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Abstract Data from hyperspectral infrared sounders are routinely ingested worldwide by the National
Weather Centers. The cloud-free fraction of this data is used for initializing forecasts which include
temperature, water vapor, water cloud, and ice cloud profiles on a global grid. Although the data from
these sounders are sensitive to the vertical distribution of ice and liquid water in clouds, this information is
not fully utilized. In the future, this information could be used for validating clouds in National Weather
Center models and for initializing forecasts. We evaluate how well the calculated radiances from
hyperspectral Radiative Transfer Models (RTMs) compare to cloudy radiances observed by AIRS and to one
another. Vertical profiles of the clouds, temperature, and water vapor from the European Center for
Medium-Range Weather Forecasting were used as input for the RTMs. For nonfrozen ocean day and night
data, the histograms derived from the calculations by several RTMs at 900 cm�1 have a better than 0.95
correlation with the histogram derived from the AIRS observations, with a bias relative to AIRS of typically less
than 2 K. Differences in the cloud physics and cloud overlap assumptions result in little bias between the
RTMs, but the standard deviation of the differences ranges from 6 to 12 K. Results at 2,616 cm�1 at night are
reasonably consistent with results at 900 cm�1. Except for RTMs which use full scattering calculations, the
bias and histogram correlations at 2,616 cm�1 are inferior to those at 900 cm�1 for daytime calculations.

Plain Language Summary Getting the right clouds of the right type, at the right time and location
in Global Circulation Models, is key to getting the local energy balance right. This is key to an accurate
forecast. If the clouds are of the wrong type or at the wrong location or time, the accuracy of the forecast is
degraded. We evaluate the accuracy of the best currently available cloud description (produced by the
European Center for Medium-Range Weather Forecasting) by comparing the radiances calculated using
Radiative Transfer Models (RTMs) from six major development teams to cloudy radiances observed by the
Atmospheric Infrared Sounder at the same location and time. The better RTMs fit statistically reasonably well
in the 11-μm atmospheric window area, with little latitude (zonal) and day/night cloud-type related bias.
None of the RTMs fit well in the 4-μm atmospheric window area during daytime, unless the calculations
use full scattering. With the current state of art, all major RTMs would be suitable to start the validation of
cloud effects in the National Weather Center models using just one 11-μm atmospheric window channel.

1. Introduction

Clouds are a key component of the Earth’s weather and climate system. The data from hyperspectral infrared
sounders have the information content to sense the vertical distribution of temperature and water vapor in
clear air and of ice and liquid water inside semitransparent clouds. The data from four hyperspectral sounders
in polar orbit are routinely ingested by the National Weather Centers (NWCs; e.g., Collard & McNally, 2009):
The Atmospheric Infrared Sounder (AIRS; Aumann et al., 2003) on the Earth Observing System Aqua satellite,
the Crosstrack Infrared Sounder (CrIS, Glumb et al., 2003) on the Suomi National Polar-orbiting Platform satel-
lite, and the Infrared Atmospheric Sounder Interferometer (IASI, Blumstein et al., 2008; Hilton et al., 2012) on
MetOp A and B each makes more than 2 million observations of the state of the atmosphere and the clouds
each day. The NWCs predominantly use the cloud-free portion of these data to initialize forecasts that

AUMANN ET AL. 6142

Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE
10.1029/2017JD028063

Key Points:
• In the 900-cm

�1
atmospheric window

channel several Radiative Transfer
Models have a better than 0.95
correlation between the histogram
derived from the observations and
those derived from the calculations

• Differences in the bias between
observations and calculations for the
2,616-cm

�1
atmospheric window

channel are not inconsistent with
results at 900 cm

�1
if the daytime

calculations use full scattering
• Differences in the cloud physics
and cloud overlap assumptions
between Radiative Transfer Models
result in a standard deviation of the
pairwise difference of between 6 and
12 K; differences due to the cloud
overlap assumption alone result in a
3-K standard deviation

Correspondence to:
H. H. Aumann,
aumann@jpl.nasa.gov

Citation:
Aumann, H. H., Chen, X., Fishbein, E.,
Geer, A., Havemann, S., Huang, X., et al.
(2018). Evaluation of radiative transfer
models with clouds. Journal of
Geophysical Research: Atmospheres, 123,
6142–6157. https://doi.org/10.1029/
2017JD028063

Received 14 NOV 2017
Accepted 4 APR 2018
Accepted article online 16 APR 2018
Published online 13 JUN 2018

©2018. American Geophysical Union.
All Rights Reserved.

http://orcid.org/0000-0002-4311-7546
http://orcid.org/0000-0002-3259-091X
http://orcid.org/0000-0002-7129-614X
http://orcid.org/0000-0002-0473-3143
http://orcid.org/0000-0003-3638-5750
http://orcid.org/0000-0002-7986-8296
http://orcid.org/0000-0001-7514-9473
http://orcid.org/0000-0003-2194-1427
http://orcid.org/0000-0003-3154-9429
http://orcid.org/0000-0002-5931-7681
http://orcid.org/0000-0001-5999-3519
http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-8996
http://dx.doi.org/10.1029/2017JD028063
http://dx.doi.org/10.1029/2017JD028063
mailto:aumann@jpl.nasa.gov
https://doi.org/10.1029/2017JD028063
https://doi.org/10.1029/2017JD028063
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2017JD028063&domain=pdf&date_stamp=2018-06-13


provide temperature, water vapor, water cloud, and ice cloud profiles on
a global grid every 3 hr. Using cloudy observations in forecast models is
difficult (Bennartz & Greenwald, 2011; Errico et al., 2007; McNally, 2009;
McNally & Watts, 2003; Okamoto et al., 2014; Pavelin et al., 2008), and
although all-sky microwave radiances are now used (e.g., Geer et al.,
2017), the use of infrared radiances represents a harder problem.
NWCs make use of some cloudy scenes, such as low-level cloud or fully
overcast scenes, but the cloud information is still not used to initialize
forecasts (Guidard et al., 2011; Lavanant et al., 2011). A number of
NWCs and university research groups have developed fast and accurate
Radiative Transfer Models (RTMs) for infrared sounders, which include
the effects of cloud and aerosol scattering. The names and associated
organizations of the RTM developers are summarized in Table 1.

Summaries of the RTMs are found in Appendix A3. While each RTM has been subject to its own validation,
our paper is the first to compare results from major RTMs for cloudy hyperspectral infrared applications on
the same data set to collocated observations and to each other.

The objective of our paper was to evaluate the degree to which the radiative effects of clouds in NWCmodels
agree with collocated hyperspectral observation. The availability of RTMs with a high degree of radiometric
fidelity relative to observation, or at least the availability of tools to assess this fidelity, is expected to lead to
the increased utilization of hyperspectral sounder data in the forecast. We selected AIRS observations and
AIRS RTMs for our analysis to follow the Saunders et al. (2007) RTM analysis under cloud-free conditions.

2. Data, Participants, and Evaluation
2.1. Data

We selected data provided by the European Center for Medium-Range Weather Forecasting (ECMWF;
European Center for Medium-Range Weather Forecasting (ECMWF), 2009) as representative for the defini-
tion of the atmospheric states with clouds. The ECMWF description of the atmospheric state (temperature,
water vapor and cloud vertical profiles, and surface temperature) has been widely documented and vali-
dated (e.g., Kazumori et al., 2016; Köhler et al., 2011; Tiedtke, 1989, 1993; Tompkins et al., 2007). Details
are in Appendix A1.

For the intercomparison of RTMs we used AIRS observations from 1 March 2009 and the matching atmo-
spheric state defined by ECMWF. A subset of this data was created using the difference between the
ECMWF estimate of the surface temperature (stemp) and the brightness temperature measured in the
1,231-cm�1 window channel (bt1231; stemp-bt1231). This difference is a measure of the radiometric effect
of clouds. Under clear conditions the difference is less than 2 K, but the difference can increase to as much
as 100 K in the presence of cold clouds in the tropics. We limited the size of this data set to control the mag-
nitude of the computational effort involved in scattering calculations by using stratified sampling. This
method selected a representative mix of cloudy conditions from the AIRS data, which resulted in 7,377
unique cases. The surface emissivity and surface reflectance were obtained from a monthly climatology
(Zhou et al., 2012). The surface reflectance was assumed to be Lambertian. Details of the selection algorithm
are given in Appendix A2.

2.2. Participants and RTM Methodology

Table 1 summarizes the affiliation of the developers of cloud-capable RTMs at major NWCs, government,
and university facilities. Six RTMs were used: (1) Stand Alone Radiative Transfer Algorithm (SARTA), (2)
Radiative Transfer for TOVS (RTTOV), (3) Havemann-Taylor Fast Radiative Transfer Code (HT-FRTC), (4)
Principal Component-based RTM (PCRTM), (5) Community RTM (CRTM), and (6) σ-IASI. Largely based on
discussions at the 2016 AGU meeting, every RTM team, except the RTTOV teams, submitted revised
results. Five of the RTM developers generated variants related to details of how cloud overlap, cloud type,
and scattering were handled. Details on the individual RTMs are summarized in Appendix A3.

All RTMs calculated cloudy radiances using a linear combination of clear-sky calculations and scattering cal-
culations for one or more cloud columns. The results of the clear-sky column calculations from all these RTMs

Table 1
Cloudy RTM Developers Who Participated in the Comparison

RTM name Base model
spectroscopy

Participant Organization

SARTA HITRAN2008 DeSouza-Machado
Strow

UMBC

RTTOV HITRAN2008 Vidot Matricardi NWPSAF (France)
ECMWF (EU)

HT-FRTC HITRAN2008 Havemann UK Met Office
PCRTM HITRAN2008 Xianglei Huang University of

Michigan
Xu Liu LARC

CRTM HITRAN2008 Moradi, Wilson NASA GMAO
NASA JPL

σ-IASI-as HITRAN2012 Liuzzi Masiello U. Basilicata, Italy
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were nearly identical, consistent with Saunders et al. (2007). The cloudy spectra were calculated as the linear
combination of clear and cloudy columns based on the cloud fraction. The maximum overlap (MO) model is
the simplest case:

RMO ¼ CF RFO þ 1� CFð Þ RCLR (1)

RMO is the spectrum calculated with the MO assumption and CF is defined as the maximum cloud fraction in
the cloud coverage profile. Some RTMs set CF equal to the total cloud cover (tcc) specified in the ECMWF
record. RCLR is the clear-sky spectrum, and RFO is the spectrum assuming full overcast (i.e., clouds fill the entire
satellite footprint). Some RTMs allow the user to makemore complicated overlap assumptions. Themaximum
random overlap (MRO) assumption states that any continuous vertical cloud profile is maximally overlapped,
and the discontinuous parts of the vertical cloud profile are randomly overlapped (Hogan & Illingworth,
2000). If two cloud slabs are used, the MRO radiance is

RMRO ¼ CF1 1� CF2ð Þ RC1 þ CF2 1� CF1ð Þ RC2 þ CF1 CF2 RCLD þ 1� CF1ð Þ 1� CF2ð Þ RCLR (2)

where CF1 is the maximum cloud fraction of the first cloud slab, CF2 is the maximum cloud fraction of the
second cloud slab, RC1 is the calculation where only the first cloud slab is included, RC2 is the calculation
where only the second cloud slab is included, RCLD is the calculation where both clouds are included, and
RCLR is the clear-sky calculation. There are several variants of the overlap assumption, includingMO, exponen-
tial random overlap (ERO), and the random overlap (RO). We indicated these variants in the names of the
models; for example, CRTM_mro is the cloudy spectrum calculated using CRTM with the MRO assumption.
Most RTM developers submitted results with a number of variants.

2.3. Evaluation

The intercomparison of the RTMs used three methods.

1. The pairwise comparison of the observed AIRS spectra with the calculated spectra. We calculated the
mean and standard deviation (stddev). This comparison is complicated by several factors: (a) The colloca-
tion error: The location and local time of the AIRS data obtained with a 12-km footprint (effectively 1/8
degree latitude/longitude in the tropics) is not a good match to the temporal (3 hr) and spatial grid
(approximately 25 km) of the ECMWF data available to this study. (b) The tcc is specified in the ECMWF
data; the cloud fraction, liquid water, and ice water content are specified for each level, but the cloud over-
lap is not specified. Each RTM can handle the cloud overlap with different assumptions. (c) The ECMWF
description of the cloud in 91 levels is itself subject to random and systematic errors. (d) The liquid water
and ice cloud particle size distributions are not directly specified. For a sufficiently large data set, factor (a)
should have zero bias but will cause a large stddev. Factors (b), (c), and (d) may create a bias as well as a
large stddev.

2. Characterization of the radiometric effect of clouds using histograms of (stemp-bt). Here stemp is the sur-
face temperature from ECMWF and bt is the AIRS observed or RTM-calculated brightness temperature in
an atmospheric window channel. In the absence of a solar reflected component, (stemp-bt) increases
from near zero under clear conditions to 100 K with increasing cloudiness. Under ideal conditions of a per-
fect matchup between AIRS and ECMWF, perfect clouds and thermodynamic profiles in the ECWMF
model, and a perfect RTM, the two histograms will be identical. We evaluate the closeness of the match
between observations and calculations by calculating the histogram correlation. Small residual biases that
result from compensatory large positive and negative differences between AIRS and the RTM calculations
under different conditions of cloudiness (or cloud types) are revealed as distortions of the histograms,
resulting in a lowered correlation with the observations. This approach is not sensitive to random errors
in the ECMWF cloud forecasts (e.g., the miss-location of clouds) but remains vulnerable to systematic
errors; nevertheless, known systematic errors in ECMWF cloud forecasts are globally infrequent and
limited to specific meteorological conditions (Kazumori et al., 2016). Infrequent ECMWF cloud errors
are not likely to impact the histogram correlation because of the wide variety of cloud conditions in
our data set.

3. The pairwise comparison of results from different RTMs. This approach has the advantage that it sidesteps
matchup uncertainties with ECMWF. All RTMs use the same cloud model description. The comparison
reveals the radiometric effect of differences between RTMs in cloud microphysics assumptions, cloud
overlap assumptions, and scattering algorithms.
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3. Results

Figure 1 illustrates typical spectral patterns in the mean of the pairwise difference between AIRS spectra and
the spectra calculated using six representative RTMs for 1,377 night and 1,437 day nonfrozen ocean cases,
respectively. For wavenumbers lower than 1,700 cm�1 there is a relatively day/night independent, spectrally
correlated pattern in the mean of the difference between AIRS and different RTMs. For wavenumbers above
2,200 cm�1 the pattern for the different RTMs is inconsistent even for the nighttime data. This inconsistency is
even larger for the daytime data due to the differences in the way the RTMs deal with scattering and solar-
reflected radiation. For the detailed evaluation of the RTMs we focus on the two representative atmospheric
window channels at 900 and 2,616 cm�1.

Figure 2 illustrates the comparison between AIRS and three RTMs at 900 cm�1 for the same two cases as
Figure 1 using histograms of (stemp-bt900). The peak of the histogram in all cases is near +10 K, that is, rela-
tively little cloudiness or low clouds. The coldest cloud tops are 100 K colder than stemp. The black trace is
derived from the AIRS observation. HT_CRO and HT_SRO results are nearly identical, even though HT_CRO
uses Chou scaling, while HT_SRO uses a full scattering calculation (both RTMs use the RO assumption).
SARTA traced the AIRS histogram somewhat better than either HT variant for nighttime cases with (stemp-
bt900) between 40 and 70 K, with SARTA finding many more cases than AIRS, while the HT RTMs had less
cases. SARTA uses Chou scaling and the RO assumption similar to HT_CRO. However, SARTA takes multile-
veled clouds and converts them into two single layer clouds, one for ice clouds and one for water clouds.

Figure 1. (a, b) Mean difference between Atmospheric Infrared Sounder (AIRS) and six Radiative Transfer Model (RTM)
implementations for nonfrozen ocean cases.

Figure 2. (a, b) Histograms for (stemp-bt900) observed by Atmospheric Infrared Sounder (AIRS) and calculated by three
representative Radiative Transfer Models.
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For daytime cases (Figure 2b), both SARTA and HT RTMs deviated from the AIRS trace for (stemp-bt900) cases
between 15 and 70 K. Similar to the nighttime case, SARTA hadmore cases than AIRS in this range, while both
versions of HT had less cases than AIRS between 15 and 30 K.

Figure 3 illustrates the histogram comparison using the same three RTMs and the same day and night non-
frozen ocean cases as Figure 2 but at 2,616 cm�1. In this figure the agreement between the RTMs and AIRS at
night is much better than during the day. In fact, the histograms from SARTA and both HT RTMs are more
closely matched to the AIRS histogram for cases between 15 and 70 K than the histograms at 900 cm�1

(Figure 2a). During the day the full scattering calculations used by HT_SRO result in histograms without
the long tail for high clouds (stemp-bt2616 > 60 K) seen in the HT_CRO histogram.

3.1. Numerical Summary of Histogram Correlations, Bias, and Standard Deviations

Table 2 summarizes the histogram correlations and the bias relative to AIRS for the day and night nonfrozen
ocean cases at 900 cm�1. The results shown are separated into six groups, with each group representing the

Figure 3. (a, b) Histograms for stemp-bt2616 observed by Atmospheric Infrared Sounder (AIRS) and calculated by three
representative Radiative Transfer Models.

Table 2
Histogram Correlation and Bias for Day and Night Nonfrozen Ocean Cases at 900 cm�1

AIRS-bt900
Day

correlation
Day bias ± stddev
(K) 1,437 cases

Night
correlation

Night bias ± stddev
(K) 1,377 cases

Day-night
bias (K)

SARTA_TwoSlab(C) 0.9502 �2.33 ± 22.1 0.9707 �0.96 ± 19.5 �1.3
SARTA_TwoSlab(P) 0.9621 +2.23 ± 22.9 0.9710 +2.80 ± 20.4 �0.6
PCRTM_ERO 0.9629 +0.53 ± 21.5 0.9792 +1.37 ± 19.5 �0.8
PCRTM_MRO 0.9591 �0.21 ± 21.1 0.9796 �0.36 ± 19.1 �0.5
PCRTM_ERO2 0.9680 +0.96 ± 22.8 0.9785 +1.37 ± 21.1 �0.5
PCRTM_MRO4 0.9715 �0.53 ± 22.36 0.9625 +0.38 ± 19.85 �0.8
HT_CMO 0.9773 +1.09 ± 22.58 0.9591 +1.12 ± 20.36 �0.0
HT_CRO 0.9695 +2.18 ± 22.26 0.9638 +2.53 ± 20.04 �0.3
HT_CMRO 0.9774 +1.15 ± 22.56 0.9613 +1.26 ± 20.29 �0.1
HT_SMRO 0.9764 +0.60 ± 22.54 0.9591 +1.12 ± 20.36 �0.5
HT_SRO 0.9692 +1.69 ± 22.22 0.9629 +2.47 ± 20.07 �0.7
HT_SMRO 0.9765 +0.67 ± 22.52 0.9590 +1.18 ± 20.34 �0.5
RTTOV_MRO 0.9666 �4.22 ± 21.42 0.9748 �3.65 ± 19.5 �0.8
RTTOV_CMSS 0.9107 +0.69 ± 21.62 0.9105 +1.04 ± 20.0 �0.4
σ-IASI 0.9261 +0.75 ± 20.9 0.9437 +2.02 ± 19.2 �1.3
CRTM_tcc 0.8816 �0.98 ± 21.1 0.8915 +1.46 ± 19.97 �0.5
CRTM_mro 0.9552 �0.72 ± 23.9 0.9819 �0.10 ± 20.8 �0.6
CRTM_2col 0.9553 +0.12 ± 23.9 0.9817 +0.71 ± 21.3 �0.6
Clear column RTM (SARTA) 0.4168 �29.57 ± 22.8 0.4631 �25.78 ± 22.1 +3.8
Corr >0.9 17 of 18 17 of 18
mean bias +0.3 +0.8
mean stddev 22 20
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six RTM developers. The histogram correlations with AIRS exceeded 0.95 for five of the six groups for day and
night cases. The histogram correlations were slightly higher for the night cases than for the day cases. This
observation may be related to a day/night dependence of the cloud structure or microphysics properties.
A more in-depth study of his observation is beyond the scope of this paper. The row labeled “clear column
RTM” used SARTA without clouds. The mean bias relative to AIRS for all RTMs was +0.3 K (range � 4.2 K to
+2.2 K) for the day cases, and + 0.8 K (range � 3.6 K to +2.8 K) for the night cases. The number following
the plus-minus symbol in Table 2 is the stddev of the differences, typically 22 K for the day and 20 K for
the night cases. Using the typical stddev for nighttime, the probable error in the mean is about
22/√1377 = 0.6 K (assuming random sampling and uncorrelated errors). Bias differences of more than three
times the probable error, 2 K, are significant.

When the RTM calculations are compared to one another, the effect of the collocation error is eliminated,
since we are comparing calculations for the same cloud conditions. Results are shown in Table 3 for the
1,437 day nonfrozen ocean cases using four RTMs as references: CRTM_mro, HT_SMRO, PCRTM_MRO4, and
RTTOV_MRO. For the “five-group” summary in the last row we used only the first entry from each group,
excluding the RTM used as the reference. The bias between RTMs was �0.2, +1.5, +0.3, and � 3.4 K, and
the stddevs were 12.3, 7.6, 8.7, and 6.5 K, respectively, for the four reference RTMs.

In order to explore the extent to which a small bias on a global scale may be the result of compen-
sating biases, we divided the data into latitude zones. Results are summarized in Table 4 for the tro-
pical zone (|lat| < 30°) with 3,644 cases; 2,662 cases for the extratropical zone (|lat| > 30°), limited to
nonfrozen surface cases using stemp >275 K; and 1,070 cases from the polar zone (|lat| > 60°). Based on
the last column in Table 4, which shows the difference between the mean tropical and the mean midlati-
tude bias, some RTMs show a latitude dependence in the bias of several degree kelvin.

Table 5 summarizes the results at 2,616 cm�1 for day and night nonfrozen ocean. The bottom row sum-
marizes the results in terms of a mean bias and stddev, excluding RTMs with less than 0.9 histogram correla-
tion with AIRS. At night 16 of the 18 RTMs had a mean bias relative to AIRS of�1.8 K with 20 K stddev and five
of the six RTM teams produced results with histogram correlation with AIRS better than 0.95. During the day
only two of the six RTM teams produced results with histogram correlations with AIRS better than 0.95. For
these cases the mean bias was +2.4 K, and the mean stddev was 16 K.

Table 3
Bias and Standard Deviation of bt900 Calculated for 1,437 Day Nonfrozen Ocean Cases Relative to CRTM_mro, HT_SMRO, PCRTM_MRO4, and RTTOV_MRO

bt900
(RTM-reference)

Reference CRTM_mro
bias ± stddev (K)

Reference HT_SMRO
bias ± stddev (K)

Reference PCRTM_MRO4
bias ± stddev (K)

Reference RTTOV_MRO
bias ± stddev (K)

SARTA TwoSlab(C) pnewM1 pnewM1 +1.69 ± 12.10 2.99 ± 11.79 +1.79 ± 10.52 �1.90 ± 11.63
SARTA TwoSlab(P) pnew999 �2.72 ± 11.32 �1.58 ± 10.69 �2.75 ± 9.76 �6.47 ± 10.79
PCRTM_ERO �1.28 ± 9.90 +0.12 ± 6.83 �1.00 ± 6.39 �4.78 ± 6.59
PCRTM_MRO �0.32 ± 13.89 1.22 ± 9.60 �0.06 ± 9.80 �3.65 ± 9.47
PCRTM_ERO2 �1.28 ± 12.58 �0.06 ± 9.69 �1.27 ± 9.46 �4.94 ± 9.64
PCRTM_MRO4 �0.13 ± 11.44 +1.26 ± 7.57 0.00 ± 0.00 +3.59 ± 7.51
HT_CMO �1.65 ± 12.54 �0.43 ± 0.39 �1.68 ± 7.69 �5.31 ± 5.72
HT_CRO �2.75 ± 12.19 �1.40 ± 1.79 �2.74 ± 7.44 �6.41 ± 5.87
HT_CMRO �1.72 ± 12.55 �0.48 ± 0.35 �1.75 ± 7.69 �5.38 ± 5.73
HT_SMO �1.17 ± 12.41 +0.04 ± 0.17 �1.20 ± 7.58 �4.83 ± 5.57
HT_SRO �2.25 ± 12.08 �0.91 ± 1.82 �2.25 ± 7.35 �5.91 ± 5.74
HT_SMRO �1.24 ± 12.42 0.00 ± 0.00 �1.26 ± 7.57 �4.90 ± 5.57
RTTOV_MRO +3.65 ± 12.70 +4.90 ± 5.57 +3.59 ± 7.51 0.00 ± 0.00
RTTOV_CMSS �1.34 ± 10.35 �0.02 ± 5.62 �1.23 ± 6.93 �4.92 ± 6.45
σ-IASI-As �1.49 ± 12.85 �0.10 ± 6.85 �1.37 ± 7.99 �5.00 ± 4.34
CRTM_tcc +0.20 ± 14.02 +1.64 ± 14.07 +0.43 ± 11.86 �3.26 ± 10.57
CRTM_mro 0.00 ± 0.00 +1.24 ± 12.42 +0.13 ± 11.44 �3.65 ± 12.70
CRTM_2col �0.60 ± 3.43 +0.47 ± 12.22 +0.65 ± 11.22 �4.29 ± 12.75
Five-group bias �0.2 +1.5 +0.3 �3.4
Five-group stddev 12.3 7.6 8.7 6.5
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4. Discussion of the Results

Under clear conditions at night, SARTA, PCRTM, and RTTOV have previously been shown to agree with each
other and with AIRS within 0.05 K bias and 0.1 K stddev (Saunders et al., 2007). The current versions of SARTA,
PCRTM, and RTTOV, including CRTM, σ-IASI, and HT-FRTC under clear conditions, all have shown the same
level of agreement. Under cloudy conditions the agreement is not as close and the magnitudes of the differ-
ences are wavenumber dependent.

Table 5
Histogram Correlation, Bias, and Standard Deviation at 2,616 cm�1 for Day and Night Nonfrozen Ocean

bt2616 (AIRS observed—
calculated)

Day
correlation

Day bias ± stddev (K)
1,437 cases

Night
correlation

Night bias ± stddev (K)
1,377 cases

SARTA TwoSlab(C) 0.8744 +5.00 ± 14.79 0.9738 �3.06 ± 18.40
SARTA TwoSlab(P) 0.8779 +7.05 ± 15.57 0.9746 �0.37 ± 19.45
PCRTM_ERO 0.9855 +1.55 ± 15.90 0.9371 �0.29 ± 19.23
PCRTM_MRO 0.9846 +0.73 ± 15.84 0.9334 �1.88 ± 18.84
PCRTM_ERO2 0.9804 +2.52 ± 16.79 0.9563 +0.58 ± 20.56
PCRTM_MRO4 0.9766 +0.91 ± 16.22 0.9446 �1.25 ± 19.47
HT_CMO 0.6669 +15.04 ± 20.11 0.9075 �2.53 ± 20.49
HT_CRO 0.6492 +15.97 ± 19.76 0.9809 �1.43 ± 20.12
HT_CMRO 0.6653 +15.13 ± 20.10 0.9074 �2.46 ± 20.47
HT_SMO 0.9215 +3.69 ± 15.86 0.9791 �2.11 ± 20.59
HT_SRO 0.9628 +3.87 ± 15.83 0.9736 �0.83 ± 20.14
HT_SMRO 0.9245 +3.65 ± 15.88 0.9799 �2.02 ± 20.56
RTTOV_MRO 0.8948 +4.81 ± 15.86 0.9574 �6.48 ± 19.85
RTTOV_CMSS 0.8803 +8.07 ± 15.26 0.9605 �2.38 ± 19.02
σ-IASI_as 0.4809 +20.94 ± 18.94 (a) 0.8739 +5.37 ± 19.50
CRTM_tcc 0.3991 +20.55 ± 17.60 0.6623 +6.38 ± 20.52
CRTM_mro 0.6680 +13.90 ± 18.74 0.9604 �2.16 ± 19.58
CRTM_2col 0.6410 +15.33 ± 18.59 0.9486 �1.04 ± 19.63
Corr >0.9 7 of 18 16 of 18
Summary mean (stdev) +2.4 (16) �1.8 (20)

aSolar reflected component not implemented.

Table 4
Bias and Standard Deviation Between AIRS bt900 and Different RTMs Separated Into the Tropical, Midlatitude, and Polar Zones (as Defined in the Text)

bt900 (AIRS observed—
calculated; K)

Tropical zone 3,644 cases
bias ± stddev (K)

Mid latitude 2,662 cases
bias ± stddev (K)

Polar 1,070 cases
bias ± stddev (K)

Tropical—midlatitude
bias (K)

SARTA TwoSlab(C) +0.41 ± 22.59 �4.66 ± 14.84 +3.19 ± 10.15 +5.0
SARTA TwoSlab(P) +4.15 ± 23.51 �2.57 ± 15.02 +0.79 ± 10.06 +6.7
PCRTM_ERO +2.63 ± 22.48 �2.86 ± 13.86 �0.53 ± 9.60 +5.5
PCRTM_MRO +0.35 ± 22.01 �3.42 ± 13.93 �0.56 ± 9.63 +3.8
PCRTM_ERO2 +3.21 ± 24.33 �2.65 ± 14.84 �0.41 ± 9.79 +5.9
PCRTM_MRO4 +0.94 ± 23.19 �3.12 ± 14.36 �0.32 ± 9.81 +4.1
HT_CMO +1.12 ± 23.41 �0.84 ± 14.99 +1.39 ± 9.65 +2.0
HT_CRO +2.97 ± 23.08 �0.17 ± 14.68 +1.48 ± 9.58 +3.1
HT_CMRO +1.17 ± 23.40 �0.78 ± 14.97 +1.40 ± 9.65 +2.0
HT_SMO +0.92 ± 23.39 �1.08 ± 14.98 +1.15 ± 9.72 2.0
HT_SRO +2.76 ± 23.06 �0.42 ± 14.68 +1.24 ± 9.65 3.2
HT_SMRO +0.97 ± 23.38 �1.03 ± 14.96 +1.16 ± 9.72 2.0
RTTOV_MRO �4.33 ± 22.32 �4.50 ± 14.49 �0.24 ± 9.77 0.2
RTTOV_CMSS +2.71 ± 22.24 �2.35 ± 14.05 �0.06 ± 10.13 5.1
σ-IASI-As +1.23 ± 22.35 +0.19 ± 14.45 +2.21 ± 9.34 1.0
CRTM_tcc +2.60 ± 22.39 �2.76 ± 15.14 +0.73 ± 9.98 5.4
CRTM_mro +1.95 ± 24.62 �5.60 ± 14.67 �1.68 ± 10.50 7.6
CRTM_2col +2.94 ± 24.57 �5.24 ± 14.73 �1.69 ± 10.60 8.2
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4.1. The Longwave Region

We define the longwave region as portions of the spectrumwith wavenumbers lower than 1,700 cm�1. In this
region, the differences between AIRS and RTMs are relatively day/night independent (Figure 1) and range
between ±4 K. The correlation between the histogram calculated from the AIRS observations and the histo-
grams calculated for several of the RTMs at 900 cm�1 (Table 2 and Figure 2) exceeds 0.97. The bias averaged
over 17 of 18 RTMs at 900 cm�1 for the day and night nonfrozen oceans was +0.3 and + 0.8 K, respectively
(Table 2). However, Table 4 shows that the low bias for the nonfrozen oceans for some RTMs was due to
the compensating effects of a bias for the tropical zone balanced by a bias of the opposite signs in
the midlatitude and polar zones. A high correlation between the observed and calculated histograms
and a zone-independent low bias are a measure of the skill of the RTM and the statistical fidelity of
the ECMWF specification of the atmospheric state, including clouds. The bias between the clear column
RTM calculations and AIRS observations is more than �25 K (Table 2). The typically 20 K stddev of the
difference between AIRS and the RTMs is essentially the same with and without clouds. This indicates
that the high stddev of (AIRS-RTM) is dominated by the mismatch between the clouds observed by
AIRS and the clouds specified by the ECMWF model.

RTTOV_MRO is biased about 4-K high relative to AIRS (Table 2). As shown in Table 3, where we compare the
RTMs to reference RTMs, all RTMs are biased low relative to RTTOV_MRO. RTTOV_MRO used the OPAC cumu-
lus cloud-type option. RTTOV_Cloud fraction Maximum Single Stream (CMSS) used the RO overlap scheme
and was optimized for middle to upper tropospheric sounding channels, not for window channels.
RTTOV_CMSS shows much less bias relative to AIRS than RTTOV_MRO in the global analysis (Table 2) but
shows a large bias of opposite signs for the zonal bias (Table 4). These observations suggest that a combina-
tion of cloud types (derived from the cloud, temperature, or water vapor profiles) may produce a closer match
to observations than choosing one cloud type. Future work will examine the impact of cloud-type assump-
tions on the RTMs’ match to observations.

The typical stddev of the RTMs relative to AIRS, 20 K, decreases to a range of 6 to 12 K when the RTMs are
compared to one another (Table 3), excluding siblings within the same RTM group. Since the RTMs used
the same cloud input profile, the decrease from 20 to 12 K (or less) is dominated by the elimination of the
collocation error. The stddevs of the differences are in this case related to differences in the way the
ECMWF cloud description is converted to cloud microphysical parameters and then to the radiances calcu-
lated by the RTMs. When this conversion is identical, as in the case of CRTM_mro and CRTM_2col, the stddev
of the difference was 3 K and was due to the difference in the overlap assumption alone.

4.2. The Shortwave Region

We define the shortwave region as portions of the spectrum with wavenumbers greater than 2,000 cm�1.
By inspection of Figure 1 we already noted that the spectral patterns for the different RTMs are less con-
sistent in the shortwave region than in the longwave region, even for the night data. However, at night
three of the six RTMs (Figure 1) have less than 2-K bias relative to AIRS and five of the six RTMs have histo-
gram correlations better than 0.95 (Table 5). At night the histogram correlations at 2,616 cm�1 are not
inconsistent with those at 900 cm�1. During the day the results from only two of the six RTM teams
reached histogram correlations better than 0.95, and the bias values relative to AIRS were much larger than
those at night and the result at 900 cm�1. If cloud scattering parameters at 2,616 cm�1 were too weak, it
would have impacted the night calculations as well, but the night calculations (for three of the RTMs) agree
reasonably well with AIRS. The degradation of the results during the day is probably related to the use of
Chou scaling, which was not designed for shortwave calculations (Chou et al., 1999). This is clearly shown in
the comparison of HT_CRO (with the Chou approximation) and HT_SRO (using full scattering) in Figure 3.
The tail of the histogram of HT_CRO at (stemp-bt2616) extends all the way to 100 K for the coldest clouds,
while the tail of the histogram of HT_SRO stops at 60 K. The PCRTM_MRO also uses full scattering. SARTA
and RTTOV used Chou scaling, while CRTM used the advanced doubling adding method (Liu & Weng,
2006). Full scattering calculations usually are assumed to be costly in terms of computation time, but this
need not be the case. For example, PCRTM performs full scattering calculations with multiple streams and
multiple scatterings performed offline to generate lookup tables. However, even by employing full scatter-
ing, the HT_SRO histogram at 2,616 cm�1 (Figure 3b) showed fewer clear or low cloud cases (stemp-
bt2616 < 0 K) calculated by the RTMs than were observed by AIRS. This suggests that the reflectance from
the Earth’s surface has a stronger angular dependence than Lambertian scattering.
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In the discussion of the histograms calculated from the RTMs at 900 cm�1 we noted the differences between
AIRS observations and the RTMs for 40 < (stemp-bt900) < 70 K cases (Figure 2). This effect is much less pro-
nounced at 2,616 cm�1, particularly at night (Figure 3a). We believe that in this region a significant portion of
the scenes contains multiple cloud types. This may amplify any systematic bias that exists in the assumptions
about cloud microphysics and their assumed spectral dependence. The interpretation of these differences in
terms of cloud types is outside of the scope of this paper.

4.3. ECMWF Cloud Bias and RTM Cloud Bias

The bias in the RTMs relative to AIRS has two components:

1. The ECMWF cloud description is vulnerable to systematic errors.
2. The methodologies used by the RTMs to convert the cloud description into radiances are likely to contain

assumptions which lead to systematic biases.

In order to quantify this bias, we assume that the results from the six RTM teams represent plausible and suf-
ficiently independent radiometric realizations of the cloud effects. At 900 cm�1 the RTMs show a bias in the
range from +1.5 to �3.4 K relative to one another (Table 3). Relative to AIRS the RTMs have a + 0.3 K (+0.8 K)
mean bias for the day (night) nonfrozen oceans (Table 2). These results indicate that the radiative effect of a
bias in the ECMWF clouds could be of the order of 1 K.

The difference between the mean tropical and mean midlatitude bias (Table 4, last column) for each RTM
could reveal a cloud-type dependence in the ECMWF clouds or in the RTM cloud algorithms. Several of the
six RTM groups have a zonal bias lower than 2 K. The low zonal bias seen in the results from these RTMs is
consistent with the radiative effect of a zonal ECMWF cloud bias of less than 2 K. The observation that several
of the RTMs achieve a low zonal bias and a high histogram correlation relative to the observations indicates
that the low global bias is not the result of compensatory much larger cloud-type-dependent biases.

We interpret the zonal bias seen in the three other RTM groups, which ranges from 4 to 8 K, as a cloud-type
dependence in those RTMs. The RTTOV_CMSS has a 5-K zonal bias, compared to 0.2 K for RTTOV_MRO
(Table 4). On the other hand, RTTOV_CMSS shows much less bias relative to AIRS than RTTOV_MRO
(Table 2). Both use a single (but different) cloud type. A combination of cloud types (derived from the cloud,
temperature, or water vapor profiles) may produce a closer match to observations than choosing one cloud
type. A future analysis of cloud-type effects on the RTMs could include data acquired in cloudy conditions
from other instruments.

5. Summary

The objective of our paper was to evaluate the degree to which the radiative effects of clouds in NWCmodels
agree with collocated hyperspectral observations. We selected AIRS observations and AIRS RTMs for our ana-
lysis. We selected data provided by the ECMWF (ECMWF, 2009) as representative for the definition of the
atmospheric states with clouds. We used the bias and histogram correlations relative to AIRS observations
for the 2,616- and 900-cm�1 atmospheric window channels as performance metrics. For some RTMs the his-
togram calculated at 900 cm�1 has a correlation of better than 0.95 with the histogram derived from the AIRS
observations, with a bias relative to AIRS of less than 2 K for nonfrozen ocean day and night data. However,
several of the six RTM groups showed between 0- and 2-K bias between the tropical zone and themidlatitude
zone at 900 cm�1, while others had a bias between 4 and 8 K. This observation and the high histogram cor-
relation with AIRS show that the ECMWF cloud prescription may have a bias, but the radiative effect of the
bias at 900 cm�1 is most likely less than 2 K, relatively insignificant compared to the bias introduced by some
RTMs. The results for the 2,616-cm�1 window channel are consistent with day and night results at 900 cm�1

only when full scattering calculations were used. For these cases the correlation between the histogram
deduced from the AIRS observations and the histograms calculated by the RTMs exceeds 0.95 and the bias
at night is less than 2 K relative to AIRS. During the day the AIRS observations at 2616 cm�1 are 2 to 4 K higher
than the RTM calculations with full scattering. This suggests that the reflectance of the surface has a steeper
angular dependence than Lambertian.

Our study created a testable data set, baseline results, and testing methodology to support continuing RTM
development, with the goal of increasing the utilization of hyperspectral observations in the forecast. As
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illustrated in Figure 1, there is no need (with the current state of the art RTMs) to make these calculations for
all channels, since just one or two surface channels will provide valuable insights. However, the selection of a
shortwave channel requires an RTMwith full scattering. The choice of the RTM and howmany channels to use
comes down to computer resource requirements.

Appendix A: Appendixes

A1. Model Profiles (Contributed by Alan Geer)

Model profiles were taken from the ECMWF operational global weather forecasting system on 1 March 2009.
The best available estimate of the atmospheric state was taken every 3 hr, being a mixture of analysis and
very short range forecast. At the time, cycle 35r1 of the ECMWF system was operational and full documenta-
tion is available from ECMWF (2009). This describes cycle 33r1, but there were no major changes going to
35r1. The model fields used 91 levels. An additional level at 0.005 hPa was added using the U.S. Standard
Atmosphere to avoid ambiguity when different RTMs were using the model fields. The forecast model uses
T799 (roughly 25 km) spatial binning. Each AIRS position and observing time from 1 March 2009 was asso-
ciated with the nearest forecast time and interpolated across the 35r1 grid points in time and space.

Analyses and forecasts are based on clouds and precipitation models using three main schemes: convection
by a mass flux scheme (Bechtold et al., 2004; Tiedtke, 1989), large-scale cloud and precipitation, including the
possibility of ice supersaturation (Tiedtke, 1993; Tompkins et al., 2007), and an eddy-mass flux turbulent dif-
fusion scheme for the boundary layer, representing stratocumulus (Köhler et al., 2011). Together these
contribute to producing the vertical profile of cloud water, cloud ice, and cloud fraction at every grid point.
Where necessary to assume an overlap formulation for clouds in the radiation scheme, a generalized formu-
lation was assumed, increasing from MRO to RO with increasing cloud layer separation (Barker, 2008).

The ECMWF analysis is a combination of short-range forecast and observational information, including satel-
lite radiances, satellite-retrieved atmospheric motion vectors, near-surface wind vectors from scatterometers,
Global Navigation Satellite System radio-occultationmeasurements, and conventional data sources including
ground stations, ships, radiosondes, and aircraft. Of particular, relevance to the current study is that AIRS and
IASI radiances are assimilated but in clear-sky areas only (Collard & McNally, 2009). As a consequence, the
cloud description in the ECMWF model does not contain AIRS cloud information. Further, clouds and preci-
pitation are constrained in the analysis by the assimilation of cloud and precipitation-affected microwave
imager radiances (Bauer et al., 2006).

A2. Selection of the Test Data Set (Contributed by Evan Manning)

Each day AIRS produces 3 million spectra, each with 2,378 spectral channels. The locations of the spectra
are biased toward the polar areas due to the high inclination of the Earth Observing System Aqua orbit. In
order to test the relative performance of cloudy RTAs, we created a data set with emphasis on cloud varia-
bility. This data set was created using stratified sampling: the clouds are roughly characterized by the dif-
ference between the surface temperature (stemp), provided by ECMWF, and the brightness temperatures
measured in five sounding regions from AIRS, including the brightness temperatures at 1,231 cm�1

(bt1231). We traversed the spectra in time order and assigned to each spectrum a tag which combined
the following elements:

1. Day versus night (the divide was solar zenith angle = 90; two bins).
2. Land/sea + latitude band. The 30° bins. Nonpolar bins were divided into land and sea. Sea was defined as

any AIRS footprint containing less the 1% land (10 bins).
3. bt1231 in 10-K increments between 170 and 360 K (19 bins).
4. stemp-bt1231 in 10-K increments from �40 to +210 K (26 bins).
5. We defined five broad spectral bands at [650, 800], [800, 1200], [1200, 1700], [1700, 2400], and [2400,

2700] cm�1. For each band we used the mean brightness temperature in the band minus bt1231,
bt_band-bt1231, to define 20 bins in 10-K increments from �110 to +110 K (20 bins per band).

This allows for up to 2 × 10 × 19 × 26 × 205 = ~ 30 billion bins, but most bins were empty. Each spectrum’s tag
was compared to the tags of the spectra previously collected. If the tag did not match any, then the new
spectrum was added to the data set. This procedure created 7,377 uniquely tagged spectra. The latitude,
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longitude, solar zenith, and solar azimuth angles and the ECMWF defini-
tion of the state of the atmosphere associated with this set and the
associated AIRS spectral radiances were posted on the anonymous
FTP site at “ftp://thunder.jpl.nasa.gov/hha/Cloudy_RTA/atm.state”. The
rta7377readme.20160518.txt explains the details.

The distribution of the 7,377 test cases does not match the distribution
of clouds in a global grid, but the set spans the natural variability of
spectra, which is dominated by clouds. The emphasis on clouds is illu-
strated in Figure A1. The red trace in Figure A1 is the distribution of
the cloud effect (stemp-bt1231) for a global area representative ran-
dom sample of the nonfrozen oceans. A large fraction of the ocean is
covered by relatively low or broken clouds. The peak of the random
sampled distribution is at 5 K. Only 7% of the nonfrozen oceans are
associated (stemp-bt1231) > 50 K, (roughly corresponding to bright-
ness temperatures colder than 250 K). The blue trace in Figure A1 is the
distribution of the cloud effect in the test set. The peak of the distribu-
tion is at 8 K, and 30% of the test data are associated with (stemp-
bt1231) > 50 K.

A3. RTM Model Summaries
A3.1. Community RTM (Contributed by Moradi and Wilson)
The Community RTM, CRTM, (Liu et al., 2008), is a fast RTM developed by the Joint Center for Satellite Data
Assimilation that is widely used in the United States (including at the National Aeronautics and Space
Administration Global Modeling and Assimilation Office) to assimilate satellite radiances. The current version
is 2.2.3. CRTM is capable of simulating microwave and infrared radiances using atmospheric profiles of pres-
sure, temperature, humidity, and other species such as ozone. CRTM also includes capabilities to simulate
satellite cloudy radiances. The ice cloud single scattering properties are based on Baum et al. (2011). All spec-
tra were calculated with CRTM 2.2.3. However, within this version CRTM gives the user wide flexibility for the
cloud overlap assumption and the cloud composition. Six cloud types can be defined at the same time: water,
ice, rain, snow, graupel, and hail. The calculations presented in this paper used only water and ice clouds
based on cloud liquid and ice water content profiles.

CRTM requires pressure values at levels, as well as layer averaged, and the layer averages of temperature,
water vapor, and other absorbers as input to perform clear-sky calculations. The top pressure level is fixed
at 0.005 hPa. For the calculation of cloudy radiances CRTM requires cloud liquid water content in gram per
square meter and the effective radii of water and ice particles.

The same version of CRTM was used but with different assumptions. The results identified as CRTM_tcc uses
equation (1) with the MO assumption and tcc, the total cloud fraction specified by ECMWF. The effective
radius of the particles was calculated using equation (3) in Ou et al. (1995) for ice clouds and equation (2)
in Bower et al. (1994) for water clouds. The CRTM_2col and the CRTM_mro calculations used the 2col and
MRO assumption, respectively, with the identical cloud microphysics. The parameterization for ice particle
effective radius used a fourth-order empirical polynomial given by Ou et al. (1995), same as CRTM_tcc. The
effective water particle radius was logarithmically interpolated from 10 μm at the surface to 45 μm at the
top of atmosphere, consistent with the ECMWF documentation. Following equation (1), CRTM_2col uses
the maximum cloud fraction specified by each ECMWF cloud coverage profile to calculate CF. This value is
close to but not exactly the same as tcc.

The CRTM results were received on 6 September 2016, revised 9 March 2017.
A3.2. Principal Component-Based RTM (Contributed by Xiuhong Chen, Xianglei Huang, Xu Liu,
Qiguang Yang, and Wan Wu)
The PCRTM is a fast and accurate forward model for hyperspectral instruments with thousands of spectral
channels. It uses principal components to compress spectral information and reduces computational time
by performing radiative transfer calculations at just a few hundred monochromatic frequencies (Liu et al.,
2006, 2016). The molecular absorption coefficients of gases are based on a lookup table calculated off-line
using a line-by-line RTM based on HITRAN2008. Both ice and water clouds were parameterized into

Figure A1. The red trace shows the distribution of the cloud effect (stemp-
bt1231) for an area-representative random sample of the nonfrozen
oceans. The blue trace is the distribution of the stratified sample.
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transmittance and reflectance matrices for the isotropic thermal scattering. The ice cloud matrices were
obtained using single scattering properties from Baum et al. (2011) and a 32-stream Discrete Ordinates
Radiative Transfer (Stamnes et al., 1988). The water clouds were obtained the same way by using the refrac-
tive indices from Segelstein (1981). The anisotropic solar scattering is modeled according to Liu et al. (2016)
and Yang et al. (2014). Transmittance and reflectance lookup tables were obtained under various conditions
for parameters such as cloud optical depth, cloud effective size, wavelength, and solar and satellite zenith
angles and azimuth angles (Yang et al., 2014). The non-Local Thermodynamic Equilibrium (LTE) effect was cal-
culated according to the parameterization described by DeSouza-Machado et al. (2007).

When generating input parameters for the PCRTM from the ECMWF fields, ice cloud optical depths were cal-
culated from ice water content as in Ebert and Curry (1992). Warm cloud optical depth based on cloud liquid
water content follows Fouquart (1987). The effect of different cloud overlapping assumptions on the simu-
lated radiance has been discussed in Chen et al. (2013). The PCRTM_MRO and PCRTM_ERO entries in
Tables 2–4 represent the results obtained with a MRO assumption and an ERO assumption, respectively.
The cloud fraction and cloud profiles are used to generate 50 subcolumns (Chen et al., 2013) for both
overlapping assumptions. The PCRTM_ERO2 and PCRTM_MRO4 represent the simulation results using less
subcolumns, namely, two subcolumns for the ERO and four subcolumns for the MRO, respectively.

The PCRTM model has been used to perform cloud and atmospheric temperature and water vapor vertical
profile retrievals from hyperspectral instruments such as IASI, CrIS, and AIRS (Liu et al., 2009, 2006, 2017;
Wu et al., 2017). Two validations of the PCRTM under cloudy conditions were given by Chen et al. (2013).
One validation case used NOAA/GFDL data with the RO assumption, and the other one used ECMWF with
MRO assumption. Validations showed satisfactory consistency between the calculated OLR and the counter-
parts from the GCM/analysis.

The PCRTM spectra were received 24 February 2017, revised with full scattering 14 July 2017.
A3.3. SARTA (Contributed by Sergio DeSouza-Machado and L. Strow)
SARTA RTM uses a four-column RO cloud overlap assumption. The clear column calculations use SARTA V6.0
(Strow et al., 2006). The absorption coefficients of gases are from line-by-line calculations based on
HITRAN2008. The ECMWF clouds are converted into two thick slabs. Typically, this is an ice cloud between
zi_top and zi_bottom and a water cloud between zw_top and zw_bottom. The Mie scattering parameters
for water clouds use a modified gamma droplet size distribution of effective variance 0.1 (dimensionless)
and effective radius (typically) of 20 μm. The cirrus cloud scattering parameters are based on Baum et al.
(2011), and the ice effective particle size is estimated from a temperature-based parametrization by Ou et al.
(1995, 2013), where the ECMWF temperature profile is used to associate the ice cloud slab top pressure with
a cloud top temperature. The effective absorption due to each slab is then calculated using PCLSAM (Chou
et al., 1999) scattering code and used in the SARTA TwoSlab RTM (DeSouza-Machado et al., 2018). Each pixel
is then divided into four columns.

Case 1. A clear column from the surface to the Top Of the Atmosphere (TOA).
Case 2. A clear column between the surface and zw_bottom. Between zw_bottom and zw_top the pre-

calculated water cloud absorption is added.
Case 3. A clear column between the surface and zi_bottom. Between zi_bottom and zi_top the precalcu-

lated ice cloud absorption is added.
Case 4. The transmittance calculated from case 2 up to the zi_bottom is continued with the transmittance

from there to TOA using the transmittance calculated from case 3.

A cloud fraction for each case is then chosen such that all of the ice cloud and a random portion of the water
cloud is seen from TOA, such that the ECMWF-specified tcc is satisfied. Details are summarized in Machado
and Strow (2016) and in DeSouza-Machado et al. (2018). The difference between SARTA_TwoSlab(C) and
SARTA_TwoSlab(P) is due to the difference in the way the boundaries of the thick slabs are calculated. The
small differences between the results from the two SARTA versions show that the results are not very sensi-
tive to these details.

The SARTA results were received 8 November 2016, revised to be consistent with DeSouza-Machado et al.
(2018) 27 February 2017.
A3.4. Radiative Transfer for TOVS (Contributed by J. Vidot and M. Matricardi)
The fast RTM RTTOV (Saunders et al., 1999) is widely used by a number of NWCs to assimilate infrared radi-
ance observations. In this study, we used RTTOV Version 12. The predictors of the fast atmospheric
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transmittances were calculated with the line-by-line model LBLRTM 12.2 (Alvarado et al., 2013; Clough et al.,
2005) that uses the AER3.2 spectroscopic database (mostly based on HITRAN 2008 but with many improve-
ments regarding line mixing and absorption line parameters) and MTCKD 2.5.2 (Mlawer et al., 2012). The scat-
tering by clouds is modeled using the Chou-scaling approximation (Chou et al., 1999). The liquid and ice
cloud optical properties are parameterized following the work of Matricardi (2005) and Vidot et al. (2015),
respectively. Within the RTTOV version the user has the option to select a limited number of cloud type
and the cloud overlap assumptions. RTTOV_mro used the OPAC cumulus cloud type and the MRO assump-
tion (Matricardi, 2005). Additionally, a much faster, experimental version of the cloud overlap method has
been tested in RTTOV. This method is named CMSS. It simulates cloudy infrared radiances using equation (1)
with CF set to the maximum cloud fraction in the layers above a certain pressure level (here fixed to 750 hPa).
This method is optimized for middle- and upper-tropospheric sounding channels.

The RTTOV results were received 9 December 2016.
A3.5. Havemann-Taylor Fast Radiative Transfer Code (Contributed by Havemann)
For the AIRS radiance simulations presented in this paper, the HT-FRTC (Havemann, 2006) has been specifi-
cally trained for the infrared part of the electromagnetic spectrum. The HT-FRTC does only monochromatic
radiative transfer calculations. The gaseous absorption of all the trace gases included in HITRAN 2008 is
included in the form of lookup tables. During the code training phase monochromatic calculations are per-
formed at a very high spectral resolution (10�3 cm�1) for a diverse set of 1,000 atmospheric profiles and sur-
face conditions. The training run included vertical profiles of liquid and ice cloud. The results of the radiance
calculations for the training profiles at the very high spectral resolution were then used to calculate the prin-
cipal components which are the eigenvectors of the covariance matrix containing the radiance spectra. The
HT-FRTC works slightly different to other codes like PCRTM in that the principal components are not derived
for the spectra of any particular instrument but rather at the full very high spectral resolution. This means
that the spectra for any number of instruments can be calculated in a single fast code run. It requires just
an offline convolution of the highly resolved principal components with the instrument response functions.
For the simulations in this paper only the first 100 principal components which contain most of the variance
were used. The weights of the principal components are predicted from a small number of radiance calcula-
tions at about 100 monochromatic frequencies. The optimal set of frequencies for prediction is selected by a
k-means clustering algorithm which operates on all frequencies (2.5 million). A linear regression is carried
out on the results on the training profiles (the dependent profiles). This regression then allows the predic-
tion of the principal component weights for any independent profiles by calculating the radiances only at
the 100 selected monochromatic frequencies.

For the simulations presented in this paper an effective radius of 10 μmwas used throughout for cloud liquid
droplets. The cirrus optical properties that were used in the simulations are due to Baran (Baran et al., 2014).
Baran has developed an ensemble model of cirrus particles of different shapes and sizes. The optical proper-
ties are parametrized solely in terms of cirrus cloud temperature and cirrus cloud ice water content. The same
parametrization is applied to all types of cirrus. The HT-FRTC allows two different treatments of scattering.
Scattering can be treated approximately as a modification to the extinction by using the Chou scaling approx-
imation (Chou et al., 1999) or the scattering phase function that can be fully accounted for (Martinet et al.,
2013). In this case a monochromatic version of the Edwards-Slingo spherical harmonics radiation code is
called which has been incorporated into the HT-FRTC (Edwards & Slingo, 1996; Thelen & Edwards, 2013).
Calculations with Chou scaling are indicated by “C and full scattering calculations by “S”.

The HT-FRTC has been run for three different cloud overlap assumptions (MRO, MO, and RO). In all cases five
cloud columns were used. The columns were constructed from the horizontal cloud fraction provided for
each atmospheric level, which prescribed how many of the cloud columns would be clear and how many
fully overcast at each level. The different overlap assumptions then determine how the cloudy layers are
stacked in the vertical. In the case of MO, all the cloudy layers are concentrated in the same columns as much
as possible, in the case of RO the cloudy layers are distributed randomly across the columns, and in the case
of MRO the cloudy columns are maximally overlapped in adjacent vertical layers which are both cloudy but
randomly distributed if there happens to be a cloud-free layer in between. One HT-FRTC fast code run is done
per cloud column. In the tables the type of scattering treatment and the kind of overlap is indicated. As an
example, SMRO indicates full scattering calculations applied to the five individual cloud columns that were
generated using the MRO assumption.
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The HTFRTC results were received with Chou scaling 19 January 2017, revised with full scattering 17
April 2017.
A3.6. The σ-IASI-as (Contributed by Liuzzi, Masiello, and Serio)
The σ-IASI-as RTM is an advanced version of the σ-IASI model (Amato et al., 2002) with respect to cloud and
aerosol treatment (Liuzzi et al., 2017). The model computes the Earth/atmosphere-emitted radiance in the
spectral range 100–3,000 cm�1. In its current version, the model can generate radiances in both upwelling
and downwelling modes. Although initially developed for IASI, σ-IASI-as is presently a generic RTM, which
is well suited for nadir viewing satellite, airplane (Grieco et al., 2007), and ground-based (Bhawar et al.,
2008) infrared sensors with a sampling rate in the range 0.1–2 cm�1.

The σ-IASI-as RTM calculation of gas optical depths is based on a pseudomonochromatic scheme, in which
transmittances are calculated on an equally spaced wavenumber grid by means of a lookup table. For each
atmospheric layer, atmospheric species, and wavenumbers, optical depths are precomputed and stored.
Then, they are rescaled with air pressure and temperature. The dependence on temperature is parameterized
by a second-order polynomial. This allows optical depths to be generated at any wavenumber using the ver-
sion 12.2 of LBLRTM (Clough et al., 2005), equipped with the spectral library AER v_3.2 (essentially based on
HITRAN 2012 spectral database—with the continuum model MT-CKD v_2.5.2; Mlawer et al., 2012).

The σ-IASI-as RTM simulates the impact of the presence of clouds and aerosols with a physically based
method that comput es their extinction as a function of the effective ice or liquid water particle or droplet
radii and concentrations (Liuzzi et al., 2017). The model exploits an ab-initio approach embodying Mie rou-
tines which are called iteratively within the calculation of single-layer transmittances. The results of Mie cal-
culations are manipulated according to the scheme described in Chou et al. (1999) for calculating effective
aerosol and cloud optical depths taking into account the multiple scattering effects through the so-called
scaling approximation. With the scaling approximation, radiative transfer equations for a cloudy/aerosols
atmosphere are identical to those for a clear atmosphere, and the difficulties in applying amultiple-scattering
algorithm to a partly cloudy atmosphere (assuming homogeneous clouds) are avoided. The RTM used for the
calculation of the σ-IASI spectra was identified as version 2017.as.lr. The calculations used the MO assumption
and tcc specified by ECMWF.

The σ-IASI results were received on 29 November 2016, revised 17 March 2017.
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