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Abstract

Ductile failure prediction is essential to avoid loss of structural integrity or to
control crack propagation during forming processes. One of the main difficulties
is the prediction of complex crack paths. This study proposes a nonlocal extension
of a local Gurson-Tvergaard-Needleman (GTN) ductile damage model at finite
strains able to capture cup–cone or slant fracture. The proposed model is based
on an implicit gradient formulation which enables to solve the problem of spurious
strain and damage localization. The model integrates two different material
characteristic lengths, which are used to separately regularize damage by void
growth and damage by damage nucleation. After parameter fitting using data for
a line pipe steel, conditions to obtain converged solutions are studied, which can
be used to select the mesh size in the localization band. With the appropriate
mesh design, it was possible to study the effect of the characteristic lengths on the
formation of cup—cone fracture and slant fracture. It is observed that, for a given
specimen size, larger characteristic lengths favor flat crack advance. Similarly, for
given material lengths, size effects can be predicted with small specimens being
more prone to flat fracture. This paves the way to a more direct determination
of material lengths by using homothetic specimens so as to obtain different crack
paths.
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1. Introduction

Predicting ductile failure is a major challenge when trying to prevent
catastrophic failure of structures or to control crack propagation in the case of
metal forming. One of the main challenges is the prediction of complex crack
paths in metals such as cup-cone or slant fracture. To achieve this goal, models
able to robustly represent the local degradation phenomena (damage nucleation,
growth and coalescence) are needed. Among such models is the micro-
mechanics based Gurson–Tvergaard–Needleman (or GTN) model (Tvergaard and
Needleman, 1984). Based on this seminal framework, numerous extensions
have been proposed, which are reviewed e.g. in (Tvergaard, 1990; Besson, 2009;
Benzerga and Leblond, 2010; Pineau et al., 2016). They are able to account for
void shape, void orientation, plastic anisotropy, strain rate sensitivity, coalescence
by internal necking. . .

All these models must lead to softening up to a point where the material
entirely loses its load-carrying capacity so as to be able to model fracture. These
softening models were first developed within the usual local framework and thus
suffered from the well–known numerical issues such as mesh size and mesh
orientation dependence (Rousselier et al., 1989; Liu et al., 1994; Besson et al.,
2001). Due to the loss of ellipticity of the equations in statics, the solution to the
mechanical problem is no longer unique. Overcoming these issues is fundamental
for the reliability of fracture simulations. Using a finite strain framework is also
required as ductile fracture is always accompanied by large deformations. Several
solutions have been proposed to overcome mesh dependency. A first solution
is based on a local enrichment by embedding a finite thickness band (Huespe
et al., 2009). In that case, the band is introduced when loss of ellipticity is
detected within one element. The normal to the band is determined following
Rice’s bifurcation analysis (Rice, 1976). Another solution is based on implicit
gradient methods (Peerlings et al., 1996; Geers et al., 1998) which facilitate the
use of integral methods as originally proposed in (Pijaudier-Cabot and Bazant,
1987; Bazant and Pijaudier-Cabot, 1988). These methods have been used to
model ductile fracture for metals within a finite strain framework (Enakoutsa
et al., 2007; Mediavilla et al., 2006; Linse et al., 2012; Hütter et al., 2013; Javani
et al., 2016; Seupel et al., 2020; Leclerc et al., 2020) although they were initially
developed for quasi–brittle failure. Using an implicit gradient formulation, the
local constitutive equations are preserved at the cost of small adaptations. This
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makes this formulation particularly attractive in the case of the GTN model, as
its initial micro-mechanical foundations are then preserved. Multiple internal
lengths were introduced in (Nguyen et al., 2020). This model uses an implicit
gradient formulation written in the initial configuration. An internal length was
associated with each damage evolution mechanism: (i) void growth based on
the classical GTN model, (ii) internal necking governed by a heuristic extension
of the Thomason model (Thomason, 1985b,a) based on the maximum principal
stress, (iii) shear–dominated coalescence mechanisms controlled by the maximum
shear stress (Torki et al., 2015). Although the model proposes different internal
length scales, the same characteristic length was assigned to the three nonlocal
variables in the presented simulations. Micromorphic models (Forest, 2009) can
also be used to solve problems related to the loss of ellipticity. They use local
state variables and their “micromorphic” counterparts. The free energy of the
system depends on the gradient of the micromorphic variables and on coupling
terms. Ductile fracture was modeled using this class of models in (Brepols
et al., 2017; Diamantopoulou et al., 2017). In particular, models based on a
microdilatational theory (Huetter, 2017) appear to be well suited to represent
ductile damage by void growth. More recently, nonlocal gradient enhanced
energy (GEE) models, first developed for quasi-brittle fracture (Lorentz and
Andrieux, 1999) were also used to model ductile failure (Zhang et al., 2018;
Chen et al., 2020). They only use the gradient of a local state variable. A
decomposition—coordination technique is used to treat the non–locality. The
variable of interest is duplicated: a first instance is used at the (global) scale of
the structure while a second instance is used at the (local) constitutive law level.
As both variables represent the same field, they should be equal. A Lagrange
multiplier is introduced to ensure this equality weakly. Finally, the regularization
of ill-posed problems can also be achieved by coupling the elastoplastic models
with phase-field formulations. This type of formulation was initially introduced
for brittle failure (Francfort and Marigo, 1998; Hofacker and Miehe, 2012; Miehe
et al., 2010; Heider and Markert, 2017). However, many extensions to ductile
fracture have been introduced for 2D simulations (Ambati et al., 2015; Aldakheel
et al., 2018), for 3D simulations (Aldakheel et al., 2018; Ambati et al., 2016;
Borden et al., 2016; Miehe et al., 2015, 2016; Hu et al., 2021) and also for 3D
simulations with remeshing techniques (Eldahshan et al., 2021). More recently,
a porous ductile model using a phase-field formulation was introduced in which
the critical energy is decomposed into elastic and plastic contributions where the
plastic part is described using a GTN model (Dittmann et al., 2020).

This work proposes a nonlocal extension of the GTN material model (based on
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(Besson et al., 2001, 2003)) using an implicit gradient framework incorporating
two nonlocal characteristic lengths to capture complex ductile failure patterns,
such as cup–cone or slant crack paths. The most common issue with nonlocal
formulations is the choice of the characteristic lengths. In this paper, comparisons
with experimental data on steel specimens first enable obtaining an order of
magnitude for the model parameters. Then two length scales are distinguished in
the model to account for the different spacings that exist between material defaults
responsible for damage nucleation and void growth. In the case of ferritic steels
used in modern pipelines, two damage mechanisms exist: (i) void growth from
MnS and oxides and (ii) damage nucleation at iron carbides (Fe3C), which occurs
at high strains. Mns and oxides early debond from the metallic matrix so that they
can be considered as initial voids. Similar damage behavior is e.g. observed in
aluminum alloys where coarse particles are Fe–rich inclusions and small particles
are strengthening dispersoids (Bron et al., 2004). In order to guide the choice of
these characteristic lengths, an original study is conducted on their effect on the
occurrence of cup-cone and slant fracture.

This work is structured as follows. First, in section 2, the local version of
the model is briefly recalled, and its nonlocal modification is introduced. The
proposed finite strain formulation is also introduced within an updated Lagrangian
framework. In section 3, a parameter fit is carried out for both the local and
nonlocal versions of the GTN model based on existing literature data. In section 4,
the independence of the results to both mesh size and mesh orientation is checked
using the same characteristic length for both mechanisms. The relationship
between the numerically obtained localization band width and the characteristic
lengths is also investigated. This allows the selection of appropriate mesh sizes
for given characteristic lengths. Finally, in section 6, an investigation is presented
of the effect of different characteristic lengths for damage nucleation and void
growth on the formation of cup-cone, and slant crack paths and the results are
translated in terms of size effects.

2. Material models and their framework

In the first part of this section, the local version of the considered GTN model
used throughout the paper is briefly recalled. From this basis, the proposed
modifications to obtain a nonlocal model with two characteristic lengths are
developed. A corotational finite strain formulation is used to deal with large
strains (see section 2.2). This allows to use a simple small strain like formulation
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for the constitutive model based on an additive strain decomposition of the strain
tensor.

2.1. Material models
The used local model is based on the GTN model presented by Besson et al.

(2001) but with a different nucleation function using the accumulated plastic strain
κ as opposed to the original model which uses the growth porosity fg.

2.1.1. Local GTN model
One assumes the additive decomposition of the strain tensor (ε) into an elastic

(εe) and a plastic (εp) part. The elastic strain tensor and the stress tensor are
related using Hooke’s law:

σ = E : εe (1)

where E is the fourth-order elasticity tensor. Work hardening is assumed to be
isotropic, and the flow stress of the sound material (R(κ)) is expressed as a
function of the accumulated plastic strain κ assuming a power law:

R(κ) = K(e0 + κ)n (2)

e0, K and n are parameters to be identified (any other function could indeed be
used). The yield surface is then expressed following Besson et al. (2001) as:

Φ = σ? −R(κ)

where σ? is an effective stress measure depending on both the stress tensor and
the void volume fraction, which is the only damage parameter. In the case of the
GTN model, the effective scalar stress is implicitly defined as:

G(σ, f, σ?) =
σ2

eq

σ2
?

+ 2q1f? cosh

(
q2

2

σkk
σ?

)
− 1− q2

1f
2
?

def
= 0 (3)

where σeq is the von Mises stress invariant1 of the Cauchy stress, σkk designates
its trace, q1 and q2 are two parameters and f? is a function of porosity. Function
f? is defined as in (Tvergaard and Needleman, 1984):

f? =

{
f if f ≤ fc

fc + δ(f − fc) otherwise
(4)

1Note that the model can be easily extended to plastically anisotropic materials by replacing the
von Mises by any stress measure accounting for anisotropy (Benzerga and Besson, 2001; Tanguy
et al., 2008; Shinohara et al., 2016).
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where fc represents the porosity at the onset of void coalescence and δ ≥ 1 is a
parameter which represents the increased deleterious effect of porosity above fc.
The damage variable f can be itself decomposed into two parts which reflect the
fact that damage is caused by damage nucleation (fn) and void growth (fg), so
that the total damage is equal to f = fg + fn. The evolution of these damage
variables is given by the following set of equations:

ḟg = (1− fg)trace(ε̇p) mass conservation (5)
ḟn = An(κ)κ̇ strain controlled nucleation (6)

where An is a coefficient representing the damage nucleation rate. It is expressed
as a function of κ so as to represent strain-controlled nucleation (Chu and
Needleman, 1980; Zhang et al., 2000). Note that eq. 5 slightly differs from the
original one where (1−fg−fn) is used and not (1−fg). As MnS inclusions early
debond from the matrix, it is unnecessary to describe the nucleation of voids on
these inclusions. In this work, nucleation corresponds to damage created on iron
carbides which are much smaller than the MnS inclusions. It is assumed that this
creates very small voids but high damage. For that reason, the equation for ḟg is
modified as growth is only attributed to large voids originated at MnS inclusions.
In practice, this modification has little effect on the overall behavior. The plastic
strain rate tensor ε̇p is obtained using the normality rule:

ε̇p = (1− f)κ̇
∂Φ

∂σ
= (1− f)κ̇

∂σ?
∂σ

= (1− f)κ̇n (7)

where n designates the normal to the yield surface. Using this expression,
the following equivalence between the macroscopic (left handside) and the
microscopic (right handside) plastic dissipations is obtained as:

ε̇p : σ = (1− f)κ̇σ? (8)

as σ? is an homogeneous function of order 1 of σ.
It is assumed that the considered material can exhibit a slight strain rate

dependence, so that κ̇ is expressed as:

κ̇ = F(Φ) = ṗ0

〈
σ? −R
σ0

〉n
(9)

where 〈.〉 is the positive part function and n, ṗ0 and σ0 are material parameters.
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2.1.2. Nonlocal GTN model
The proposed extension of this GTN model uses the implicit gradient

methodology proposed in (Peerlings et al., 1996; Geers et al., 1998; Engelen et al.,
2003) to regularize two state variables: the volume variation ω = trace(εp) and
the effective accumulated plastic strain κ. Their nonlocal counterparts are referred
to as ω and κ. Their evolution within the considered material body Ω is governed
by the following Helmholtz-type equations:

ω − l2ω∆ω = ω in Ω (10)
κ− l2κ∆κ = κ in Ω (11)

with the following natural boundary conditions:

~∇ω.~n = 0 on ∂Ω (12)
~∇κ.~n = 0 on ∂Ω (13)

where ∂Ω and ~n respectively designate the boundary of the body Ω and its outer
normal vector.

Let us note that the gradients are calculated on the current configuration
and not on the initial configuration as considered by (Leclerc et al., 2020;
Nguyen et al., 2020). Besides, this model introduces two characteristic lengths
in equations 10 and 11, lω and lκ, respectively associated to void growth and
nucleation mechanisms.

The nonlocal variables ω and κ are then used to formulate the evolution of the
damage variables fg and fn as:

ḟg = (1− fg)ω̇ (14)
ḟn = An(κ)κ̇ (15)

These two equations now replace equations 5 and 6. All other equations remain
unchanged. In particular, the hardening law R(κ) remains identical, which would
not be the case with micromorphic models (Forest, 2009) or gradient enhanced
energy models (Chen et al., 2020) as it is expressed as a function of κ in those
cases. In the present case, the flow stress then remains unaffected by the gradient
of κ.

2.1.3. Implicit local resolution
The state variables describing the material behavior are then the elastic strain

tensor (εe), the accumulated plastic strain (κ), the porosity due to void growth
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(fg), the porosity due to damage nucleation (fn) and the volume variation ω. Their
evolution laws can be expressed as functions of the rates of the input variables ε̇,
ω̇, κ̇ as:

ε̇e = ε̇− (1− fg)κ̇n (16)
κ̇ = F(Φ) (17)
ḟg = (1− fg)ω̇ (18)
ḟn = Anω̇ (19)
ω̇ = trace ((1− fg)κ̇n) = (1− fg)κ̇trace(n) (20)

The implicit resolution of this system of equations for each integration point,
detailed in Appendix A, requires its integration over a finite time step ∆t.
This leads to a system of equations relating the residuals of these equations
to the increments of the state variables ∆V S = (∆εe,∆κ,∆fg,∆fn,∆ω),
for a given set of the increments of input variables ∆V IN = (∆ε,∆ω,∆κ).
The resolution of this system directly gives the increments of output variables
∆V OUT = [∆σ,∆ω,∆κ]. It then becomes possible to numerically compute the
consistent tangent matrix by considering that any given small variation of the input
variables δV IN leads to a modification of the state variables so that the residual
equations remain null (see details in Appendix B). The consistent tangent matrix
can be expressed as a block–matrix as:

Kmat =
∂∆V OUT

∂∆V IN
=



∂∆σ

∂∆ε

∂∆σ

∂∆ω

∂∆σ

∂∆κ
∂∆ω

∂∆ε

∂∆ω

∂∆ω

∂∆ω

∂∆κ
∂∆κ

∂∆ε

∂∆κ

∂∆ω

∂∆κ

∂∆κ

 (21)

The terms of this matrix are required to express the elementary stiffness matrix of
the associated finite elements.

2.2. Finite strain framework
Both local and nonlocal GTN models must be formulated within a finite strain

framework. This is done using a rotating frame concept.

Corotational framework. To do so, a corotational formulation (Sidoroff and
Dogui, 2001) is used. The corotational frame is defined using the rotation tensor
Q such that:

Q̇ = W .Q with Q(t = 0) = 1 (22)

8



where the W tensor designates the skew–symmetric part of the velocity gradient
tensor L. The symetric part of the velocity gradient tensor is denoted D so that:
L = D + W . This velocity gradient tensor is defined from the transformation
tensor F = ∂~x/∂ ~X (where ~X is the position of a material point in the initial
configuration and ~x its position in the current configuration) and its derivative
as: L = Ḟ .F−1. Knowing the rate of deformation D, one gets the material
deformation rate through the following expression:

ε̇ = QT .D.Q (23)

Knowing the corotational Cauchy stress (i.e., the Cauchy stress expressed in
the coordinate system that rotates with the material), the Cauchy stress in the
unrotated frame is given by:

Σ = Q.σ.QT (24)

Let us note that the rotated rate of σ is the Jaumann rate of Σ.

Finite element formulation. Considering cases where the load is applied
sufficiently slowly so that the inertial forces can be neglected, the weak form of
the equilibrium equations then reads:

∀ ~v?
∫

Ω

Σ : L? dΩ =

∫
Ω

Σ : D? dΩ = W ?
ext, with L? =

∂~v?

∂~x
(25)

where ~v? is a virtual velocity field, W ?
ext represents the virtual power of external

forces andD? is the symmetric part of L?.

In the case of a nonlocal formulation, based on equations 10, 11 and 12, the
weak form corresponding to the nonlocal variables is expressed as:

∀ ẇ?
∫

Ω
(w − w)ẇ? + l2w ~∇w.~∇ẇ? dΩ = 0

∀ ṗ?
∫

Ω
(p− p)ṗ? + l2p

~∇p.~∇ṗ? dΩ = 0 (26)

where ẇ? and ṗ? designates a virtual rate of the nonlocal field. Gradients are
evaluated in the current configuration as ~∇• = ∂•/∂~x.

These equations must then be discretized both in time and in space, as detailed
in Appendix C. For the spatial discretization, quadratic shape functions are used
for displacement degrees of freedom (DOFs), and linear shape functions are used
for the nonlocal variables (The notation P2P1P1 is used in this paper to refer to
this choice of interpolation order).
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The discretization of the set of equations 25 and 26 leads to a global system
built thanks to the assembly of elementary reactions. This system relates the
unknown variables to the external forces through the assembly of elementary
stiffness matrices. The calculation of the different terms of these elementary
matrices requires the evaluation of the consistent tangent matrixKmat, as detailed
in Appendix D. The resolution of this system is performed implicitly using a
Newton–Raphson algorithm and leads to the simultaneous determination of the
DOFs associated with the displacements and the nonlocal variables (as opposed
to a staggered resolution scheme).

3. Fitting of the model parameters

3.1. Model parameters
The constitutive model of (Besson et al., 2001, 2003) being relatively close to

the local one presented in this paper, it is possible to use the same elasto–visco–
plastic parameters and most of the GTN parameters (see table 1). The low initial
porosity (f0) corresponds to that of a modern line pipe steel. It corresponds to the
MnS inclusion volume fraction as these particles easily debond from the matrix.

Table 1: Set of material parameters from (Besson et al., 2001, 2003)

Young modulus E 210 GPa
Poisson ratio ν 0.3
Isotropic hardening (power law) K 795 MPa

e0 0.002
n 0.13

Gurson criterion q1 1.5
q2 1.
f0 1.5 10−4

Viscosity ṗ0 1s−1

σ0 55 MPa
n 5

The main difference between the constitutive model of (Besson et al., 2001,
2003) and the local model in this paper is the damage nucleation rate function
An(κ) in equation 6. In the model described in (Besson et al., 2001, 2003),
An(κ) is a function of the growth porosity fg, whereas in this paper, this function
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is chosen to be a constant (An) when the accumulated plastic strain reaches a
threshold κc:

An(κ) =

{
An if κ > κc

0 otherwise
(27)

The model was changed as the initial version did not allow forming cup-
cone fracture using the nonlocal formulation. This leaves thus two material
parameters, An and κc, to be fitted. Besides, the nonlocal model requires the
identification of the two nonlocal characteristic lengths lω and lκ.

3.2. Tests used for the fit of the nucleation law
The experimental database consists of an axisymmetric tensile test presented

in (Besson et al., 2001) and a plane strain test described in (Besson et al., 2003).
Both tests were carried out on the same material, i.e., X70 HSLA (high strength
low alloyed) ferritic-pearlitic steel, and are experimental results from (Rivalin,
1998). They have been selected because they result in complex crack paths, with
cup-cone fracture for the axisymmetric specimen and slant fracture for the plane
strain specimen. In addition, the tests have been used in the literature (Scheider
and Brocks, 2003; Huespe et al., 2012; Leclerc et al., 2020) as a reference to
identify and study ductile fracture models.

Finite element simulations are carried out for both tests in order to fit the
parameters (trial and error procedure). Meshes, dimensions as well as boundary
conditions are shown in fig. 1a and fig. 1b. Mesh design is similar in both cases. In
the case of the plane strain specimen, the entire specimen is meshed to enable the
formation of a slanted crack path. In both cases, elements have quadratic shape
functions with eight nodes and reduced integration (4 integration points). In the
following S0 represents the initial minimal cross-section of each specimen; S0 =
π/4φ2

0 for the axisymmetric specimen (with φ0 the initial diameter at the center
of the specimen); S0 = e0w0 for the plane strain specimen where e0 represents
the specimen thickness and w0 the width of the specimen. The normalized force
(F/S0) is then plotted as a function of the minimum diameter variation (∆Φ/Φ0)
or thickness variation (∆e/e0).
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(a) Axisymmetric mesh with
(cax8r) element (b) Plane strain specimen mesh with (c2d8r) element

Figure 1: Dimensions and boundary conditions for the tensile test simulations of the axisymmetric
specimen 1a and the plane strain specimen 1b.

3.3. Parameter fit for the local model
In the case of local models, it is important to keep the same mesh size in areas

where cracks propagate (Liu et al., 1994; Skallerud and Zhang, 1999). Because
the diameter of the tensile bar (10 mm) is twice the thickness of the plane stress
specimen (5 mm) and because symmetry is not accounted for in the latter case, the
same number of elements (Nh) is used to discretize the minimum cross-sections
in order to keep the same mesh size. The initial aspect ratio of these elements
(rh) is set to 6:1 so that it leads to approximately square elements at the onset of
fracture. Using Nh = 60, the initial mesh size is consequently: 83µm× 14µm.

The fitted material parameters are:

An = 0.2 and κc = 1.2 (28)

Indeed, using these values, the global responses for both test cases show a good
agreement with both reference results, as can be seen in fig. 2. In the case
of the axisymmetric specimen (figure 2a), it can be noted that the fitted local
model response is identical to the reference one before crack initiation, which
corresponds to the sharp load drop. In this regime, the damage has minimal effect
on the overall behavior. Crack initiation occurs at a slightly higher diameter
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(a) Axisymmetric specimen (b) Plane strain specimen

Figure 2: Evolution, for the local model, of the engineering stress as a function of the diameter
reduction −∆φ/φ0 for the axisymmetric specimen (left) and the thickness reduction −∆e/e0
for the plane strain specimen (right). The comparison with global curves from the literature
(respectively from (Besson et al., 2001) and (Besson et al., 2003)) indicates a correct parameter
fit. Total porosity is displayed at total failure for both simulations: a cup–cone failure (left) and a
slant failure (right) can be respectively observed.

reduction (−∆φ/φ0 = 0.453) compared to the reference (−∆φ/φ0 = 0.44).
Besides, as load drop is faster for the new fitted parameters, the total diameter
reduction (−∆φ/φ0)c = 0.467) is ultimately slightly smaller than in the case of
the reference simulation (−∆φ/φ0)c = 0.48. The difference is less than 3 % and
is acceptable. As can be seen on the image of total porosity at the end of the
simulation (fig. 2a), a cup-cone crack path is obtained.

In the case of the plane strain specimen (fig. 2b), the computed forces before
crack initiation are slightly higher than the reference ones. This can be explained
by the fact that in the reference simulation (Besson et al., 2003), a Hill anisotropic
model was used to describe plasticity. Such behavior is not accounted for in the
present material model. In this case too, the thickness reduction (−∆e/e0)c =
0.59 predicted using the new model parameters is slightly different from the
reference (−∆e/e0)c = 0.566. As in the case of the tensile test, the difference
is acceptable. As can be seen on the image of total porosity at the end of the
simulation (fig. 2b), a V-shaped crack path is obtained. Note that both V-shaped
and S-shaped crack paths can be experimentally obtained (Besson et al., 2013).

3.4. Parameter fit for the nonlocal model
Using the local model, the band width is about the element height in the

deformed configuration. For the above-considered cases, this size is llocalb ≈
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Table 2: Material parameters for the local and nonlocal models.

local model nonlocal model
κc 1.2 1.2
An 0.2 0.4
lκ = lω — 40µm

70µm. The characteristic length for the nonlocal model was then selected so that
the resulting band width (lnlb ) is approximatively equal to llocalb . It is therefore
assumed that the mesh size for the local model allows representing the material’s
internal length following the early work by Rousselier (1987). Having lnlb ≈ llocalb

is a simple way to establish a correspondence between both models. Is is shown
below (section 5.3) that the band width is related to the nonlocal characteristic
length by the following relation: lnlb ≈ 1.5lc. Using this relation, one gets
lω = lκ ≈ 40µm. Using these values, 90 elements are required to discretize
the specimen radius or thickness with at least three elements in the band width.
Using fewer elements results in simulations being mesh dependent. This results
in an initial element height equal to 10µm. As for the damage nucleation rate
parameter An, since the nonlocal model will always lead to higher ductilities than
the local model for a given set of material parameters, it was necessary to impose a
larger value: An = 0.4. Nucleation parameters for the local and nonlocal models
are compared in table 2. Note that the number of elements used to mesh the
minimum cross-section differs using the above hypotheses. Using Nh = 60 for
the nonlocal model would result in slightly mesh-dependent simulations.

This fit leads to a relatively good agreement of the global responses for both
test cases with the reference results as well as results from the literature (Huespe
et al., 2012; Leclerc et al., 2020), as can be seen in figures 3 and 4. For the
simulation of the smooth axisymmetric bar (see figure 3), the engineering stress—
diameter reduction curve is particularly close to the reference from (Besson et al.,
2001), and the total failure diameter reduction is well predicted. As can be seen in
the images of total porosity taken at different stages of the simulation in the same
figure, a cup–cone crack path is also obtained.
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Figure 3: Evolution, for the nonlocal model, of the engineering stress as a function of the diameter
reduction −∆φ/φ0 for the axisymmetric specimen with a central spatial discretization of Nh =
90. The confrontation with global curves from the litterature (Besson et al., 2001; Huespe et al.,
2012; Leclerc et al., 2020) and the local model indicates a correct parameter fit. Total porosity is
displayed at various times of the simulation to illustrate the formation of the expected cup–cone
crack path.

In contrast, the global response for the plane strain simulation (presented in
figure 4) shows a slight overestimation of the strain at crack initiation compared
to the reference and a higher total failure strain. This difference can be explained
by the fact that the crack path remains flat (as can be seen on the images of the
total porosity maps taken at different stages of propagation). This result is not
in agreement with experimental data as well as the simulation using the local
framework, which both exhibit slant fracture. The effect of the characteristic
lengths on the crack path is discussed below in section 6 where it is shown that
slant fracture may indeed be obtained using the nonlocal framework and a proper
choice for the characteristic lengths.
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Figure 4: Evolution, for the nonlocal model, of the engineering stress as a function of the thickness
reduction −∆e/e0 for the plane strain specimen with a central spatial discretization of Nh =
90. The confrontation with global curves from the literature(Besson et al., 2003; Huespe et al.,
2012; Leclerc et al., 2020) and the local model indicates a correct parameter fit. Total porosity is
displayed at various steps of the simulation to illustrate the propagation of a flat crack instead of a
slanted one. This illustrates the need to properly calibrate the nonlocal characteristic lengths.

4. Study of the convergence properties of the nonlocal model

In this section, the convergence of the solution with respect to mesh size and
mesh orientation is first checked. This allows to determine the mesh size needed
to obtain convergence as a function of the internal lengths, which are assumed to
be equal. Using the appropriate mesh size, it is then possible to establish a relation
between the internal lengths and the numerically obtained band widths.

4.1. Effect of mesh size
Several meshes with the same element initial aspect ratio rh = 6 and the same

orientation, but different element sizes are used to study the effect of mesh size.

Local model. In the case of the local model, the considered set of number of
elements in the width of the central section Nh is: 45, 60, 75 or 90. The
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engineering stress (F/S0) is plotted as a function of the variation of the minimum
diameter −∆φ/φ0 for different mesh sizes in figure 5. On the same graph, the
distribution of total porosity f at total failure is shown for the different meshes.
Let us note that all the simulations predict crack initiation for the same diameter
reduction and that the diameters at full failure (F/S0 = 0) only slightly differ. In
this particular case, the well–known mesh size dependency (see e.g. (Liu et al.,
1994; Rousselier et al., 1989)) has no significant effect on the global response as
the load drop is very sharp. Indeed, whatever the mesh size, the highly damaged
area is localized within one row of elements.

Figure 5: Evolution, for the local model, of the engineering stress as a function of the diameter
reduction −∆φ/φ0 for different spatial discretization in the case of the axisymmetric specimen.
The similarity of the global responses does not enable to observe a dependence on the mesh
size. The total porosity for each mesh size at total failure shows a cup–cone failure with a slight
deviation near the axis of symmetry.

Nonlocal model. In the case of the nonlocal model, the considered set of the
number of elements in the width of the central section Nh is: 20, 45, 60, 75, 90, or
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180. In figure 6, the engineering stress—diameter reduction curves and the total
porosity f at total failure are shown for the different meshes. The global response
appears to be converged, and the simulation leads to a cup cone crack path as soon
asNh ≥ 45. Let us note that, for the coarsest mesh (Nh = 20), the global response
is very different than for the other meshes close to full failure. In that case, there
is no crack bifurcation so that the minimum diameter always plastically deforms.
In the case of cup–cone failure, the material undergoes elastic unloading at the
notch root due to crack bifurcation at some stage of loading so that the minimum
diameter no longer changes. Obviously, for Nh = 20, the mesh is too coarse
to properly capture the width of the highly damaged zone, and the simulation
is, in that case, mesh size-dependent. In all cases where cup–cone fracture is
obtained, there exist two possible symmetric crack paths when flat propagation
ends. One path is selected, but the other path can still be visualized. In the case
of the smallest mesh size (Nh = 180) a zigzagging crack path is obtained. In that
case, the crack first runs downwards (−45◦) and then upwards (+45◦). Such a
behavior is often experimentally observed (Besson et al., 2001).
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Figure 6: Evolution, for the nonlocal model, of the engineering stress as a function of the diameter
reduction −∆φ/φ0 for different spatial discretization in the case of the axisymmetric specimen.
The global responses are similar for the mesh sizesNh > 20. The total porosity for each mesh size
at total failure shows a cup–cone failure with a straight first horizontal part except for the coarsest
mesh size Nh = 20, which exhibits a flat crack path. The finest mesh size Nh = 180 enables the
crack path to bifurcate twice, which can also be experimentally observed. These results indicate
mesh independence.

4.2. Effect of mesh orientation
In this section, three meshes having the same number of elements in the central

part and the same initial ratio rh = 6 : 1 are used. However, the mesh is slightly
tilted with respect to the horizontal axis. The tilt angles are: 0◦, 5◦ and 10◦. Note
that because of large strain, the final tilt angle is much larger than the initial one.

Local model. In the case of the local model, the number of elements in the central
part is Nh = 60. In figure 7, the global responses and the total porosity f at
total failure are shown for the different meshes. Although the global responses
are very similar, it is interesting to note that each mesh leads to a different crack
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path. Indeed, when there is no tilt, a classical cup–cone fracture path is obtained,
as shown above. For a tilt angle of 5◦, the crack first runs upwards from the center
of the specimen and then runs downwards after reaching the mid-radius. For a
tilt angle of 10◦, the crack runs upwards following one row of elements. In both
cases, cup–cone fracture is not observed, and the predicted crack path is only
formed by cones. The local model thus clearly suffers from a strong dependence
on mesh orientation. This implies that the crack path can hardly be predicted using
local models. They can be useful if the predicted crack path corresponds to the
expected one. In that case, the local stress and strain history can be investigated
to analyze/understand crack formation. This can be done by prescribing the crack
path using the computational cell methodology (Xia and Shih, 1995; Besson et al.,
2013). The result also indicates that automatic meshing can hardly be used to
generate the mesh because its design cannot be fully controlled. Simulations with
automatic remeshing during the calculation are also not possible.

Nonlocal model. In the case of the nonlocal model, the number of elements in
the central part is Nh = 90. This number of elements was chosen so as to
approximately obtain the same band width as in the case of the local model (Nh =
60) following the discussion in section 3.4. Note, however, that results obtained
with the local model for Nh = 90 also lead to the disappearance of cup-cone
fracture for a tilt angle equal to 5 and 10◦. In figure 8, the engineering stress—
diameter reduction curves and the total porosity f at total failure are shown for
the different meshes. All the simulations give the same global response and lead
to a similar cup–cone crack path. In all cases, the band width of the damage
localization band is the same. Therefore, it can be concluded that results are
converged and insensitive to mesh orientation. This paves the way for the use of
automatic meshing techniques of complex parts and remeshing.
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Figure 7: Evolution, for the local model, of the engineering stress as a function of the diameter
reduction −∆φ/φ0 for various mesh orientations in the case of the axisymmetric specimen. The
global responses are similar for all the orientations. However, the total porosity for each mesh
size at total failure shows a different crack path for each mesh orientation, which indicates mesh
dependence.
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Figure 8: Evolution, for the nonlocal model, of the engineering stress as a function of the diameter
reduction −∆φ/φ0 for various mesh orientations in the case of the axisymmetric specimen. The
global responses are similar for all orientations. Besides, the total porosity for each mesh size at
total failure shows an identical cup–cone crack path for each mesh orientation. These observations
indicate mesh independence.
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5. Analysis of the damage localization bands

In this section, the relation between the characteristic length and the width of
the localization band is investigated. To do so, it is first necessary to define how to
measure the width of a localization band. The finite element discretization needed
to obtain a converged band width is then investigated. Based on these results, the
relation between the characteristic length and the band width is studied for both
axisymmetric and plane strain specimens, as this relationship may depend on the
stress state.

5.1. Definition of the band width
In the literature, there is no agreement, to the authors’ knowledge, on a

definition of a measure of the width of the localization bands. Maziere et al. (2010)
study localized bands in a nickel-based superalloy which exhibits a Portevin–
Le Chatelier effect. Their proposed method is based on the analysis of the local
plastic strain rate. It is applied to FE simulations but is designed to mimic actual
experimental techniques (see references in the paper). In (Labergere et al., 2014),
the authors study a copper sheet and also use the strain rate profile to determine
the band width. The profile is fitted by a pseudo-Voigt function for which the band
width is a fitting parameter. Gorodetskyi et al. (2017) propose a method able to
detect discontinuities such as displacement jumps which can be applied to both FE
simulations and experimental DIC results. In (Ait-Amokhtar et al., 2006), plastic
strain localization is experimentally studied as a function of the applied strain rate
in the case of an Al—Mg alloy exhibiting a PLC effect. The bandwidth is defined
“as the width at the middle height of the localized strain band”. In this study, it is
proposed to define the band width (referred to as lvb for variable v = ω or v = κ)
as the width over which the considered variable reaches half its maximum value.
In that sense, this definition corresponds to that of Ait-Amokhtar et al. (2006).
In the following, the case of the axisymmetric specimen will only be described as
similar results are obtained for the plane strain specimen. Profiles in the deformed
configuration along the symmetry axis for both ω and ω are exemplified in fig. 9
where the band width for ω is shown by the blue arrows and the band width for ω
by the red arrows. The profiles for ω can easily be plotted as this variable is defined
at nodes and can be interpolated. Plotting the profiles for the local variable ω first
requires extrapolating values at Gauss points to nodes (red curve in figure 9). In all
cases, the band width for the local variable is about the size of one single element
in the deformed configuration. In the following, the width of the localization
bands is determined when the maximum of ω reaches 0.5 along the profile. In
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that case, the material points are close to full failure. Applying this definition to
measure the band width for the local and nonlocal volume variations along the
vertical symmetry axis for the axisymmetric specimen leads to consistent relative
measures. Indeed, as shown in fig. 9, the band width measured on ω is larger than
the band width measured on its local counterpart ω, even if the maximum of the
nonlocal variable is lower than the maximum of the local variable, as expected
using an implicit gradient nonlocal formulation.

Figure 9: Band width measure for the nonlocal volume variation ω when ωmax = 0.5. Evolution
of the local and nonlocal volume variations along the symmetry axis. The double arrows show the
measure of the corresponding band widths lωb and lωb .

5.2. Conditions to obtain a converged band width
In this part, the evolution of the band width with element size is studied.

As the present model makes use of gradients of ω and κ computed in the
current configuration, it is important to evaluate the localization band width in the
deformed configuration as proposed above. The element height after deformation
and when fracture starts is referred to as Hr1 in the following (see fig. 10). The
element height along the element row just above is referred to as Hr2. Due to
different loading histories, the element elongation at fracture can differ greatly
from one simulation to another. It is therefore important that the initial element
height (hmin) is small enough to assure that the element height at fracture (Hr1)
is still able to represent the localization band. The convergence of the band width
should therefore be checked with respect to Hr1.
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(a) (b)

Figure 10: (a) Definition of Hr1 and Hr2. (b) Contours of the nonlocal volume variation ω when
ωmax = 0.5. Arrows here define current element heights Hr1 and Hr2.

Different values for the number of element along the thickness of the
specimens are used: Nh = 540, 270, 180, 90, 60, 45, 30, 20. This study is
performed for two values of the characteristic length, taken here equal for both
nonlocal variables (lκ = lω = 80µm and lκ = lω = 40µm). Both axisymmetric
and plane strain specimens are considered. The considered variable is the nonlocal
volume variation but similar results can be obtained if the nonlocal effective
accumulated plastic strain is used to measure the localization band width.

Figure 11 shows the evolution of the band width size as a function of the
element height in the current configuration (Hr1), as defined in fig. 10. Each set
of points can be approximated by a line, which means that it can be assumed that
the band width is an affine function of the mesh size. Using this approximation,
the band width for Hr1 → 0 can be extrapolated to a non-zero value which is an
estimated value of the band width l∞b free from discretization error. In practical
applications, this error is always present.
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Figure 11: Evolution of the measured band width for both lκ = lω = 40µm and lκ = lω = 80µm
on both the axisymmetric and plane strain tensile tests as a function of the element height in the
current configuration Hr1. There appears to be a linear relation between the band width and the
element height. This means that it is possible to estimate a value of the band width l∞b free from
any discretization error for Hr1 = 0.

5.3. Relation between the band width and the internal lengths lκ and lω
Let us note that in fig. 11, for a given geometry, the line corresponding

to the largest characteristic length (i.e. lκ = lω = 80µm) has approximately
the same slope as the line corresponding to a smallest characteristic length (i.e.
lκ = lω = 40µm) but leads to a higher band width estimate l∞b . In order to
validate this observation for other characteristic lengths and to establish a simple
relation between the characteristic length and the band width l∞b , the same series
of simulations was performed for additional values for of lω = lκ: i.e. 20µm,
60µm, and 100µm. Plotting the evolution of the measured band width l∞b versus
the imposed characteristic length (see fig. 12), it can be observed that for a
given geometry, the measured points approximately lie on a line. Using this
regression, it is observed, as expected, that a null band width is obtained when
the characteristic length is also null. Let us note that the slope in this linear
relationship is different for each geometry. However, the difference between
the relation obtained for plane strain and axisymmetric elements remains small:
l∞b ≈ 1.54lκ,ω in the first case and l∞b ≈ 1.69lκ,ω in the second case. This simple
relation presents a major advantage as it enables to estimate, for a given geometry,
and based on the choice of the characteristic length, the width of the localization
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band. It is then possible to choose the number and size of the elements in the
localization band (respectively denoted a and Hr1) in order to properly capture its
gradients with: a×Hr1 < l∞b . In all the nonlocal simulations of this paper (except
for fig. 6), the factor a is at least equal to 3, i.e. there are at least three P2P1P1
elements in the band width at the onset of failure.

Figure 12: Evolution of the estimated band width free from discretization error for both the
axisymmetric and plane strain tensile tests as a function of the characteristic length (lκ = lω).
There appears to be a proportional relation between the band width and the characteristic length,
with slightly different coefficients for each geometry. This means that it is possible to estimate the
size the band width for a given characteristic length and a given geometry.

6. Using two characteristic lengths to model the cup–cone and slant fracture

In this section, two different characteristic lengths (lκ ≤ lω) are used to model
the occurrence of cup—cone and slant fracture.

6.1. Procedure
Several simulations were performed for different characteristic lengths

varying between 20µm and 100µm and different ratios lω/lκ (i.e. 1, 2, 3, 4 and
5). Let us note that larger ratios were not considered in order to avoid too large
computational costs due to mesh refinement associated with the requirement to
have 3 elements in the band width at the onset of fracture (3×Hr1 < l∞b ).
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The relative values of the two characteristic lengths are chosen to be consistent
with the physical degradation of metallic materials, and especially steels. Indeed,
in steels, two damage mechanisms exist: (i) void growth from sulfides/oxides and
(ii) damage nucleation at iron carbides Fe3C, which occurs at high strains (Tanguy
et al., 2008). As the spacing between sulfides/oxides is larger than between
carbides, it makes sense to only consider lω ≥ lκ.

Figure 13: Contours of total porosity at total fracture for different characteristic lengths lκ and lω
for the axisymmetric specimen. Cup–cone crack paths are observed only for lκ < 80µm. The
characteristic length lκ should then be relatively small compared to the specimen size to observe
a cup–cone fracture. The larger the characteristic lengths, the wider the localization band (which
is linked to the displacement at failure) and the further from the symmetry axis the bifurcation..
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6.2. Cup–cone fracture
For the axisymmetric specimen, the contours of total porosity at full fracture

for different characteristic lengths are displayed in fig. 13. It appears that large
values for lκ prevent the occurrence of crack bifurcation for the considered
specimen. As seen in fig. 13, simulations with lκ≥ 80µm predict a flat crack
while all simulations with lκ< 80µm predict the cup–cone crack path. For a given
value of lκ, it can be noticed that the larger lω, the wider the localization band.
Similarly, for a given value of lω, the band width increases with increasing lκ.
This is indeed expected since a large characteristic length leads to a larger band.
In addition larger bands tend to increase the length of the flat part of the crack
path. The flat central crack then bifurcates to form the slanted crack path at +45◦

or −45◦. In one case (lω = 60µm and lκ = 20µm) a zigzagging crack path is
obtained, but it was impossible to determine why such a crack path was formed,
although this phenomenon is often experimentally observed.

6.3. Slant fracture
For the plane strain specimen, the contours of total porosity at total fracture for

different characteristic lengths are displayed in fig. 14. For lκ ≥ 40µm flat fracture
is always obtained so that only one crack path is shown (lω = lκ = 40µm). For
lκ = 20µm slant fracture is always obtained (V–shape). In that case, the effect of
lω is small. The band width only slightly increases with increasing lω.

Figure 14: Contours of total porosity at total fracture for different characteristic lengths lκ and lω
for the plane strain case. Slant fracture is observed only for lκ = 20µm. The effect of lω appears
to be limited in this case.
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6.4. Size effect
It is interesting to revisit the above observations from a more physical point

of view and to consider, for a given set of material lengths, how specimen size
impacts the formation of the cup–cone and slant fracture. Indeed increasing the
material lengths for a given specimen size is equivalent to decreasing the size of
the specimen for given material lengths. Similar crack paths are obtained as long
as the ratios lω/L and lκ/L are constant where L is a characteristic dimension of
the simulated structure (diameter or thickness in the present case).

From the results corresponding to the axisymmetric specimen (fig. 13), it can
be concluded that it is easier to form a cup–cone crack path for large specimens
(case corresponding to lκ < 80µm for a given geometry) than for smaller
specimen sizes. From the results corresponding to the plane strain specimen
(fig. 14), it can be concluded that only sufficiently large plane strain specimens
break following the slant crack path. This opens the way to the determination of
material lengths by using homothetic specimens so as to obtain different crack
paths. Lengths could be fitted to represent the different fracture patterns. This
will obviously require the use of very small specimens in the case of metals where
lengths are expected to be of the order of the mean spacing between damage
initiation sites.

7. Conclusions

In this work, a nonlocal GTN model for ductile fracture was proposed which
uses two material lengths. The model is based on an implicit gradient formulation
applied to the plastic volume variation (material length lω) and the accumulated
plastic strain (material length lκ). The model allows to regularize void growth
and strain-controlled nucleation. The model parameters are fitted to reproduce the
global response for tests carried out on a pipe line steel using a tensile bar and a
plane strain specimen. These experiments have already been used in the literature
to test several models and numerical techniques. Each test is representative of a
characteristic crack path: cup–cone fracture (tensile test) and slant fracture (plane
strain test).

The material parameters were first fitted assuming that both lengths are equal
(lω = lκ) in order to reproduce the macroscopic behavior of both specimens. It
was checked that mesh independence is obtained if a sufficiently fine mesh is
used. In particular, it was shown that a local model is strongly dependent on mesh
design (mesh orientation in the present study) whereas the nonlocal model is not.
This implies that remeshing cannot be applied if a local model is used but with a
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nonlocal model, it can be a solution to reduce computational cost in cases where
long crack propagation needs to be simulated.

A novel methodology was proposed to estimate, for a given geometry, the
band width associated with a given characteristic length free from discretization
error. By applying this methodology for different characteristic lengths, it was
possible to establish a linear relation between the estimated band width and
the characteristic length. This piece of information was then used to select the
proper discretization of the localization bands for given values of the characteristic
lengths in order to obtain converged solutions. In practice, the element size at
failure is recommended to be three times smaller than the characteristic lengths.

Finally, two distinct characteristic lengths were used to simulate both test
cases. It was first concluded that the characteristic length controlling strain
controlled damage nucleation plays an important role on the occurrence of crack
bifurcation: it must be small enough relative to the specimen size in order
to observe a cup–cone crack path or a slanted crack path. It was also noted
that increasing the characteristic lengths leads to an increase of both the band
width and the radius at which the cup–cone crack path starts to bifurcate and
propagate either at +45◦ or −45◦. Larger values favor flat crack advance. This
study also enabled to conclude that crack path should be affected by the size
of the specimens. Pure flat fracture should be favored when using (very) small
specimens. It could theoretically be possible to identify them separately. This
paves the way for the more direct determination of material lengths by using
homothetic specimens to obtain different crack paths. The fitted lengths should
then be able to represent both the macroscopic behavior and the crack path for all
sample sizes.

Appendix A. Implementation of the nonlocal GTN model

Integrating the set of equations 16 to 20 over a finite time step ∆t using
a fully implicit scheme is equivalent to solving the following set of non
linear equations with respect to the increments of the state variables ∆V S =
(∆εe,∆κ,∆fg,∆fn,∆ω) for a given increment of the input variables ∆V IN =
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(∆ε,∆ω,∆κ) :

Re = ∆εe + (1− f)∆κn−∆ε (A.1)
Rκ = ∆κ−F(Φ)∆t (A.2)
Rg = ∆fg − (1− f)∆ω (A.3)
Rn = ∆fn − An∆κ (A.4)
Rω = ∆ω − (1− f)∆κtrace(n) (A.5)

Using a fully implicit scheme, all variables in the previous system are evaluated
at the end of the time increment. Solving the system requires the evaluation of its
Jabobian matrix which is formally expressed as:

J =
∂R

∂∆V S
(A.6)

where R = (Re, Rκ, Rg, Rn, Rω). The Jacobian matrix can be computed block-
wise as follows (the zero terms are omitted).
• Derivatives ofRe:

∂Re

∂∆εe
= I + (1− f)∆κN : E with N =

∂n

∂σ
(A.7)

∂Re

∂∆κ
= (1− f)n (A.8)

∂Re

∂∆fg
= (1− f)∆κnf −∆κn with nf =

∂n

∂f
(A.9)

∂Re

∂∆fn
= (1− f)∆κnf −∆κn (A.10)

• Derivatives of Rκ:

∂Rκ

∂∆εe
= −(F ′∆t)n : E with F ′ = dF/dΦ (A.11)

∂Rκ

∂∆κ
= 1−F ′H∆t with H = dR/dκ (A.12)

∂Rκ

∂∆fg
= −F ′σ?f∆t with σ?f =

∂σ?
∂f

(A.13)

∂Rκ

∂∆fn
= −F ′σ?f∆t (A.14)
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• Derivatives of Rg:

∂Rg

∂∆fg
= 1 + ∆ω (A.15)

∂Rg

∂∆fn
= ∆ω (A.16)

• Derivatives of Rn:

∂Rn

∂∆fn
= 1 (A.17)

• Derivatives of Rω:

∂Rω

∂∆εe
= −(1− f)∆κI : N : E (A.18)

∂Rω

∂∆κ
= −(1− f)trace(n) (A.19)

∂Rω

∂∆fg
= −(1− f)∆κ trace(nf ) (A.20)

∂Rω

∂∆fn
= −(1− f)∆κ trace(nf ) (A.21)

∂Rω

∂∆ω
= 1 (A.22)

The partial derivatives of σ? are obtained considering the stationarity of the G
function (eq. 3) : G = 0 and δG = 0. One then has:

χ =
1

h
=
∂G

∂σ?
, n =

∂σ?
∂σ

= −h∂G
∂σ

= −hν, ∂σ?
∂f

= −h∂G
∂f

, (A.23)

and

N =
∂n

∂σ
= −h∂

2G

∂σ2
−h3∂

2G

∂σ2
?

ν⊗ν+h2

(
∂2G

∂σ∂σ?
⊗ ν + ν ⊗ ∂2G

∂σ∂σ?

)
(A.24)

and

nf =
∂n

∂f
= −h ∂2G

∂σ∂f
+ h2∂G

∂f

∂2G

∂σ∂σ?
+ h2

(
∂2G

∂σ?∂f
− h∂

2G

∂σ2
?

∂G

∂f

)
ν (A.25)
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Appendix B. Consistent tangent matrix

Once the solution of the system of equations A.1 to A.5 is found, it becomes
possible to numerically compute the consistent tangent matrix. For any given
small variation of the input variables δV IN, the state variables will be modified so
thatR remains null. One therefore has:

δT = δ0 =
∂R

∂∆V IN
.δV IN +

∂R

∂∆V S
.δV S =

∂R

∂∆V IN
.δV IN + J .δV S (B.1)

so that
δV S = −J−1.

∂R

∂∆V IN
.δV IN (B.2)

The outputs variable are expressed as function of the state variables only so that:

δV OUT =
∂∆V OUT

∂∆V S
.δV S = −∂∆V OUT

∂∆V S
.J−1.

∂R

∂∆V IN
.δV IN (B.3)

so that the consistent tangent matrix is equal to:

Kmat = −∂∆V OUT

∂∆V S
.J−1.

∂R

∂∆V IN
=


∂∆σ

∂∆ε

∂∆σ

∂∆ω

∂∆σ

∂∆κ
∂∆ω

∂∆ε

∂∆ω

∂∆ω

∂∆ω

∂∆κ
∂∆κ

∂∆ε

∂∆κ

∂∆ω

∂∆κ

∂∆κ

 (B.4)

The matrices ∂R/∂∆V IN and ∂∆V OUT/∆∂V S are computed as block-
matrices. The calculation is straightforward with:

∂Re

∂∆ε
= −I, ∂Rg

∂∆ω
= −(1− f),

∂Rn

∂∆κ
= −An (B.5)

and
∂∆σ

∂∆εe
= E,

∂∆κ

∂∆κ
= 1,

∂∆ω

∂∆ω
= 1 (B.6)

Indeed, in the case of κ and ω, the output and state variables are similar. All other
terms are null.
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Appendix C. Global problem discretization

Appendix C.1. Spatial discretization
Elements have nodal DOFs corresponding to the displacements and nonlocal

variables κ and ω. They are represented as vector ue, κe and ωe. Linear shape
functions are used to interpolate the nonlocal nodal variables in the elements (i.e.
κe and ωe), so that:

κ = N .κe and ω = N .ωe (C.1)

where N is a matrix formed with the linear shape functions. The gradients of κ
and ω are computed as:

~∇κ = G.κe and ~∇ω = G.ωe (C.2)

where the matrix G is formed with the derivatives of the linear shape functions
with respect to the final configuration. The gradient with respect to the initial
configuration is computed as ~∇0κ = G0.κe where G0 is formed with the
derivatives of the linear shape functions with respect to the initial configuration.

Standard quadratic shape functions are used to interpolate the nodal variables
associated with the displacements in the elements (i.e. ue). The transformation
tensor F and the velocity gradient tensor L are computed as:

F = 1 +BF .u
e and L = BL.u̇

e (C.3)

whereBF is a matrix formed with the derivatives of the quadratic shape functions
with respect to the initial configuration whereas BL uses the derivatives of the
same shape functions with respect to the final configuration. The deformation rate
D is expressed asBD.u̇

e.

Appendix C.2. Temporal discretization
The finite strain formulation is obtained using a mid–point integration scheme

over the time step [t, t+∆t]. The transformation tensor at t+ 1
2
∆t is first computed

as F 1
2

= R 1
2
.U 1

2
= F 1 − 1

2
∆F using the standard polar decomposition. The

tranformation increment is then computed as:

∆L = ∆F .F−1
1
2

= ∆D + ∆W (C.4)

where ∆D and ∆W are respectively the symmetric and skew–symmetric parts of
∆L. The rotationQ is updated as (based on the mid–point integration of eq. 22)

∆Q =

(
1− 1

2
∆W

)−1

.∆W .Q0 (C.5)
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The strain ∆ε is updated as:

∆ε = QT
1
2
.∆D.Q 1

2
(C.6)

The constitutive equations are then integrated (see Appendix A) using this strain
increment. The resulting stress tensor is rotated back as Σ = Q 1

2
.∆σ.QT

1
2
. The

2nd (e.g. ∂∆σ/∂∆ω) and 4th (∂∆σ/∂∆ε) order tensors in the consistent matrix
(eq. B.4) are also rotated back usingQ 1

2
. The rotated quantities are indicated with

a |�. In particular ∂∆σ/∂∆ε|� = CJ is associated with the Jaumann rate of the
stress tensor Σ. The tangent operator corresponding to the Truesdell rate is then
given by:

Cτ = CJ − 1

2
(Σ⊗1 + Σ⊗1 + 1⊗Σ + 1⊗Σ) + Σ⊗ 1

Appendix D. Details of the terms involved in the global system

Appendix D.1. Elementary reactions
From the discretized form of the weak formulation (25 and 26), elementary

reactions associated unknowns are given as:

F κ =

∫
Ωe

(κ− κ)N + l2κG
T .G.κe dΩ (D.1)

F ω =

∫
Ωe

(ω − ω)N + l2ωG
T .G.ωe dΩ (D.2)

F u =

∫
Ωe

BT
L.{Σ} dΩ =

∫
Ωe

0

BT
L.{Σ} JdΩ0 (D.3)

(D.4)

where notation {Σ} indicates that the tensor Σ is expressed using Voigt notations.
Let us underline that the integrals are taken over the current configuration.
Integration is performed using standard Gauss integration.

Let us introduce here the function MR such that the product c of two second
order tensors a and b, usually written c = a.b, can be expressed using Voigt
notations as:

{c} = {a.b} = MR(b).{a} (D.5)

The matrixMR(b) thus depends linearly on b.
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Appendix D.2. Elementary stiffness matrix
It is then necessary to evaluate the elementary stiffness matrix which is

computed as a block matrix.

K =

Kuu Kuκ Kuω

Kκu Kκκ Kκω

Kωu Kωκ Kωω

 (D.6)

Calculation ofKuu,Kuκ,Kuω

Calculation of the first bloc line of the elementary stiffness matrix can be
obtained through the derivative of F u with respect to ue, κe and ωe:

Ḟ u = Ḟ uu + Ḟ uκ + Ḟ uω = Kuu.u̇e +Kuκ.κ̇
e

+Kuω.ω̇
e

(D.7)

Derivation of Ḟ u leads to:

Ḟ u =

∫
Ωe

0

JḂT
L.{Σ}+ JBT

L.{Σ̇}+ J̇BT
L.{Σ} dΩ0 (D.8)

In the central term, the derivative tensor Σ̇ can be separated into three parts
corresponding to variations relative to the different unknowns:

Σ̇ = Σ̇u + Σ̇κ + Σ̇ω (D.9)

The calculation of Kuu follows usual derivations for finite strain formulation
and leads to:

Kuu =

∫
Ωe

BT
D. {Cτ} .BDdΩ+

∫
Ωe

BT
L.MR(Σ).BLdΩ = KM

uu+KG
uu (D.10)

where KM
uu is the part related to the material non-linearity and KG

uu is the
geometrical non-linearity.

Then, to compute theKuκ term, let us focus on the part of the derivative of Σ
that depends on κ:

Σ̇κ =
∂∆Σ

∂∆κ
κ̇ (D.11)

The corresponding variation of F u is:

Ḟ uκ =

∫
Ωe

0

JBT
L.
{

Σ̇κ

}
dΩ0 =

∫
Ωe

0

JBT
L.

{
∂Σ

∂κ

}
(N .κ̇e) dΩ0 (D.12)
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so that:

Kuκ =

∫
Ωe

(
BT
D.

{
∂Σ

∂κ

})
⊗N dΩ (D.13)

where
∂Σ

∂κ
is computed using a sub block matrix of the consistent tangent matrix

Kmat (eq. B.4) as :
∂Σ

∂κ
=
∂σ

∂κ

∣∣∣∣� (D.14)

The bloc Kuω is computed in a similar way by replacing κ by ω from equation
D.11 to equation D.14.

Calculation ofKκu,Kκκ,Kκω

Calculation of the second bloc line can be obtained by writing the variation of
F κ:

Ḟ κ =

∫
Ωe

0

J(κ̇− κ̇)N + Jl2κ

(
ĠT .G+GT .Ġ

)
.κe + Jl2κG

T .G.κ̇
e

+J̇
(
(κ− κ)N + l2κG

T .G.κe
)

dΩ0 (D.15)

and considering the derivative κ̇ as the sum of the partial derivative of κ regarding
the variables ue, κe and ωe:

κ̇ = κ̇u + κ̇κ + κ̇ω (D.16)

The term Kκu is the most complex of the three terms to calculate.
Indeed it requires to calculate the derivative of Ḟ κ with respect to the
displacements, which involves three terms: −Jκ̇N , Jl2l (Ġ

T .G+GT .Ġ).κe and
J̇
(
(κ− κ)N + l2κG

T .G.κe
) def

= J̇T k.
Considering the first term, one has:

−Jκ̇uN = −J
{
∂∆κ

∂∆ε

∣∣∣∣�} .BD.u̇
e

To compute the second term, one first notices that G = F−T .G0 (note that in
this case, the Voigt notation is not used). Therefore

Ġ =
˙

F−T .G0
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remembering that
˙

F−T = −LT .F−T

Ġ = −LT .F−T .G0 = −LT .G and ĠT = −GT .L

Let V be the operator linking the Voigt representation of a tensor to the matrix
representation such that

a = V .{a} or aij = Vijkak

and V∗ such that aT = V∗.{a}. Indeed V∗ijk = Vjik. Using this notation,

GT .Ġ.κe = −GT .LT .G.κe = −GT . (V∗.(BL.u̇
e)) .G.κe

= −GT . (V∗.(BL.u̇
e)) .~∇κ

GT
ijĠjnκ

e
n = −GT

ijV
∗
jklB

L
lmu̇

e
m∇kκ = −GT

ijVkjlB
L
lmu̇

e
m∇kκ

= −GT
ij∇kκVkjlB

L
lmu̇

e
m

GT .Ġ.κe = −GT .(~∇κ.V .BL).ue

Similarly
ĠT .G.κe = −GT .(~∇κ.V∗.BL).u̇em

and

ĠT .G.κe +GT .Ġ.κe = −GT .(~∇κ.(V + V∗).BL).u̇e

= −2GT .(~∇κ.V .BD).u̇e

Finally, one now considers the last term J̇T k.

J̇T k = J trace(L)T k = J({1}.BD.u̇
e)T κ = JT κ ⊗ ({1}.BD).u̇e (D.17)

In the end, one finally gets:

Kκu =

∫
Ωe

(
−
{
∂∆κ

∂∆ε

∣∣∣∣�}− 2l2κG
T .(~∇κ.V) + T κ ⊗ {1}

)
.BD dΩ (D.18)

where
∂∆κ

∂∆ε

∣∣∣∣� is computed using a sub block matrix of the consistent tangent

matrixKmat (eq. B.4) as:

∂∆κ

∂∆ε

∣∣∣∣� = Q.
∂∆κ

∂∆ε
.QT (D.19)
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Calculation of the termKκκ is more direct:

Kκκ =

∫
Ωe

(
1− ∂κ

∂κ

)
N ⊗N + l2κG

T .G dΩ (D.20)

using

κ̇κ =
∂κ

∂κ
κ̇ =

∂κ

∂κ
N .κ̇

e

Similarly, one has:

Kκω =

∫
Ωe

−∂κ
∂ω
N ⊗N dΩ (D.21)

using

κ̇ω =
∂κ

∂ω
ω̇ =

∂κ

∂ω
N .ω̇

e

Calculation ofKωu,Kωκ,Kωω

Calculation of the last bloc line can be obtained exactly in the same way as the
second bloc line by writing the variation of F ω. It leads to the same terms only
replacing κ by ω.
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