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Abstract 

 

 

Energy system optimization models (ESOMs) increasingly cover the main energy-consuming sectors 

rather than just electricity, which massively raises calculation time. To reduce the latter, researchers 

apply various time-series aggregation methods, the pros and cons of which have been analyzed for 

electricity-only ESOMs but not for ESOMs also covering the main energy-consuming sectors. To 

address this question we compare the two main time-series aggregation methods: (1) reducing the 

temporal resolution (from one to two, four or eight hours) and (2) selecting representative periods 

(one week over one, two or three months, with an hourly resolution). We apply these methods to 

EOLES_mv, an ESOM covering the main French energy sectors. Both methods cut the calculation 

time by a similar amount but the former generates much smaller discrepancies for the main output 

variables (energy mix, system cost and CO2 emissions). These results are at odds with those generally 

obtained with electricity-only ESOMs, for which reducing the temporal resolution generates 

significant discrepancies when wind and solar dominate the electricity mix.  
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1. Introduction 

1.1. Motivation 

To be of greatest use for climate and energy policies, energy system optimization models (ESOMs) 

should ideally include the main energy sectors, and optimally allocate the different energy sources 

and carriers to meet the end-use energy demand; this is referred to as ‘sector coupling’ (Brown et 

al., 2018a, Lund et al., 2017, Zhu et al., 2020).  

Unfortunately, the optimization of an ESOM featuring sector coupling over a full year (let alone 

several years) with an hourly resolution at the country level (and even more for a whole continent) is 

computationally demanding. Not only does it require large amounts of memory, but the calculation 

time is very long. For example, with the ESOM we use in the present paper (Shirizadeh, 2021) 

optimization of a single scenario over one year requires more than 60 hours on a standard personal 

computer1. Therefore, finding ways to reduce the calculation time without sacrificing accuracy is 

particularly welcome for sector-coupled ESOMs, and avoiding the modeling of every hour in a full 

year would reduce the calculation time a lot. The question is to what extent this would reduce the 

accuracy of the results. 

1.2. Previous studies 

Most electricity-only ESOMs applied at the country scale and featuring a high proportion of wind and 

solar generation use hourly temporal resolution. This choice is justified by the literature: on the one 

hand, if the size of the modeled area is that of a large European State, hourly resolution suffices 

since for both wind and solar generation, sub-hourly fluctuations, which are significant at the local 

scale, cancel each other out (Brown et al., 2018b, and references therein). On the other hand, with a 

temporal resolution coarser than one hour, demand peaks and wind or solar generation troughs are 

smoothed, resulting in an underestimation of the generation and storage capacities necessary to 

satisfy electricity demand (Pfenninger, 2017, De Guibert et al., 2020). 

An increasing number of ESOMs include coupling between electricity and the other energy sectors 

(mostly heat and transportation). As shown in the recent review by Prina et al. (2020), some of these 

sector-coupled ESOMs model a full year based on hourly resolution while others select 

representative periods (also called time slices), e.g. one week with an hourly resolution to represent 

a specific period that has similar hourly profile for all the weeks in the studied period. Hoffmann et 

al. (2020) review the development of both time-series aggregation methods (temporal resolution 

reduction and representative period selection) and their implementation in ESOMs.  

                                                           
1
 The computer has 128 GB of RAM and its CPU is an Intel® Xeon® Bronze 3106 with 8 cores at 1.7 GHz. 
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1.3. Research gaps 

While representative period selection is widely applied, e.g. in the TIMES models1, only a few studies 

mentioned in the exhaustive survey by Hoffmann et al. (2020) apply resolution reduction, and to our 

knowledge, none of them apply the latter method to sector-coupled ESOMs. 

Although the need for hourly temporal resolution has been established for electricity-only country-

size ESOMs (Brown et al., 2018b), this result does not necessarily hold for sector-coupled ESOMs. 

Indeed, sector coupling might mitigate the impact of demand peaks and wind or solar generation 

troughs, thanks to flexibility gains from non-electricity energy sectors (Victoria et al., 2019; Gea-

Bermúdez et al., 2021). Therefore, the required temporal resolution might be coarser than one hour, 

unlike for electricity-only ESOMs.  

1.4. Study aims 

Our broad research question is the following: what time-series aggregation method works best (in 

terms of results accuracy and calculation time) for a multi-sector ESOM featuring sector-coupling? 

To the best of our knowledge, this is the first paper to address this question for a multi-sector ESOM. 

We apply the two above-mentioned time-series aggregation methods (temporal resolution 

reduction and representative period selection) to a multi-sector capacity expansion ESOM applied to 

France: EOLES_mv (which stands for Energy Optimization for Low Emission Systems - multi-vector; 

Shirizadeh, 2021). To this end, we develop seven different versions of the EOLES_mv model. Four 

represent a full year with constant temporal resolution (time steps of one, two, four and eight 

hours), while three use representative periods, in this case weeks (one per month, one per two 

months and one per three months) for a full year. 

We conclude that temporal resolution reduction provides a much better trade-off between the 

calculation time and the output discrepancies than selection of representative periods. Moreover, 

the former method generates very small discrepancies even if the temporal resolution is as coarse as 

eight hours, while the calculation time is reduced 640-fold. This result still holds when we exclude 

nuclear energy, which results in an optimal energy mix of which 98% comes from renewable energy 

sources. 

As a final check, we optimize investment at coarse temporal resolution (two, four or eight hours) and 

then optimize dispatch with an hourly resolution, to analyze whether the resulting lost electricity 

load changes the results. Discrepancies remain very small, which further confirms our main result. 

                                                           
1
 The TIMES (The Integrated MARKAL-EFOM System) models, initially developed by the International Energy 

Agency, are widely used energy system optimization models. They are based on sequential optimization: first 
investment and later operation (dispatch) of the energy system. These models represent either one energy 
sector (electricity in Krakowski et al., 2016), or several sectors (electricity and gas in Doudard, 2018), they 
represent either one country (the previously cited versions) or a larger area (for example the world in Kang, 
2017). They all rely on representative period selection, such as one week-day and one weekend-day per month 
(Doudard, 2018) or different number of time-slices per year (for example 84 time-slices in Krakowski et al., 
2016). 
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The remainder of this paper is organized as follows. Sections 2 and 3 present the methods (the 

different versions of the EOLES_mv model) and the input data, Section 4 presents the results and 

Section 5 concludes.  

2. Methods 

2.1.  The EOLES_mv model 

We use EOLES_mv, which belongs to the EOLES (Energy Optimization for Low Emission Systems) 

family of models. The EOLES family of models performs simultaneous optimization of the investment 

in and the operation of the energy system in order to minimize the total cost while satisfying energy 

demand on an hourly basis. The electricity-only versions of the EOLES family of models (Shirizadeh 

et al., 2022; Shirizadeh and Quirion, 2021) are representative of other capacity expansion models 

like DIETER (Schill and Zerrahn, 2018), FLORE (Perrier, 2018) or Calliope (Pfenninger, 2017).  

The “mv” in EOLES_mv stands for multi-vector and this model minimizes the annualized energy 

generation, conversion and storage costs, including the cost of connection to the grid. EOLES_mv 

considers all the major energy sectors (residential and tertiary buildings, industry, transport and 

agriculture) in an integrated manner, enabling sector-coupling. It is similar to other recent multi-

sector capacity expansion models such as those presented in Brown et al. (2018a), Gea-Bermúdez et 

al. (2021), Henning and Palzer (2014), Prina et al. (2020), Victoria et al. (2019), as well as Zhu et al. 

(2019). However, not all these models cover every sector included in EOLES_mv, and the 

geographical coverage differs across these models. 

EOLES_mv is a greenfield optimization model, which calculates a cost-optimal steady state, taking 

into account the main technical and resource availability constraints. Therefore, this model does not 

produce a dynamic trajectory but a static optimal state. In order to account for precise dispatch with 

correct dimensioning of storage technologies and the seasonal and intra-daily variability of demand 

and energy production from renewable resources, the selected optimization period is a full year with 

hourly time-steps.  

As all the optimization of dispatch and investment models, EOLES_mv is used for the capacity 

expansion of the considered system. This model shows the lowest cost future energy system, based 

on the hypotheses in the considered time horizon. Optimization of investment is the enabler of this 

functionality of the model. However, to make sure both the short-term and long-term (seasonality) 

variability of renewable sources and energy demand are correctly taken into account, hourly energy 

production and storage operation profiles are optimized. The latter is the optimization of the 

dispatch. Therefore, thanks to simultaneous optimization of both, a functioning optimal future 

energy system is the result of this model which can be used to (1) introduce a national optimal low-

carbon future energy system target, (2) study the impact of different policy measures in the 

evolution of the energy system, (3) provide investment advisory based on the future technologies 

and (4) simulate the hourly operation of power system and identify the main economic 

characteristics of the future energy market.  

This model considers a country as a single node using the copper-plate assumption: spatial 

optimization is, therefore, not considered in this model. Although including spatial optimization and 

therefore transmission costs can increase or decrease the overall system cost, in a previous article 

we showed that modeling France as a single node while assuming that onshore wind and solar 

capacities are located in proportion to existing facilities (which is the case in this study) leads to 
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much faster calculation (240 times) than considering France as four nodes, with negligible error in 

installed capacity of the key technologies and the overall cost of the system (Shirizadeh et al., 2022).  

The EOLES_mv model includes seven power generation technologies: floating and monopile offshore 

wind power, onshore wind power, photovoltaic solar power (PV), run-of-river and lake-generated 

hydro-electricity, nuclear power (EPR, i.e. third generation European Pressurized Water Reactors) 

and three gas production technologies: natural (fossil) gas, methanization from anaerobic digestion 

and pyro-gasification of solid biomass. Sector-coupling is enabled by vector-change (energy 

conversion) technologies: open-cycle gas turbines (OCGT), combined-cycle gas turbines (CCGT) and 

CCGTs equipped with post-combustion carbon capture and storage (CCS) technologies are used to 

convert gas to electricity. Vector-change from electricity to gas is enabled by electrolysis (power to 

hydrogen to inject into the gas network with a volume share limit) and methanation (hydrogen 

production from electrolysis of water and use of the Sabatier reaction between the hydrogen thus 

produced and green CO2 to produce synthetic methane) as power-to-gas options. Similarly, 

centralized and decentralized boilers are used to produce heat from gas while centralized and 

individual heat pumps and resistive heat production technologies are used to produce heat from 

electricity. The model includes two electricity storage technologies (Li-Ion batteries and pumped 

hydro storage), the existing gas network as the gas storage option and two heat storage 

technologies (centralized and decentralized hot water tanks). Moreover, EOLES_mv allows demand 

for transport to be met with an endogenous choice between electric vehicles and internal 

combustion engine vehicles, for three main transport categories: light vehicles, heavy vehicles and 

buses (trains are all set to be electric since they are currently electric in France). The interactions of 

different energy end-use demands, supply side, storage and energy carriers are presented in Figure 

1. 

The EOLES_mv model is based on representative technologies chosen from groups of technologies 

with similar technical and economic behavior. For instance, only two engine types are considered in 

the transport sector: gas-fueled internal combustion engine (ICE) vehicles and battery electric 

vehicles (BEV). Other transport options include liquid-fueled ICE vehicles and hydrogen-fueled fuel 

cell electric vehicles but since they have similar economic and technical behavior to gas-fueled ICE 

vehicles and BEVs respectively, they have been excluded in order to maintain computational 

tractability.  

The main simplification assumptions in the EOLES family of models are as follows: demand is 

inelastic, and the optimization is based on full information about the weather and electricity 

demand. This model uses only linear optimization: non-linear constraints might improve accuracy, 

especially when studying unit commitment, but they entail significant increase in computation time. 

Palmintier (2014) has shown that linear programming provides an interesting trade-off, with little 

impact on cost, CO2 emissions and investment estimations, but speeds up processing by up to 1,500 

times. The model is written in GAMS and solved using the CPLEX solver. In the current study, we 

provide a greenfield optimization by considering continental France as an isolated country for the 

year 2050. 
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Figure 1. Interactions between energy supply, demand, storage and carriers by energy flux and CO2 exchanges in the 
EOLES_mv model. The horizontal lines show the different final energy forms, as well as the CO2 network. Among these 

horizontal lines, the bold ones are energy carriers (except CO2 which is a feedstock. The interactions between the different 
energy carriers and end-uses are enabled by vertical arrows that represent vector-change technologies: power-to-gas, gas-
to-power, power-to-heat, gas-to-heat, power-to-transport and gas-to-transport. Transport is modelled as a demand that 

has the form of distance travelled. The circles represent the energy supply technologies that are connected to their primary 
energy forms, and they satisfy different end-uses represented as triangles. To distinguish between energy and feedstock 

flow, we represent the CO2 flux in dashed lines. All the above-mentioned interactions are modelled by the constraint 
equations of the EOLES_mv model.  

A more detailed description of the EOLES_mv model can be found in Shirizadeh (2021). The sets, 

parameters, variables and equations of the model with hourly resolution can be found in Appendix 

1. All the versions of the EOLES_mv model and their input data are available on GitHub1. 

2.2.  Resolution variation 

To account for the importance of temporal resolution, we developed several versions of the model 

using two-, four- and eight-hour resolutions. These coarser-resolution versions reduce the number 

of time-steps from 8760 to 4380, 2190 and 1095 respectively. To adapt the EOLES_mv model to each 

of these time-steps, the original equations (Equations (A.1), (A.12), (A.16), (A.19), (A.20), (A.21), 

(A.25), (A.27), (A.29), (A.32) and (A.34) presented in Appendix 1) have been modified respectively 

(Equations 1 to 11 in Box 1). 

Equation (I) (A.1 in Appendix 1) is the objective function to be minimized, which is the social cost 

function.  

                  
               

   

             

   

           
   

                 

   

                                 
 

    

        

(I) 

Where      represents the production capacities,     
   represents the existing capacity (notably for 

hydro-electricity technologies with long lifetime),           is the energy storage capacity in 

                                                           
1
 https://github.com/BehrangShirizadeh/EOLES_mv_temp  

https://github.com/BehrangShirizadeh/EOLES_mv_temp
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GWh,      is the storage capacity in GW,         is the annualized investment cost,       and 

      respectively represents fixed and variable operation and maintenance costs,        is the 

hourly generation of each technology,      is the specific emission of each technology in tCO2/GWh 

of power production and       
 is the social cost of carbon in €/tCO2. 

This equation represents the sum of all costs over the chosen period, including the annualized 

investment costs as well as the fixed and variable O&M costs, and the penalty associated to CO2 

emissions, i.e. the ‘Social Cost of Carbon’ (SCC)1. For some storage options, another CAPEX-related 

cost proportional to the energy capacity in       is accounted for (          
  ). It is modified to 

Equation (1) in Box 1 by inclusion of the parameter     
   which is the correction factor to account for 

the full energy production over a year by each technology.  

In Equation (II) (A.12 in Appendix 1), monthly available energy for the hydroelectricity generated by 

lakes and reservoirs is defined using monthly lake inflows which means that energy stored can be 

used within the month but not across months.  

                          (II) 

Where         is the hourly power production by lakes and reservoirs, and       is the maximum 

electricity that can be produced from this energy resource in one month. Equation (2) adapts it to 

different time-steps using the length of the considered time-step (parameter     
  ).  

Equation (III) (A.16 in Appendix 1) defines the reservoir size of the mobility technologies.  

                                             (III) 

Where                    accounts for the reservoir size of each transport technology (kWhe for 

electric vehicles and kWhth for ICE vehicles). The storage volume of each transport technology 

accounts for an upper limit for the weekly charge and weekly energy consumption of it. While this 

storage volume is free of charge for ICE vehicles, electric vehicles’ main cost component is this 

battery storage volume. Its adaptation to coarser-than-hourly time-steps leads to Equation (3). 

For open-cycle and combined-cycle gas turbines, there are some safety- and maintenance-related 

breaks. Equations (IV), (V) and (VI) (A.19, A.20 and A.21 in Appendix 1) limit the annual power 

production for each of these plants to their maximum annual capacity factors, and Equations (4), (5) 

and (6) in Box 1 are the modified versions for the resolution variation cases by the inclusion of the 

length of time-step parameter (    
  ). 

                                   (IV) 

                                   (V) 

                                                 (VI) 

Where        and        are the capacity factors of OCGT and CCGT power plants. 

Nuclear power plants have limited flexibility, so definitions of hourly ramp-up and ramp-down rates 

matter to model them accurately. Equations (VII) and (VIII) (A.25 and A.26 in Appendix 1) limit the 

power production of nuclear power plants with these ramping constraints.  

                                  
  

         (VII) 

                                                           
1
 For the value of the SCC parameter, we have chosen the one which allows carbon neutrality (an official target 

of France for 2050) in the EOLES_mv model, i.e. €200/tCO2. 
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            (VIII) 

Where          is the nuclear power production at hour    ,        is the nuclear power 

production at hour  ,            is the reserve capacity provided by nuclear power plants at hour 

    and     
  

 and     
     are the ramp-up and ramp-down rates for nuclear power production.  

Only Equation (VII) is translated for the coarse temporal resolutions, since the nuclear ramp rate is 

50% and for coarser temporal resolutions (2-, 4- and 8-hour) this limit does not apply. Moreover, the 

nuclear power plants’ capacity factor should also be limited by safety and maintenance constraints 

(Equation IX, A.27 in Appendix 1).  

                                (IX) 

Where       is the maximum annual capacity factor of nuclear power plants. Equations (VII) and (IX) 

are translated to Equations (7) and (8) in Box 1. 

Equations (X) to (XII) (A.8, A.28 and A.29 in Appendix 1) define the storage mechanism and 

constraint in terms of power. The two first equations don’t need to be adapted to varying temporal 

resolution cases. Indeed, since the parameters are defined by taking an average over the hours in 

the considered time-step, the resulting hourly variables (STORAGE and G) are hourly values, as if 

they were repeated consequently at each hour during the whole time-step as the same value.  

However, the equation that limits the available volume of energy that can be stored by each storage 

option (Equation XII) should be modified to take into account the length of the time-steps (Equation 

9 in Box 1).                                       
     

      

    
       (X) 

                                           
     

         

    
      (XI) 

                           (XII) 

Where          is the state of charge of the storage option str at hour h, while     
         and 

    
          are the charging and discharging efficiencies.              is the discharge of the 

storage technology str at hour h. 

The captured carbon dioxide can’t be stored infinitely, and geographical and social constraints limit 

the exploitation of CCS technology. Equation (XIII) (A.34 in Appendix 1) introduces this limit, which is 

translated to Equation (10). 

    

                                         (XIII) 

Where     

    is the maximal CO2 storage potential,             is hourly power production from 

CCGT power plants equipped with CCS units,           is the carbon capture rate of post combustion 

CCS units, and       is the specific emission of CCGT power plant with natural gas (considered with 

no CCS input).  

Equation (XIV) (A.32 in Appendix 1) limits the annual renewable gas production from each of two 

renewable gas production technologies; methanization and pyro-gasification of biomass, and its 

modified version is in Equation (11) in Box 1.  

                   
       

          (XIV) 
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Where           is the hourly biogas production from each of renewable gas production 

technologies and        
    is the maximal yearly biogas that can be produced from each of renewable 

gas production technologies, both in energy values.  

Using the time-step length parameter (    
  ) all the above-mentioned equations are translated into 

the equations in Box 1.  

 

 

 

 

2.3. Representative periods 

Representative periods can take several forms to account for different variations. Doudard (2018) 

considers 576 time-slices per year, by considering one weekday and one weekend day for each 

month. Samsatli et al. (2016) use one weekday and one weekend day for each season, resulting in 

192 time-slices for each year. Although weekday and weekend classification accounts for the 

difference between a working day and weekend, it does not capture differences between weekdays 

or between the two days of the weekend. To overcome this issue, Perrier (2018) chooses a 

representative week over a two-month period. In this paper, we follow the same method, by 

choosing a representative week taking the average of all the weeks in one month, two months and 

                  
                                            

               

                        
                         

                (1) 

                     
  

           (2) 

                        
  

                           (3) 

              
                             (4) 

              
                             (5) 

                  
                                        (6) 

                                     
  

          
      (7) 

             
                            (8) 

               
                    (9) 

    
                                         

       (10) 

                
           

   
         (11) 

Box 1. The modified equations of EOLES_mv model to adapt it to coarser-than-hourly temporal resolutions 
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three months. Thus, each day of the week is repeated identically each time it appears in the month. 

Considering one representative week per month, one representative week per two months and one 

representative week per three months reduces the number of time-slices from 8760 to 2016, 1008 

and 672 respectively.  

To adapt the EOLES_mv model to this time-series aggregation method, we defined two different 

storage types: short- & medium-term storage options which can be fully charged and discharged in 

one week, and long-term storage options which can be fully charged and discharged in one month, 

two months or three months. In a continuous period, the storage options operate endogenously 

depending on their economic characteristics and technical limits: a storage option with high energy 

capacity cost and low power capacity cost, such as batteries, will operate as a short-term storage 

option, while a technology with low energy capacity cost and high power capacity cost, such as 

methanation storage, will operate as a long-term storage option (Shirizadeh et al., 2022 and Schill 

and Zerrahn 2018).  

However, in a model with non-continuous periods, the charging and discharging cycles must be 

defined exogenously because from a modelling perspective it is necessary to know whether the 

operation of a storage technology will be repeated during each week of the chosen period to be 

represented or if it will be added up during the whole chosen period to be represented. For instance, 

the state of charge of a short-term storage option at the end of one representative week should 

equal the state of charge of that storage option at the beginning of the next representative week 

(cyclicity constraint), but the state of charge of a long-term storage option at the beginning of a 

representative week is its state of charge at the end of the previous representative week multiplied 

by the number of weeks in the considered period to be represented by a week. To apply this 

condition, Equation (X) (A.8 in Appendix 1) which was introduced in subsection is modified and 

divided into three equations (Equations 12, 13 and 14 in Box 2).  

Box 2. Definition of long-term and short-term storage options in EOLES_mv models with representative periods 

 

Where          is the state of charge of storage option     at hour  ,              is the hourly 

energy entering storage option     at hour               is the energy generation (discharging) of 

storage option     at hour  , while     
         and     

          are the charging and discharging 

efficiencies.           represents short-term storage technologies (Li-Ion batteries, PHS and 

individual thermal energy storage),          represents long-term energy storage options (gas 

storage and central thermal energy storage).   represents the week and   
 

 is the relative length of 

the chosen period to the representing week, which is equal to the number of hours in the chosen 

period divided by the number of hours in a week (168).  

                                                               
     

            

          
     (12) 

   
   

     
    

                                                           
     

           

         
     (13) 

   
   

     
      

                                 
 

                             
     

           

         
     (14) 
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Equations (I), (II), (IV), (V), (VI), (IX), (XII), (XIII) and (XIV) in in the previous section have been 

modified respectively as in that section. Box 2 summarized these equations. 

In Box 3,       
 

 is the ratio of the real length of a whole year to the represented fraction of the year 

which is equal to 8760/2016 for one week representing one month, 8760/1008 for one week 

representing two months and 8760/672 for one week representing three months. 

Box 3. The modified equations of EOLES_mv to adapt them to the models with representative periods 

 

3. Input data 
In this section we present the input data briefly. The time horizon considered is 2050, which is also 

the official target date of the French government in reaching carbon neutrality. A more detailed 

description of the preparation of hourly profiles can be found in Shirizadeh (2021). 

3.1. VRE profiles 

The hourly variable renewable load factors are taken from the ‘renewables.ninja’1 website 

(Pfenninger and Staffel, 2016 and Staffel and Pfenninger, 2016). We choose one point per each 

county of France (département), and, assuming that onshore wind and solar capacities remain 

proportional to the existing ones, we aggregate the hourly load factors of the 95 counties to one 

single node. For solar power, we specify 10% of system loss, and for onshore wind power, we chose 

Vestas V90 2000 wind turbine with a hub height of 80 meters.  

                                                           
1
 https://www.renewables.ninja/ 

                  
                                             

               

                          
 

                      
               (15) 

                  
 

          (16) 

            
 

                             (17) 

            
 

                             (18) 

                
 

                                       (19) 

  
   

     
                                      

  
        (20) 

  
   

     
                            

          (21)   

           
 

                           (22) 

    
                                          

 
     (23) 

              
 

         
   

           (24) 

https://www.renewables.ninja/
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Offshore wind power profiles are based on the existing projects taken from ‘4C offshore’1 website, 

but we eliminate the projects from the Mediterranean Sea. All the floating offshore projects are 

considered floating, and all the mounted projects are considered to be on monopile foundation. The 

wind turbine assumed for offshore wind power is Siemens SWT 4.0 130 with a hub height of 120 

meters. 

In a previous work, we showed that 2006 can be chosen as the representative year for the period of 

2000-2018 regarding the weather variability of VRE technologies; thus, we use the hourly VRE and 

hydro-electricity profiles for the year 2006 (Shirizadeh et al., 2022). 

3.2. Energy demand 

The energy demand is categorized for each end-use: electricity, heat, transport and hydrogen (as a 

substitute for coal in the industry) covering all the main energy sectors: residential and tertiary 

buildings, industry and construction, agriculture and transport sectors. The preparation of energy 

demand profiles is explained in detail in Shirizadeh (2021), Table 1 shows the annual energy demand 

values, their hourly profiles and their sources. 

Table 1. Sectorial demands for each end-use 

Sector End-use Annual Value 
(Mtoe) 

source Profiles from 

Residential 
Electricity 6.2 

ADEME (2017), DGEC (2019) 
ADEME (2015) 

Heat 18.5 Doudard (2018) 

Tertiary 
Electricity 7.2 

ADEME (2017), DGEC (2019) 
ADEME (2015) 

Heat 7.1 Doudard (2018) 

Agriculture 
Electricity 1.4 

ADEME (2017), négaWatt (2017) ADEME (2015) 
Heat 1.6 

Industry 

Electricity 6.7 
ADEME (2017), négaWatt (2017) 

ADEME (2015) 

Heat 12.7 Flat2 

Hydrogen 3.5 ADEME (2017) Flat 

Transport 

Passengers 
(in Gp.km) 

Light 554 

ADEME (2017) 
 

Doudard (2018) 
public 51 

Train 187 Flat 

Freight 
(in Gt.km) 

Heavy 347 Doudard (2018) 

Train 127 Flat 

3.3. Economic parameters 

3.3.1. Features of the technologies modeled 

Tables 2, 3 and 4 show the economic parameters of energy production, conversion and storage 

technologies, and their sources. 

                                                           
1
 https://www.4coffshore.com/ 

2
 Flat profile means a profile that has the same value for all the time-steps. Thus, once the values are plotted 

as a function of the time-steps, the graph shows a flat horizontal line. 

https://www.4coffshore.com/
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Table 2. Economic parameters of energy supply technologies  

Technology Overnight 
costs 
(€/kW) 

Lifetime 
(years) 

Annuity 
(€/kW/year) 

Fixed O&M 
(€/kW/year) 

Variable 
O&M 
(€/MWh) 

Construction 
time (years) 

Source 

Offshore wind farm 
- floating 

3,660 30 236.2 73.2 0 1 JRC (2017) 

Offshore wind farm 
- monopile* 

2,330 30 150.9 47 0 1 JRC (2017) 

Onshore wind 
farm* 

1,130 25 81.2 34.5 0 1 JRC (2017) 

Solar PV* 423 25 30.7 9.2 0 0.5 JRC (2017) 

Hydroelectricity –  
lake and reservoir 

2,275 60 115.2 11.4 0 1 JRC (2017) 

Hydroelectricity –  
run-of-river 

2,970 60 150.4 14.9 0 1 JRC (2017) 

Nuclear power 3,750 60 262.6 97.5 9.5** 10 JRC (2014) 

Natural (fossil) gas - - - - 23.5*** - IEA (2019) 

Methanization 370**** 20 29.7 37 50 1 ADEME 
(2018) 

Pyro-gasification 2500 20 200.8 225 32***** 1 ADEME 
(2018) 

*For offshore wind power on monopiles at 30km to 60km from the shore, for onshore wind power, turbines with medium specific capacity 

(0.3kW/m2) and medium hub height (100m) and for solar power, an average of the costs of utility scale, commercial scale and residential 

scale systems without tracking are taken into account. In this cost allocation, we consider solar power as a simple average of ground-

mounted, rooftop residential and rooftop commercial technologies. For lake and reservoir hydro we take the mean value of low-cost and 

high-cost power plants. 
**This variable cost accounts for €2.5/MWh-e of fuel cost and €7/MWh of other variable costs, excluding waste management and 

insurance costs. 

*** The price projected for Europe in 2040 in the sustainable development scenario, standing for $7.5/MBtu. 

****The overnight cost for methanization is the investment cost of the purification plants for syngas. 

*****The overnight cost only accounts for the gasification plants, while the wood used for energy is accounted for in variable costs. 

 

Table 3. Economic parameters of energy conversion technologies  

Technology Overnight 
costs 
(€/kW) 

Lifetime 
(years) 

Annuity 
(€/kW/year) 

Fixed O&M 
(€/kW/year) 

Variable 
O&M 
(€/MWh) 

Construction 
time (years) 

Conversion 
efficiency 

Source 

OCGT 550 30 35.28 16.5 0 1 0.45 JRC (2014) 

CCGT 850 30 54.53 21.25 0 1 0.63 JRC (2014) 
CCGT-CCS 1280 30 82.12 32 5.76* 1 0.55 JRC (2017) 

Electrolysis 
(Power-to-H2) 

450 25 31.03 6.75 0 0.5 0.8 ENEA 
(2016) 

Methanation 
(Power-to-
CH4)** 

450/700 25/20 86.05 59.25 5*** 0.5 0.8/0.79 ENEA 
(2016) 

Resistive 100 20 7.86 2 0 0.5 0.9 Brown et 
al. (2018b) 

Individual heat 
pump 

1050 20 82.54 36.75 0 0.5 3.5 Henning 
and Palzer 
(2014) 

Central heat 
pump 

700 20 55.02 24.5 0 0.5 2 Henning 
and Palzer 
(2014) 

Central gas 
boiler 

63 20 4.95 0.945 0 0.5 0.9 Brown et 
al. (2018b) 

Decentral gas 
boiler 

175 20 13.76 3.5 0 0.5 0.9 Brown et 
al. (2018b) 

* This variable cost accounts for a 500km     transport pipeline and offshore storage costs estimated by Rubin et al. (2015). 

**Methanation is the combination of hydrogen production from electrolysis and the Sabatier reaction of green CO2 as a by-product from 

methanization with the hydrogen produced, therefore the economic parameters of each production are presented as 
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electrolysis/Sabatier. 

***As in Shirizadeh et al. (2020). 

 

Table 4. Economic parameters of energy storage technologies  

Technology Overnig
ht costs 
(€/kW) 

CAPEX 
(€/kWh) 

Lifetime 
(years) 

Annuity 
(€/kW/y

ear) 

Fixed  
O&M 

(€/kW/year) 

Variable 
O&M 

(€/MWh) 

Storage 
annuity 

(€/kWh/year) 

Construc
tion 
time 

(years) 

Efficiency 
(input / 
output) 

Source 

Pumped 
hydro 
storage 
(PHS) 

500 5 55 25.8050 7.5 0 0.2469 1 95%/90% 
FCH-JU 
(2015) 

Battery 
storage 
(Li-Ion) 

140 100 12.5 15.2225 1.96 0 10.6340 0.5 90%/95% 
Schmidt 
(2019) 

ITES 0 18.38 20 - 0 0 1.4127 0.5 90%/90% 
Brown 
et al. 

(2018b) 

CTES 0 0.64 40 - 0 0 0.0348 1 90%/75% 
Brown 
et al. 

(2018b) 

Gas storage* 0 0 80 0 0 2 0 - 100%/99% 
CRE 

(2018) 

*The French gas network is already operational for methane injection; therefore, no network development cost is considered. However, 

the network usage fee of €2/MWhth for the gas network is derived from the French energy regulation commission (CRE, 2018). 

 

Table 5 shows the economic parameters for the two types of vehicle engine technologies 

considered, internal combustion engines fueled with compressed gas and electric vehicles.  

 

Table 5. Economic parameters of two vehicles engine types: internal combustion engines fuelled with compressed gas and 
battery electric vehicles (including their charging infrastructure) 

Technology Charging 
infrastructure (€/kW) 

Reservoir 
(€/kWh) 

Lifetime  
(years) 

Charging annuity 
(€/kW/year) 

Reservoir annuity 
(€/kWh/year) 

Source 

Electric 
vehicles 

81.7* 100 10 11.08 12.64 CGDD (2017) 

ICE vehicles 180** 0 15 17.14 0 Doudard (2018) 

*We consider a charging point cost of €600 for 7kW of charging power. 

**According to Doudard (2018), a gas charging station which can serve 400 vehicles per day costs €300,000: assuming nearly 100kWhth 

(384km of autonomy) of charging at each charge, we obtain this cost.  

 

3.3.2. Discount rate 

The discount rate recommended by the French government for use in public socio-economic 

analyses is 4.5% (Quinet, 2014). This discount rate is used to calculate the annuity in the objective 

function, using the following equation: 

           
                         

               
     (25) 
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Where DR is the discount rate,       is the construction time,       is the technical lifetime and 

           is the annualized investment of the technology    . 

3.3.3. Social cost of carbon 

Shirizadeh (2021) concludes that in the EOLES_mv model using an hourly resolution, carbon-

neutrality is reached for a Social Cost of Carbon (SCC) of €200/tCO2. Therefore, all the results 

presented are for this SCC value. 

3.4.  Other limiting constraints and model parametrization 

All the remaining input data (limiting capacity and annual energy supply constraints, model 

parametrization for the French case for the year 2050 etc.) can be found in Shirizadeh (2021). 

3.5. Application to time-series aggregation methods 

3.5.1. Resolution variation 

For the coarser-resolution versions of EOLES_mv, the input profiles are prepared by taking an 

average over the hourly data that are in the considered time-step. Therefore, for a four-hour time-

step from the fifth to the eighth hour of the day, an average of the hourly values from these four 

hours is taken to give the value of the profiles in the time-step under consideration. 

3.5.2. Representative periods 

To prepare the input data, each day of each week has been categorized as day 1 to 7, then hourly 

profiles of each input data series have been considered by taking an average over the days of the 

same category. Therefore, the hourly profiles of each typical day for the representative week for a 

considered period are the average of all the days with the same category in that period (one month, 

two months or three months). 

4. Results 

In this section, we present the results from the optimization with the seven versions of the 

EOLES_mv model presented in Sections 2.2 and 2.3 above. In Sections 4.1 to 4.4, we present the 

results of optimizations applying the time-series aggregation methods, in which the objective 

function (the social cost) and the other output variables are also calculated applying these methods. 

In Section 4.5, we optimize the capacity mix based on one time-series aggregation method and then 

we optimize the dispatch at hourly resolution, to assess the extra cost of this sub-optimal capacity 

mix, when applied to hourly data.  

4.1. Energy mix 

For electricity-generating technologies and gas (offshore and onshore wind, solar PV, run-of-river, 

dams & reservoirs and nuclear energy), we present the amount of electricity generated. For natural 

(fossil) gas, methanization (anaerobic digestion of organic waste) and pyro-gasification of biomass, 

we present the thermal energy of natural gas. These primary energy vectors can be either used 

directly to satisfy the final energy demand, or converted to other energy forms (heat, natural gas, 
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electricity and hydrogen) to form secondary energy vectors. For both primary and secondary energy 

vectors, storage possibilities can also allow the energy to be stored for later use. 

Figures 2 and 3 show the energy mix for both time-series aggregation methods: resolution variation 

(hourly, two-hourly, four-hourly and eight-hourly temporal resolutions) and representative periods 

(hourly continuous case and the versions with representative weeks over one, two and three 

months). Note that Figures 2.a and 3.a are identical since both present the results with hourly 

resolution over a full year. For nuclear energy, the values in these figures show the electricity 

generated and do not include the waste heat generated in the process. 

In addition, Appendix 2 and 3 present the installed capacities and annual energy production for both 

time-series aggregation methods. Since the optimal energy mix (with hourly resolution) includes 

around 80 GW of solar PV and the same amount of onshore wind, the generation profile varies 

massively from one hour to the other, especially during the morning and the afternoon1. 

 

Figure 2. Annual energy supply from each supply technology for different temporal resolutions. These values are in TWhe for 

nuclear power, offshore and onshore wind power, solar PV and hydroelectricity, and in TWhth for methanization. 

                                                           
1
 Cf. Figure 2 in Shirizadeh et al., 2022, which presents the hourly profile for two typical weeks, for the 

EOLES_elecRES model. The method to generate the VRE profiles is the same as in the present paper, so the 
hourly generation profile is similar. 
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In the model with an hourly resolution over the whole year (Figure 2.a), the primary energy is mostly 

in the form of electricity (78% for all temporal resolutions) and this electricity is mainly (71%) from 

renewable sources. The only primary energy supply technology providing energy in the form of gas is 

methanization: no fossil gas is used, the explanation being that it is too costly due to the relatively 

high SCC value (€200/t CO2).  

All the three coarser resolution versions (Figure 2b, 2c and 2d) provide almost identical results. The 

contribution from renewables increases slightly, replacing 14TWhe/year of nuclear energy. This 

increase is mainly led by Solar PV. A likely explanation is that PV variability decreases by lowering the 

temporal resolution of the model. However, the energy mix for the eight-hourly temporal resolution 

remains very similar to the energy mix with one-hourly temporal resolution.  

The energy production from methanization is the same for all the temporal resolutions, and it is the 

upper bound of energy that can be produced from this technology (152TWhth/year). The same is 

true for hydroelectricity. 

On the contrary, for representative periods, the energy mix shows a very wide deviation from the 

base case that gives continuous representation of a year.  
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Figure 3. Annual energy supply from each primary supply technology for different representative period selections. These 
values are in TWhe for nuclear power, offshore and onshore wind power, solar PV and hydroelectricity, and in TWhth for 

methanization and fossil gas. 

Nuclear power (initially 24% of primary energy supply) disappears completely from the energy 

supply side, while offshore wind and fossil gas are now part of the mix (12% to 13% and up to 5% of 

the energy supply respectively). The contribution of onshore wind energy to the primary energy 

supply increases from 32% in the base case to 50% for the case with one representative week over 

three months. A likely explanation is that representative week selection decreases the variability of 

weather, reducing one of the main drawbacks of wind power: the large variation of the capacity 

factor within a year. 

To compare the error caused by each time-series aggregation method, we calculate the mean 

absolute percentage error (MAPE) which represents the average error when several variables are 

considered together (Figure 4). Here the mean absolute percentage error of annual energy 

production from offshore and onshore wind, solar PV, nuclear power, methanization, 

hydroelectricity, pyro-gasification of biomass and fossil gas is considered, and it is calculated by 
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summing the normalized absolute differences over these technologies1 and dividing it by the 

number of technologies considered:  

       
 

 
  

     
 

  
 

  
           (26) 

Where    is the annual energy production of each technology   for each temporal resolution,   
  is 

the annual energy production of that technology for the case with hourly temporal resolution and   

is the number of technologies considered.  

  

Figure 4. Mean absolute percentage errors in installed capacity for each time-series aggregation method compared to the 

base case (continuous hourly temporal resolution over a full year) 

The MAPE for any of the coarser-than-hourly temporal resolutions studied is negligible compared to 

that of the representative week selection method. The former increases from 0.0077 (0.77%) for the 

two-hourly resolution to 0.0248 (2.48%) for the eight-hourly resolution, while with the 

representative week selection method the MAPE is around 0.5 (50%) for the three representative 

week selection periods. Interestingly, the MAPE barely improves when the number of weeks 

increases, from one week per three month (hence four weeks at hourly resolution) to one week per 

month (hence twelve weeks at hourly resolution). 

4.2.  Electricity mix 

Since the literature highlights the importance of temporal resolution in power system modelling with 

a large proportion of wind and PV, it is worth focusing on the electricity mix. Figures 5 and 6 show 

the electricity mix and its role in satisfying final energy demand for different sectors, for each of the 

studied time-series aggregation methods. 

 

                                                           
1 The installed capacity of hydroelectricity is fixed, and pyro-gasification of biomass never appears in the optimal mix for the social cost of 
carbon that we consider. 
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Figure 5. Annual electricity supply and consumption mix for different temporal resolutions 

The electricity supply and consumption mixes remain nearly stable across different temporal 

resolutions (Figure 5). As this temporal resolution becomes coarser, the contribution of nuclear 

power to the electricity supply decreases slightly from 29.5% to 26.9%, and it is partially replaced by 

solar PV and onshore wind power (from 19.9% to 21.8% and from 40.3% to 40.9% respectively). The 

electricity consumption side remains nearly the same whatever the temporal resolution. 

Electricity supply for different representative weeks is very different from the continuous base case 

(Figure 6). For representative week modelling, nuclear power is eliminated, while both onshore and 

offshore wind power technologies reach their maximal installation limits (120GW and 20GW) and 

they provide a very large proportion of the electricity supply (from 73.6% to 80.7%). Increasing the 

length of the represented period reduces the contribution of solar power to the electricity supply 

from 19.9% in the base case to 10.7% in the case with one representative week over three months. 

Therefore, nuclear energy and (to a lesser extent) solar PV are replaced by offshore and onshore 

wind power. Besides, as the variability of wind and solar production decreases with representative 

weeks, so does the need for dispatchable OCGT and CCGT (with and without CCS). From the base 

case with continuous time-series to the case with one representative week over three months, the 

contribution of these gas turbines to the electricity supply decreases from 2.5% to 0.4%. 
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Figure 6. Annual electricity supply and consumption for different representative periods 

For representative periods, the difference in electricity consumption from the continuous base case 

is larger than in the cases where temporal resolution is varied. However, it remains marginal: the 

already small proportion of electric vehicles in light transport disappears as the represented period 

grows and the only use of electricity in the transport sector is for rail (30TWhe/an). To sum up, 

relying on representative periods has massive impacts on the electricity mix in terms of both supply 

and consumption. 

4.3.  Cost and emissions 

Table 6 shows the annualized cost of the energy system, CO2 emissions from the energy system, the 

calculation time of the EOLES_mv model for different temporal resolutions, and the difference from 

the case with hourly temporal resolution. 
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Table 6. Simulation time, cost and CO2 emissions for different temporal resolutions and their difference from the base case 

of hourly resolution
1
 

 Temporal Resolution 

Main characteristics 1-h 2-h Difference*  4-h Difference* 8-h Difference*  

Total simulation time (s) 216 254 19 974 -90.8% 3 180 -98.5% 339 -99.8% 

LP generation time (s)
2
 210 84 -60% 8 -96.2% 2 -99.1% 

CPLEX solution time (s)
3
 216 044 19 890 -90.8% 3 172 -98.5% 337 -99.8% 

Annual social cost of the 

energy system (€bn./year) 

** 

59.55 59.51 -0.07% 59.43 -0.20% 59.39 -0.27% 

Annual CO2 emissions 

(MtCO2/year) 

-2.51 -2.43 -3.19% -2.37 -5.58% -2.19 -12.75% 

* Difference from the 1-h resolution model. 

** The technical cost includes the annualized fixed cost and the variable cost. In addition, the social cost includes the value 

of CO2 emissions, evaluated at the social cost of carbon (€200/t CO2). 

Changing the temporal resolution from one hour to two hours leads to a nearly 11-fold decrease in 

calculation time, with an error of less than 0.1% in the annualized cost of the energy system. As this 

temporal resolution becomes coarser, the calculation time becomes even smaller (a 640-fold 

reduction in calculation time for the case with eight-hour temporal resolution), while the cost-

related error only reaches 0.27%. While the error in CO2 emissions (which are negative whatever the 

temporal resolution) is higher in percentage terms, it remains very low in absolute terms (at most 

0.32 MtCO2/year). The social cost is slightly lower with coarser-than-one-hour resolutions because 

by averaging two (or four, or eight), adjacent time-steps, we reduce the peak residual demand (i.e. 

the difference between electricity demand and variable renewable energy generation) hence the 

need for storage and dispatchable power. 

Representative period selection also provides a huge reduction in calculation time; one 

representative week over one month leads to a nearly 250-fold reduction in the overall simulation 

time (Table 7). This gain lies between that produced by the 4-hour and 8-hour resolution simulations 

presented above. However, the difference in cost and emissions is not negligible. The error in the 

estimation of the energy system cost is much higher than for the resolution variation methods, 

varying from 4.7% to 10.1%. Because of the proportion of fossil gas in the primary energy supply, 

emissions become positive for the cases of one week over one and two months.  

                                                           
1
 The computer used for these simulations has 128 GB of RAM and its CPU is an Intel® Xeon® Bronze 3106 with 

8 cores at 1.7 GHz. 
2
 Time required for the modelling software (GAMS) to load all the input data, identify different variables and 

equations, and make the link between the sets, parameters, variables and equations. 
3
 Time required for the CPLEX solver to solve the linear optimization problem. 
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Table 7. Simulation time, cost and CO2 emissions for different representative periods and their difference from the base case 

of hourly resolution for a continuous period of one year 

 Representative periods 

Main characteristics Base 1W/1M Difference* 1W/2M Difference 

* 

1W/3M Difference 

* 

Total simulation time (s) 216 254 869.5 99.6% 161.4 99.93% 61 99.97% 

LP generation time (s) 210 8.3 96.05% 2.3 98.9% 1.4 99.33% 

CPLEX solution time (s) 216 044 861.2 99.6% 159.1 99.93% 59.6 99.97% 

Annual social cost of the 

energy system 

(€bn./year) ** 

59.55 56.76 4.69% 55.665 6.52% 53.565 10.05% 

Annual CO2 emissions 

(MtCO2/year) 

-2.51 6.25 349% 6.198 346.93% -0.401 84.02% 

* Difference from the base case.  

** The technical cost includes the annualized fixed cost and the variable cost. In addition, the social cost includes the value 

of CO2 emissions, evaluated at the social cost of carbon (€200/t CO2). 

4.4. Variant case: suppression of nuclear power as a dispatchable power production 

option 

In the previous sections we saw that the results of coarser-than-hourly temporal resolutions are very 

similar to those with hourly temporal resolution. The contrast between this result and that of pre-

existing research based on electricity-only models raises the question of how robust it is. The 

contrast might be due to the lower quantity of short-term storage in the result of our optimization: 

battery storage only reaches 5 GW compared to, for example 11 to 16 GW in the central-cost 

scenario electricity-only optimization presented in Shirizadeh and Quirion (2021), and 20 GW in the 

100% renewable optimization presented in Shirizadeh et al. (2022), both articles being based on the 

EOLES family of models.  

In the results presented above, the importance of short-term storage is reduced by sector coupling 

(which allows curtailment of variable renewable energy production to be reduced) but also by 

nuclear power, which reaches 20GW and 160TWhe/year. The latter is used as a dispatchable 

electricity source, when variable renewables are not enough to satisfy demand. Nuclear power 

therefore contributes to reducing the need for storage. 

In this section, we present the results for the same temporal resolution reduction methods as above, 

but with nuclear power removed from the available technologies. Figure 7 shows the primary energy 

supply mix for the case with no nuclear power. 
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Figure 7. Annual energy supply from each primary supply technology for different temporal resolutions without nuclear 
power. These values are in TWhe for nuclear power, offshore and onshore wind power, solar PV and hydroelectricity, and in 

TWhth for methanization and fossil gas. 

The proportion of the energy supply technologies remains almost the same for all four temporal 

resolutions. In the absence of nuclear power, offshore wind appears in the energy mix, varying 

between 3% and 4% of the primary energy supply (from 25 TWh to 27.8 TWh), and onshore wind is 

installed to its maximal capacity, producing 341.33 TWh of electricity at all temporal resolutions. The 

addition of fossil gas can be observed, generating 18.5 TWh for the hourly temporal resolution. By 

decreasing the resolution from one hour to eight hours, the required flexibility, and thus the fossil 

gas supply, decreases (from 18.5 TWh to 13.9 TWh). 

Figure 8 shows the electricity production and consumption for simulations with different temporal 

resolutions (without nuclear power). 
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Figure 8. Annual electricity supply and consumption mix for different temporal resolutions in the absence of nuclear power 

Electricity production and consumption remain nearly identical among the various temporal 

resolutions. The largest error is a 1.2% increase in the proportion of solar PV. On the consumption 

side, all the end-uses keep the same energy consumption from electricity. A slight increase in 

methanation from 3.7% to 4.3% leads to a slight decrease in curtailment and other losses (from 3.5% 

to 2.5%). However, even for a temporal resolution of eight hours the power system remains nearly 

identical compared to the optimization with hourly temporal resolution. 

Similarly, Table 8 compares the cost and the emissions at each temporal resolution. As can be seen, 

when the model uses an eight-hour temporal resolution, the cost is only 0.35% lower than with 

hourly temporal resolution. Similarly, annual CO2 emissions are almost nil in every case, varying 

between 0.04MtCO2/year and -0.74MtCO2/year. 

Table 8. Cost and emissions resulting from modelling with hourly temporal resolution and coarser-than-hourly temporal 
resolutions for the case with no nuclear power 
 Temporal Resolution 

Main characteristics 1-h 2-h Difference 4-h Difference 8-h Difference 

Annual social cost of the energy 

system (€bn/year) * 

60.16 60.10 0.10% 59.99 0.28% 59.95 0.35% 

Annual CO2 emissions (MtCO2/year) 0.04 -0.37 - -0.69 - -0.74 - 

* The technical cost includes the annualized fixed cost and the variable cost. In addition, the social cost includes the value 

of CO2 emissions, evaluated at the social cost of carbon (€200/t CO2). 

Thus coarser-than-hourly temporal resolutions remain very accurate while drastically reducing the 

calculation time, even when a major low carbon dispatchable energy supply technology is 

eliminated. Appendix 5 shows installed capacities and annual energy production for each 

technology.  

4.5. The extra cost of optimizing capacities based on a coarse temporal resolution 

In the previous sections, we showed that the error values of modelling with a time resolution 

coarser than one hour are negligible, while the gains in computational tractability are very high. 



 

26 

 

 

Therefore, modelling with coarser temporal resolution seems to provide an attractive trade-off 

between precision and calculation time.  

However, if generation and storage capacities are optimized based on a coarser-than-hourly 

temporal resolution, shortages in energy supply may occur during parts of the resulting longer 

periods between data points. For instance, supply may match demand over two hours considered as 

a whole, but not over each of these two hours considered separately. The value of these shortages 

may be assessed through an assumed value of lost load. Therefore, the aim of this section is to 

assess the extra cost of optimizing generation and storage capacities based on coarser-than-hourly 

temporal resolutions, when the dispatch of these capacities is optimized with an hourly temporal 

resolution1. 

To address this question, we run the hourly model with the installed capacities of the energy supply, 

conversion and storage technologies obtained by the optimizations with coarse temporal 

resolutions, and we define a value of lost load of €10,000/MWhe for electricity supply (Gils, 2014). 

We saw previously that using an SCC of €200/tCO2 and with nuclear power allowed, fossil gas is 

eliminated from the optimal mix. Since this may change when dispatch is optimized on a finer 

resolution than investment, we present two cases. 

The first case aims to limit the extra cost from lost load by allowing fossil gas imports, and thus 

potentially positive CO2 emissions. The cost, CO2 emissions and lost electricity load are presented in 

Table 9. 

Table 9. Social and technical costs, lost load and CO2 emissions with the installed capacities optimized at coarse temporal 

resolution and dispatch optimized at hourly resolution, with the ability to import fossil gas 

 1-h 2-h 4-h 8-h 

Annual social cost of the energy system 

(€bn./year) * 

59.55 59.57 +0.03% 59.88 +0.55% 59.70 +0.25% 

Annual technical cost of the energy 

system (€bn./year) * 

60.05 60.05 +0% 59.61 -0.73% 60.03 -0.03% 

Lost Load (GWhe/year) 0 0 3.77 10.03 

Lost load (percentage of entire electricity 

load) 

0 0 0.0007% 0.0019% 

Fossil gas consumption (TWhth/year) 0 0.101 15.9 2.72 

CO2 emissions (MtCO2/year) -2.51 -2.42 1.33 -1.68 

* The technical cost includes the annualized fixed cost and the variable cost. In addition, the social cost includes the value 

of lost load and the value of CO2 emissions, evaluated at the social cost of carbon (€200/t CO2). 

Although the extra cost is very limited (between €0.02bn./year and €0.15bn./year), the CO2 

emissions differ (especially for the 4-hourly resolution), because a small proportion of the primary 

energy is provided by fossil gas (up to 15.9TWhth/year for the 4-hourly temporal resolution, i.e. 2% 

of electricity generation). In every case, the lost load is very small: at most 10GWhe/year for the 4-

hourly temporal resolution (0.0019% of the load). 

                                                           
1
 As we have seen, the capacities optimized using the representative period selection method are very 

different from those optimized using the continuous, hourly base case. Thus, it is obvious that optimizing the 
dispatch of those capacities over a continuous, hourly period would lead to a large extra cost, so we do not 
assess this case. 
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The importation of fossil gas is the reason why the CO2 emissions slightly increase from the hourly 

temporal resolution case (France has no longer any fossil gas resources). Keeping the emissions 

below zero would require importation of fossil gas to be limited to its value resulting from the 

optimization with hourly temporal resolution (i.e. zero). Table 10 shows the same results as in Table 

9, but for the second case, with no ability to import fossil gas. 

Table 10. Social and technical costs, lost load and CO2 emissions with the installed capacities optimized at coarse temporal 

resolution and dispatch optimized at hourly resolution, with no ability to import fossil gas 

 1-h 2-h 4-h 8-h 

Social cost (bn.€/year) 59.55 59.57 +0.03% 60.97 +2.38% 59.79 +0.4% 

Technical cost (bn.€/year) 60.05 60.05 +0% 61.46 +2.34% 60.23 +0.3% 

Lost load (GWhe/year) 0 0 3.77 10.03 

Lost load (percentage of entire electricity 

load) 

0 0 0.0007% 0.0019% 

CO2 emissions (MtCO2/year) -2.51 -2.43 -2.44 -2.19 

CO2 emissions remain very close to the 1-hour case, which is expected since the fossil gas import 

capacity is fixed. The small variation is explained by a small change in BECCS. Although the extra cost 

is higher than in the previous case, it remains very low based on the 2-hourly resolution: less than 

0.03%. The maximal value is for a four-hourly temporal resolution with an extra cost of 

€1.42bn/year, which remains reasonable (+2.4%).  

5. Results, discussion and conclusion 

Modelling energy systems covering the main energy sectors and the main energy supply, carrier and 

storage options with high temporal resolution over a full year is computationally demanding. Time-

series aggregation methods can reduce the calculation time of energy system models, but the trade-

off between computational tractability and accuracy in the optimal allocation of different options in 

an energy system model with sector coupling had yet to be analyzed – unlike the case of electricity-

only models, which has been analyzed in depth. 

In this paper, we have applied the two main time-series aggregation methods (temporal resolution 

reduction and representative period selection) to an energy system model with sector coupling, in 

order to test their benefit (in terms of reduced simulation time) and cost (in terms of output 

inaccuracy). The results are clear: while both methods massively reduce the calculation time, the 

accuracy of the representative period selection method is low while that of the temporal resolution 

reduction method is very high. 

The inaccuracy of the representative period selection is seemingly caused by the implied reduction 

in weather (especially wind) variability over time, which leads to a higher proportion of wind power 

and to a lower cost. This is consistent with the findings by Alimou et al. (2020); by comparing TIMES-

FR (a model optimizing dispatch and investment with representative weeks) and ANTARES (a 

dispatch model developed by RTE, the French transmission network operator, with hourly temporal 

resolution) they show that the former underestimates the system cost by 28% and that the capacity 

mix derived from TIMES-FR does not meet the supply/demand adequacy requirements of the French 

public authorities (i.e. annual loss of load of no more than three hours). 
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The accuracy of the resolution variation method is more puzzling: even moving from hourly to eight-

hourly resolution has almost no impact on the energy mix, energy system cost, emissions and load 

curtailment. Moreover, this result stands irrespective of the inclusion of nuclear power among the 

generation technologies – without which the energy mix is 98% renewable. A less than 2.5% mean 

absolute percentage error for the primary energy mix and less than 0.3% variation in the energy 

system cost seems an acceptable price to pay for a 640-fold reduction in calculation time using 

eight-hourly resolution. This result is especially noticeable since the intra-day variability of wind and 

especially PV is high, and the installed capacities in these technologies are large (around 80 GW each 

if nuclear is part of the mix, around 120 GW each if not). Therefore we can expect that in a similar 

model with less PV, coarser-than-hourly resolution would generate even less discrepancies. 

Why is the resolution variation method more accurate for a model with sector coupling such as the 

one used here, compared to an electricity-only model? We suspect that the reason is the relatively 

low curtailment (~3%) and the very low short-term storage requirement permitted by sector 

coupling. With the same model without sector coupling, around 10 to 15% of electricity is curtailed 

and batteries are used as a short-term storage option (Shirizadeh et al., 2022; Shirizadeh and 

Quirion, 2021). In such an electricity-only model, reducing temporal resolution would decrease 

energy losses through storage and curtailment. Therefore, it would reduce the total cost and change 

the energy mix significantly.  

Coarser-than-hourly temporal precision would allow future modelling studies to increase their 

computational tractability, maintaining the required precision in calculations with much faster 

solution time. In those circumstances, other aspects of energy system modelling could be developed, 

such as better technical representation of different technologies, inclusion of a greater number of 

options in the modelling and application of detailed sensitivity and robustness studies that require 

wide ranges of scenarios to account for the uncertainties regarding energy demand, technology 

costs, resource availability and weather variability.  

Comparing both methods for other energy system optimization models featuring sector coupling 

would be welcome to confirm the external validity of our results. In the meantime, we highlight that 

the key features of our model are similar to that of other well-known such models, such as PyPSA-

eur-sec-30 (Brown et al., 2018a): both use linear optimization to minimize annual operational and 

investment costs subject to physical constraints, assuming perfect foresight, and both use wind and 

PV generation profiles based on weather data and downscaling methods. The set of technologies 

represented is also very close. The main differences are that the choice between gas and electricity 

for transport is endogenous in EOLES_mv and that PyPSA-eur-sec-30 features several nodes, but we 

do not see why these differences would change our results concerning the relative performance of 

the two time-series aggregation methods. 

Our representative week choice is based on preparation of an average week for each month, 

without considering other grouping characteristics of different periods. One interesting extension of 

this work could be the choice of representative periods based on similar weather and demand 

characteristics, which might improve the performance of representative period selection, such as 

seasonal representative periods.  
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Similarly, the coarser-than-hourly time-slices are based on simple division of 24 hours of a day to 

two-hour, four-hour and eight-hour long time-steps with no particular consideration of variable 

time-step choice for a day as we did previously for an electricity-only model (De Guibert et al., 2020). 

The performance of the resolution variation methods could be improved by smarter sub-sampling of 

daily time-steps.  

However, even without variable time-step choice, this method performs very well with negligible 

error compared to modelling with hourly temporal resolution. If this positive result is confirmed for 

other models, it could allow modelling teams to benefit from the computer resources which are 

saved by this coarser time resolution, e.g. to analyze more complex models and richer sets of 

scenarios. 
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Appendices 

Appendix 1. The EOLES_mv model 

A.1.1. Sets and parameters 

Table A.1 presents the sets and indices of the EOLES_mv model and table A.2 the parameters. 

Throughout the paper, every energy unit (e.g. MWh) or capacity unit (e.g. MW) is expressed in useful 

form. For instance, some energy is converted from gas to electricity by OCGT. The input energy in 

MWh is in the gas carrier, therefore the unit is MWhth and conversion efficiency by OCGT is 45%. The 

output energy is in MWhe equivalent to the value in MWhth multiplied by 0.45.  

Table A.1. Sets and indices of the EOLES_mv model 

Index Set Description 

    H Hour: the number of hours in a year, from 0 to 8759 

    D Day: The number of days in a year, from 1 to 365 

    W Week: The number of weeks in a year, from 1 to 52 (the 52
nd

 week 
accounts for 10 days) 

    M Month: the twelve months, from January to December 

      TEC Technologies: The set of all energy supply, conversion, storage and non-
existing carrier technologies (floating offshore, monopile offshore, 
onshore, PV, river, lake, nuclear, natural gas, methanization, pyro-
gasification, OCGT, CCGT, CCGT with CCS, electrolysis, methanation, heat 
network, resistive heating, electric heat pump, gas heat pump, central 
boiler, decentralized boiler, heavy EV, light EV, EV bus, train, heavy ICE, 
light ICE, ICE bus, PHS, battery, gas storage, individual thermal energy 
storage -ITES- and central thermal energy storage -CTES) 

      GEN ⊆ TEC Generation: Energy supply technologies (floating offshore, monopile 
offshore, onshore, PV, river, lake, nuclear, natural gas, methanization and 
pyro-gasification) 

       ELEC ⊆ TEC Electricity: The technologies providing electricity by supply, conversion or 
storage (floating offshore, monopile offshore, onshore, PV, river, lake, 
nuclear, OCGT, CCGT, CCGT with CCS, PHS and battery) 

      GAS ⊆ TEC Gas: The technologies providing gas by supply, conversion or storage 
(natural gas, methanization, pyro-gasification, electrolysis, methanation 
and gas storage) 

       HEAT ⊆ TEC Heat: The technologies providing heat by conversion and storage (heat 
network, resistive heating, electric heat pump, gas heat pump, central 
boiler, decentralized boiler, individual thermal energy storage and central 
thermal energy storage) 

            TRANSPORT 
⊆ TEC 

Transport: The technologies that meet different types of transport demand 
(heavy EV, light EV, EV bus, train, heavy ICE, light ICE and ICE bus) 

          ELECGEN ⊆ 
ELEC 

Electricity supply: The technologies generating electricity (floating 
offshore, monopile offshore, onshore, PV, river, lake and nuclear) 

         GASGEN ⊆ 
GAS 

Gas supply: Technologies supplying gas (natural gas, methanization and 
pyro-gasification) 

            BIOGAS ⊆ 
GAS 

Renewable gas: biogas supply technologies (methanization and pyro-
gasification) 

      VRE ⊆ ELEC VRE: variable renewable electricity generation technologies (offshore, 
onshore, PV and run-of-river) 

      STR ⊆ TEC Storage: energy storage technologies (PHS, battery, gas storage, individual 
thermal energy storage and central thermal energy storage) 

          STRELEC ⊆ 
ELEC 

Electric storage: technologies providing storage for electricity (battery and 
PHS) 
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         STRGAS ⊆ 
GAS 

Gas storage: technologies providing storage for gas (gas storage) 

          STRHEAT ⊆ 
HEAT 

Heat storage: technologies providing storage for heat (ITES and CTES) 

       CONV ⊆ 
TEC 

Conversion: energy vector-change technologies (OCGT, CCGT, CCGT with 
CCS, electrolysis, methanation, resistive heating, electric heat pump, gas 
heat pump, central boiler and decentralized boiler) 

           CONVELEC 
⊆ TEC 

Conversion from electricity: energy vector-change technologies from 
electricity to other carriers (electrolysis, methanation, resistive heating and 
electric heat pump) 

          CONGAS ⊆ 
TEC 

Conversion from gas: energy vector-change technologies from gas to other 
carriers (OCGT, CCGT, CCGT with CCS, gas heat pump, centralized boiler 
and decentralized boiler) 

          CENTRAL ⊆ 
HEAT 

Central heating: heating technologies needing heat network (electric heat 
pump, gas heat pump and centralized boilers) 

          TVECTOR Transport vector: two different engine types for transport sector (EV and 
ICE) 

       TCAT Transport category: four categories of transport demand (heavy, light, bus 
and train) 

              EV ⊆ 
TRANSPORT 

Electric transport: the electric transport technologies (heavy EV, light EV, 
EV bus and train) 

               ICE ⊆ 
TRANSPORT 

Gas transport: the ICE transport technologies using gas as fuel (heavy ICE, 
light ICE and ICE bus) 

      FRR ⊆ TEC Frequency restauration reserves: Technologies contributing to secondary 
reserves requirements (lake, PHS, battery, OCGT, CCGT, CCGT with CCS and 
nuclear) 

      CO2 Social cost of carbon scenario: The scenarios are 1, 2, 3, 4, 5 and 6 

 

Table A.2. Parameters of the EOLES_mv model 

Parameter Unit Description 

     [-] A parameter to show which day each hour is in 

      [-] A parameter to show which week each hour is in 

       [-] A parameter to show which month each hour is in 

        [-] Hourly production profiles of variable renewable 
energies 

        
         

 [-] Hourly charging profile of each transport technology 

             [    ] Hourly heat demand profile 

                 [    ] Hourly hydrogen demand profile (for industry) 

             [   ] Hourly electricity demand profile 

       
     

               Hourly transport demand for heavy vehicles 

       
     

               Hourly transport demand for light vehicles 

       
                  Hourly transport demand for buses 

       
      [    ] Hourly transport demand for trains (flat) 

      [    ] Monthly extractable energy from lakes 

     [-] Frequency restoration requirement because of 
forecast errors on the production of each variable 
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renewable energy 

    
   [   ] Existing installed capacity by each hydroelectric 

technology 
           [M€/  /year] Annualized capital cost of each technology 

          
   [M€/   /year] Annualized capital cost of energy volume for storage 

technologies 

                
    [M€/   /year] Annualized capital cost of energy reservoir volume 

of transport technology 
        [M€/   /year] Annualized fixed operation and maintenance cost 

        [M€/   ] Variable operation and maintenance cost of each 
technology 

    
   [-] Charging efficiency of storage technologies 

    
    [-] Discharging efficiency of storage technologies 

      [-] Conversion efficiency for energy conversion 
technologies 

     

                    
      

Transport efficiency of each transport technology 

      [   ] Pumping capacity for Pumped hydro storage 

    
    [    ] Maximum energy volume that can be stored in PHS 

reservoirs 

       
    [     ] Maximum yearly energy that can be generated from 

renewable gas supply technologies 

            
     [-] Uncertainty coefficient for hourly electricity demand 

           
     [-] Load variation factor 

    
  

 [-] Maximal ramping up rate of nuclear power 

    
     [-] Maximal ramping down rate of nuclear power 

      [-] The maximal annual capacity factor for nuclear 
power 

       [-] The maximal annuity capacity factor for OCGT plant 

       [-] The maximal annual capacity factor for CCGT plant 

           [-] The maximal annual capacity factor for CCGT with 
CCS plants 

     [        ] Emission rate of each technology 

      
 [      ] Social cost of carbon for each SCC scenario 

    

    [          ] The maximal carbon dioxide that can be stored 
annually 

              
    [-] The green CO2 available as a byproduct of 

methanization for methanation 

          [-] The maximal penetration rate of hydrogen in the gas 
network 
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A.1.2. Variables 

The variables resulting from the optimization are presented in table A.3. 

Table A.3. Variables of EOLES_mv model 

Variable Unit Description 

           Hourly energy generation by technology 

        Installed capacity by technology 

                 Hourly energy entering each storage technology (inflow) 

             Hourly state of charge of each storage technology (stock) 

        Installed charging capacity by storage technology 

                  Hourly converted energy by each conversion technology 

                      Hourly charging of each transport technology 

                       The energy reservoir volume for each transport technology 

              Energy capacity by storage technology 

             
Hourly upward frequency restoration requirement to manage the variability of 
renewable energies and demand uncertainties 

     b€ 
Total energy system cost annualized (minus the investment cost of already 
installed capacities). This is the objective function to be minimized. 

 

A.1.3. Equations 

A.1.3.1. Objective function 

The objective function, shown in Equation (A.1), is the sum of all costs over the chosen period, 

including the annualized investment costs as well as the fixed and variable O&M costs. For some 

storage options, another CAPEX-related cost proportional to the energy capacity in       is 

accounted for (          
  ). 

                  
                                             

    

                                                    
              

         (A.1) 

Where      represents the production capacities,     
   represents the existing capacity (notably for 

hydro-electricity technologies with long lifetime),           is the energy storage capacity in 

GWh,      is the power capacity of the storage option in GW,         is the annualized investment 

cost,       and       respectively represents fixed and variable operation and maintenance 

costs,        is the hourly generation of each technology,      is the specific emission of each 

technology in tCO2/GWh of power production and       
 is the social cost of carbon in €/tCO2. 
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A.1.3.2. Adequacy equations 

Energy demand must be met for each hour. If energy production exceeds energy demand, the excess 

energy can be either sent to storage units or curtailed (Equations A.2, A.3, A.4, A.5a-d and A.6).  

             

                                       
                            

                

     (A.2) 

           

                       
                          

                  

                       (A.3) 

                                                   
   (A.4) 

                  

                          
            (A.5a) 

                  

                          
            (A.5b) 

             

                          
          (A.5c) 

                  

                      
            (A.5d) 

                                       (A.6) 

Where        ,       ,         is the energy produced by electricity, gas and heat technologies at 

hour h and                 ,                ,                  is the energy entering storage 

electricity, gas and heat storage technologies at hour h.                   is the energy conversion 

from electricity to other energy carriers and                  is the energy conversion from gas to 

other carriers at hour h and             is the charging of internal combustion engine vehicles and 

           is the charging of electric vehicles at hour h. For each transport category the energy 

demand in vehicle.km should be satisfied either by ev or ice as transport energy carrier options 

(       ), and the conversion from the energy in gas or electricity form to the demand by transport 

category (                 
      ,                  

       and                  
    ) in vehicle.km is done by 

the vehicle efficiency, which depends on both the energy carrier and the transport category; 

     

       . We only consider the electricity to satisfy the trains’ demand. 

According to Vogl et al. (2018), the coal demand for steel industry can be replaced by hydrogen. 

Therefore, we define an hourly hydrogen demand for steel industry (                ) which 

should be satisfied (Equation A.6) beside other adequacy equations. 

A.1.3.3. Variable renewable power production 

For each variable renewable energy (VRE) technology, for each hour, the hourly power production is 

given by the hourly capacity factor profile multiplied by the installed capacity available (Equation 

A.7). 

                            (A.7) 
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Where        is the energy produced by each VRE resource at hour h,      is the installed capacity 

and         is the hourly capacity factor. 

A.1.3.4. Energy storage 

Energy stored by storage option str at hour h+1 is equal to the energy stored at hour h plus the 

difference between the energy entering and leaving the storage option at hour h, accounting for 

charging and discharging efficiencies (Equation A.8): 

                                       
     

      

    
       (A.8) 

Where          is the state of charge of the storage option str at hour h, while     
         and 

    
          are the charging and discharging efficiencies. 

A.1.3.5. Secondary reserve requirements 

Three types of operating reserves are defined by ENTSO-E (2013), depending on their activation 

speed. The fastest reserves are Frequency Containment Reserves (FCRs), which must be able to be 

on-line within 30 seconds. The second group is made up of Frequency Restoration Reserves (FRRs), 

in turn divided into two categories: a fast, automatic component (aFRRs), also called ‘secondary 

reserves’, with an activation time of no more than 7.5 min; and a slow manual component (mFRRs), 

or ‘tertiary reserves’, with an activation time of no more than 15 min. Finally, reserves with a 

startup-time beyond 15 minutes are classified as Replacement Reserves (RRs).  

Each category meets specific system needs. The fast FCRs are useful in the event of a sudden break, 

like a line fall, to avoid system collapse. FRRs are useful for variations over several minutes, such as a 

decrease in wind or PV output. Finally, the slow RRs act as a back-up, slowly replacing FCRs or FRRs 

when the system imbalance lasts more than 15 minutes.  

In the model we only consider FRRs, since they are the most heavily impacted by the inclusion of 

VRE. FRRs can be defined either upwards or downwards, but since the electricity output of VREs can 

be curtailed, we consider only upward reserves. 

The quantity of FRRs required to meet ENTSO-E’s guidelines is given by Equation (A.9). These FRR 

requirements vary with the variation observed in the production of renewable energies. They also 

depend on the observed variability in demand and on forecast errors: 

                                                     
                  

     

           (A.9) 

Where          is the required hourly reserve capacity from each of the reserve-providing 

technologies (dispatchable technologies) indicated by the subscript frr;      is the additional FRR 

requirement for VRE because of forecast errors,           
     is the load variation factor and 

            
     is the uncertainty factor in the load because of hourly demand forecast errors. The 

method for calculating these various coefficients according to ENSTO-E guidelines is detailed by Van 

Stiphout et al. (2017). 
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A.1.3.6. Energy-generation-related constraints 

The relationship between hourly-generated energy and installed capacity can be calculated using 

Equation (A.10). Since the chosen time slice for the optimization is one hour, the capacity enters the 

equation directly instead of being multiplied by the time slice value. 

                    (A.10) 

The installed capacity of all the dispatchable technologies should be more than the electricity 

generation required of those technologies to meet demand; it should also satisfy the secondary 

reserve requirements. Installed capacity for dispatchable technologies can therefore be expressed 

by Equation (A.11). 

                            (A.11) 

Monthly available energy for the hydroelectricity generated by lakes and reservoirs is defined using 

monthly lake inflows (Equation A.12). This means that energy stored can be used within the month 

but not across months. This is a parsimonious way of representing the non-energy operating 

constraints faced by dam operators, as in Perrier (2018).  

                          (A.12) 

Where         is the hourly power production by lakes and reservoirs, and       is the maximum 

electricity that can be produced from this energy resource in one month.  

A.1.3.7. Energy conversion 

Energy generated by any energy conversion technology should include the conversion efficiency of 

the conversion technology. Equation (A.13) relates the energy generation and generation by each 

conversion technology. 

                                    (A.13) 

Where       is the conversion efficiency of the energy conversion technology     , and 

              is the converted energy by the same conversion technology at hour h. 

A.1.3.8. Charging of transport technologies 

Electric vehicles and internal combustion engine vehicles have different charging profiles. Equation 

(A.14) applies these charging profiles; 

                           
         

                 (A.14) 

Where                   is the hourly charging of each transport technology (both EVs and ICEs 

four all four transport categories),         
         

 is the predefined hourly charging profile of each 

of the transport technologies and            is the charging capacity of transport technology 

         .  

We consider an average of one charge per week for each transport technology, and since the energy 

can be stored in the vehicle during the whole one week, the transport demand that should be 

satisfied is considered to have a weekly adequacy. The hourly demand of transport in vehicle.km 

should be satisfied from Equations (A.5a-d) and the charging profiles should be applied to account 

for the charging behavior of different transport technologies from Equation (A.14). We define 
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Equation (A.15) to keep both charging and demand constraints above and to let the vehicles choose 

the day of charging during the week; 

                                            (A.15) 

The storage volume of each transport technology accounts for an upper limit for the weekly charge 

and weekly energy consumption of it. While this storage volume is free of charge for ICE vehicles, 

electric vehicles’ main cost component is this battery storage volume. Therefore, we define the 

reservoir size (storage volume) for each transport technology (Equation A.16). 

                                             (A.16) 

Where                    accounts for the reservoir size of each transport technology (kWhe for 

electric vehicles and kWhth for ICE vehicles). 

A.1.3.9. Inclusion of heat networks 

Heat can be produced by two different technology classes: distributed technologies such as resistive 

heating technology, and centralized technologies such as central boilers. Decentralized heating 

technologies use electricity or gas from the network and provide heating for the local demand, 

therefore no heat network is needed. On the other hand, the centralized technologies produce heat 

in large quantities and distribute it for the demand in different locations, which require a heat 

network. Equation (A.17) separates the central heating technologies and define a heat network 

capacity for the distribution of produced heat; 

                           (A.17) 

Where           is the heat network capacity and          is the installed capacity of each central 

heat production technology in kWth.  

Equation (17) allows the heat network to have lower capacity than all the central heating 

technologies combined, depending on the optimal dispatching of each of them. Another equation is 

needed to restrict the central heating technologies to pass through the heat network (Equation 18); 

                                     (A.18) 

Where             is the heat generation passed through heat network and            is the heat 

generation by each central heating technology at hour h. 

A.1.3.10. Operational constraints of conversion technologies 

For open-cycle and combined-cycle gas turbines, there are some safety- and maintenance-related 

breaks. Equations (A.19), (A.20) and (A.21) limit the annual power production for each of these 

plants to their maximum annual capacity factors: 

                                   (A.19) 

                                   (A.20) 

                                                 (A.21) 

Where        and        are the capacity factors of OCGT and CCGT power plants. 
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The hydrogen produced from electrolysis (power-to-gas conversion) is either consumed directly in 

the industry (therefore we make the assumption of local electrolysis for industrials) or injected to 

the gas network. Because of different thermochemical properties of hydrogen, it cannot be injected 

at any rate to the gas network. Equations (A.22), (A.23) and (A.24) limit the hydrogen in that can 

exist in the gas network as a proportion of the overall existing gas in this network both in the storage 

level and in the distribution/transmission level; 

                                                           (A.22) 

                                                          (A.23) 

                                                                       

           (A.24) 

Where                 is the energy value of hydrogen injected to gas network from electrolysis at 

hour h,           is the maximal relative energy share of hydrogen to the overall gas in the gas 

network which can be different for different countries depending on the capability of gas network in 

hosting hydrogen.              is the state of charge of gas storage, which is the energy value of 

overall existing gas in the gas network and            is the overall gas production at hour  . 

Equation (A.22) limits the relative share of hydrogen to other gas options in the storage 

infrastructures and Equation (A.23) limits the relative share of hydrogen in the gas network. 

Equation (A.24) makes sure that the overall hydrogen that is produced is not more than the capacity 

of the gas network. 

A.1.3.11. Nuclear-power-related constraints 

Addition of nuclear power plants to the model brings three main constraint type equations: ramping 

up and ramping down rates (because we allow these plants to be used in load-following mode, Loisel 

et al., 2018) and the annual maximal capacity factor. 

Nuclear power plants have limited flexibility, so definitions of hourly ramp-up and ramp-down rates 

are essential to model them accurately. Equations (A.25) and (A.26) limit the power production of 

nuclear power plants with these ramping constraints: 

                                  
  

         (A.25) 

                       
            (A.26) 

Where          is the nuclear power production at hour    ,        is the nuclear power 

production at hour  ,            is the reserve capacity provided by nuclear power plants at hour 

    and     
  

 and     
     are the ramp-up and ramp-down rates for nuclear power production.  

The nuclear power plants’ capacity factor should also be limited by safety and maintenance 

constraints. Equation (A.27) quantifies this limitation: 

                                (A.27) 

Where       is the maximum annual capacity factor of nuclear power plants. 
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A.1.3.12. Storage-related constraints 

To prevent optimization leading to a very high quantity of stored energy in the first hour 

represented and a low quantity in the last hour, we add a constraint to ensure the replacement of 

the consumed stored energy in every storage option (Equation A.28): 

                                           
     

         

    
      (A.28) 

While Equations (A.8) and (A.26) define the storage mechanism and constraint in terms of power, 

we also limit the available volume of energy that can be stored by each storage option (Equation 

A.29): 

                           (A.29) 

Equation (A.30) limits the entry of energy into the storage units to the charging capacity of each 

storage unit. Similarly, we consider a charging capacity lower than or equal to the discharging 

capacity (mainly to limit the charging capacity of batteries) which means that the charging capacity 

cannot exceed the discharging capacity.  

                           (A.30) 

A.1.3.13. Resource availability related constraints 

The maximum installed capacity of each technology depends on land-use-related constraints, social 

acceptance, the maximum available natural resources and other technical constraints; therefore, a 

technological constraint on maximum installed capacity is defined in Equation (A.31) where     
    is 

this capacity limit: 

          
           (A.31) 

Renewable gas production technologies are limited due to land-use and agricultural constraints. 

Equation (A.32) limits the annual renewable gas production from each of two renewable gas 

production technologies; methanization and pyro-gasification of biomass. 

                   
       

          (A.32) 

Where           is the hourly biogas production from each of renewable gas production 

technologies and        
    is the maximal yearly biogas that can be produced from each of renewable 

gas production technologies, both in energy values.  

Methanation consists of the Sabatier reaction of hydrogen produced from electrolysis of water and 

green CO2 produced as a by-product of methanization process. Implication of this limit in the overall 

methane production from methanation process is presented in Equation (A.33): 

                                                       
       

   
    
    (A.33) 

Where                      accounts for the hourly methane produced from power-to-methane 

(methanation) process,                  is the hourly biogas production from methanization process 

and               
    is the relative share of carbon dioxide to biogas produced from methanization 

process. 
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The captured carbon dioxide can’t be stored infinitely, and geographical and social constraints limit 

the exploitation of CCS technology. Equation (A.34) limits the captured CO2 to the available offshore 

and onshore storage formations; 

    

                                         (A.34) 

Where     

    is the maximal CO2 storage potential,             is hourly power production from 

CCGT power plants equipped with CCS units,           is the carbon capture rate of post combustion 

CCS units, and       is the specific emission of CCGT power plant with natural gas (considered with 

no CCS input).  
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Appendix 2. Installed capacities and annual energy production for simulation with coarse 

temporal resolutions 

In order to better visualize the accuracy of each variant case, the energy mix and the associated 

errors must be studied. Tables A.4 and A.5 show the installed capacity and the annual energy 

production for the base case with hourly temporal resolution and for each variant case with coarser 

temporal resolution and the error associated with it. 

Table A.4. Installed capacities of energy production, conversion and storage technologies for different temporal resolutions 

and their error from the base case of hourly resolution 

 Temporal Resolution 

Technology Installed Capacity (GW) 1-h 2-h error 4-h error 8-h error 

Energy Production 

Offshore wind 0.0 0.0 0.00% 0.0 0.00% 0.0 0.00% 

Onshore Wind 80.21 80.53 0.40% 80.35 0.17% 81.62 1.76% 

Solar PV 79.35 81.84 3.14% 85.59 7.86% 86.96 9.59% 

Hydroelectricity 20.4 20.4 0.00% 20.4 0.00% 20.4 0.00% 

Nuclear energy 22.6 22.26 1.50% 21.77 3.67% 21.21 6.15% 

Fossil Gas 0.0 0.0 0.00% 0.0 0.00% 0.0 0.00% 

Methanization 17.35 17.35 0.00% 17.35 0.00% 17.35 0.00% 

Pyro-gasification of Biomass 0.0 0.0 0.00% 0.0 0.00% 0.0 0.00% 

Energy Conversion 

OCGT 2.14 2.15 0.47% 1.88 12.15% 2.2 2.80% 

CCGT 5.03 5.22 3.78% 5.88 16.90% 6.36 26.44% 

CCGT-CCS 5.72 5.52 3.50% 5.35 6.47% 4.99 12.76% 

Electrolysis 6.37 6.35 0.31% 6.37 0.00% 6.37 0.00% 

Methanation 3.48 3.48 0.00% 3.47 0.29% 3.46 0.57% 

Central heat pump 26.42 26.67 0.95% 27.45 3.90% 27.82 5.30% 

Individual heat pump 41.84 41.60 0.57% 41.23 1.46% 40.92 2.20% 

Resistive heating 17.78 17.96 1.01% 17.50 1.57% 17.92 0.79% 

Central gas boiler 0.0 0.0 0.00% 0.0 0.00% 0.0 0.00% 

Individual gas boiler 0.0 0.0 0.00% 0.0 0.00% 0.0 0.00% 

Energy Storage 

Battery storage 4.72 5.11 8.26% 5.19 9.96% 5.46 15.68% 

Battery storage (GWh) 0.0 0.0 0.00% 0.0 0.00% 0.0 0.00% 

Gas Storage 24.61 24.55 0.24% 24.66 0.20% 25.48 3.54% 

Gas Storage (TWh) 134.6 134.6 0.00% 134.6 0.00% 134.6 0.00% 

Individual thermal energy storage 35.8 18.15 49.30% 9.23 74.22% 3.57 90.03% 

Individual thermal energy storage (GWh) 44.31 36.30 18.08% 36.93 16.66% 28.558 35.55% 

Central thermal energy storage 46.25 46.76 1.10% 46.99 1.60% 47.689 3.11% 

Central thermal energy storage (TWh) 31.58 31.28 0.95% 30.26 4.17% 29.644 6.12% 

Heat Network 46.25 46.76 1.10% 46.99 1.60% 47.69 3.11% 
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Table A.5. Annual energy production from energy production, conversion and storage technologies for different temporal 

resolutions and their error from the base case of hourly resolution 

 Temporal Resolution 

Technology Energy Supply (TWh/year) 1-h 2-h error 4-h error 8-h error 

Energy Production 

Offshore wind 0.0 0.0 0.00% 0.0 0.00% 0.0 0.00% 

Onshore Wind 228.16 229.07 0.40% 228.55 0.17% 232.15 1.75% 

Solar PV 112.83 116.38 3.15% 121.71 7.87% 123.66 9.60% 

Hydroelectricity 43.8 43.8 0.00% 43.8 0.00% 43.8 0.00% 

Nuclear energy 166.99 162.59 2.63% 157.94 5.42% 153.02 8.37% 

Fossil Gas 0.0 0.0 0.00% 0.0 0.00% 0.0 0.00% 

Methanization 152.0 152.0 0.00% 152.0 0.00% 152.0 0.00% 

Pyro-gasification of Biomass 0.0 0.0 0.00% 0.0 0.00% 0.0 0.00% 

Energy Conversion 

OCGT 1.04 1.05 0.96% 0.86 17.31% 1 3.85% 

CCGT 4.54 4.78 5.29% 5.33 17.40% 5.81 27.97% 

CCGT-CCS 8.59 8.33 3.03% 8.10 5.70% 7.51 12.57% 

Electrolysis 51.21 51.18 0.06% 51.17 0.08% 51.18 0.06% 

Methanation 16.57 16.51 0.36% 16.58 0.06% 16.5 0.42% 

Central heat pump 117.13 117.34 0.18% 118.38 1.07% 118.47 1.14% 

Individual heat pump 329.49 328.76 0.22% 326.90 0.79% 325.59 1.18% 

Resistive heating 19.18 19.48 1.56% 19.89 3.70% 20.86 8.76% 

Central gas boiler 0.0 0.0 0.00% 0.0 0.00% 0.0 0.00% 

Individual gas boiler 0.0 0.0 0.00% 0.0 0.00% 0.0 0.00% 

Energy Storage 

Battery storage 0.0 0.0 0.00% 0.0 0.00% 0.0 0.00% 

Gas Storage 25.61 25.53 0.31% 25.59 0.08% 25.55 0.23% 

Individual thermal energy storage 7.93 6.56 17.28% 5.90 25.60% 4.02 49.31% 

Central thermal energy storage 34.06 33.85 0.62% 32.81 3.67% 32.72 3.93% 

Heat Network 151.19 151.19 0.00% 151.19 0.00% 151.19 0.00% 

EV train 30 30 0.00% 30 0.00% 30 0.00% 

EV light 3.98 3.97 0.25% 3.96 0.50% 3.97 0.25% 

EV heavy 0.0 0.0 0.00% 0.0 0.00% 0.0 0.00% 

EV bus 0.0 0.0 0.00% 0.0 0.00% 0.0 0.00% 

ICE light 89.64 89.66 0.02% 89.68 0.04% 89.69 0.06% 

ICE heavy 56.97 56.97 0.00% 56.97 0.00% 56.97 0.00% 

ICE bus 6.47 6.47 0.00% 6.47 0.00% 6.47 0.00% 
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Appendix 3. Installed capacities and annual energy production for representative period 

selection methods 

Tables A.6 and A.7 show the installed capacity and the annual energy production of each technology 

for the base case with hourly temporal resolution over the continuous period of a whole year and for 

each of the representative period precisions. 

Table A.6. Installed capacities of energy production, conversion and storage technologies for different periods represented 

by a week (1 month, two months and three months) and their error from the base case 

 Represented period by one week 

Technology Installed Capacity (GW) base 1M error 2M error 3M error 

Energy Production 

Offshore wind 0.0 20 100% 20 100% 20 100% 

Onshore Wind 80.21 120 49.61% 120 49.61% 120 49.61% 

Solar PV 79.35 70.89 10.66% 43.39 45.31% 40.52 48.94% 

Hydroelectricity 20.4 20.4 0% 20.4 0 % 20.4 0% 

Nuclear energy 22.6 0 100% 0 100% 0 100% 

Fossil Gas 0.0 39.6 100% 44.84 100% 20.43 100% 

Methanization 17.35 16.01 7.72% 16.86 2.81% 18.03 3.94% 

Pyro-gasification of Biomass 0.0 0.0 0% 0.0 0% 0.0 0% 

Energy Conversion 

OCGT 2.14 0 100% 0 100% 0 100% 

CCGT 5.03 3.92 22.07% 4.094 18.61% 0 100% 

CCGT-CCS 5.72 4.19 26.75% 4.97 13.11% 1.336 76.64% 

Electrolysis 6.37 6.24 2.04% 6.245 1.96% 6.227 2.24% 

Methanation 3.48 4.54 30.46% 2.059 40.83% 0.632 81.84% 

Central heat pump 26.42 39.51 49.55% 31.183 18.03% 31.266 18.34% 

Individual heat pump 41.84 33.41 20.15% 36.586 12.56% 41.071 1.84% 

Resistive heating 17.78 14.77 16.93% 10.738 39.61% 12.36 30.48% 

Central gas boiler 0.0 0.0 0% 0.0 0% 0.0 0% 

Individual gas boiler 0.0 12.42 100% 13.791 100% 0.0 0% 

Energy Storage 

Battery storage 4.72 0.0 100% 0.0 100% 0.0 100 % 

Battery storage (GWh) 0.0 0.0 0% 0.0 0% 0.0 0% 

Gas Storage 24.61 24.88 1.10% 29.31 19.10% 20.045 18.55% 

Gas Storage (TWh) 134.6 134.6 0% 134.6 0% 134.6 0% 

Individual thermal energy storage 35.8 41.52 15.98% 0.0 100% 0.0 100% 

Individual thermal energy storage 

(GWh) 

44.311 82.16 85.42% 0.0 100% 0.0 100% 

Central thermal energy storage 46.25 39.86 13.82% 37.47 18.98% 40.88 11.61% 

Central thermal energy storage (TWh) 31.58 0.23 99.27% 3.16 90.00% 4.87 84.53% 

Heat Network 46.25 39.86 13.82% 37.47 18.98% 40.88 11.61% 
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Table A.7. Annual energy production from energy production, conversion and storage technologies for different 

representative week precisions and their error from the base case  

 Represented period by one week 

Technology Energy Supply (TWh/year) base 1M error 2M error 3M error 

Energy Production 

Offshore wind 0.0 92.07 100% 92.181 100% 92.138 100% 

Onshore Wind 228.16 341.31 49.59% 342.097 49.94% 341.79 49.80% 

Solar PV 112.83 101.14 10.36% 61.647 45.36% 57.612 48.94% 

Hydroelectricity 43.8 43.8 0% 43.8 0% 43.8 0% 

Nuclear energy 166.99 0 100% 0 100% 0 100% 

Fossil Gas 0.0 35.28 100% 35.293 100% 0.696 100% 

Methanization 152.0 126 17.11% 138.602 8.81% 151.994 0% 

Pyro-gasification of Biomass 0.0 0.0 0% 0.0 0% 0.0 0% 

Energy Conversion 

OCGT 1.04 0.0 100% 0.0 100% 0.0 100% 

CCGT 4.54 4.04 11.01% 4.149 8.61% 0.0 100% 

CCGT-CCS 8.59 6.34 26.19% 6.513 24.18% 1.919 77.66% 

Electrolysis 51.21 50.07 2.23% 50.121 2.13% 49.709 2.93% 

Methanation 16.57 20.34 22.75% 10.992 33.66% 3.364 79.70% 

Central heat pump 117.13 148.25 26.57% 132.915 13.48% 131.976 12.67% 

Individual heat pump 329.49 261.74 20.56% 292.48 11.23% 309.242 6.15% 

Resistive heating 19.18 36.27 89.10% 22.261 16.06% 18.62 2.92% 

Central gas boiler 0.0 0.0 0% 0.0 0% 0.0 0% 

Individual gas boiler 0.0 10.06 100% 12.582 100% 0.0 0% 

Energy Storage 

Battery storage 0.0 0 0% 0.0 0% 0.0 0% 

Gas Storage 25.61 7.87 69.27% 8.39 67.24% 7.86 69.30% 

Individual thermal energy storage 7.93 17.52 120.93% 0.0 100% 0.0 100% 

Central thermal energy storage 34.06 2.38 93.01% 17.907 47.43% 18.88 44.57% 

Heat Network 151.19 150.63 0.37% 150.82 0.24% 150.86 0.22% 

EV train 30 30 0% 30 0% 30 0% 

EV light 3.98 0.0 100% 0.0 100% 0.0 100% 

EV heavy 0.0 0.0 0% 0.0 0% 0.0 0% 

EV bus 0.0 0.0 0% 0.0 0% 0.0 0% 

ICE light 89.64 97.92 9.24% 97.92 9.24% 97.92 9.24% 

ICE heavy 56.97 56.97 0% 56.97 0% 56.97 0% 

ICE bus 6.47 6.47 0% 6.47 0% 6.47 0% 
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Appendix 4. Installed capacities and annual energy supply for each temporal resolution for 

the case with no nuclear power 

Tables A.8 and A.9 show the installed capacity and the annual energy production for the base case 

with hourly temporal resolution and for each variant case with coarser temporal resolution and the 

error associated with it, for the variant case where there is no nuclear power. 

Table A.8. Installed capacities of energy production, conversion and storage technologies for different temporal resolutions 
and their error from the base case of hourly resolution for the case with no nuclear power 

 Temporal Resolution 

Technology Installed Capacity (GW) 1-h 2-h Error  4-h Error 8-h Error 

Energy Production 

Offshore wind 6.04 5.71 5.46% 5.43 10.10% 5.69 5.79% 

Onshore Wind 120 120 0.00% 120 0.00% 120 0.00% 

Solar PV 122.46 125.8 -2.73% 85.59 30.11% 128.25 4.73% 

Hydroelectricity 20.4 20.4 0.00% 20.4 0.00% 20.4 0.00% 

Nuclear energy 0 0 0.00% 0 0.00% 0 0.00% 

Fossil Gas 53.51 53.11 0.75% 48.88 8.65% 50.44 5.74% 

Methanization 17.35 17.35 0.00% 17.35 0.00% 17.35 0.00% 

Pyro-gasification of Biomass 0.0 0.0 0.00% 0.0 0.00% 0.0 0.00% 

Energy Conversion 

OCGT 10.43 10.28 1.44% 8.47 18.79% 9.42 9.68% 

CCGT 7.96 8.19 2.89% 8.29 4.15% 7.75 2.64% 

CCGT-CCS 8.82 8.59 2.61% 8.39 4.88% 8.55 3.06% 

Electrolysis 8.09 8.03 0.74% 7.97 1.48% 7.94 1.85% 

Methanation 3.66 4.16 13.66% 4.26 16.39% 4.36 19.13% 

Central heat pump 21.52 22.48 4.46% 23.89 11.01% 24.05 11.76% 

Individual heat pump 44.3 43.52 1.76% 42.08 5.01% 41.82 5.60% 

Resistive heating 30.3 30.22 0.26% 30.91 2.01% 31.22 3.04% 

Central gas boiler 0.0 0.0 0.00% 0.0 0.00% 0.0 0.00% 

Individual gas boiler 0.0 0.0 0.00% 0.0 0.00% 0.0 0.00% 

Energy Storage 

Battery storage 12.4 12.32 0.65% 11.69 5.73% 11.16 10.00% 

Gas Storage 53.51 53.11 0.75% 48.88 8.65% 38.76 27.56% 

Gas Storage (TWh) 134.6 134.6 0.00% 134.6 0.00% 134.6 0.00% 

Individual thermal energy storage 52.83 34.92 33.90% 26.67 49.52% 9.44 82.13% 

Central thermal energy storage 43.85 43.32 1.21% 48.45 10.49% 48.65 10.95% 

Heat Network 43.85 43.32 1.21% 48.45 10.49% 48.64 10.92% 

Although the energy supply and conversion remain nearly identical, storage options can have higher 

than 10% of error in the required storage power capacity, particularly for the case of individual 

thermal storage option this error goes up to 80%. However, the impact of temporal resolution 

variation is marginal in energy system planning and the cost of the energy system.
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Table A.9. Annual energy production from energy production, conversion and storage technologies for different temporal 
resolutions and their error from the base case of hourly resolution for the case with no nuclear power 

 Temporal Resolution 

Technology Energy Supply (TWh/year) 1-h 2-h Error 4-h Error 8-h Error 

Energy Production 

Offshore wind 27.82 26.3 5.46% 24.99 10.17% 26.21 5.79% 

Onshore Wind 341.33 341.33 0.00% 341.33 0.00% 341.33 0.00% 

Solar PV 174.14 178.89 2.73% 183.23 5.22% 182.37 4.73% 

Hydroelectricity 43.8 43.8 0.00% 43.8 0.00% 43.8 0.00% 

Nuclear energy 0 0 0.00% 0 0.00% 0 0.00% 

Fossil Gas 18.51 16.05 13.29% 14.06 24.04% 13.89 24.96% 

Methanization 152.0 152 0.00% 152.0 0.00% 152.0 0.00% 

Pyro-gasification of Biomass 0.0 0.0 0.00% 0.0 0.00% 0.0 0.00% 

Energy Conversion 

OCGT 2.58 2.53 1.94% 2.33 9.69% 2.52 2.33% 

CCGT 6.72 6.94 3.27% 6.94 3.27% 6.52 2.98% 

CCGT-CCS 14.4 13.94 3.19% 13.41 6.88% 13.44 6.67% 

Electrolysis 53.24 53.2 0.08% 53.11 0.24% 53.1 0.26% 

Methanation 14.39 16.23 12.79% 16.87 17.23% 16.91 17.51% 

Central heat pump 96.24 99.47 3.36% 103.32 7.36% 102.7 6.71% 

Individual heat pump 319.61 315.22 1.37% 307.08 3.92% 306.86 3.99% 

Resistive heating 52.74 57.64 9.29% 60.95 15.57% 61.53 16.67% 

Central gas boiler 0.0 0.0 0.00% 0 0.00% 0.0 0.00% 

Individual gas boiler 0.0 0.0 0.00% 0 0.00% 0.0 0.00% 

Energy Storage 

Battery storage 13.71 13.44 1.97% 12.58 8.24% 11.63 15.17% 

Gas Storage 83.42 81.72 2.04% 79.34 4.89% 78.28 6.16% 

Individual thermal energy storage 10.93 13.66 24.98% 16.38 49.86% 12.17 11.34% 

Central thermal energy storage 54.95 51.72 5.88% 47.87 12.88% 48.49 11.76% 

Heat Network 151.19 151.19 0.00% 151.19 0.00% 151.19 0.00% 

EV train 30 30 0.00% 30 0.00% 30 0.00% 

EV light 4 4 0.00% 3.99 0.25% 3.98 0.50% 

EV heavy 0.0 0.0 0.00% 0.0 0.00% 0.0 0.00% 

EV bus 0.0 0.0 0.00% 0.0 0.00% 0.0 0.00% 

ICE light 89.59 89.6 0.01% 89.61 0.02% 89.64 0.06% 

ICE heavy 56.97 56.97 0.00% 56.97 0.00% 56.97 0.00% 

ICE bus 6.47 6.47 0.00% 6.47 0.00% 6.47 0.00% 

 


