
of each ascending block is the result of the attention gate. Trans-U-Net: images pass through four
descending blocks, four transformer layers and four ascending layers. All the parameters such as
kernel size, stride, padding, size of each feature map (N) are reported.
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Att-U-Net We implemented the Att-U-Net relying on the work of Oktay et al.47 In this architec-168

ture, the five descending blocks are composed of two blocks with a 3D convolutional layer169

followed by a batch normalization layer and a ReLU. They are followed by four ascend-170

ing blocks. Each ascending block is composed of an upsample module (factor of 2), a 3D171

convolutional layer followed by a ReLU, an attention gate and two 3D convolutional lay-172

ers followed by a ReLU. The attention gate is composed of two 3D convolutional layers,173

a ReLU, a convolutional layer and a sigmoid layer. Its objective is to identify only salient174

image regions: the input of the attention gate is multiplied (element-wise multiplication) by175

a factor (in the range 0–1) resulting from the training of all the blocks of the networks. In176

this way it discards parts of the images that are not relevant to the task at hand.177

Trans-U-Net The Trans-U-Net was implemented by Wang et al.48 (who called the model Trans-178

BTS). They proposed a 3D U-Net like structure composed of both a CNN and a transformer.179

The CNN is used to produce an embedding of the input images in order not to loose local180

information across depth and space. The features extracted by the CNN are the input of the181

transformer whose aim is to model the global features. The descending blocks are composed182

of four different blocks, each being composed of a 3D convolutional layer and one, two or183

three blocks composed of a batch normalization layer, a ReLU and another 3D convolutional184

layer. The model is then composed of four transformer layers, after a linear projection of185

the features. Each transformer layer is itself composed of a multi-head attention block and a186

feed forward network. The four ascending blocks are composed of a 3D convolutional layer187

and one or two blocks with a batch normalization layer, a ReLU, a 3D convolutional layer188

followed by a 3D deconvolutional layer. The final layer is composed of a 3D convolutional189
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layer and a soft-max layer.190

For the three 3D U-Net like models we used the same training parameters. We used the Adam191

optimizer, the L1 loss, a batch size of 2 and trained during 300 epochs. The model with the best192

loss, determined using the training set, was saved as final model. We relied on Pytorch for the193

implementation.194

2.3.2 Conditional GANs195

Generative adversarial networks (GANs) were firstly introduced by Goodfellow et al.49 They are196

generative deep learning models composed of two elements: a generator for synthesizing new197

examples and a discriminator for classifying whether examples are real, i.e. the original ones, or198

fake, i.e. synthesized by the generator. Conditional GANs (cGANs)50 are a variant of GANs where199

the generator and the discriminator are conditioned by the true samples. They can only be used200

with paired data sets.201

We propose three different cGAN models that differ in the architecture of the generators, which202

correspond to the three architectures presented above. The discriminator is the same for all the203

cGANs: it is a 3D patch CNN, first proposed by Isola et al.51 and used in the medical image204

translation domain.52, 53 Its aim is to classify if each pair of patches contains two real images or a205

real and a fake image. The advantages of working with patches is that the discriminator focuses on206

the details of the images and the generator must improve them to fool the discriminator.207

Our discriminator is composed of four blocks: the first three blocks are composed of a 3D208

convolutional layer followed by a LeakyReLU (negative slope coefficient α = 0.2), and the last209

block is composed of a 3D convolutional layer and a 3D average pooling layer. From images of210

size 128×128×128, we created eight patches of size 64×64×64 with a stride of 50.211
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For the training of the discriminator we used the least-square-loss as proposed in 54 in order to212

increase the stability, thus avoiding the problem of vanishing gradients that occurs with the usual213

cross-entropy loss. Stability of the training was also improved using soft labels: random numbers214

between 0 and 0.3 represented real images and random numbers between 0.7 and 1 represented215

fake images.216

The total loss of the cGANs combines217

• the loss of the generator composed of the sum of the L1 loss (i.e. pixel-wise absolute er-218

ror) computed between the generated and true images, and the least-square loss computed219

between the predicted probabilities of the generated images and positive labels.220

• the loss of the discriminator composed of the mean of the least-square loss computed be-221

tween the predicted probabilities of the true images and positive labels and the least-square222

loss computed between the predicted probabilities of the generated images and negative la-223

bels.224

At first, both the generators and discriminators were pretrained separately. Regarding each gen-225

erator, we reused the best model obtained previously. The discriminators were pretrained for the226

recognition of real and fake patches (fake images were obtained from each pretrained generator).227

The generators and discriminators were then trained together. The generator models with the best228

loss, determined using the training set, were saved as final models. Note that the batch size was set229

to 1 due to limited computing resources.230
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2.4 Experiments and validation measures231

The experiments relied on 307 pairs of T1w-ce and T1w-nce images. We randomly selected 10%232

of the 256 image pairs of medium and good quality for testing (data set called Testgood), the other233

230 image pairs being used for training. Only images of good and medium quality were used for234

training to ensure that the model focuses on the differences related to the presence or absence of235

gadolinium, and not to other factors. The remaining 51 image pairs with a T1w-ce of low quality236

and a T1w-nce of good or medium quality were used only for testing (data set called Testlow).237

2.4.1 Synthesis accuracy238

Image similarity was evaluated using the mean absolute error (MAE), peak signal-to-noise ratio239

(PNSR) and structural similarity (SSIM).55 The MAE is the mean of each absolute value of the240

difference between the true pixel and the generated pixel and PSNR is a function of the mean241

squared error: these two metrics allows a direct comparison between the synthetic image and the242

real one. The SSIM aims to measure quality by capturing the similarity of images, it is a weighted243

combination of the luminance, contrast and structure. For the MAE, the minimum value is 0 (the244

lower, the better), for PSNR the maximum value is infinite (the higher, the better) and for SSIM245

the maximum value is 1 (the higher, the better). We calculated these metrics both between the real246

and synthetic T1w-nce images and between the real T1w-nce and T1w-ce images (as reference).247

These metrics were calculated within the brain region. A brain mask was obtained for each subject248

by skull-stripping the T1w-nce and T1w-ce images using HD-BET56 and computing the union of249

the two resulting brain masks.250
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2.4.2 Segmentation fidelity251

Our goal is to obtain gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) segmen-252

tations from T1w-ce images using widely-used software tools that are consistent with segmenta-253

tions obtained from T1w-nce images. We thus assessed segmentation consistency by analyzing254

the tissue volumes resulting from the segmentations, which are important features when studying255

atrophy in the context of neurodegenerative diseases.256

The volumes of the different tissues were obtained as follows. At first, synthetic T1w-nce im-

ages were resampled back to a size of 169×208×179 using trilinear interpolation in Pytorch so

that real and synthetic images have the same grid size. We processed the images using the ‘t1-

volume-tissue-segmentation’ pipeline of Clinica.41, 57 This wrapper of the Unified Segmentation

procedure implemented in SPM37 simultaneously performs tissue segmentation, bias correction

and spatial normalization. Once the probability maps were obtained for each tissue, we computed

the maximum probability to generate binary masks and we multiplied the number of voxels by the

voxel dimension to obtain the volume of each tissue. We calculated both the relative absolute dif-

ference (rAD) and the relative difference (rD) for each tissue between the real T1w-ce or synthetic

T1w-nce and the real T1w-nce as follows:

rAD =
|V I

t − V J
t |

TIV I
× TIV , (1a)

rD =
V I
t − V J

t

TIV I
× TIV , (1b)

where V I
t is the volume of tissue t extracted from the real T1w-nce image I , V J

t is the volume257

of tissue t extracted from image J , J being the synthetic T1w-nce or real T1w-ce image. TIV I
258

corresponds to the total intracranial volume obtained from the real T1w-nce image I and TIV259
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Fig 2: Examples of real T1w-ce (top), real T1w-nce (middle) and synthetic T1w-nce obtained with
the cGAN Att-U-Net model (bottom) images in the sagittal and axial planes. Images of patients A
and B belong to Testgood (left) while images of patients C and D belong to Testlow (right).

corresponds to the average total intracranial volume computed across the two test sets. The multi-260

plication by the average total intracranial volume (TIV) aims at obtaining volumes (in cm3) rather261

than fractions of the TIV of each subject, which is easier to interpret. Since this is a multiplication262

by a constant, it has not impact on the results. To assess whether the tissue volumes presented263

a statistically significant difference in terms of rAD depending on the images they were obtained264

from, we performed paired t-tests using Bonferroni correction for multiple comparisons.265

In addition, we compared the binary tissue maps extracted from the real T1w-ce or synthetic266

T1w-nce image to those extracted from the real T1w-nce using the Dice score.267

3 RESULTS268

We report results for the proposed 3D U-Net like models and cGANs trained on 230 image pairs269

of good and medium quality, and tested on Testgood and Testlow obtained from a clinical data set.270

Examples of synthetic T1w-nce images obtained with the cGAN Att-U-Net model together271

with the real T1w-ce and T1w-nce images are displayed in Figure 2. Images of patients A and272
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B belong to Testgood while images of patients C and D belong to Testlow. We note the absence of273

contrast agent in the synthetic T1w-nce, while it is clearly visible in the sagittal slice of the T1w-ce274

(particularly visible for patients A and C) and that the anatomical structures are preserved between275

the synthetic and real T1w-nce, even in the case of a disease (as for patient B). We also note that276

contrast between gray and white matter is preserved in the synthetic T1w-nce (particularly visible277

for patients B and D). For Testlow, the contrast seems improved in the synthetic compared with the278

real T1w-ce image (especially for patient D).279

3.1 Synthesis accuracy280

Table 1 reports the image similarity metrics obtained for the two test sets within the brain region.281

We computed these metrics to assess the similarity between real and synthetic T1w-nce images, but282

also between T1w-nce and T1w-ce images to set a baseline. We observe that, for all models, the283

similarity is higher between real and synthetic T1w-nce images than between T1w-nce and T1w-284

ce images according to all three metrics on both test sets. The differences observed in terms of285

MAE, PSNR and SSIM between the baseline and each image translation approach are statistically286

significant (corrected p-value<0.05 according to a paired t-test corrected for multiple comparisons287

using the Bonferroni correction).288

Among the generators composed of 3D U-Net like models, the Att-U-Net performed slightly289

better than the others, both for Testgood (mean MAE: 2.73%, PSNR: 29.07 dB, SSIM: 0.96) and290

Testlow (mean MAE: 2.89%, PSNR: 27.18 dB, SSIM: 0.95). The performance of the cGANs291

were comparable to their counterparts composed only of the generator. cGAN Att-U-Net had a292

lower MAE for both test sets (mean MAE: 2.69% for Testgood and mean MAE: 2.86% for Testlow).293

There was no statistically significant difference observed, no matter the synthesis accuracy mea-294
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Table 1: MAE, PSNR and SSIM obtained on the two independent test sets with various image
quality. For each metric, we report the average and standard deviation across the corresponding
test set. We compute the metrics for both T1w-ce and synthetic T1w-nce in relation to the real
T1w-nce, and so within the brain region.

Test set Compared images Model MAE (%) PSNR (dB) SSIM

Testgood

T1w-nce / T1w-ce - 4.14 ± 1.59 23.03 ± 2.83 0.90 ± 0.05

T1w-nce / Synthetic T1w-nce

Res-U-Net 3.06 ± 1.50 26.89 ± 4.30 0.95 ± 0.04
Att-U-Net 2.73 ± 1.69 29.07 ± 4.53 0.96 ± 0.05

Trans-U-Net 2.80 ± 1.42 28.00 ± 4.13 0.96 ±0.04
cGAN Res-U-Net 3.47 ± 1.59 23.89 ± 4.30 0.95 ± 0.04
cGAN Att-U-Net 2.69 ± 1.68 28.89 ± 4.44 0.97 ± 0.05

cGAN Trans-U-Net 2.86±1.59 28.00 ±4.32 0.96 ± 0.04

Testlow

T1w-nce / T1w-ce - 3.71 ± 1.99 24.20 ± 3.85 0.91 ± 0.06

T1w-nce / Synthetic T1w-nce
Res-U-Net 2.93 ± 1.77 26.71 ± 4.32 0.95 ± 0.05
Att-U-Net 2.89 ± 1.85 27.15 ± 4.57 0.95 ± 0.05

Trans-U-Net 2.98 ± 1.89 26.71 ± 4.38 0.94 ± 0.05
cGAN Res-U-Net 3.20 ± 1.96 26.20 ± 4.42 0.93 ± 0.05
cGAN Att-U-Net 2.86 ± 1.83 27.12 ± 4.50 0.95 ± 0.05

cGAN Trans-U-Net 2.97 ± 1.83 26.68 ± 4.40 0.94 ± 0.05

sure, between cGAN Att-U-Net, the best performing model according to the MAE, and the other295

approaches for both test sets (corrected p-value > 0.05). For further validation we kept only Att-296

U-Net and cGAN Att-U-Net.297

3.2 Segmentation fidelity298

Absolute volume differences (rAD) obtained between T1w-nce and T1w-ce images and between299

T1w-nce and synthetic T1w-nce images (obtained with the Att-U-Net model and the cGAN Att-300

U-Net) for GM, WM and CSF are reported in Table 2. For both test sets and all tissues, the301

absolute volume differences are smaller between T1w-nce and synthetic T1w-nce images than be-302

tween T1w-nce and T1w-ce images for the two models. Using the Att-U-Net on Testgood, absolute303

volume differences of GM and CSF between T1w-nce/T1w-ce and T1-nce/Synthetic T1w-nce are304

statistically significantly different (corrected p-value <0.01 according to a paired t-test corrected305

for multiple comparisons using the Bonferroni correction), while on Testlow absolute volume dif-306
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Table 2: Absolute volume difference (mean ± standard deviation in cm3) between T1w-nce and
T1w-ce images and between T1w-nce and synthetic T1w-nce images (obtained with the Att-U-Net
and cGAN Att-U-Net models) for the gray matter, white matter and cerebrospinal fluid (CSF). *
indicates that the absolute volume difference between T1w-nce and synthetic T1w-nce images is
statistically significantly different from that of the baseline (corrected p-value <0.01) according to
a paired t-test corrected for multiple comparisons using the Bonferroni correction.

Compared images Model Testgood [cm3] Testlow [cm3]

Gray matter
T1w-nce / T1w-ce - 26.68 ± 15.92 49.63 ± 49.38

T1w-nce / Synthetic T1w-ce
Att-U-Net 10.36 ± 6.98 * 19.61 ± 29.54 *

cGAN Att-U-Net 9.24 ± 6.10 * 19.67 ± 28.32 *

White matter
T1w-nce / T1w-ce - 10.81 ± 3.71 25.36 ± 27.73

T1w-nce / Synthetic T1w-ce
Att-U-Net 7.79 ± 5.87 13.95 ± 24.74 *

cGAN Att-U-Net 6.40 ± 4.43 * 14.49 ± 21.06 *

CSF
T1w-nce / T1w-ce - 61.62 ± 34.61 69.55 ± 37.77

T1w-nce / Synthetic T1w-ce
Att-U-Net 13.37 ± 10.18 * 12.25 ± 7.72 *

cGAN Att-U-Net 18.27 ± 17.20 * 17.10 ± 18.45 *

ferences of all the tissues are statistically significantly different (corrected p-value <0.01). Using307

the cGAN Att-U-Net model, absolute volume differences of all the tissues are statistically signifi-308

cantly different (corrected p-value <0.01) for both test sets. This means that there is an advantage309

in using synthetic T1w-nce images rather than T1w-ce images, no matter the model used for the310

synthesis: segmentation of GM, CSF and WM is more reliable since closer to the segmentation of311

the tissues in the real T1w-nce.312

Volume differences (rD) computed between T1w-nce and T1w-ce images and between T1w-313

nce and synthetic T1w-nce images (obtained with the Att-U-Net and cGAN Att-U-Net) for GM,314

WM and CSF are reported in Figure 3. We observe that volumes extracted from T1w-ce images315

tend to be over-estimated (GM) or under-estimated (CSF) and that most of these biases disappear316

when tissues are extracted from synthetic T1w-nce images (mean rD closer to 0).317

The Dice scores obtained when comparing the GM, WM and CSF segmentations between318
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Fig 3: Volume differences (rD) in cm3 between T1w-nce and T1w-ce images and between T1w-
nce and synthetic T1w-nce images (obtained with the Att-U-Net and the cGAN Att-U-Net models)
for gray matter (left), white matter (middle) and cerebrospinal fluid (CSF, right) for both Testgood

(top) and Testlow (bottom).

Table 3: Dice scores obtained when comparing the gray matter, white matter and cerebrospinal
fluid (CSF) segmentations between T1w-nce and T1w-ce images and between T1w-nce and syn-
thetic T1w-nce images (obtained with the Att-U-Net and the cGAN Att-U-Net)

Compared images Model Testgood Testlow

Gray matter
T1w-nce / T1w-ce - 0.88 ± 0.02 0.77 ± 0.12

T1w-nce / Synthetic T1w-ce
Att-U-Net 0.87 ± 0.02 0.81 ± 0.07

cGAN Att-U-Net 0.87 ± 0.02 0.81 ± 0.07

White matter
T1w-nce / T1w-ce - 0.93 ± 0.01 0.85 ± 0.10

T1w-nce / Synthetic T1w-ce
Att-U-Net 0.90 ± 0.02 0.86 ± 0.04

cGAN Att-U-Net 0.91 ± 0.02 0.86 ± 0.03

CSF
T1w-nce / T1w-ce - 0.63 ± 0.10 0.62 ± 0.10

T1w-nce / Synthetic T1w-ce
Att-U-Net 0.80 ± 0.05 0.78 ± 0.07

cGAN Att-U-Net 0.80 ± 0.05 0.78 ± 0.07

T1w-nce and T1w-ce images and between T1w-nce and synthetic T1w-nce images (obtained with319

the Att-U-Net and the cGAN Att-U-Net) are displayed in Table 3. We observe that for both gray320
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and white matter, the Dice scores are similar between T1w-nce and T1w-ce or synthetic T1w-nce321

images, while for CSF higher Dice scores are obtained using synthetic T1w-nce images.322

4 DISCUSSION323

The use of clinical images for the validation of computer-aided diagnosis (CAD) systems is still324

largely unexplored. One of the obstacles lies in the heterogeneity of the data acquired in the325

context of routine clinical practice. Post-acquisition homogenization is crucial because, contrary326

to research data, no strict acquisition protocols, that would ensure a certain homogeneity among the327

images, exist for clinical data. Heterogeneity originates from the fact that images are acquired with328

different scanners at different field strengths during a large period of time and because patients may329

suffer from a large variety of diseases. Homogenization of clinical data sets of 3D T1w brain MRI,330

and consequently of the features extracted from them, is an important step for the development of331

reliable CAD systems. Indeed, when training a CAD system, the algorithms must not be affected332

by the data set variations even though clinical images may greatly vary.333

A source of heterogeneity among clinical data sets is the fact that they contain a mix of images334

acquired with and without gadolinium-based contrast agent. In our case, among the 7397 proper335

T1w brain images made available by the AP-HP data warehouse out of a batch of 9941 images,336

59% of the images were contrast-enhanced.39 To homogenize this data set, we thus proposed a337

framework to convert T1w-ce images into T1w-nce images using deep learning models. The choice338

to synthesize T1w-nce images from T1w-nce images was constrained by the fact that software tools339

for feature extraction in the neuroimaging community were developed for T1w-nce MRI. To the340

best of our knowledge, none of these tools has largely been applied to the extraction of features341

from T1w-ce MRI data and their performance in this scenario is thus mostly unknown.342
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The contribution of our work consists in the development and validation of deep learning mod-343

els (U-Net models and conditional GANs) for the translation of T1w-ce to T1w-nce images coming344

from a clinical data warehouse. We compared three 3D U-net models differentiated by the addi-345

tion of residual modules, of attention modules or of transformer layers, used as simple generators346

and also within a conditional GAN setting with the addition of a patch-based discriminator. These347

models have widely been used for the image translation of medical images,58, 59 but their applica-348

tion to clinical data has not been proven yet. The proposed models were trained using 230 image349

pairs and tested on two different test sets: 26 image pairs had both a T1w-nce and T1w-ce of good350

or medium quality and 51 image pairs had a T1w-nce of good or medium quality and a T1w-ce351

of bad quality. Having two test sets of different qualities is a key point since we are dealing with352

a real clinical heterogeneous data set where images of low quality, corresponding in majority to353

T1w-ce images with a low contrast, may represent 30% of the data.39
354

We first assessed the similarity between real and synthetic T1w-nce images and between real355

T1w-nce and T1w-ce images using three similarity metrics, MAE, PSNR and SSIM. We showed356

that the similarity between real and synthetic T1w-nce images was higher than the similarity be-357

tween real T1w-nce and T1w-ce images according to all the metrics, no matter the models used nor358

the quality of the input image. The synthesis accuracy obtained with the models evaluated was of359

the same order as the one reached in recent works on non-contrast-enhanced to contrast-enhanced360

image translation.34, 35 The performance of all the models was equivalent (no statistically signifi-361

cant difference observed), meaning that all were able to synthesize T1w-nce images. Slightly better362

performance was reached with the addition of attention modules (Att-U-Net and cGAN Att-U-Net363

models), these models were thus further evaluated.364

In the second step of the validation, we assessed the similarity of features extracted from the365
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different images available using a widely adopted segmentation framework, SPM.1 We showed366

that the absolute volume differences of GM, WM and CSF were larger between real T1w-nce and367

Tw-ce images than between real and synthetic T1w-nce images (statistically significant difference368

most of the times). This confirms the hypothesis that gadolinium-based contrast agent may alter369

the contrast between the different brain tissues, making features extracted from such images with370

standard segmentation tools, here SPM,1 unreliable. At the same time, we validated the suitability371

of the synthetic images since their segmentation was consistent with those obtained from real T1w-372

nce images as the volume differences were small. In particular we see that for both test sets, volume373

differences are statistically significantly different (corrected p-value<0.01 according to a paired t-374

test corrected for multiple comparisons using the Bonferroni correction) for GM which is the main375

feature when studying atrophy in neurodegenerative diseases. The fact that the relative differences376

between the volumes extracted from the real and synthetic T1w-nce images are relatively close to377

zero show that the tissue volumes are not systematically under- or over-estimated when extracted378

from the synthetic images.379

Even though the synthetic T1w-nce images enable the extraction of reliable features, their qual-380

ity could still be improved. Many constraints exist when working with data from a clinical data381

warehouse. One is the fact that these data are accessible only through a closed environment pro-382

vided by the IT department of the AP-HP as described in.60 Limitations in computational resources383

and storage space make training deep learning models difficult and thus limits the experiments that384

can be performed to find the optimal model. The proposed models could be improved by bet-385

ter optimizing the hyperparameters (such as the learning rate or the size of the kernels), adding386

a perceptual loss when training the conditional GANs61 or adding more layers in the patch-based387

discriminator. Other architectures could also be explored. We have restricted our work to condi-388
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tional GANs, which need paired data to be trained, but we could exploit more data working with389

cycle GANs62 as they can deal with unpaired data.390

Several steps remain to be performed before using synthetic T1w-nce images for the differential391

diagnosis of neurological diseases. First, the performance of CAD systems trained with a mix of392

real T1w-nce and T1w-ce images should be compared with the performance of CAD systems393

trained with a mix of real and synthetic T1w-nce images. To prevent introducing a correlation394

between image properties (e.g. smoothness) and pathology, which would bias the classification395

performance, it may be necessary to also feed the real T1w-nce images to the neural network and396

use the resulting images as inputs of the CAD system, as suggested in 31.397

5 CONCLUSION398

Clinical data warehouses offer fantastic opportunities for computer-aided diagnosis of neurolog-399

ical diseases but their heterogeneity must be reduced to avoid biases. In this work we proposed400

to homogenize such a large clinical data set by converting images acquired after the injection of401

gadolinium into non-contrast-enhanced images using 3D U-Net models and conditional GANs.402

Validation using standard image similarity measures demonstrated that the similarity between real403

and synthetic T1w-nce images was higher than between real T1w-nce and T1w-ce images for all404

the models compared. We also showed that features extracted from the synthetic images (GM,405

WM, CSF volumes) were closer to those obtained from the T1w-nce brain MR images (consid-406

ered as reference) than the original T1w-ce images. These results demonstrate the ability of deep407

learning methods to homogenize a data set coming from a clinical data warehouse.408
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4 AP-HP, Hôpital Bicêtre, Department of Radiology, F-94270, Le Kremlin-Bicêtre, France458
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8 AP-HP, Hôpital Lariboisière , Department of Neuroradiology, F-75010, Paris, France462
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List of Figures660

1 Architectures of the proposed 3D U-Net like models. The models take as input a661

real T1w-nce image of size 128×128×128 and generate a synthetic T1w-nce of662

size 128×128×128. Res-U-Net: images pass through five descending blocks, each663

one followed by a residual module, and then through four ascending blocks and664

one final layer. Att-U-Net: images pass through five descending blocks and then665

through four ascending blocks and one final layer. One of the input of each as-666

cending block is the result of the attention gate. Trans-U-Net: images pass through667

four descending blocks, four transformer layers and four ascending layers. All the668

parameters such as kernel size, stride, padding, size of each feature map (N) are669

reported.670

2 Examples of real T1w-ce (top), real T1w-nce (middle) and synthetic T1w-nce ob-671

tained with the cGAN Att-U-Net model (bottom) images in the sagittal and axial672

planes. Images of patients A and B belong to Testgood (left) while images of pa-673

tients C and D belong to Testlow (right).674

3 Volume differences (rD) in cm3 between T1w-nce and T1w-ce images and be-675

tween T1w-nce and synthetic T1w-nce images (obtained with the Att-U-Net and676

the cGAN Att-U-Net models) for gray matter (left), white matter (middle) and cere-677

brospinal fluid (CSF, right) for both Testgood (top) and Testlow (bottom).678

36
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1 MAE, PSNR and SSIM obtained on the two independent test sets with various680

image quality. For each metric, we report the average and standard deviation across681

the corresponding test set. We compute the metrics for both T1w-ce and synthetic682

T1w-nce in relation to the real T1w-nce, and so within the brain region.683

2 Absolute volume difference (mean± standard deviation in cm3) between T1w-nce684

and T1w-ce images and between T1w-nce and synthetic T1w-nce images (obtained685

with the Att-U-Net and cGAN Att-U-Net models) for the gray matter, white mat-686

ter and cerebrospinal fluid (CSF). * indicates that the absolute volume difference687

between T1w-nce and synthetic T1w-nce images is statistically significantly differ-688

ent from that of the baseline (corrected p-value <0.01) according to a paired t-test689

corrected for multiple comparisons using the Bonferroni correction.690

3 Dice scores obtained when comparing the gray matter, white matter and cere-691

brospinal fluid (CSF) segmentations between T1w-nce and T1w-ce images and692
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