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Abstract

Ductile failure prediction is essential to avoid integrity loss for structures or to
control crack propagation during forming process. One of the main difficulties is
the prediction of complex crack paths. This study proposes a non local extension
of a local Gurson-Tvergaard-Needleman (GTN) ductile damage model at finite
strains able to capture cup–cone or slant fracture. The proposed model is based
on an implicit gradient formulation which enables to solve the problem of spurious
strain and damage localization. The model integrates two different material
characteristic lengths which are used to separately regularize damage by void
growth and damage by void nucleation. After parameter fitting based for a pipe
line steel, conditions to obtain converged solutions are studied which can be used
to select the mesh size in the localization band. With the appropriate mesh design,
it has been possible to study the effect of the values of the characteristic lengths
on the formation of cup–cone fracture and slant fracture. It is observed that, for a
given specimen size, larger characteristic lenghts favor flat crack advance. By the
same token, for given material lengths, size effects can be predicted with small
specimens being more prone to flat fracture. This paves the way to a more direct
determination of material lengths by using homothetic specimens so as to obtain
different crack paths.
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1. Introduction

Predicting ductile failure is a major challenge when trying to prevent
catastrophic failure of structures or to control crack propagation in the case of
metal forming. One of the main challenges is the prediction of complex crack
paths in metals such as cup cone or slant fracture. To achieve this goal, models
able to robustly represent the local degradation phenomena (void nucleation,
growth and coalescence) are needed. Among such models is the micro-mechanics
based Gurson–Tvergaard–Needleman (or GTN) model [1]. Based on this seminal
framework, numerous extensions have been proposed which are reviewed e.g. in
[2–5]. They are able to account for void shape, void orientation, plastic anisotropy,
strain rate sensitivity, coalescence by internal necking. . .

All these models must lead to softening up to a point where the material
entirely looses its load carrying capacity so as to be able to model fracture.
These softening models were first developed within the usual local framework
and thus suffered from the well–known numerical issues such as mesh size
and mesh orientation dependence [6–8]. Due to the loss of ellipticity of the
equations in statics, the solution of the mechanical problem is no longer unique.
Overcoming these issues is fondamental for the reliability of fracture simulations.
Using a finite strain framework is also required as ductile fracture is always
accompanied by large deformations. Several solutions have been proposed
to overcome mesh dependency. A first solution is based on a local enrichment
by embedding a finite thickness band [9]. In that case, the band is introduced
when loss of ellipticity is detected within one element. The normal to the band
is determined following Rice’s bifurcation analysis [10]. Another solution is
based on implicit gradient methods [11, 12] which facilitate the use of integral
methods as originally proposed in [13, 14]. These methods have been used
to model ductile fracture for metals within a finite strain framework [15–21]
although they were initially developed for quasi–brittle failure. Using an implicit
gradient formulation, the local constitutive equations are preserved at the cost of
small adaptations. This makes this formulation particularly attractive in the case
the GTN model as its initial micro-mechanical foundations are then preserved.
Multiple internal lengths were introduced in [22]. This model uses an implicit
gradient formulation written in the initial configuration. An internal length was
associated with each damage evolution mechanism: (i) void growth based on
the classical GTN model, (ii) internal necking governed by a heuristic extension
of the Thomason model [23, 24] based on the maximum principal stress, (iii)
shear–dominated coalescence mechanisms controlled by the maximum shear
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stress [25]. Although the model proposes different internal length scales, the
same characteristic length was assigned to the three non local variables in the
presented simulations. Micromorphic models [26] can also be used to solve
problems related to the loss of ellipticity. They use local state variables and
their “micromorphic” counterparts. The free energy of the system depends on the
gradient of the micromorphic variables and on coupling terms. Ductile fracture
was modeled using this class of models in [27, 28]. In particular, models based
on a microdilatational theory [29] appear to be well suited to represent ductile
damage by void growth. More recently non local gradient enhanced energy
(GEE) models, first developed for quasi-brittle fracture [30], were also used to
model ductile failure [31, 32]. They only use the gradient of a local state variable.
A decomposition—coordination technique is used to treat the non–locality. The
variable of interest is duplicated: a first instance is used at the (global) scale of
the structure while a second instance is used at the (local) constitutive law level.
As both variables represent the same field, they should be equal. A Lagrange
multiplier is introduced to weakly ensure this equality. Finally, the regularization
of ill posed problems can also be achieved by coupling the elastoplastic models
with phase field formulations. This type of formulation was initially introduced
for brittle failure [33–36]. However, many extensions to ductile fracture have been
introduced for 2D simulations [37, 38], for 3D simulations [38–43] and also for
3D simulations with remeshing techniques [44]. More recently, a porous ductile
model with phase field formulation was introduced in which the critical energy
is decomposed into an elastic and plastic contributions where the plastic part is
described using a GTN model [45].

This work proposes a non local extension of the GTN material model (based
on [8, 46]) using an implicit gradient framework incorporating two non local
characteristic lengths to capture complex ductile failure patterns, such as cup–
cone or slant crack paths. The most common issue with non local formulations
is the choice of the characteristic lengths. In this paper, comparisons with
experimental references on steel speciments first enable to obtain an order of
magnitude for the model’s parameters. Then two length scales are distinguished
in the model to account for the different spacings that exist between material
defaults responsible for void nucleation and void growth. In particular, for
metallic materials used in modern pipelines, two damage mechanisms exist: (i)
void growth from MnS and oxides and (ii) void nucleation at iron carbides Fe3C
which occurs at high strains. Mns and oxides early debond from the metallic
matrix so that they can be considered as initial voids. Similar damage behavior is
e.g. observed in aluminum alloys where coarse particles are Fe–rich inclusions and
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small particles are strengthening dispersoids [47]. In order to guide the choice of
these characteristic lengths, an original study is conducted on their effect on the
occurence of cup–cone and slant fracture.

This work is structured as follows. First in section 2, the local version of
the model is briefly recalled and its non local modification is introduced. The
proposed finite strain formulation is also introduced within an updated Lagrangian
framework. In section 3, a parameter fit is carried out for both the local and non
local version of the GTN model based on existing literature data. In section 4, the
independence of the results to both mesh size and mesh orientation is checked
using the same characteristic length for both mechanisms. The relationship
between the numerically obtained localization band width and the characteristic
lengths is also investigated. This allows the selection of appropriate mesh sizes
for given characteristic lengths. Finally in section 6, an investigation is presented
of the effect of different characteristic lengths for void nucleation and void growth
on the formation of cup–cone and slant crack paths and the results are translated
in terms of size effects.

2. Material models and their framework

In the first part of this section, the local version of the considered GTN model
used throughout the paper is briefly recalled. From this basis, the proposed
modifications to obtain a non local model with two characteristics lengths are
developed. A corotational finite strain formulation is used to deal with large
strains (see section 2.2). This allows to use a simple small stain like formulation
for the constitutive model based on an additive strain decomposition of the strain
tensor.

2.1. Material models
The used local model is based on the GTN model presented in [8] but with a

different nucleation function using the cumulative plastic strain κ as opposed to
the original model which uses the growth porosity fg.

2.1.1. Local GTN model
One assumes the additive decomposition of the strain tensor (ε) into an elastic

(εe) and a plastic (εp) part. The elastic strain tensor and the stress tensor are
related using Hooke’s law:

σ = E : εe (1)
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where E is the fourth order elasticity tensor. Work hardening is assumed to be
isotropic and the flow stress of the sound material (R(κ)) is expressed as a function
of the cumulated plastic strain κ assuming a power law:

R(κ) = K(e0 + κ)n (2)

e0, K and n are parameters to be identified (any other function could indeed be
used).

The yield surface is then expressed following [8] as:

Φ = σ⋆ −R(κ)

where σ⋆ is an effective stress measure depending on both the stress tensor and
the void volume fraction which is the only damage parameter. In the case of the
GTN model, the effective scalar stress is implicitly defined as:

G(σ, f, σ⋆) =
σ2

eq

σ2
⋆

+ 2q1f⋆ cosh

(
q2
2

σkk

σ⋆

)
− 1− q21f

2
⋆

def
= 0 (3)

where σeq is the von Mises stress invariant1 of the Cauchy stress, σkk designates
its trace, q1 and q2 are two parameters and f⋆ is a function of porosity. Function
f⋆ is defined as in [1]:

f⋆ =

{
f if f ≤ fc

fc + δ(f − fc) otherwise
(4)

where fc represents the porosity at the onset of void coalescence and δ ≥ 1 is a
parameter which represents the increased deleterious effect of porosity above fc.
The damage variable f can be itself decomposed into two parts which reflect the
fact that damage is caused by void nucleation (fn) and void growth (fg), so that
the void volume fraction is equal to f = fg + fn. The evolution of these damage
variables is given by the following set of equations:

ḟg = (1− fg)trace(ε̇p) mass conservation (5)
ḟn = An(κ)κ̇ strain controlled nucleation (6)

1Note that the model can be easily extended to plastically anisotropic materials by replacing
the von Mises by any stress measure accounting for anisotropy [48–50].
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where An is a cofficient representing the void nucleation rate. It is expressed as a
function of κ so as to represent strain controlled nucleation [51, 52]. The plastic
strain rate tensor ε̇p is obtained using the normality rule:

ε̇p = (1− f)κ̇
∂Φ

∂σ
= (1− f)κ̇

∂σ⋆

∂σ
= (1− f)κ̇n (7)

where n designates the normal to the yield surface. Using this expression,
the following equivalence between the macroscopic (left handside) and the
microscopic (right handside) plastic dissipations is obtained as:

ε̇p : σ = (1− f)κ̇σ⋆ (8)

as σ⋆ is an homogeneous function of order 1 of σ.
It is assumed that the considered material can exhibit a slight strain rate

dependence, so that κ̇ is expressed as:

κ̇ = F(ϕ) = ṗ0

〈
σ⋆ −R

σ0

〉n

(9)

where ⟨.⟩ is the positive part function and n, ṗ0 and σ0 are material parameters.

2.1.2. Non local GTN model
The proposed extension of this GTN model uses the implicit gradient

methodology proposed in [11, 12, 53] to regularize two state variables: the volume
variation ω = trace(εp) and the effective cumulated plastic strain κ. Their non
local counterparts are referred to as ω and κ. Their evolution within the considered
material body Ω is governed by the following Helmholtz-type equations:

ω + l2ω∆ω = ω in Ω (10)
κ+ l2κ∆κ = κ in Ω (11)

with the following natural boundary conditions:

∇⃗ω.n⃗ = 0 on ∂Ω (12)
∇⃗κ.n⃗ = 0 on ∂Ω (13)

where ∂Ω and n⃗ respectively designate the boundary of the body Ω and its outer
normal vector.

Let us note that the gradients are calculated on the current configuration
and not on the initial configuration as considered by [21, 22]. Besides, this
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model introduces two characteristic lengths in equations 10 and 11, lω and lκ,
respectively associated to void growth and nucleation mechanisms.

The non local variables ω and κ are then used to formulate the evolution of the
damage variables fg and fn as:

ḟg = (1− fg)ω̇ (14)
ḟn = An(κ)κ̇ (15)

These two equations now replace equations 5 and 6. All other equations remain
unchanged. In particular, the hardening law R(κ) remains identical which would
not be the case with micromorphic models [26] or gradient enhanced energy
models [32] as it is expressed as a function of κ in those cases. In the present
case, the flow stress then remains unaffected by the gradient of κ.

2.1.3. Implicit local resolution
The state variables describing the material behavior are then the elastic strain

tensor (εe), the cumulated plastic strain (κ), the porosity due to void growth
(fg), the porosity due to void nucleation (fn) and the volume variation ω. Their
evolution laws can be expressed as functions of the rates of the input variables ε̇,
ω̇, κ̇ as:

ε̇e = ε̇− (1− fg)κ̇n (16)
κ̇ = F(ϕ) (17)
ḟg = (1− fg)ω̇ (18)
ḟn = Anω̇ (19)
ω̇ = trace ((1− fg)κ̇n) = (1− fg)κ̇trace(n) (20)

The implicit resolution of this system of equations for each integration point,
detailed in Appendix A, requires its integration over a finite time step ∆t.
This leads to a system of equations relating the residuals of these equations
to the increments of the state variables ∆V S = (∆εe,∆κ,∆fg,∆fn,∆ω),
for a given set of the increments of input variables ∆V IN = (∆ε,∆ω,∆κ).
The resolution of this system directly gives the increments of output variables
∆V OUT = [∆σ,∆ω,∆κ]. It then becomes possible to numerically compute the
consistent tangent matrix by considering that any given small variation of the input
variables δV IN leads to a modification of the state variables so that the residual
equations remain null (see details in Appendix B). The consistent tangent matrix
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can be expressed as a block–matrix as:

Kmat =
∂∆V OUT

∂∆V IN
=



∂∆σ

∂∆ε

∂∆σ

∂∆ω

∂∆σ

∂∆κ
∂∆ω

∂∆ε

∂∆ω

∂∆ω

∂∆ω

∂∆κ
∂∆κ

∂∆ε

∂∆κ

∂∆ω

∂∆κ

∂∆κ

 (21)

The terms of this matrix are required to express the elementary stiffness matrix of
the associated finite elements.

2.2. Finite strain framework
Both local and non local GTN models must be formulated within a finite strain

framework. This is done using a rotating frame concept.

Corotational framework. To do so, a corotational formulation [54] is used. The
corotational frame is defined using the rotation tensor Q such that:

Q̇ = W .Q with Q(t = 0) = 1 (22)

where the W tensor designates the skew–symmetric part of the velocity gradient
tensor L. The symetric part of the velocity gradient tensor is denoted D so that:
L = D + W . This velocity gradient tensor is defined from the transformation
tensor F = ∂x⃗/∂X⃗ (where X⃗ is the position of a material point in the initial
configuration and x⃗ its position in the current configuration) and its derivative
as: L = Ḟ .F−1. Knowing the rate of deformation D, one gets the material
deformation rate through the following expression:

ε̇ = QT .D.Q (23)

Knowing the corotational Cauchy stress (i.e. the Cauchy stress expressed in
the coordinate system that rotates with the material), the Cauchy stress in the
unrotated frame is given by:

Σ = Q.σ.QT (24)

Let us note that the rotated rate of σ is the Jaumann rate of Σ.
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Finite element formulation. Considering cases where the load is applied
sufficiently slowly so that the inertial forces can be neglected, the weak form of
the equilibrium equations then reads:

∀ v⃗⋆
∫
Ω

Σ : L⋆ dΩ =

∫
Ω

Σ : D⋆ dΩ = W ⋆
ext, with L⋆ =

∂v⃗⋆

∂x⃗
(25)

where v⃗⋆ is a virtual velocity field, W ⋆
ext represents the virtual power of external

forces and D⋆ is the symmetric part of L⋆.

In the case of a non local formulation, based on equations 10, 11 and 12, the
weak form corresponding to the non local variables is expressed as:

∀ ẇ⋆

∫
Ω

(v − v)v̇⋆ + l2v∇⃗v.∇⃗v̇⋆ dΩ = 0, with v = ω or p (26)

where ẇ⋆ designates a virtual rate of the non local field. Gradients are evaluated
in the current configuration as ∇⃗• = ∂•/∂x⃗.

These equations must then be discretized both in time and in space, as detailed
in Appendix C. For the spatial discretization, quadratic shape functions are used
for displacement degrees of freedom (DOFs) and linear shape functions are used
for the non local variables (The notation P2P1P1 is used in this paper to refer to
this choice of interpolation order).

The discretization of the set of equations 25 and 26 leads to a global system
built thanks to the assembly of elementary reactions. This system relates the
unknown variables to the external forces through the assembly of elementary
stiffness matrices. The calculation of the different terms of these elementary
matrices requires the evaluation of the consistent tangent matrix Kmat, as detailed
in Appendix D. The resolution of this system is performed implicitly using a
Newton–Raphson algorithm and leads to the simultaneous determination of the
DOFs associated with the displacements and the non local variables (as opposed
to a staggered resolution scheme).

3. Fitting of the model parameters

3.1. Model parameters
The constitutive model of [8, 46] being relatively close to the local one

presented in this paper, it is possible to use the same elasto–visco–plastic
parameters and most of the GTN parameters (see table 1).
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Table 1: Set of material parameters from [8, 46]

Young modulus E 210 GPa
Poisson ratio ν 0.3
Isotropic hardening (power law) K 795 MPa

e0 0.002
n 0.13

Gurson criterion
q1 1.5
q2 1.

Viscosity ṗ0 1s−1

σ0 55 MPa
n 5

The main difference between the constitutive model of [8, 46] and the local
model in this paper is the void nucleation rate function An(κ) in equation 6. In the
model described in [8, 46], An(κ) is a function of the growth porosity fg, whereas
in this paper, this function is chosen to be a constant (An) when the cumulated
plastic strain reaches a threshold κc:

An(κ) =

{
An if κ > κc

0 otherwise
(27)

This leaves thus two material parameters, An and κc, to be fitted. Besides, the non
local model requires the identification of the two non local characteristic lengths
lω and lκ.

3.2. Procedure for the fitting of the nucleation law
In this section, the procedure followed to fit the nucleation law for both the

local and non local models is described. The experimental database consists in
an axisymmetric tensile test presented in [8] and a plane strain test described in
[46]. Both tests were carried out on the same material, i.e. X70 HSLA (high
strength low alloyed)ferritic-pearlitic steel, and are experimental results from [55].
They have been selected because they result in complex crack paths, with cup–
cone fracture for the axisymmetric specimen and slant fracture for the plane strain
specimen. In addition, the tests have been used in literature [21, 56, 57] as a
reference to identify and study ductile fracture models.

Finite element simulations are carried out for both tests in order to fit the
parameters (trial and error procedure). Meshes, dimensions as well as boundary
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conditions are shown in fig. 1a and fig. 1b. Mesh design is similar in both cases. In
the case of the plane strain specimen, the entire specimen is meshed so as to enable
the formation of a slanted crack path. In both cases, elements have quadratic shape
functions with eight nodes and reduced integration (4 integration points). In the
following S0 represents the initial minimal cross section of each specimen; S0 =
π/4ϕ2

0 for the axisymmetric specimen (with ϕ0 the initial diameter at the center
of the specimen); S0 = e0w0 for the plane strain specimen where e0 represents
the specimen thickness and w0 the width of the specimen. The normalized force
(F/S0) is then plotted as function of the minimum diameter variation (∆Φ/Φ0) or
thickness variation (∆e/e0).

(a) Axisymmetric mesh with (cax8r)
element (b) Plane strain specimen mesh with (c2d8r) element

Figure 1: Dimensions and boundary conditions for the tensile test simulations of the axisymmetric
specimen 1a and the plane strain specimen 1b.

Material parameters are first fitted for the local model considering first a fixed
mesh size and a fixed mesh orientation, identical for both specimens. Using the
same mesh size is needed to obtain the same damage localization band width.
This band width corresponds to the mesh size in the localization band in the
deformed configuration since the total porosity f is then localized within one row
of elements. It is then used in order to set the value of the characteristic lengths lω
and lκ (both taken equal) for the non local model. Taking both values equal at first
offers a proper basis of comparison not only with the local model, but also with
the results from the literature for which no distinction is made. The study of the
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(a) Axisymmetric specimen
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(b) Plane strain specimen

Figure 2: Evolution, for the local model, of the engineering stress as a function of the diameter
reduction −∆ϕ/ϕ0 for the axisymmetric specimen (left) and the thickness reduction −∆e/e0
for the plane strain specimen (right). The comparison with global curves from the literature
(respectively from [8] and [46]) indicates a correct parameter fit. Total porosity is displayed at total
failure for both simulations: a cup–cone failure (left) and a slant failure (right) can be respectively
observed.

role of the different characteristic lengths lω and lκ is left to section 6. It is then
verified in 4.1 that the results of the non local model provide, contrary to the local
model, the expected mesh independence.

3.3. Parameter fit for the local model
In the case of local models, it is important to keep the same mesh size in

areas where cracks propagate [7, 58]. Because the diameter of the tensile bar
(10 mm) is twice the thickness of the plane stress specimen (5 mm) and because
symmetry is not accounted for in the later case, the same number of elements (Nh)
is used to discretize the minimum cross sections in order to keep the same mesh
size. The initial aspect ratio of these elements (rh) is set to 6:1 so that it leads to
approximately square elements at the onset of fracture. Using Nh = 60, the initial
mesh size is consequently: 83µm × 14µm.

The fitted material parameters are:

An = 0.2 and κc = 1.2 (28)

Indeed, using these values, the global responses for both test cases show a good
agreement with both reference results, as can be seen in fig. 2. In the case
of the axisymmetric specimen (figure 2a), it can be noted that the fitted local
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model response is identical to the reference one before crack initiation which
corresponds to the sharp load drop. In this regime, damage has very little effect
on the overall behavior. Crack initiation occurs at a slightly higher diameter
reduction (−∆ϕ/ϕ0 = 0.453) compared to the reference (−∆ϕ/ϕ0 = 0.44).
Besides, as load drop is faster for the new fitted parameters, the total diameter
reduction (−∆ϕ/ϕ0)c = 0.467) is ultimately slightly smaller than in the case of
the reference simulation (−∆ϕ/ϕ0)c = 0.48. The difference is less than 3 % and
is acceptable. As can be seen on the image of total porosity at the end of the
simulation (fig. 2a), a cup-cone crack path is obtained.

In the case of the plane strain specimen (fig. 2b), the computed forces before
crack initiation are slightly higher than the reference ones. This can be explained
by the fact that in the reference simulation [46], a Hill anisotropic model was used
to describe plasticity. Such behavior is not accounted for in the present material
model. In this case too, the thickness reduction (−∆e/e0)c = 0.59 predicted using
the new model parameters is slightly different from the reference (−∆e/e0)c =
0.566. As in the case of the tensile test, the difference is acceptable. As can be
seen on the image of total porosity at the end of the simulation (fig. 2b), a V–
shaped crack path is obtained. Note that both V–shaped and S–shaped crack paths
can be experimentally obtained [59].

3.4. Parameter fit for the non local model
The characteristic length for the non local model is chosen to obtain the same

localization band width for the total porosity f as with the local model. For the
considered cases, the band width with the local model is equal to llocalb ≈ 70µm
in the deformed configuration. The relation between the band with and the non
local characteristic length is lnlb ≈ 1.5llocalc as will be shown in section 5.3 . Using
this relation, one gets lω = lκ ≈ 40µm. The element initial aspect ratio is still
rh = 6:1. Using these values, 90 elements are required to discretized the specimen
radius or thickness with at least three elements in the band width. This results in an
initial element height equal to 10µm. As for the void nucleation rate parameter
An, since the non local model will always lead to higher ductilities then the local
model for a given set of material parameters, it was necessary to impose a larger
value: An = 0.4. Nucleation parameters for the local and non local models are
compared in table 2. This fit leads to a relatively good agreement of the global
responses for both test cases with the reference results as well as results from the
literature [21, 57], as can be seen in figures 3 and 4.

For the simulation of the smooth axisymmetric bar (see figure 3), the
engineering stress—diameter reduction curve is particularly close to the reference
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Table 2: Material parameters for the local and non local models.

local model non local model
κc 1.2 1.2
An 0.2 0.4
lκ = lω — 40µm

from [8] and the total failure diameter reduction is well predicted. As can be seen
on the images of total porosity taken at different stages of the simulation on the
same figure, a cup–cone crack path is also obtained.
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Figure 3: Evolution, for the non local model, of the engineering stress as a function of the diameter
reduction −∆ϕ/ϕ0 for the axisymmetric specimen with a central spatial discretization of Nh =
90. The confrontation with global curves from the litterature ([8, 21, 57]) and the local model
indicates a correct parameter fit. Total porosity is displayed at various times of the simulation to
illustrate the formation of the expected cup–cone crack path.

In contrast, the global response for the plane strain simulation (presented in
figure 4) shows a slight overestimation of the strain at crack initiation compared
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to the reference, and a higher total failure strain. This difference can be explained
by the fact that the crack path remains flat (as can be seen on the images of the
total porosity maps taken at different stages of propagation). This result is not
in agreement with experimental data as well as the simulation using the local
framework which both exhibit slant fracture. The effect of the characteristic
lengths on crack path is discussed below in section 6 where it is shown that
slant fracture may indeed be obtained using the non local framework and a proper
choice for the characteristic lengths.
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Figure 4: Evolution, for the non local model, of the engineering stress as a function of the thickness
reduction −∆e/e0 for the plane strain specimen with a central spatial discretization of Nh =
90. The confrontation with global curves from the litterature ([21, 46, 57]) and the local model
indicates a correct parameter fit. Total porosity is displayed at various times of the simulation
to illustrate the propagation of a flat crack instead of a slanted one. This illustrates the need to
properly calibrate the non local characteristic lengths.

4. Study of the convergence properties of the non local model

In this section, the convergence of the solution with respect to mesh size and
mesh orientation is first checked. This allows to determine the mesh size needed
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to obtain convergence as a function of the internal lengths which are assumed to
be equal. Using the appropriate mesh size, it is then possible to establish a relation
between the internal lengths and the numerically obtained band widths.

4.1. Effect of mesh size
Several meshes with the same element initial aspect ratio rh = 6 and the same

orientation, but different element sizes are used to study the effect of mesh size.

Local model. In the case of the local model, the considered set of number of
elements in the width of the central section Nh is: 45, 60, 75 or 90. The
engineering stress (F/S0) is plotted as a function of the variation of the minimum
diameter −∆ϕ/ϕ0 for different mesh sizes in figure 5. On the same graph, the
distribution of total porosity f at total failure is shown for the different meshes.
Let us note that all the simulations predict crack initiation for the same diameter
reduction and that the diameters at full failure (F/S0 = 0) only slightly differ. In
this particular case, the well–known mesh size dependency (see e.g. [6, 7]) has not
a significant effect on the global response as the load drop is very sharp. Indeed,
whatever the mesh size, the highly damaged area is localized within one row of
elements.
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Figure 5: Evolution, for the local model, of the engineering stress as a function of the diameter
reduction −∆ϕ/ϕ0 for different spatial discretization in the case of the axisymmetric specimen.
The similarity of the global responses does not enable to observe a dependence on the mesh
size. The total porosity for each mesh size at total failure shows a cup–cone failure with a slight
deviation near the axis of symmetry.

Non local model. In the case of the non local model, the considered set of number
of elements in the width of the central section Nh is: 20, 45, 60, 75, 90 or 180. In
figure 6, the engineering stress—diameter reduction curves and the total porosity
f at total failure are shown for the different meshes. The global response appears
to be converged and the simulation leads to a cup cone crack path as soon as
Nh ≥ 45. Let us note that, for the coarsest mesh (Nh = 20), the global response
is very different than for the other meshes close to full failure. In that case, there
is no crack bifurcation so that the minimum diameter always plastically deforms.
In the case of cup–cone failure, the material undergoes elastic unloading at the
notch root due to crack bifurcation at some stage of loading so that the minimum
diameter does no longer change. Obviously for Nh = 20, the mesh is too coarse
to properly capture the width of the highly damaged zone and the simulation is, in
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that case, mesh size dependent. In all cases where cup–cone fracture is obtained,
there exists two possible symmetric crack paths when flat propagation ends. One
path is selected but the other path can still be visualized. In the case of the smallest
mesh size (Nh = 180) a zigzaging crack path is obtained. In that case, the crack
first runs downwards (−45◦) and then upwards (+45◦). Such a behavior is often
experimentally observed [8].
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Figure 6: Evolution, for the non local model, of the engineering stress as a function of the diameter
reduction −∆ϕ/ϕ0 for different spatial discretization in the case of the axisymmetric specimen.
The global responses are similar for the mesh sizes Nh > 20. The total porosity for each mesh size
at total failure shows a cup–cone failure with a straight first horizontal part except for the coarsest
mesh size Nh = 20 which exhibits a flat crack path. The finest mesh size Nh = 180 enables the
crack path to bifurcate twice, which can also be experimentally observed. These results indicate
mesh independence.

4.2. Effect of mesh orientation
In this section, three meshes having the same number of elements in the central

part and same initial ratio rh = 6 : 1 are used. However the mesh is slightly tilted
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with respect to the horizontal axis. The tilt angles are: 0◦, 5◦ and 10◦. Note that
because of large strain, the final tilt angle is much larger than the initial one.

Local model. In the case of the local model, the number of elements in the central
part is Nh = 60. In figure 7, the global responses and the total porosity f at
total failure are shown for the different meshes. Although the global responses
are very similar, it is interesting to note that each mesh leads to a different crack
path. Indeed, when there is not tilt, a classical cup–cone fracture path is obtained
as shown above. For a tilt angle of 5◦, the crack first runs upwards from the
center of the specimen and then runs downwards after reaching the mid-radius.
For a tilt angle of 10◦, the crack runs upwards following one row of elements. In
both cases, cup–cone fracture is not observed and the predicted crack path is only
formed by cones. The local model thus clearly suffers from a strong dependence
on mesh orientation. This implies that crack path can hardly be predicted using
local models. They can be useful if the predicted crack path corresponds to the
expected one. In that case the local stress and strain history can be investigated
to analyze/understand crack formation. This can be done by prescribing the crack
path using the computational cell methodology [59, 60]. The result also indicates
that automatic meshing can hardly be used to generate the mesh because its design
is not fully controlled in that case. Simulations with automatic remeshing during
the calculation are also not possible.

Non local model. In the case of the non local model, the number of elements in
the central part is Nh = 90. In figure 8, the engineering stress–diameter reduction
curves and the total porosity f at total failure are shown for the different meshes.
All the simulations give the same global response and lead to a similar cup–cone
crack path. In all cases the band width of the damage localization band is the
same. Therefore, it can be concluded that results are converged and insensitive to
mesh orientation. This paves the way for the use of automatic meshing techniques
of complex parts and remeshing.

5. Analysis of the damage localization bands

In this section, the relation between the characteristic length and the width of
the localization band is investigated. To do so, it is first necessary to define how to
measure the width of a localization band. The finite element discretization needed
to obtain a converged band width is then investigated. Based on these results, the
relation between the characteristic length and the band width is studied for both
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Figure 7: Evolution, for the local model, of the engineering stress as a function of the diameter
reduction −∆ϕ/ϕ0 for various mesh orientations in the case of the axisymmetric specimen. The
global responses are similar for all the orientations. However, the total porosity for each mesh
size at total failure shows different a crack path for each mesh orientation, which indicates mesh
dependence.

axisymmetric and plane strain specimens as this relation may depend on the stress
state.

5.1. Definition of the band width
In the literature, there is no agreement, to the authors’ knowledge, on a

definition of a measure of the width of the localization bands. In this study, it
is thus proposed to define the band width (referred to as lvb for variable v = ω or
v = κ) as the width over which the considered variable reaches half its maximum
value. In the following, the case of the axisymmetric specimen will only be
described as similar results are obtained for the plane strain specimen. Profiles
in the deformed configuration along the symmetry axis for both ω and ω are
exemplified in fig. 9 where the band width for ω is shown by the blue arrows
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Figure 8: Evolution, for the non local model, of the engineering stress as a function of the diameter
reduction −∆ϕ/ϕ0 for various mesh orientations in the case of the axisymmetric specimen. The
global responses are similar for all orientations. Besides, the total porosity for each mesh size at
total failure shows an identical cup–cone crack path for each mesh orientation. These observations
indicate mesh independence.

and the band width for ω by the red arrows. The profiles for ω can easily be
plotted as this variable is defined at nodes and can be interpolated. Plotting the
profiles for the local variable ω first requires to extrapolate values at Gauss points
to nodes (red curve in figure 9). In all cases, the band width for the local variable
is about the size of one single element in the deformed configuration. In the
following the width of the localization bands is determined when the maximum
of ω reaches 0.5 along the profile. In that case the material points are close to full
failure. Applying this definition to measure the band width for the local and non
local volume variations along the vertical symmetry axis for the axisymmetric
specimen leads to consistent relative measures. Indeed, as shown in fig. 9, the
band width measured on ω is larger than the band width measured on its local
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counterpart ω, even if the maximum of the non local variable is lower than the
maximum of the local variable, as expected using an implicit gradient non local
formulation.
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Figure 9: Band with measure for the non local volume variation ω when ωmax = 0.5. Evolution
of the local and non local volume variations along the symmetry axis. The double arrows show
the measure of the corresponding band withs lωb and lωb .

5.2. Conditions to obtain a converged band width
In this part, the evolution of the band width with element size is studied.

As the present model makes use of gradients of ω and κ computed in the
current configuration, it is important to evaluate the localization band width in the
deformed configuration as proposed above. The element height after deformation
and when fracture starts is referred to as Hr1 in the following (see fig. 10). The
element height along the element row just above is referred to as Hr2. Due to
different loading histories, the element elongation at fracture can differ greatly
from one simulation to another. It is therefore important that the initial element
height (hmin) is small enough to assure that the element height at fracture (Hr1)
is still able to represent the localization band. The convergence of the band width
should therefore be checked with respect to Hr1.

Different values for the number of element along the thickness of the
specimens are used: Nh = 540, 270, 180, 90, 60, 45, 30, 20. This study is
performed for two values of the characteristic length, taken here equal for both
non local variables (lκ = lω = 80µm and lκ = lω = 40µm). Both axisymmetric
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(a) (b)

Figure 10: (a) Definition of Hr1 and Hr2. (b) Contours of the non local volume variation ω when
ωmax = 0.5. Arrows here define current element heights Hr1 and Hr2.

and plane strain specimens are considered. The considered variable is the non
local volume variation but similar results can be obtained if the non local effective
cumulated plastic strain is used to measure the localization band width.

Figure 11 shows the evolution of the band width size as a function of the
element height in the current configuration (Hr1), as defined in fig. 10. Each set
of points can be approximated by a line, which means that it can be assumed that
the band width is an affine function of the mesh size. Using this approximation,
the band width for Hr1 → 0 can be extrapolated to a non zero value which is an
estimated value of the band width l∞b free from discretization error. In practical
applications, this error is always present.
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Figure 11: Evolution of the measured band width for both lκ = lω = 40µm and lκ = lω = 80µm
on both the axisymmetric and plane strain tensile tests as a function of the element height in the
current configuration Hr1. There appears to be a linear relation between the band width and the
element height. This means that it is possible to estimate a value of the band width l∞b free from
any discretization error for Hr1 = 0.

5.3. Relation between the band width and the internal lengths lκ and lω

Let us note that in fig. 11, for a given geometry, the line corresponding
to the largest characteristic length (i.e. lκ = lω = 80µm) has approximately
the same slope as the line corresponding to a smallest characteristic length (i.e.
lκ = lω = 40µm) but leads to a higher band width estimate l∞b . In order to
validate this observation for other characteristic lengths and to establish a simple
relation between the characteristic length and the band width l∞b , the same series
of simulations was performed for additional values for of lω = lκ: i.e. 20µm,
60µm, and 100µm. Plotting the evolution of the measured band width l∞b versus
the imposed characteristic length (see fig. 12), it can be observed that for a given
geometry the measured points approximately lie on a line. Using this regression, it
is observed, as expected, that a null band width is obtained when the characteristic
length is also null. Let us note that the slope in this linear relationship is different
for each geometry. However, the difference between the relation obtained for
plane stain and axisymmetric elements remains small: l∞b ≈ 1.54lκ,ω in the first
case and l∞b ≈ 1.69lκ,ω in the second case. This simple relation presents a major
advantage as it enables to estimate, for a given geometry and based on the choice
of the characteristic length, the width of the localization band. It is then possible to
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choose the number and size of the elements in the localization band (respectively
denoted a and Hr1) in order to properly capture its gradients with: a×Hr1 < l∞b .
In all the non local simulations of this paper (except for fig. 6), the factor a is at
least equal to 3, i.e. there are at least three P2P1P1 elements in the band width at
the onset of failure.
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Figure 12: Evolution of the estimated band width free from discretization error for both the
axisymmetric and plane strain tensile tests as a function of the characteristic length (lκ = lω).
There appears to be a proportional relation between the band width and the characteristic length,
with slightly different coefficients for each geometry. This means that it is possible to estimate the
size the band width for a given characteristic length and a given geometry.

6. Using two characteristic lengths to model the cup–cone and slant fracture

In this section, two different characteristic lengths (lκ ≤ lω) are used to model
the occurrence of cup–cone and slant fracture.

6.1. Procedure
Several simulations were performed for different characteristic lengths

varying between 20µm and 100µm and different ratios lω/lκ (i.e. 1, 2, 3, 4 and
5). Let us note that larger ratios were not considered in order to avoid too large
computational costs due to mesh refinement associated with the requirement to
have 3 elements in the band width at the onset of fracture (3×Hr1 < l∞b ).
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The relative values of the two characteristic lengths are chosen to be consistent
with the physical degradation of metallic materials, and especially steels. Indeed,
in steels, two damage mechanisms exist: (i) void growth from sulfides/oxides and
(ii) void nucleation at iron carbides Fe3C which occurs at high strains [49]. As
spacing between sulfides/oxides is larger than between carbides, it makes sense to
only consider lω ≥ lκ.

Figure 13: Contours of total porosity at total fracture for different characteristic lengths lκ and lω
for the axisymmetric specimen. Cup–cone crack paths are observed only for lκ < 80µm. The
characteristic length lκ should then be relatively small compared to the specimen size to observe
a cup–cone fracture. The larger the characteristic lengths, the wider the localization band (which
is linked to the displacement at failure) and the further from the symmetry axis the bifurcation..
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6.2. Cup–cone fracture
For the axisymmetric specimen, the contours of total porosity at full fracture

for different characteristic lengths are displayed in fig. 13. It appears that large
values for lκ prevent the occurrence of crack bifurcation for the considered
specimen. As seen in fig. 13, simulations with lκ≥ 80µm predict a flat crack
while all simulations with lκ< 80µm predict the cup–cone crack path. For a given
value of lκ, it can be noticed that the larger lω, the wider the localization band.
Similarly, for a given value of lω, the band width increases with increasing lκ.
This is indeed expected since a large characteristic length leads to a larger band.
In addition larger bands tend to increase the length of the flat part of the crack
path. The flat central crack then bifurcates to form the slanted crack path at +45◦

or −45◦. In one case (lω = 60µm and lκ = 20µm) a zigzagging crack path is
obtained but it was impossible to determine why such a crack path was formed
although this phenomenon is often experimentally observed.

6.3. Slant fracture
For the plane strain specimen, the contours of total porosity at total fracture

for different characteristic lengths are displayed in fig. 14. For lκ ≥ 40µm flat
fracture is always obtained so that only one crack path is shown (lω = lκ = 40µm).
For lκ = 20µm slant fracture is always obtained (V–shape). In that case, the effect
of lω is small. The band width only slightly increases with increasing lω.

Figure 14: Contours of total porosity at total fracture for different characteristic lengths lκ and lω
for the plane strain case. Slant fracture is observed only for lκ = 20µm. The effect of lω appears
to be limited in this case.
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6.4. Size effect
It is interesting to revisit the above observations from a more physical point

of view and to consider, for a given set of material lengths, how specimen size
impacts the formation of the cup–cone and slant fracture. Indeed increasing the
material lengths for given specimen size is equivalent to decreasing the size of the
specimen for given material lengths. Similar crack paths are obtained as long as
the ratios lω/L and lκ/L are constant where L is a characteristic dimension of the
simulated structure (diameter or thickness in the present case).

From the results corresponding to the axisymmetric specimen (fig. 13), it can
be concluded that it is easier to form a cup–cone crack path for large specimens
(case corresponding to lκ < 80µm for a given geometry) than for smaller
specimen sizes. From the results corresponding to the plane strain specimen
(fig. 14), it can be concluded that only sufficiently large plane strain specimens
break following the slant crack path. This opens the way to the determination of
material lengths by using homothetic specimens so as to obtain different crack
paths. Lengths could be fitted to represent the different fracture pattern. This will
obviously require the use of very small specimens in the case of metals where
lengths are expected to be of the order of the mean spacing between damage
initiation sites.

7. Conclusions

In this work, a non local GTN model for ductile fracture was proposed which
uses two material lengths. The model is based on an implicit gradient formulation
applied to the plastic volume variation (material length lω) and the cumulated
plastic strain (material length lκ). The model allows to regularize void growth
and strain controlled nucleation. The model parameters are fitted to reproduce the
global response for tests carried out on a pipe line steel using a tensile bar and a
plane strain specimen. These experiments have been already used in the literature
to test several models and numerical techniques. Each test is representative of a
characteristic crack path: cup–cone fracture (tensile test) and slant fracture (plane
strain test).

The material parameters were first fitted assuming that both lengths are equal
(lω = lκ) in order to reproduce the macroscopic behavior of both specimens. It
was checked that mesh independence is obtained if a sufficiently fine mesh is
used. In particular, it was shown that a local model is strongly dependent on mesh
design (mesh orientation in the present study) whereas the non local model is not.
This implies that remeshing cannot be applied if a local model is used but with a
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non local model, it can be a solution to reduce computational cost in cases where
long crack propagation needs to be simulated.

A novel methodology was proposed to estimate, for a given geometry, the
band width associated with a given characteristic length free from discretization
error. By applying this methodology for different characteristic lengths, it was
possible to establish a linear relation between the estimated band width and
the characteristic length. This piece of information was then used to select the
proper discretization of the localization bands for given values of the characteristic
lengths in order to obtain converged solutions. In practice, the element size at
failure is recommended to be three times smaller than the characteristic lengths.

Finally, two distinct characteristic lengths were used to simulate both test
cases. It was first concluded that the characteristic length controlling strain
controlled damage nucleation plays an important role on the occurrence of crack
bifurcation: it must be small enough relative to the specimen size in order
to observe a cup–cone crack path or a slant crack path. It was also noted
that increasing the characteristic lengths leads to an increase of both the band
width and the radius at which the cup–cone crack path starts to bifurcate and
propagate either at +45◦ or −45◦. Larger values favor flat crack advance. This
study also enabled to conclude that crack path should be affected by the size
of the specimens. Pure flat fracture should be favored when using (very) small
specimens. It could theoretically be possible to identify them separately. This
paves the way to the more direct determination of material lengths by using
homothetic specimens so as to obtain different crack paths. The fitted lengths
should then be able to represent both the macroscopic behavior and the crack path
for all sample sizes.

Appendix A. Implementation of the non local GTN model

Integrating the set of equations 16 to 20 over a finite time step ∆t using
a fully implicit scheme is equivalent to solving the following set of non
linear equations with respect to the increments of the state variables ∆V S =
(∆εe,∆κ,∆fg,∆fn,∆ω) for a given increment of the input variables ∆V IN =
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(∆ε,∆ω,∆κ) :

Re = ∆εe + (1− f)∆κn−∆ε (A.1)
Rκ = ∆κ−F(ϕ)∆t (A.2)
Rg = ∆fg − (1− f)∆ω (A.3)
Rn = ∆fn − An∆κ (A.4)
Rω = ∆ω − (1− f)∆κtrace(n) (A.5)

Using a fully implicit scheme all variables in the previous system are evaluated at
the end of the time increment. Solving the system requires the evaluation of its
Jabobian matrix which is formally expressed as:

J =
∂R

∂∆V S
(A.6)

where R = (Re, Rκ, Rg, Rn, Rω). The Jacobian matrix can be computed block-
wise as follows (the zero terms are omitted).

• Derivatives of Re:

∂Re

∂∆εe
= I+ (1− f)∆κN : E with N =

∂n

∂σ
(A.7)

∂Re

∂∆κ
= (1− f)n (A.8)

∂Re

∂∆fg
= (1− f)∆κnf −∆κn with nf =

∂n

∂f
(A.9)

∂Re

∂∆fn
= (1− f)∆κnf −∆κn (A.10)

• Derivatives of Rκ:

∂Rκ

∂∆εe
= −(F ′∆t)n : E with F ′ = dF/dϕ (A.11)

∂Rκ

∂∆κ
= 1−F ′H∆t with H = dR/dκ (A.12)

∂Rκ

∂∆fg
= −F ′σ⋆f∆t with σ⋆f =

∂σ⋆

∂f
(A.13)

∂Rκ

∂∆fn
= −F ′σ⋆f∆t (A.14)
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• Derivatives of Rg:

∂Rg

∂∆fg
= 1 +∆ω (A.15)

∂Rg

∂∆fn
= ∆ω (A.16)

• Derivatives of Rn:

∂Rn

∂∆fn
= 1 (A.17)

• Derivatives of Rω:

∂Rω

∂∆εe
= −(1− f)∆κI : N : E (A.18)

∂Rω

∂∆κ
= −(1− f)trace(n) (A.19)

∂Rω

∂∆fg
= −(1− f)∆κ trace(nf ) (A.20)

∂Rω

∂∆fn
= −(1− f)∆κ trace(nf ) (A.21)

∂Rω

∂∆ω
= 1 (A.22)

The partial derivatives of σ⋆ are obtained considering the stationarity of the G
function (eq. 3) : G = 0 and δG = 0. One then has:

χ =
1

h
=

∂G

∂σ⋆

, n =
∂σ⋆

∂σ
= −h

∂G

∂σ
= −hν,

∂σ⋆

∂f
= −h

∂G

∂f
, (A.23)

and

N =
∂n

∂σ
= −h

∂2G

∂σ2
−h3∂

2G

∂σ2
⋆

ν⊗ν+h2

(
∂2G

∂σ∂σ⋆

⊗ ν + ν ⊗ ∂2G

∂σ∂σ⋆

)
(A.24)

and

nf =
∂n

∂f
= −h

∂2G

∂σ∂f
+ h2∂G

∂f

∂2G

∂σ∂σ⋆

+ h2

(
∂2G

∂σ⋆∂f
− h

∂2G

∂σ2
⋆

∂G

∂f

)
ν (A.25)
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Appendix B. Consistent tangent matrix

Once the solution of the system of equations A.1 to A.5 is found, it becomes
possible to numerically compute the consistent tangent matrix. For any given
small variation of the input variables δV IN, the state variables will be modified so
that R remains null. One therefore has:

δT = δ0 =
∂R

∂∆V IN
.δV IN +

∂R

∂∆V S
.δV S =

∂R

∂∆V IN
.δV IN + J .δV S (B.1)

so that
δV S = −J−1.

∂R

∂∆V IN
.δV IN (B.2)

The outputs variable are expressed as function of the state variables only so that:

δV OUT =
∂∆V OUT

∂∆V S
.δV S = −∂∆V OUT

∂∆V S
.J−1.

∂R

∂∆V IN
.δV IN (B.3)

so that the consistent tangent matrix is equal to:

Kmat = −∂∆V OUT

∂∆V S
.J−1.

∂R

∂∆V IN
=


∂∆σ

∂∆ε

∂∆σ

∂∆ω

∂∆σ

∂∆κ
∂∆ω

∂∆ε

∂∆ω

∂∆ω

∂∆ω

∂∆κ
∂∆κ

∂∆ε

∂∆κ

∂∆ω

∂∆κ

∂∆κ

 (B.4)

The matrices ∂R/∂∆V IN and ∂∆V OUT/∆∂V S are computed as block-
matrices. The calculation is straightforward with:

∂Re

∂∆ε
= −I,

∂Rg

∂∆ω
= −(1− f),

∂Rn

∂∆κ
= −An (B.5)

and
∂∆σ

∂∆εe
= E,

∂∆κ

∂∆κ
= 1,

∂∆ω

∂∆ω
= 1 (B.6)

Indeed, in the case of κ and ω, the output and state variables are similar. All other
terms are null.
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Appendix C. Global problem discretization

Appendix C.1. Spatial discretization
Elements have nodal DOFs corresponding to the displacements and non local

variables κ and ω. They are represented as vector ue, κe and ωe. Linear shape
functions are used to interpolate the non local nodal variables in the elements (i.e.
κe and ωe), so that:

κ = N .κe and ω = N .ωe (C.1)

where N is a matrix formed with the linear shape functions. The gradients of κ
and ω are computed as:

∇⃗κ = G.κe and ∇⃗ω = G.ωe (C.2)

where the matrix G is formed with the derivatives of the linear shape functions
with respect to the final configuration. The gradient with respect to the initial
configuration is computed as ∇⃗0κ = G0.κe where G0 is formed with the
derivatives of the linear shape functions with respect to the initial configuration.

Standard quadratic shape functions are used to interpolate the nodal variables
associated with the displacements in the elements (i.e. ue). The transformation
tensor F and the velocity gradient tensor L are computed as:

F = 1+BF .u
e and L = BL.u̇

e (C.3)

where BF is a matrix formed with the derivatives of the quadratic shape functions
with respect to the initial configuration whereas BL uses the derivatives of the
same shape functions with respect to the final configuration. The deformation rate
D is expressed as BD.u̇

e.

Appendix C.2. Temporal discretization
The finite strain formulation is obtained using a mid–point integration scheme

over the time step [t, t+∆t]. The transformation tensor at t+ 1
2
∆t is first computed

as F 1
2
= R 1

2
.U 1

2
= F 1 − 1

2
∆F using the standard polar decomposition. The

tranformation increment is then computed as:

∆L = ∆F .F−1
1
2

= ∆D +∆W (C.4)

where ∆D and ∆W are respectively the symmetric and skew–symmetric parts of
∆L. The rotation Q is updated as (based on the mid–point integration of eq. 22)

∆Q =

(
1− 1

2
∆W

)−1

.∆W .Q0 (C.5)
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The strain ∆ε is updated as:

∆ε = QT
1
2
.∆D.Q 1

2
(C.6)

The constitutive equations are then integrated (see Appendix A) using this strain
increment. The resulting stress tensor is rotated back as Σ = Q 1

2
.∆σ.QT

1
2
. The

2nd (e.g. ∂∆σ/∂∆ω) and 4th (∂∆σ/∂∆ε) order tensors in the consistent matrix
(eq. B.4) are also rotated back using Q 1

2
. The rotated quantities are indicated with

a |⋄. In particular ∂∆σ/∂∆ε|⋄ = CJ is associated with the Jaumann rate of the
stress tensor Σ. The tangent operator corresponding to the Truesdell rate is then
given by:

Cτ = CJ − 1

2
(Σ⊗1+Σ⊗1+ 1⊗Σ+ 1⊗Σ) +Σ⊗ 1

Appendix D. Details of the terms involved in the global system

Appendix D.1. Elementary reactions
From the discretized form of the weak formulation (25 and 26), elementary

reactions associated unknowns are given as:

F κ =

∫
Ωe

(κ− κ)N + l2κG
T .G.κe dΩ (D.1)

F ω =

∫
Ωe

(ω − ω)N + l2ωG
T .G.ωe dΩ (D.2)

F u =

∫
Ωe

BT
L.{Σ} dΩ =

∫
Ωe

0

BT
L.{Σ} JdΩ0 (D.3)

(D.4)

where notation {Σ} indicates that the tensor Σ is expressed using Voigt notations.
Let us underline that the integrals are taken over the current configuration.
Integration is performed using standard Gauss integration.

Let us introduce here the function MR such that the product c of two second
order tensors a and b, usually written c = a.b, can be expressed using Voigt
notations as:

{c} = {a.b} = MR(b).{a} (D.5)

The matrix MR(b) thus depends linearly on b.
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Appendix D.2. Elementary stiffness matrix
It is then necessary to evaluate the elementary stiffness matrix which is

computed as a block matrix.

K =

Kuu Kuκ Kuω

Kκu Kκκ Kκω

Kωu Kωκ Kωω

 (D.6)

Calculation of Kuu, Kuκ, Kuω

Calculation of the first bloc line of the elementary stiffness matrix can be
obtained through the derivative of F u with respect to ue, κe and ωe:

Ḟ u = Ḟ uu + Ḟ uκ + Ḟ uω = Kuu.u̇e +Kuκ.κ̇
e
+Kuω.ω̇

e
(D.7)

Derivation of Ḟ u leads to:

Ḟ u =

∫
Ωe

0

JḂT
L.{Σ}+ JBT

L.{Σ̇}+ J̇BT
L.{Σ} dΩ0 (D.8)

In the central term, the derivative tensor Σ̇ can be separated into three parts
corresponding to variations relative to the different unknowns:

Σ̇ = Σ̇u + Σ̇κ + Σ̇ω (D.9)

The calculation of Kuu follows usual derivations for finite strain formulation
and leads to:

Kuu =

∫
Ωe

BT
D. {Cτ} .BDdΩ+

∫
Ωe

BT
L.MR(Σ).BLdΩ = KM

uu+KG
uu (D.10)

where KM
uu is the part related to the material non linearity and KG

uu the
geometrical non linearity.

Then, to compute the Kuκ term, let us focus on the part of the derivative of Σ
that depends on κ:

Σ̇κ =
∂∆Σ

∂∆κ
κ̇ (D.11)

The corresponding variation of F u is:

Ḟ uκ =

∫
Ωe

0

JBT
L.
{
Σ̇κ

}
dΩ0 =

∫
Ωe

0

JBT
L.

{
∂Σ

∂κ

}
(N .κ̇e) dΩ0 (D.12)
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so that:

Kuκ =

∫
Ωe

(
BT

D.

{
∂Σ

∂κ

})
⊗N dΩ (D.13)

where
∂Σ

∂κ
is computed using a sub block matrix of the consistent tangent matrix

Kmat (eq. B.4) as :
∂Σ

∂κ
=

∂σ

∂κ

∣∣∣∣⋄ (D.14)

The bloc Kuω is computed in a similar way by replacing κ by ω from equation
D.11 to equation D.14.

Calculation of Kκu, Kκκ, Kκω

Calculation of the second bloc line can be obtained by writing the variation of
F κ:

Ḟ κ =

∫
Ωe

0

J(κ̇− κ̇)N + Jl2κ

(
ĠT .G+GT .Ġ

)
.κe + Jl2κG

T .G.κ̇
e

+J̇
(
(κ− κ)N + l2κG

T .G.κe
)

dΩ0 (D.15)

and considering the derivative κ̇ as the sum of the partial derivative of κ regarding
the variables ue, κe and ωe:

κ̇ = κ̇u + κ̇κ + κ̇ω (D.16)

The term Kκu is the most complex of the three terms to calculate.
Indeed it requires to calculate the derivative of Ḟ κ with respect to the
displacements, which involves three terms: −Jκ̇N , Jl2l (Ġ

T .G+GT .Ġ).κe and
J̇
(
(κ− κ)N + l2κG

T .G.κe
) def
= J̇T k.

Considering the first term, one has:

−Jκ̇uN = −J

{
∂∆κ

∂∆ε

∣∣∣∣⋄} .BD.u̇
e

To compute the second term, one first notices that G = F−T .G0 (note that in
the case the Voigt notation is not used). Therefore

Ġ =
˙

F−T .G0
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remembering that
˙

F−T = −LT .F−T

Ġ = −LT .F−T .G0 = −LT .G and ĠT = −GT .L

Let V be the operator linking the Voigt representation of a tensor to the matrix
representation such that

a = V .{a} or aij = Vijkak

and V∗ such that aT = V∗.{a}. Indeed V∗
ijk = Vjik. Using this notation,

GT .Ġ.κe = −GT .LT .G.κe = −GT . (V∗.(BL.u̇
e)) .G.κe

= −GT . (V∗.(BL.u̇
e)) .∇⃗κ

GT
ijĠjnκ

e
n = −GT

ijV
∗
jklB

L
lmu̇

e
m∇kκ = −GT

ijVkjlB
L
lmu̇

e
m∇kκ

= −GT
ij∇kκVkjlB

L
lmu̇

e
m

GT .Ġ.κe = −GT .(∇⃗κ.V .BL).u
e

Similarly
ĠT .G.κe = −GT .(∇⃗κ.V∗.BL).u̇

e
m

and

ĠT .G.κe +GT .Ġ.κe = −GT .(∇⃗κ.(V + V∗).BL).u̇
e

= −2GT .(∇⃗κ.V .BD).u̇
e

Finally, one now considers the last term J̇T k.

J̇T k = J trace(L)T k = J({1}.BD.u̇
e)T κ = JT κ ⊗ ({1}.BD).u̇

e (D.17)

In the end, one finally gets:

Kκu =

∫
Ωe

(
−
{
∂∆κ

∂∆ε

∣∣∣∣⋄}− 2l2κG
T .(∇⃗κ.V) + T κ ⊗ {1}

)
.BD dΩ (D.18)

where
∂∆κ

∂∆ε

∣∣∣∣⋄ is computed using a sub block matrix of the consistent tangent

matrix Kmat (eq. B.4) as:

∂∆κ

∂∆ε

∣∣∣∣⋄ = Q.
∂∆κ

∂∆ε
.QT (D.19)
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Calculation of the term Kκκ is more direct:

Kκκ =

∫
Ωe

(
1− ∂κ

∂κ

)
N ⊗N + l2κG

T .G dΩ (D.20)

using

κ̇κ =
∂κ

∂κ
κ̇ =

∂κ

∂κ
N .κ̇

e

Similarly, one has:

Kκω =

∫
Ωe

−∂κ

∂ω
N ⊗N dΩ (D.21)

using

κ̇ω =
∂κ

∂ω
ω̇ =

∂κ

∂ω
N .ω̇

e

Calculation of Kωu, Kωκ, Kωω

Calculation of the last bloc line can be obtained exactly in the same way as the
second bloc line by writing the variation of F ω. It leads to the same terms only
replacing κ by ω.
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