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In a shallow channel, the flow transfers most of its momentum vertically. Based
on this observation, one often neglects the momentum that is transferred across
the stream—the core assumption of the shallow-water theory. In the context of
viscous flows, this approximation is referred to as the “lubrication theory”, in
which one assumes that the shear stress exerted by the fluid on the substrate
over which it flows is proportional to its velocity. Here, we revise this theory to
account for the momentum that viscosity transfers across a shallow laminar flow,
while keeping the problem low-dimensional. We then test the revised lubrication
theory against analytical and numerical solutions of the exact problem. We find
that, at a low computational cost, the present theory represents the actual flow
more accurately than the classical lubrication approximation. This theoretical
improvement, devised with laboratory rivers in mind, should also apply to other
geophysical contexts, such as ice flows or forming lava domes.

1. Introduction

Before the Navier-Stokes equations were fully established, hydraulic engineers
developed empirical laws relating the turbulent flow of water in a canal to its
slope and cross-section (Chézy 1775). One of the most successful among them is
that of Darcy and Weisbach, which relates the average velocity U of the flow to
the canal’s depth and downstream gradient (D and S, respectively; Brown 2002):

U =

√
2gDS

fD
, (1.1)

where g is the acceleration of gravity, and fD an empirical, dimensionless param-
eter.

Once an entirely empirical equation, the Darcy-Weisbach equation is now
regarded as the result of the steady-state momentum balance, when the turbulent
shear stress on the canal’s bottom, τ , is proportional to the squared flow velocity
(τ = ρfDU

2/2, where ρ is the density of water). In that light, equation (1.1)
appears as an elementary solution of the shallow-water equations (which are often
named after Saint-Venant 1871). As such, equation (1.1) becomes an approximate
solution to the Navier-Stokes equations, and thus fits nicely into general fluid
dynamics.

The shallow-water equations result from a twofold procedure (Stoker 2011):
one first (i) integrates the Navier-Stokes equations vertically, and then (ii) ap-
proximates the resulting mass and momentum balances. Before step (ii) is carried
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out, the integrated balances resulting from step (i) still contain contributions that
cannot be expressed in terms of the vertically-averaged velocity U and the flow
depth D. When the flow is almost horizontal, some of them can be neglected
altogether. Others, such as the advection of momentum or the pressure gradient,
must be approximated by functions of U andD. To approximate the basal friction,
for instance, one still invokes the Darcy-Weisbach equation (1.1)—or some refined
version of it. This step, although straightforward if one is content with the leading
order of the approximation, becomes a delicate mathematical art when higher-
order terms are needed (Ruyer-Quil & Manneville 2000).

Even at their simplest, however, the shallow-water equations prove wonderfully
rich. They provide a first-order model for shallow water waves (Stoker 2011), tides
(Gallagher & Munk 1971) and tidal bores (Chanson 2012), or the propagation of
a tsunami (Popinet 2011). Still, the approximation they are based on limits their
validity: A classic failure of theirs is that they cannot represent the propagation
of a solitary wave (Korteweg & De Vries 1895). A variety of improvements now
allow the shallow-water equations to better account for the streamwise diffusion
of momentum (Ruyer-Quil & Manneville 2000; Audusse et al. 2011; De Vita et al.
2020), but its crosswise counterpart has attracted much less attention, probably
because of its lesser importance for water waves (Marche 2007; Chauvet et al.
2014).

Yet, when all the other terms vanish, the flux of momentum across a shallow
flow becomes obvious—even to the naked eye of an observer walking on a bridge.
Indeed, in a straight rectangular channel, the downstream velocity of the flowing
water decreases near the banks, and vanishes along them (Nezu et al. 1994;
Chauvet et al. 2014). It is, of course, the turbulent transfer of momentum which
propagates the influence of the banks across the flow, but the classical shallow-
water equations cannot account for this mechanism. If one is only interested in the
total discharge of the flow, an empirical law that takes into account the hydraulic
radius of the channel, such as the celebrated formula of Manning (1891), can be
substituted for equation (1.1). This, however, will not provide any detail about
the flow profile, nor about the distribution of shear stress over the channel’s bed—
a quantity crucial to the design of canals (Lacey 1930; Glover & Florey 1951),
and to the formation of rivers (Parker 1978).

Alluvial rivers convey not only water, but also the sediment out of which
they make their own bed—a natural fluid-structure interaction. The locus of
this interaction is the bed surface, onto which the flow applies the stress that
transports the sediment grains. To understand how an alluvial river selects its
own size and shape, we thus need to understand how it distributes momentum
over its bed (Parker 1978). Unfortunately, most rivers find themselves right at
the threshold for sediment transport, which makes them dreadfully sensitive to
the details of this distribution (Henderson 1961; Devauchelle et al. 2011; Métivier
et al. 2017; Phillips & Jerolmack 2019). Near this critical point, indeed, a minute
inaccuracy in the shear stress translates into a first-order error on the sediment
flux. It is this demanding problem that motivates the present contribution,
although the results presented here should apply to other systems as well.

The flow of water in canals and rivers is turbulent, and the shallow-water
equations are classically devised for such flows. In the present paper, nonetheless,
we focus on laminar flows, for two reasons. First, in the turbulent regime, the
Navier-Stokes equations have no simple solution against which we could test our
approximate theory. Second, the basic mechanism by which a river forms its
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own channel does not rely on turbulence (although inertia drives the growth of
some bedforms, Charru & Hinch 2006). One can indeed produce laminar rivers
in the laboratory which, like their natural counterparts, prove highly sensitive to
the distribution of the flow-induced stress (Seizilles et al. 2013; Abramian et al.
2019b, 2020).

When applied to thin, laminar films, the shallow-water approximation becomes
the lubrication theory (Goodwin & Homsy 1991; Lister 1992). It applies to a
variety of systems that ranges from the coating of solids (Levich & Landau
1942; Snoeijer et al. 2008) to fingering in free-falling viscous films (Huppert 1982;
Craster & Matar 2009). It accounts for the Kapitza instability, which generates
roll waves on window panes under heavy rain (Kapitza 1948; Benjamin 1957; Yih
1963), as well as for the slow, viscous intrusion of magma into the Earth’s crust
and the formation of lava domes (Michaut 2011; Huppert et al. 1982; Stasiuk &
Jaupart 1997). The ice sheets of Greenland and Antarctica creep over thousands
of kilometers of land before reaching the ocean and, although their thickness can
reach up to a few kilometers, their horizontal extension makes the “shallow-ice”
approximation a suitable representation of their sluggish flow (Schoof & Hewitt
2013).

None of the above phenomena rely too heavily on the transfer of momentum
across the extended (often horizontal) dimensions of the flow (at least to leading
order); the classical lubrication theory therefore suits them well. Such is not
the case, however, in a laminar laboratory river, where the crosswise transfer of
momentum affects the distribution of shear stress over the sediment bed, and
thus the equilibrium shape of the river (Abramian et al. 2019a). Likewise, ice
sheets sometimes funnel their flow into narrow ice streams, in which the crosswise
velocity gradient becomes strong enough to redistribute momentum horizontally
(Suckale et al. 2014; Schoof & Mantelli 2021).

Marche (2007) proposed an improved version of the two-dimensional, shallow-
water equations, which accounts for the horizontal flux of momentum in an
inertial, non-stationary flow. To our knowledge, the horizontal flux of momentum
due to viscosity, as represented in this model, has never been tested per se.
In the present paper, we consider a simple configuration in which this can be
done, and which is relevant for laminar rivers: a steady, viscous flow that is
uniform downstream (figure 1). In this idealized configuration, the velocity aligns
with the channel, and we can often derive an analytical expression for it (or
at least a simple numerical solution). We take advantage of this simplicity to
propose a new expression for the viscous flux of momentum across a shallow,
laminar flow (section 2), and compare it to the exact, two-dimensional flow it
should approximate (section 3). In this simplified context, we find that the new
expression is more reliable than that of Marche (2007) (appendix A). Because
it inherits the non-locality of the Stokes flow it approximates, the equation
we propose accounts surprisingly well for the flow near the bank of a channel
(section 4).

2. Momentum balance

Rivers are turbulent, and so are most of their laboratory analogues (Métivier
et al. 2017). Some experimental flumes, however, are small enough, and the fluid
they carry viscous enough, for the flow to remain laminar (Seizilles et al. 2013;
Abramian et al. 2020). Provided their path does not bend too much, we are
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Figure 1: Typical flow configuration and notations. Flow is along the x
direction, which is inclined with respect to horizontal. Free surface is flat

(z = 0), and inclined downstream with slope S. Blue lines: fluid. Brown shading
and dots: solid, impervious substrate.

left with a two-dimensional Poisson equation to account for the viscous diffusion
of momentum across the flow (section 2.1). Integrated vertically, this equation
becomes a one-dimensional equation (section 2.2) which, in its simplest form,
yields the classical lubrication approximation (section 2.3). Finally, in section 2.4,
we add the contribution of the crosswise stress to this approximation.

2.1. Continuity equation for a Poiseuille flow

We consider the laminar flow of figure 1, whose unidirectional velocity lies along
the x axis. This configuration implies that the channel’s bed, and thus the flow,
do not vary in the x direction at all. Of course, such an idealized setting can only
be an approximate representation of the actual flow, valid when the latter varies
only weakly along the x direction.

To formalize this assumption, we call L the crosswise extent of the channel (y
axis), and Ls the characteristic length over which the bed changes downstream
(x axis). When the ratio L/Ls is small enough, we may treat the flow as
streamwise invariant, and represent it with its only component, u(y, z). We use
this approximation from now on. Under this assumption, the Stokes equation
reduces to:

ν∇2u+ gS = 0 , (2.1)

where ν is the kinematic viscosity of the fluid, g the acceleration of gravity, and
S the downstream slope of the channel (the sine of the angle it forms with the
horizontal). The Laplacian operator, ∇2, applies only to directions orthogonal to
the flow, that is, y and z.

A convenient consequence of our initial assumption that the flow is invariant
along the x axis is that its free surface is also invariant. This assumption is very
limiting: it precludes any free-surface wave and, in fact, any pressure gradient
other than hydrostatic. In short, it limits the present theory to two-dimensional
Poiseuille flows. This, we argue, is nonetheless a rich class of systems, to which
the straight laminar rivers of Abramian et al. (2020) belong.
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We further neglect surface tension, and any other stress on the free surface.
Unlike the unidirectional-flow assumption, this hypothesis could well be relaxed
in the present framework but, to keep our problem simple, we here assume that
the free surface is horizontal (more exactly, it belongs to the (x, y) plane). We then
place the origin on the free surface, which thus corresponds to z = 0. Accordingly,

∂u

∂z
= 0 for z = 0 . (2.2)

Finally, we treat the bed as an impervious wall, where the velocity of the fluid
vanishes:

u = 0 for z = −D(y) , (2.3)

where D(y) is the flow depth. This assumption is only a rough approximation
of reality when the bed is made of a granular sediment, into which the velocity
profile can penetrate. One could account for this penetration by allowing some
slip at the porous surface (Beavers & Joseph 1967). Similarly, in the context of
flowing ice, a slippery bed surface would also translate into a Robin boundary
condition (Schoof & Hewitt 2013). Here, for simplicity, we just keep equation (2.3)
until Appendix C.2, where we touch upon the subject of slip.

Equation (2.1), and the associated boundary conditions (2.2) and (2.3), repre-
sent a Nusselt flow down a channel of arbitrary section (Benjamin 1957). They
sometimes have closed-form solutions, for instance when the channel is elliptic
(section 3.1), but in general they do not, and one needs to approximate their
solution with a series expansion, or some other numerical method (sections 3.2
and 3.4). Here, equations (2.1) to (2.3) serve as our reference, against which we
can evaluate the new shallow-water approximation we introduce in section 2.4.
In that sense, we refer to them as “the exact equations” although, of course, they
are but an approximation of the actual flow.

2.2. Integrated momentum balance

Integrating the exact momentum balance (2.1) over a vertical section, and invok-
ing the free-surface boundary condition (2.2), we find

ν

∫ 0

−D

∂2u

∂y2
dz − τz

ρ
+ gSD = 0 , (2.4)

where ρ is the density of the fluid and τz is the vertical component of the viscous
stress on the bed’s surface. In a Newtonian fluid, the latter reads

τz = ρν
∂u

∂z

∣∣∣∣
z=−D

. (2.5)

A more usual notation for τz would be τxz, but in the present context the
shorthand notation τz leaves no ambiguity.

To rewrite the integral in equation (2.4), we first remember that the free surface
is flat and, accordingly, differentiate only the lower bound of the integral along
the bed’s surface:∫ 0

−D

∂2u

∂y2
dz =

∂

∂y

∫ 0

−D

∂u

∂y
dz − ∂D

∂y

∂u

∂y

∣∣∣∣
z=−D

. (2.6)

We then use the no-slip boundary condition (2.3) which, again, we differentiate
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across the stream:
∂u

∂y

∣∣∣∣
z=−D

=
∂D

∂y

∂u

∂z

∣∣∣∣
z=−D

. (2.7)

The above relation tells us that the vertical component of the shear stress, τz, its
crosswise counterpart, τy, and the norm of the shear stress, τ , are all related to
each other through

τ ≡
√
τ 2y + τ 2z = τz

√
1 +

(
∂D

∂y

)2

. (2.8)

Since the above relation is exact, and since the shape of the channel, D(y), is a
given of the problem, we can treat τz and τ as equivalent quantities. Hereafter,
based on this observation, we will use τz or τ interchangeably, depending on which
one is more convenient, or more telling.

The no-slip boundary condition (2.3) also allows us to write∫ 0

−D

∂u

∂y
dz =

∂

∂y

∫ 0

−D
udz , (2.9)

which, together with equation (2.7), we inject in the vertical integral of the
Poisson equation, equation (2.4). We finally find

ρν
∂2

∂y2
(UD)− τz

(
1 +

(
∂D

∂y

)2
)

+ ρgSD = 0 , (2.10)

where we have defined the vertically-averaged velocity U as

U =
1

D

∫ 0

−D
udz . (2.11)

The one-dimensional momentum balance (2.10) follows from equations (2.1) to
(2.3) without any additional assumption—in that sense, it is exact. The first term
is the divergence of the cross-stream flux of momentum, the second one is the
momentum lost to friction with the bottom, and the last one is the source of
downstream momentum, powered by gravity.

A similar balance could be established without assuming that the free surface
is flat, and the flow unidirectional; it would then explicitly couple the transverse
flow to the deformations of the free surface. Assuming the flow to be unidirectional
thus simplifies equation (2.10), but it makes the present theory unable to handle
bedforms (unless they are invariant along the x direction, section 3.3).

Even in the simple form of equation (2.10), the integrated momentum balance
is incomplete: it involves two unknown functions of the crosswise coordinate y
(the shear stress τz and the average velocity U). This was to be expected, since
we just integrated the Poisson equation vertically, without trying to solve it. At
this point, unfortunately, we can postpone no further resorting to approximation.

2.3. Classical lubrication approximation

The lubrication theory relies on the flow being shallow. To quantify this state-
ment, we define a small parameter, ε, as the aspect ratio of the channel’s cross
section:

ε =
H
L (2.12)
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where H is the characteristic depth of the channel. Upon rescaling of the y and
z coordinates with L and H respectively, the crosswise derivative in the exact
Poisson equation (2.10) is multiplied by ε2 (Appendix B.1). Assuming ε is small,
one can thus neglect the flux of momentum that viscosity transfers across the
flow. The classical lubrication approximation is based on this idea.

Neglecting the crosswise flux of momentum in the Poisson equation (2.10), we
find the classical velocity profile of a Poiseuille flow,

u =
3U

2D2
(D2 − z2) . (2.13)

where the vertically averaged velocity U is related to the vertical component of
the shear stress on the bed, τz, through

τz =
3ρνU

D
. (2.14)

Since the momentum that gravity delivers to the fluid does not propagate in the
crosswise direction, the surface of the bed needs to absorb it all, and thus:

τz = ρgSD . (2.15)

Equations (2.13) to (2.15) are exact when the channel is perfectly flat and
infinitely wide (ε = 0). They are also the leading-order term in the expansion
of the flow as a power series in ε (Appendix B.1). The gist of the classical
lubrication approximation is to assume that these leading-order equations provide
a decent approximation of the flow when D varies slowly across the channel. In
the case of a unidirectional flow in a straight channel, this simply translates into
equations (2.13) to (2.15)—only with varying coefficients U(y) and D(y).

The main advantage of this approach is its wonderful simplicity. The cost of this
simplicity, however, is that the resulting velocity U(y) violates the momentum
balance (2.10) at order ε2. In the next section, we improve the lubrication
approximation by proposing a representation of the flow that satisfies it exactly.

2.4. Revised lubrication theory

We would like to improve the classical lubrication approximation so that it
accounts for the momentum balance, while keeping the problem low-dimensional.
Our objective is to predict the distribution of shear stress on the channel’s bed
better than the classical theory, at a small computational cost. This endeavor is
in line with the work of Marche (2007), although here we limit ourselves to the
configuration of a steady flow in a straight channel.

To refine an approximate theory based on a series expansion, it is customary to
look for the next term in the expansion—here, the term of order ε2. Appendix B.1
is devoted to this standard method which, as expected, yields a correction to the
classical lubrication approximation. Here, however, we propose a less conventional
method based on the ansatz of the classical theory, in the hope of obtaining a
more flexible representation of the flow. The expansion of Appendix B.1 will be
our touchstone: to qualify as progress, the revised theory should be correct at
least up to order ε2.

The reasoning we propose does not have the mathematical rigor of an order
expansion, but it is extremely simple. It relies on the observation that it is only
by enforcing equation (2.15) that we make equation (2.14) violate the momen-
tum balance (2.10). In itself, equation (2.14) only links the average velocity,
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U , with the shear stress on the bed, τz, when the vertical velocity profile is
parabolic (2.13). In short, equation (2.14) just relates two unknowns, and thus
spares one degree of freedom.

It is, we believe, in the spirit of the shallow-water approximation to make the
most of this freedom, by dropping equation (2.15) while keeping equation (2.14).
Specifically, we use the shape of the vertical profile (2.13) as an ansatz which
relates the average velocity, U , to the shear stress, τz, through equation (2.14).
In practice, this means substituting equation (2.14) into the momentum bal-
ance (2.10), which then reads

1

3

d2

dy2
(
D2 τz

)
−
(

1 +

(
dD

dy

)2
)
τz + ρgSD = 0 . (2.16)

This second-order, ordinary differential equation is the substitute we propose for
equation (2.15). Its only unknown is τz. The flow depth, D(y), although it appears
at various orders of derivation, is the given boundary to which the flow adjusts.

Equation (2.14), which relates the friction on the bottom to the average velocity,
is essentially a friction law. The approximate momentum balance (2.16) depends
on this friction law, and it is therefore just as reliable as the latter (Appendix C).

Before we set off to investigate the validity of equation (2.16), we first acknowl-
edge some of its encouraging features. First, it becomes equation (2.15) again
over a flat bed—as it should. More interestingly, it is equivalent to the exact
Poisson equation (2.1) up to order ε2, which ensures that it is an improvement
upon the classical (zeroth order) theory (Appendix B.2). Finally, that it is a
differential equation instead of an algebraic one is only slightly inconvenient,
since equation (2.16) is linear in τz, and therefore amenable to classical resolution
methods. We still need to check, however, that this equation is worth the effort
of solving it.

The classical lubrication theory merely equates the vertical component of the
shear stress, τz, with the momentum that gravity injects into a vertical slice of
the flowing fluid, ρgSD. Thus, not only does it neglect the transfer of momentum
across the stream, but also approximates the flux of momentum into the bed with
its vertical component, τz. The revised theory does neither. Indeed, integrating
equation (2.16) between two points across the stream, say y1 and y2, and invoking
equation (2.7), we find:[

1

3

d

dy

(
D2 τz

)]y2
y1

−
∫ s(y2)

s(y1)

τ ds+ ρgS

∫ y2

y1

D dy = 0 . (2.17)

where s denotes the arclength along the bed’s surface (this change of variable
is based on equation (2.8)). The first term in the above equation represents the
crosswise flux of momentum, the second one is the total momentum transferred
to the bed, and the last one is the momentum injected into the flow by gravity.
The first term is an approximation, whereas the two others are exact. Regardless
of the correctness of the first term, however, the three of them balance each other
exactly—provided τz fulfills equation (2.16).

In other words, equation (2.16) is a proper continuity equation for momentum.
The downstream momentum that gravity constantly supplies to the flow is either
transmitted to the bed, or distributed sideways by viscosity. To close this balance,
therefore, one needs to account for the momentum that is transferred across the
stream. The value of the shear stress at a specific location on the bed thus depends
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Figure 2: Exact solutions to both the two-dimensional Poisson equation (2.1),
and the revised lubrication theory, equation (2.16). Aspect ratio is preserved.

Blue shading show velocity contours. The width of the channel is W . (a) Wedge
flow, equation (3.1) with µ = 1/3. The flow extends to y → +∞ on the

right-hand side. (b) Elliptic channel, with aspect ratio R = 3.5, equation (3.4).

on the shape of the entire channel. In mathematical terms, equation (2.16) is non-
local—a property inherited form the Poisson equation (2.1).

As encouraging as it may seem, the above features do not guarantee that
equation (2.16) is a better approximation of the flow than the expansion of
Appendix B.1, which is a local, algebraic equation: both are correct up to order
ε2. We devote the next section to testing equation (2.16) in a variety of—hopefully
instructive—configurations.

3. Test cases

Once the cross-section of the channel is fixed by choosing D(y), we can solve
equation (2.16), and therefore estimate the bottom shear stress, τz, according to
the revised lubrication theory. To evaluate how accurate this approximation is, we
need to solve the exact equation (2.1), and compute the associated shear stress.
When the channel’s shape is suitably simple, there are closed-form solutions of
the Poisson equation (section 3.1). In a rectangular channel, we can still expand
the exact solution into a series (section 3.2), but when the channel’s bottom
is corrugated, we need to resort to linearization (section 3.3) or finite elements
(section 3.4) to solve the problem of reference.

3.1. Exact solutions

3.1.1. Wedge flow

Let us first consider a Poiseuille flow in a wedge (figure 2a). This configuration
may represent a river bank, where the water surface (z = 0) intersects the bed
(z = −µy). Mathematically, this problem is ill-posed, since it lacks a boundary
condition on the open side of the wedge. We could fix such a condition, of course,
but this would rule out any closed-form solution. Close enough to the corner,
anyway, we expect that the flow velocity will be insensitive to the boundary
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condition, and will thus behave like

u =
gS

ν

(µy − z)(µy + z)

2(1− µ2)
=
gS

ν

D2 − z2
2(1− µ2)

, (3.1)

an expression that satisfies equation (2.1) exactly (except for µ = 1, section 4).
Based on this expression, the shear stress the flow exerts on the bed’s surface is
proportional to the water depth, µy:

τz =
ρgSµy

1− µ2
. (3.2)

We now need to evaluate the revised lubrication approximation against this
result. This is straightforward: as it turns out, equation (3.2) is also a solution of
equation (2.16). This is not true for the classical lubrication approximation since,
in a wedge, equation (2.15) reads τz = ρgSµy. The revised theory thus proves
an improvement in this case, at least when the bank is not too steep (µ < 1;
section 4 is devoted to µ > 1).

3.1.2. Elliptic channel

We now turn our attention to a better-defined problem, and consider an elliptic
channel of width W , and aspect ratio R (figure 2b), the depth of which reads

D =
1

R

√
W 2 − 4y2 . (3.3)

The corresponding solution of the Poisson equation (2.1) is (Boussinesq 1868,
p. 388)

u =
gS (W 2 − 4y2 − (Rz)2)

2ν (R2 + 4)
. (3.4)

Differentiating the above equation, we find the expression of the vertical compo-
nent of the shear stress on the bed’s surface:

τz =
ρgSR

√
W 2 − 4y2

R2 + 4
. (3.5)

Again, this expression happens to be an exact solution to equation (2.16)—the
approximation could not be more accurate. In fact, the velocity field associated
with the revised lubrication approximation, namely

u =
D

2ρν

(
R2 −

( z
D

)2)
τz , (3.6)

is the exact solution of the original Poisson equation. This result, which seems
coincidental at first, appears inevitable after careful consideration. Indeed, in an
elliptic channel, the vertical velocity profile of the exact solution is parabolic,
making the ansatz of the revised theory a perfect representation of the flow.
Conversely, the classical lubrication theory overestimates the shear stress by a
factor of (R2 + 4)/R2.

Although limited to channels of specific shapes, the perfect match between
the revised theory and the reference problem is encouraging. In particular, it is
remarkable that the revised theory works so well in an elliptic channel of arbitrary
aspect ratio, where the hypothesis of a shallow flow does not hold at all. In the
next section, we test the revised theory under even worse conditions.
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Figure 3: Laminar flow in a rectangular groove. (a,b) Streamwise velocity (blue
shading), according to series expansion (3.7) truncated at k = 99. Aspect ratio
is preserved. (c,d) Intensity of flow-induced shear stress on bottom (τ). Solid
blue: series expansion (3.7) truncated at k = 99, for reference. Dash-dotted

grey: classical lubrication approximation (2.14). Dashed orange: present
theory (3.8). Channel aspect ratio is W/D = 5 (a,c) and W/D = 1 (b,d).

3.2. Rectangular groove

Let us, for a change of context, imagine a straight microfluidic groove engraved
into a solid substrate, with a rectangular cross-section (figure 3a,b). The flat
bottom of the channel, of course, would be no challenge for the lubrication
theory, were it not for the two side walls, where the no-slip boundary condition
applies. There is no closed-form solution of the Poisson equation in a channel of
rectangular cross-section, but there exists a solution in the form of an infinite
series (e.g. White 1991):

u =
4gSW 2

νπ3

∞∑
k=1,3,5,...

(−1)(k−1)/2

k3

(
1− cosh(kπz/W )

cosh(kπD/W )

)
cos

(
kπy

W

)
(3.7)

where W is the width of the channel, and D its (uniform) depth. In this sum, the
index k can be interpreted as a dimensionless wavenumber. Differentiating the
above expression with respect to z yields the bottom shear stress τz with arbitrary
precision (blue line in figure 3c,d, τ is exactly τz in this case). As expected, we
find that viscosity conveys the influence of the walls across the flow, making the
bottom shear stress reach a maximum in the middle of the channel.

The classical lubrication theory, in the form of equation (2.15), cannot account
for the no-slip boundary condition at the side walls. In fact, according to this ap-
proximation, the shear stress just remains constant across the entire channel. As
a consequence, although this constant is a reasonable estimate of the shear stress
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far away from the walls, the classical theory fails entirely in their neighborhood
(grey line in figure 3c,d).

Equation (2.16), conversely, requires two boundary conditions, which allows us
to fix the velocity of the flow along the side walls: Equation (2.3) translates the
no-slip condition into τz = 0 in y = ±W/2. The uniform depth of the channel
makes this problem a textbook exercise, whose solution is

τz = ρgSD

1−
cosh

(√
3y/D

)
cosh

(√
3W/(2D)

)
 . (3.8)

We find that this expression is a much better approximation of the actual shear
stress than the constant of the classical theory (orange line in figure 3c,d).
In particular, the side walls affect the flow over a distance comparable to the
channel’s depth. In a channel of aspect ratio W/D = 5 (figure 3a,c), the largest
error of the present theory is less than 10 % of the average shear stress (the
average error is about 2 %). Combining equation (3.8) with the ansatz (2.13),
and integrating the result across the channel, yields an estimate for the total
discharge of a rectangular microfluidic groove; we find that this estimate lies
within less than 3 % of the actual value, whereas the classical theory is more than
30 % off.

The revised lubrication theory relies on the friction law (2.14), which derives
from the assumption that the flow profile is essentially that of a Nusselt film.
Near the walls, however, this hypothesis breaks down, because the walls cause
the profile to depart from its parabolic shape, thus affecting the friction law
(Appendix C.1). It turns out, however, that the vicinity of a wall also lessens the
contribution of bottom friction to the momentum balance. As a result, the friction
term gets wrong where it does not matter much, which bolsters the validity of
the revised lubrication theory near a wall.

In a narrower channel (W/D = 1, figure 3b,d), we expect both the classical
and the revised theories to fail. Indeed they do, but not to the same extent. The
revised theory underestimates the discharge by about 12 %, whereas the classical
theory overestimates it by a factor of almost 5. As visible on figure 3d, this
difference results from the ability of the revised theory to account for friction
along the sidewalls (Appendix B.1).

The non-locality of equation (2.16) comes at a cost but, as this case illustrates,
it keeps the momentum balance under control. This, we argue, is why the revised
theory is more reliable than the classical theory.

3.3. Linear perturbation

We now consider a channel of infinite width, the bottom of which is perturbed
with a sinusoidal corrugation of infinitesimal amplitude (figure 1). In tune with
our initial assumption, the flow remains invariant in the x direction; the crests
and troughs of the corrugation, therefore, are aligned with the flow velocity.
Mathematically,

D = D0 + Re

(
D∗1 exp

(
iky

D0

))
(3.9)

where D∗1 is the (possibly complex) amplitude of the perturbation (|D∗1 | �
D0), D0 is the unperturbed depth of the channel and k is the dimensionless
wavenumber of the perturbation (the corresponding wavevector is aligned with
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Figure 4: Spectral response of bottom shear stress to a bed perturbation of
infinitesimal amplitude. Blue line: linearized two-dimensional solution (3.10) for

reference (Abramian et al. 2019a). Blue dot: critical wavenumber kc ≈ 1.20.
Dash-dotted grey line: classical lubrication approximation (3.11). Orange

dashed line: present theory (3.13).

the y axis). When the perturbation vanishes, the bottom shear stress, τz,0, is
related to D0 through equation (2.15).

Abramian et al. (2019a) investigated the stability of a similar perturbation
when the bed over which the fluid flows is made of mobile sediment. Since
it is the flow-induced shear stress that drives sediment transport in this case,
one essential step of their analysis was to linearize the exact Poisson equation
(our equation (2.1)), and to analytically solve the resulting linear problem. Their
equation (3.7) will serve as our reference; in the present notations, it reads:

τz = τz,0

(
1 + (1− k tanh k) Re

(
D∗1
D0

exp

(
iky

D0

)))
. (3.10)

The above equation indicates that the shear stress is in phase with the sinusoidal
perturbation; its extrema lie where the perturbation’s are. More remarkably,
the sign of the shear-stress perturbation depends on the wavelength of the bed
perturbation (blue line in figure 4). When this wavelength is large enough (k < kc,
where kc ≈ 1.20), the shear stress is at its highest in the troughs, where the flow is
deeper—in tune with the classical lubrication theory. On the contrary, when the
perturbation’s wavelength is short enough (k > kc), the crests of the corrugation
find themselves more exposed to the bulk of the flow, and are therefore subjected
to a stronger stress. In other words, the crests then shield the troughs, which
collect a smaller share of the flow’s momentum. This mechanism, the signature
of the Laplacian in equation (2.1), is essentially the same as the shadowing that
sets the shape of diffusion-limited aggregates (Witten Jr & Sander 1981) and
causes the Saffman-Taylor instability (Saffman 1986). It is crucial to the stability
analysis of Abramian et al. (2019a), as it prevents the perturbations with the
shortest wavelengths to grow infinitely fast, thus selecting the wavelength most
likely to appear in an experiment.

The classical lubrication theory cannot account for this phenomenon. Indeed,
it directly relates the shear stress to the amplitude of the perturbation, regardless
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of its wavelength:

τz − τz,0
τz,0

=
D −D0

D0

= Re

(
D∗1
D0

exp

(
iky

D0

))
. (3.11)

In the Fourier space, this translates into a flat response (grey line in figure 4). The
present theory, on the other hand, is designed to account for the crosswise flux of
momentum. To compare it to equation (3.10), we first linearize equation (2.16)
about a horizontal bed. We find

D2
0

3

d2

dy2
τz,1
τz,0

+
2D0

3

d2D1

dy2
− τz,1
τz,0

+
D1

D0

= 0 , (3.12)

where D1 and τz,1 are the linear corrections to the base state of the flow depth
and the shear stress, respectively. Applying a Fourier transform to the above
expression, we get

τ ∗z,1
τz,0

=
1− 2k2/3

1 + k2/3

D∗1
D0

, (3.13)

where the symbol ∗ denotes the Fourier amplitude of the quantity it decorates.
For long wavelengths (k � 1), this expression correctly approximates the exact
linear result (3.10), but departs from it as the wavelength of the perturbation
approaches the flow depth (k ∼ 1) (orange line in figure 4). Before this happens,
however, the present theory accounts for the sign change of the shear stress near
kc, which it estimates at

√
3/2 ≈ 1.22—within 2 % of the true value.

The quality of the present approximation turns out to be surprisingly good. In
a fashion quite typical of shallow-water theories, it works better than it should.
Indeed, if we expand equations (3.12) and (3.13) into Taylor series, they match up
to order k4 only (odd orders all vanish); reasonably good, perhaps, but insufficient
to account for the sign change in figure 4, since this well-controlled, but truncated,
expansion fails to ever change sign, unlike the original equation (3.13). In short, it
seems we can push the revised lubrication theory beyond where a well-controlled
order expansion endorses it—at our own risks, of course.

Taking such risks, however, would be of little use if the revised lubrication the-
ory were to fail beyond the linear regime, in which the two-dimensional equation
it approximates can be solved relatively easily. The next section addresses this
point.

3.4. Finite-amplitude corrugation

The revised lubrication theory fairly reproduces the results of the linearized, two-
dimensional Poisson equation (section 3.3). We now perturb a flat bed with a
corrugation of finite amplitude, thus precluding any linearization of the problem.
To test the present theory, we need a reference, which analytical calculations
can no longer provide. Instead, we solve equation (2.1) in a corrugated channel
with finite elements (FreeFem++, Hecht 2012, blue shading in figure 5(a,b)).
Upon differentiation with respect to y and z, these numerical simulations yield
an approximation of the flow-induced shear stress on the bed (blue line in
figure 5(c,d)).

We consider two configurations, in which the corrugations differ in amplitude
and wavelength. In the first case, the wavelength of the corrugation is shorter than
the flow depth (k = 6), while its amplitude remains small, albeit not vanishing
(D∗1 = 0.03D0, figure 5(a,c)). We expect both the classical lubrication theory
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Figure 5: Laminar flow above a corrugated bottom (a,b), and associated shear
stress on the bed (c,d). Blue shading in (a,b) shows two-dimensional

velocity (2.1) (finite-elements simulations, arbitrary units). Flow is towards
viewer. Aspect ratio is preserved. Solid blue lines in (c,d): shear stress from
finite-elements simulations. Dotted brown line: linearized two-dimensional

flow (3.10) (Abramian et al. 2019a). Dashed orange lines: present theory (2.16)
(numerical solution). (a,c) k = 6 and D∗1 = 0.03D0. (b,d) k = 0.6 and

D∗1 = 0.7D0.

and the present theory to fail in this case, due to the short wavelength of the
perturbation. In the second case, the wavelength is significantly larger than the
flow depth (k = 0.6), while the amplitude is comparable to the depth (D∗1 =
0.7D0, figure 5(b,d)). It is in such a flow configuration that the revised theory
could prove useful.

In the first case, the amplitude of the perturbation is small enough (with respect
to depth) for the linearized theory of section 3.3 to provide a good approximation
of the shear stress (dotted brown line in figure 5(c)). This is not true, however,
for the classical lubrication theory, which wrongly locates the maxima of the
shear stress in the troughs (dashed grey line). This was to be expected, since
our choice of wavenumber is far beyond kc, the wavenumber above which the
crests shield the troughs (section 3.3). The revised lubrication theory, in the form
of a numerical solution of equation (2.16), does a little better, since it locates
the maxima correctly, but the amplitude of its prediction is off. For very short
wavelengths, therefore, the only alternative to the exact Poisson equation remains
the linear, two-dimensional theory.

Conversely, in the second case, the amplitude of the perturbation is too large
(with respect to depth) for the linear, two-dimensional theory (dotted brown line
in figure 5(d)). Moreover, its wavelength is too short for the classical lubrication
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approximation (dash-dotted grey line). The revised lubrication theory, on the
other hand, handles this case gracefully: the numerical solution of equation (2.16)
matches the finite element simulation of the full two-dimensional problem every-
where within 2.3 % of the average stress (dashed orange line). Equation (2.16)
thus represents accurately the diffusion of momentum across the flow, which
makes it a convenient alternative to the Poisson equation in this case.

This encouraging result would not survive a significant shortening of the
perturbation’s wavelength, that is, a reduction of the aspect ratio of the flow. As
it is, however, the periodic configuration of figure 5(b) evokes a series of channels
of aspect ratio πD0/(kD1

∗) ≈ 7.5—a value comparable to that of laboratory
rivers (Seizilles et al. 2013). In the next section, inspired by these experiments,
we consider a configuration in which the corrugation and the free surface intersect,
thus forming the bank of a river.

4. Flow along a corner

In section 3.1.1, we noted that the analytical solution of the Poisson equation
in a wedge diverged at a special value of the wedge angle, namely µ = 1—and
we quickly moved on. We now consider this problem in details. In fact, this is a
typical difficulty with any shallow-water or lubrication theory: when the bottom
of the flow reaches the free surface, their intersection creates a singularity. This
singular point, or line, often becomes an issue when one numerically simulates a
sheet flow over a rough bed that can protrude through the fluid’s surface (Delestre
et al. 2014).

In this section, true to the form of the paper, we consider a simpler version
of this problem: the laminar flow of a viscous fluid in a channel with a sharp
corner (figure 6). At the bank, the flow forms a wedge bounded by the bed
and the free surface, which intersect each other at an angle β (the slope of the
bank is µ = tanβ). Away from the corner, the bottom gradually returns to the
horizontal, until it reaches an axis of symmetry (dashed blue line on figure 6).
The assumption, here, is that the flat part of the bed, and the exact location of
the axis of symmetry, do not really matter to the flow near the corner.

We begin with our usual reference, the Poisson equation (2.1), for which we
find a variety of asymptotic behaviors near the corner (section 4.1). We then
try to identify the same regimes in the revised lubrication theory (section 4.2).
The classical lubrication theory, of course, is irrelevant for this problem, since
it assumes that the fluid’s velocity is proportional to the local flow depth, and
therefore undergoes no transition when µ = 1.

4.1. Poisson equation

The Poisson equation (2.1) is linear and non-homogeneous. It is thus convenient
to decompose its solutions into the sum of a homogeneous solution and a special
solution. Dropping the source term of the Poisson equation, we are left with the
Laplace equation,

∇2u = 0 , (4.1)

to which we can find solutions in the form of analytical functions of the complex
variable ω = y + iz (the bank is located at ω = 0). Then, we will need to find a
special solution to the original Poisson equation. Unless µ = 1, this will simply
be equation (3.1), the solution we encountered in section 3.1.1.
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Figure 6: Laminar flow in a channel with a sharp corner (finite-element
simulation). Channel shape corresponds to equation (4.4). The tangent of the

corner angle is µ. Blue shading: flow velocity.

4.1.1. Homogeneous solution

In a corner of angle β, there exists a power-law solution to the Laplace equa-
tion (4.1) that satisfies boundary conditions (2.2) and (2.3). Namely,

u(h) = C Re
[
ωπ/(2β)

]
(4.2)

where ω = y + iz is the complex coordinate, and C is a positive constant
with physical dimensions (Polubarinova-Kochina 1962). Differentiating the above
expression, we get the vertical component of the shear stress, τz:

τ (h)z = C ′ yπ/(2β)−1 (4.3)

where C ′ is another positive constant. The exponent of the above expression is
already an indication that a slope of µ = 1 might be a special value. Indeed,
when β = π/4, the exponent of the above expression is exactly 1—the exponent
of the special solution (3.2). Motivated by this observation, we now compare the
homogeneous solution (4.3) with the special solution.
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4.1.2. Shallow bank (µ < 1)

When the bank is shallow enough (µ < 1 or equivalently β < π/4), the special
solution (3.1) remains finite and positive, and thus physically acceptable. In a
given channel, such as those of figure 6, the actual flow is then the sum of this
special solution and a homogeneous solution (4.2), the prefactor of which, C,
adjusts to the far field, that is, to the overall shape of the channel.

Provided the corner’s angle, β, is less than π/4, the exponent of the homo-
geneous solution (4.3) is larger than one, and therefore larger than that of the
special solution. As a consequence, the special solution dominates the flow in
the bank’s neighborhood (ω → 0), and the shear stress is well approximated by
equation (3.2), in which there is no parameter that adjusts to the far field.

To compare this asymptotic behavior to numerical simulations, we first devise a
concrete example of a channel with a bank slope of µ. We expect that, apart from
the bank, the general shape of the channel will not alter the asymptotic behavior
of the flow in the corner. To fix the channel’s shape, we arbitrarily define its cross
section as

D = Dm

cosh(µ(y/Dm −R/2))− cosh(µR/2)

sinh(µR/2)
(4.4)

where Dm sets the depth of the channel, and R sets its aspect ratio (figure 6).
In practice, we choose R = 8, whereas Dm does not matter once the problem is
made dimensionless. We then run finite-element simulations in such a channel to
numerically approximate the velocity field u, which is a solution to the Poisson
equation (2.1) (blue shadings in figure 6). By differentiating this velocity, we
find the shear stress on the bed, τz. For a shallow bank (µ < 1), we find
good agreement between the numerical solution (solid blue line in figure 7) and
the special solution (3.2) (dashed blue line in figure 7), without adjusting any
parameter. This shows that, near a shallow bank, the flow is indeed dominated
by the special solution, the asymptotic behavior of which is independent of the
rest of the flow (the far field).

However, as the bank’s angle approaches 45◦ (µ = 1), equation (3.1) breaks
down, and the flow near the bank takes another form.

4.1.3. Steep bank (µ > 1)

When the bank is steep (µ > 1), the special solution (3.2) yields a negative shear
stress in the corner—quite unrealistic. This is an indication that, in this case, we
cannot neglect the homogeneous solution anymore.

In fact, the homogeneous solution (4.2) takes over the flow near the bank. Math-
ematically, the exponent of the homogeneous solution (4.2) becomes less than one
and, therefore, the homogeneous solution overshadows the special solution (3.2)
near the bank (ω → 0). As a consequence, the leading-order term in the velocity
field is now a power law with a varying exponent (namely π/(2β)), which depends
on the bank’s slope—and so does the shear stress through equation (4.3). The
dependence of an exponent on the shape of the boundary is not unheard of; it is
in fact quite typical of the Laplace equation (Polubarinova-Kochina 1962). That
it happens in a viscous flow is reminiscent of the recirculation loops identified by
Moffatt (1964), although the transition we find here is mathematically simpler.

Again, the finite element simulations match this asymptotic regime near the
bank although, this time, we need to fit the constant C ′ to the numerical data
(dashed and solid brown lines in figure 7). The value of this prefactor, indeed,
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Dash-dotted orange line: equation (4.6), with Cb arbitrarily set to Dm.

depends on the shape of the entire channel—the far field matters for the flow
along a steep corner, even at leading order.

4.1.4. Intermediate bank (µ = 1)

When the slope of the bank is exactly one (β = π/4), finding a special solution
of the Poisson equation (2.1) requires more work. One method is to write the
solution as the sum of a radially symmetric term that does not match the
boundary conditions, with an analytical term that corrects this mismatch. A
simple expression for the first is −gSωω̄/(4ν) (the overbar denotes complex
conjugation), which naturally satisfies the free-surface boundary condition, but
not the no-slip condition on the channel’s bed. We now need to find an analytical
function that compensates for this shortcoming. There might be a principled
method to do so, but we used trial and error to identify, among the usual suspects
of complex analysis (power laws and logarithm), the one that suits our problem,
namely:

u = −gS
ν

Re

(
ωω̄

4
+
ω2

π
log

(
ω

Cb

))
, (4.5)

where Cb is an arbitrary positive constant. This constant relates the flow near
the corner to the far field. Unlike for a steep bank (section 4.1.3), however,
this constant plays only a minor role in the neighborhood of the bank, as logω
overcomes logCb. This was to be expected, perhaps, in the special case that marks
the transition between the shallow bank, for which the far field does not matter,
and the steep bank, for which the far field dominates the flow.

Differentiating equation (4.5) along the z direction, we finally find an expression
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for the shear stress near the bank:

τz ≈ −
2ρgS

π
y log

(
y

Cb

)
. (4.6)

The finite-element simulations match this peculiar scaling, even when the con-
stant Cb is arbitrarily set to Dm (orange lines in figure 7).

To represent the transition from the shallow-bank asymptotic regime to steep-
bank regime, we plot the exponent of the leading-order term in the shear-stress
expansion, α, as a function of the bank slope, µ (figure 8). After a plateau at α = 1
that corresponds to a shallow bank (µ < 1), the exponent suddenly switches to
π/(2β) − 1 when the bank gets steeper than 45◦ (blue line on figure 8). Right
at the transition, when the bank’s slope is exactly one, the leading-order term is
not a power-law and α is thus ill-defined.

Now that we have established the asymptotic behavior of the flow near a
bank, we can ask how accurately the revised lubrication theory accounts for this
behavior. This is the purpose of the next section.

4.2. Revised lubrication approximation

We now consider the corner flow of section 4.1 in the framework of the revised
lubrication theory. The findings of the previous section will serve as a reference,
against which we will test the theory introduced in this paper. Near a bank of
slope µ, equation (2.16) becomes

1

3

d2

dy2
(
y2τz

)
−
(

1 +
1

µ2

)
τz +

ρgS

µ
y = 0 . (4.7)
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Once again, to solve this linear, non-homogeneous equation, we need to find a
special solution and a family of homogeneous solutions. In doing so, we hope to
find the counterparts of the special and homogeneous solutions of section 4.1.

4.2.1. Homogeneous equation

We begin with the homogeneous equation associated with equation (4.7):

d2

dy2
(
y2τz

)
−Aτz = 0 , (4.8)

where, for simplicity, we have introduced A = 3(1 + 1/µ2). The solutions of the
above equation are the sum of two independent solutions:

τz,h = C+y
α+ + C−y

α− (4.9)

where C± denote integration constants, and the two exponents read

α± =
−3±

√
1 + 4A

2
. (4.10)

Among the above exponents, one is positive (α+ > 0), and the other negative
(α− < 0). We discard the latter to ensure that the shear stress, τz, remains finite
at the bank. We then rewrite the homogeneous solution as

τz,h = C+y
α+ . (4.11)

At this point, it is tempting to identify α+ with the exponent of equation (4.3).
This comparison, however, makes sense only if equation (4.11) represents the
leading-order term of the flow. To find when this is the case, we need to look for
a special solution of equation (4.7).

4.2.2. Special solution

From section 3.1.1 we know that, unless the slope of the bank is µ = 1, a special
solution of equation (4.7) is equation (3.2)—the very equation that directed our
attention to the bank problem in the first place. Again, this solution disappears
when µ = 1, just like the special solution of the Poisson equation (section 4.1.1).
In the light of section 4.1.4, we expect that we will need to pay some dedicated
attention to this singular case.

Now that we possess a special solution to equation (4.7) and a family of
homogeneous solutions (4.11), we are well equipped to evaluate their relative
importance near the bank.

4.2.3. Shallow bank (µ < 1)

When the bank is shallow enough (µ < 1), equation (4.10) tells us that the
exponent of the homogeneous solution, α+, is larger than 1. As a result, near the
bank (y → 0), the homogeneous solution becomes negligible with respect to the
special solution (3.2). Therefore,

τz ∼
ρgµS

1− µ2
y , (4.12)

which is just equation (3.2). At leading order, the shear stress thus grows linearly
with the distance from the bank, which translates into a plateau on figure 8
(α = 1). This plateau matches exactly the one we found in section 4.1.2 and,
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in retrospect, supports the rough reasoning of section 3.1.1. Encouraged by this
agreement, we now consider the case of a steep bank.

4.2.4. Steep bank (µ > 1)

When the bank is steep (µ > 1), the shear stress associated with the special
solution (3.2) becomes negative. This would be physically unacceptable, if the
homogeneous solution did not overcome the special solution. According to equa-
tion (4.10), however, we find that the exponent of the special solution, α+, is now
less than 1. This means that, near a steep bank, the homogeneous solution indeed
dominates the flow. Therefore,

τz ∼ C ′+yα+ , (4.13)

where C ′+ is a constant set by the far field. This expression, together with
equation (4.10), approximates well the exact expansion derived in section 4.1.3
when µ is close to one (figure 8). This agreement, however, becomes less accurate
as the bank’s slope steepens. Beyond the critical slope, the revised lubrication
theory gradually becomes less reliable, and can only provide qualitative estimates
of the exponent α.

In the limit of a vertical corner (µ→∞), the bed becomes a wall that extends
down to infinity. The revised lubrication approximation then fails because the
vertical integral of the momentum balance, which yields equation (2.4), diverges.
Adding a bottom at some finite depth, however, provides a lower bound to this
integral, and allows the approximation to recover (section 3.2). In fact, near
the walls of a rectangular channel, the revised lubrication approximation gives
a decent estimate of the stress on the bottom (appendix C.1). The quality of
the approximation thus depends on the shape of the bottom, rather than the
behavior of the flow near the corner—another manifestation of non-locality.

4.2.5. Intermediate bank (µ = 1)

When the bank is at an angle of exactly 45◦ (that is, µ = 1), the special
solution (3.2), breaks down. Instead, we find the following special solution:

τz = −3ρgS

5
y log

(
y

C ′b

)
, (4.14)

where C ′b is a positive constant which, like Cb, is set by the far field. The exponent
of the homogeneous solution is α+ = 1, and equation (4.14) is thus the leading-
order term of the shear stress near the bank. This expression matches its two-
dimensional counterpart, equation (4.6), but for the value of the prefactor, which
we find to be less than 6 % off.

Just like in section 4.1.4, the flow near a bank of slope 1 features a logarithmic
correction, with an integration constant that adjusts to the far field. That, in the
revised lubrication theory, the prefactor of this regime is a bit off is typical of a
shallow-water approximation: it is qualitatively correct, but not exact. The error,
in this case, vanishes suddenly when the bank’s angle becomes less than 45◦.

5. Conclusion

For the cost of solving a linear, ordinary differential equation, we can account
for the crosswise transfer of momentum across a shallow laminar flow. In all the
configurations we have tested, doing so proved an improvement over the classical
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lubrication theory, which discards this transfer altogether. The revised theory,
however, is only an approximation of the original two-dimensional problem. It
fails when the flow varies too abruptly across the stream and, in its present
form, cannot account for any variation along the stream. In that sense, one
gets what one pays for: the classical lubrication theory requires little effort, but
it applies only to very shallow flows. At the other end of the spectrum, one
can numerically solve the full, two-dimensional problem to reach an arbitrary
accuracy. The revised theory can be a fair compromise.

As is often the case with shallow-water equations, we found that this compro-
mise is a good representation of the flow, while remaining a tractable approxima-
tion. The accuracy of this approximation depends entirely on the vertical profile
of the flow: the revised theory is reliable when the latter is almost parabolic.
When is this true? This is a difficult question in general. To answer it, one could
turn the parabolic profile into the first term of a projection onto a suitably chosen
basis, and then evaluate the next term (Ruyer-Quil & Manneville 2000)—a task
far beyond the scope of the present paper.

The order expansion detailed in Appendix B, nonetheless, shows that the
revised theory is accurate up to order ε2 at least, where ε is the aspect ratio of
the flow (the classical theory is of zeroth order). Based on a series of comparisons
with the exact Poisson equation, we argue that the revised theory is yet better
than an order expansion, because it keeps track of the non-locality of the original
equation. In contrast with an expansion, indeed, one needs to know the entire
shape of the channel in which the revised lubrication equation is to be solved.
This feature is what allows the revised theory to account for the side walls of a
channel (section 3.2), or the matching of a local asymptotic regime with the bulk
of the flow (section 4).

In principle, the method we propose might be extended to three-dimensional
flows, provided they remain laminar and shallow, and that their free surface is
fixed. Such would be the case, for instance, in a Hele-Shaw cell, where the viscous
transfer of momentum in the cell’s plane is usually neglected. By accounting
for this transfer, the present theory could provide a better representation of the
Saffman-Taylor instability, and especially of its regularization, which is classically
attributed to surface tension only (Saffman 1986).

Outside the laboratory, the present theory could apply to the viscous flow
of ice shelves. Ice streams, in particular, flow over a layer of glacial till which
reduces their basal friction; as a consequence, although they are often shallow,
a large proportion of the shear stress that opposes their sliding comes from
their margins, and propagates crosswise toward their center (Suckale et al. 2014;
Schoof & Mantelli 2021). The classical lubrication approximation is useless in
this case, but the revised theory could help us understand the formation of these
fast-flowing channels, without resorting to the complexity of a three-dimensional
model. This theory, however, would apply only to an ice stream that does not vary
along its course—a rather limiting requirement. Such an abstract configuration,
nonetheless, could illustrate the basic mechanism by which a nascent ice stream
appears, and thus prove illuminating.

A simplified, low-dimensional configuration often becomes the archetype of a
linear instability. One such instability, for instance, can be found below the flowing
ice of continental shelves, where meltwater carves channels in the underlying
sediment layer (Kasmalkar et al. 2019). The stability analysis that explains the
initiation of this pattern might well be simplified by the use of the revised
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lubrication approximation, as long as the bedforms are aligned with the flow.
In fact, these meltwater canals might result from the same instability as the
streamwise streaks of Abramian et al. (2019a), the stability of which is controlled
by the transfer of momentum across the flow—just what the revised theory is
designed for.

Finally, it is in temperate latitudes that we find the most ordinary example
of natural streams where the present theory applies: alluvial rivers. Indeed, to
maintain its bed just above the threshold for sediment transport, a river needs to
hand out some of its momentum to the banks (Parker 1978; Abramian et al. 2020).
To derive the equilibrium shape of an alluvial river, one thus needs to understand
how the flow distributes stress over a boundary whose location is unknown
beforehand. The present theory might simplify this free-surface problem, and
thus help us understand how rivers build their own channels. That would be well
worth the effort of revising the lubrication theory.
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Appendix A. Alternative model

Using the notations and hypotheses of the present paper, equation (5.20) in
Marche (2007, p. 59) reduces to

gSD

3ν
− U

D
+

1

3

d

dy

(
D

dU

dy

)
= 0 . (A 1)

For comparison with the present model, we rewrite equation (2.16) in terms of
the depth-averaged velocity U , using equation (2.14):

gSD

3ν
− U

D

(
1 +

(
dD

dy

)2
)

+
1

3

d2

dy2
(DU) = 0 . (A 2)

Equations (A 1) and (A 2) are obviously equivalent when the water depth is
uniform (D constant, section 3.2). Over a corrugated bed, however, they yield
distinct results. To see this, we consider a flat bed perturbed with a sinusoidal
corrugation of wavenumber k (section 3.3). Up to fourth order in k, we find that
the amplitude of the perturbation reads

U∗1
U0

= −2 +
2k2

3
− 2k4

9
+O(k6) (A 3)

for equation (A 1), whereas it reads

U∗1
U0

= −2 + k2 − k4

3
+O(k6) (A 4)

for equation (A 2).
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We now wish to compare the above expansions to the linear, two-dimensional
theory they should approach. Following Abramian et al. (2019a), we linearize
the two-dimensional flow equations above a sinusoidal bed perturbation of small
amplitude D∗1 :

u =
3U0

2D2
0

(
z2 −D2

0

)
+

3U0D
∗
1

D0 cosh k
cos

(
ky

D0

)
cosh

(
kz

D0

)
+O(D∗21 ) . (A 5)

Integrating vertically the above expression, and expanding the result up to fourth
order in k, we find

U∗1
U0

= −2 + k2 − 2k4

5
+O(k6) . (A 6)

The theory we propose here (equation (A 2)) accords with the above expression up
to second order in k—an improvement with respect to the classical lubrication
theory, which truncates the expansion after the zeroth-order term. The model
of Marche (2007) (equation (A 1)) does not yield the right second-order term,
although it correctly approximates its trend. Both one-dimensional models are
wrong at the fourth order.

Appendix B. Series expansion of the velocity field

In section 2, we have established the revised lubrication equation (2.16) based
on an ansatz, that we hoped would be a fair representation of a shallow flow.
This method is straightforward, but offers no simple control on the quality of
the approximation (such control might be possible, but would involve elaborate
mathematics, Ruyer-Quil & Manneville 2000). Here we tread a more familiar
path; it does not reach as far as the ansatz method, but it leads to a conservative
estimate for the validity of the revised theory.

The classical way to simplify an equation based on the smallness of some
parameter is by order expansion. Let L be the characteristic length over which
the bed changes, and H the typical depth of the flow; when the flow is shallow, its
aspect ratio ε = H/L is the small parameter upon which we can base our series
expansion. We first expand the exact Poisson equation (2.1) into a power series
around ε = 0, and then do the same with the revised lubrication equation (2.16).
This will tell us how the latter converges towards the former as ε goes to zero.

B.1. Poisson equation

Rescaling horizontal and vertical coordinates with L and H respectively, and the
flow velocity with gSH2/ν, the Poisson equation (2.1) becomes

ε2
∂2ũ

∂ỹ2
+
∂2ũ

∂z̃2
= −1 (B 1)

where a tilde indicates a dimensionless quantity (y = ỹL, z = z̃H and u =
ũgSH2/ν). The characteristic aspect ratio of the flow, ε, appears naturally in the
above equation, thus prompting us to expand the velocity field in terms of ε2.
Accordingly, we define the first two terms of such an expansion as,

ũ = ũ0 + ε2ũ1 +O(ε4) , (B 2)
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and inject this expression into equation (B 1) and the associated boundary con-
ditions, equations (2.2) and (2.3). At zeroth order, we find:

ũ0 =
1

2

(
D̃2(ỹ)− z̃2

)
, (B 3)

where D̃ = D/H is the dimensionless flow depth. At this order, the diffusion of
momentum across the stream does not play any role; therefore, this expression
is just the Poiseuille profile of the classical lubrication approximation, that is,
the dimensionless form of equation (2.13). More surprisingly, the correction to
the leading order, ũ1, also takes the form of a parabolic vertical profile, although
with a different prefactor:

ũ1 =
1

4

(
D̃2
)′′ (

D̃2(ỹ)− z̃2
)
, (B 4)

where a prime denotes derivation with respect to ỹ. The combination of equa-
tions (B 2), (B 3) and (B 4) yields the expression of the velocity field up to second
order in ε:

ũ =
1

2

(
D̃2(ỹ)− z̃2

)(
1 +

ε2

2

(
D̃2
)′′)

+O(ε4) . (B 5)

The above expression is an improvement upon the lubrication approximation,
which might prove useful in itself. Here we simply note that, up to order ε2 the
vertical velocity profile remains parabolic (this is not true at the next order, ε4).
The vertical profile can thus be factorized in equation (B 5)—an indication that
the Poiseuille profile is a reasonable ansatz. In that sense, the above expansion
supports the revised lubrication approximation. In the next section, we check
that the latter indeed matches equation (B 5) up to order ε2.

B.2. Revised lubrication equation

The revised lubrication equation (2.16) is supposed to approximate the flow when
the aspect ratio ε is small enough. Its expansion around ε = 0 should, therefore,
be consistent with that of the exact Poisson equation (2.1). To confirm this, we
first need to make equation (2.16) dimensionless. Defining the vertical component
of the dimensionless shear stress as τ̃z = τz/(ρgHS), we find

ε2

3

(
D̃2 τ̃z

)′′
−
(

1 + ε2
(
D̃′
)2)

τ̃z + D̃ = 0 , (B 6)

where, like in section B.1, the aspect ratio of the flow naturally appears as ε2.
Expanding the shear stress τ̃z around ε = 0 again yields, at leading order, the
term that corresponds to the classical lubrication equation, τ̃z,0 = D̃. At the next
order (ε2), we find

τ̃z,1 =
D̃

2

(
D̃2
)′′

. (B 7)

Combining the zeroth- and first-order terms into a single expression, we get

τ̃z = D̃

(
1 +

ε2

2

(
D̃2
)′′)

+O(ε4) . (B 8)

To compare this expression to the expansion of the Poisson equation (section B.1),
we only need to differentiate equation (B 8) with respect to the vertical coordinate
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z̃; it then becomes equation (B 5). The revised lubrication approximation is thus
equivalent to the original Poisson equation up to order ε2, whereas the validity
of the classical theory ends at zeroth order.

The formal expansion of this appendix demonstrates that the revised approx-
imation we propose improves the classical lubrication equation, at least up to
order ε2. However, why would anyone want to solve the ordinary differential
equation (2.16), when equation (B 8) provides an explicit solution that is also
valid up to order ε2? A straightforward answer is to note that, in an elliptic
channel, equation (B 8) does not yield the exact solution, whereas the revised
lubrication equation does (section 3.1). The revised theory, therefore, must be a
bit better than the classical expansion.

This answer is conveniently simple, but we believe it misses a deeper point.
The main difference between the two approaches is that the revised lubrication
equation (2.16) is non-local, whereas expansion (B 8) depends only on the flow
depth and its second derivative. Whether non-locality, which requires us to
solve a differential equation with boundary conditions, is an advantage or an
inconvenience depends on the context. It is computationally more expensive
than the explicit expansion (B 8), but it is more flexible. A good example of
this versatility is the rectangular groove of section 3.2: since the channel’s bed
is flat, the second derivative of depth vanishes everywhere, and expansion (B 8)
yields the same result as the classical lubrication approximation. The revised
theory, conversely, accounts for the presence of the two walls with decent accuracy.
Likewise, the non-local theory represents qualitatively the transition of the flow
along a corner (section 4), a feat out of any local theory’s reach.

Appendix C. Friction coefficient

The present theory, like the lubrication approximation, is based on an assumption
about the vertical velocity profile. The details of this profile, however, do not
really matter; only the relation it implies between the average flow velocity U
and the shear stress does (sections 2.3 and 2.4). We can express this relation in
terms of a friction coefficient, Cf , which we define as follows:

Cf =
Dτz
ρνU

. (C 1)

In the present paper, this coefficient is assumed to be Cf = 3, the value it
takes when the velocity profile is exactly that of a Nusselt film (2.13). It is the
expression of Cf , as opposed to the entire shape of the profile, that allows us to
write equation (2.16) in closed form. As a consequence, the revised lubrication
theory is exactly as reliable as the friction law it is based on—but this law needs
not be Cf = 3.

C.1. Approximation

In the rectangular groove of section 3.2, the revised lubrication approximation
fails near the side walls. This is because the velocity profile, perturbed by the
presence of the wall, departs from the ansatz (2.13).

Figure 9(a) shows how the vertical velocity profile changes near the side wall of
a rectangular grove of aspect ratio 5. At most, the velocity profile differs from the
Nusselt profile by about 12 % (when y+W/2 = 0.01W ), but this small difference
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Figure 9: Velocity profile and friction coefficient in the rectangular grooves of
Figure 5. (a) and (b): Vertical velocity profile at different locations across the

channel, according to equation (3.7) (blue lines), and according to the
ansatz (2.13) (dashed orange line). Legend indicates distance to the left wall.

(c): Friction coefficient Cf across the channel according to equation
equation (3.7) (blue lines). Dashed orange line: ansatz friction coefficient

(Cf = 3).

is enough to increase the friction coefficient by a factor of about 2 (Figure 9(c)).
The departure from the Nusselt profile is even more pronounced in a narrower
channel (Figure 9(a)).

Near the wall, however, the horizontal transfer of momentum is large, whereas
neither the friction on the bottom nor gravity contribute much to the momentum
balance. In other words, the first term in equation (2.16) needs to vanish—hence
the linearity of the cross-stream profile in Figure 3(c). This is fortunate, because
it means that the shape of the profile does not depend on the value of the friction
coefficient. This mitigates the error introduced by the ansatz, thus explaining why
the lubrication approximation still performs well near the walls (Figure 3(c)).

There is no reason to believe that this mitigation is inevitable, and one might
devise an exotic wall condition that would strongly affect the vertical profile of
the flow, without absorbing much momentum. This would more methodically
break the revised lubrication theory. Instead of this mischievous endeavor, we
now propose a simple extension of the theory which illustrates the role of the
friction coefficient.
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C.2. Slip condition

So far, we have assumed that the fluid cannot slip along the bed, but this needs
not be always the case. Although this is seldom significant at the macroscopic
scale, a liquid can slip along a solid (Lauga & Stone 2003). This phenomenon,
often referred to as “Navier slip”, is of prime importance in microfluidic devices,
or near a moving contact line (Snoeijer et al. 2006). Similarly, the velocity of
a fluid can remain finite along the surface of a porous solid (Beavers & Joseph
1967) and, yet at a larger scale, glaciers and ice sheets are known to slide over
their rock bed (Schoof & Hewitt 2013).

The simplest way to represent this sliding is to replace the no-slip boundary
condition (2.3) with a more general (but still linear) Robin condition:

u = λs
∂u

∂z
for z = −D(y) , (C 2)

where λs is a slip length which depends on the fluid, and on the solid over which
it flows. According to this new boundary condition, the slip velocity is simply
proportional to the shear stress the flow applies on the surface of the solid.

Over a flat bed, the velocity profile that satisfies the momentum balance (2.1)
and the above boundary condition is again a parabola, but one that allows for
some slip along the bed:

u =
gSD2

2ν

(
1−

( z
D

)2
+ 2

(
λs
D

)2
)
. (C 3)

Replacing the Nusselt profile (2.13) with the above parabola, we can finally
calculate the friction coefficient:

Cf =
3

1 + 3 (λs/D)
2 . (C 4)

This expression is all we need to account for slip in the framework of the revised
lubrication theory. In practice, we would just inject it into the integrated momen-
tum balance (2.10). We would then find an equation similar to equation (2.16),
but for the first term, which would depend on the slip length λs.

As the slip length λs increases, sliding becomes easier—until the bottom friction
becomes negligible. In the integrated momentum balance (2.10), this translates
into the first term (cross-stream diffusion) dominating the second (exchange with
the bed). In short, the revised lubrication theory transitions smoothly to a “sliding
membrane” model in which momentum is exchanged only laterally (Schoof &
Hewitt 2013).
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