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Energy system optimization models (ESOMs) increasingly cover the main energy-consuming sectors rather than just electricity, which massively raises calculation time. To reduce the latter, researchers apply various time-series aggregation methods, the pros and cons of which have been analyzed for electricity-only ESOMs but not for ESOMs also covering the main energy-consuming sectors. To address this question we compare the two main time-series aggregation methods: (1) reducing the temporal resolution (from one to two, four or eight hours) and (2) selecting representative periods (one week over one, two or three months, with an hourly resolution). We apply these methods to EOLES_mv, an ESOM covering the main French energy sectors. Both methods cut the calculation time by a similar amount but the former generates much smaller discrepancies for the main output variables (energy mix, system cost and CO 2 emissions). These results are at odds with those generally obtained with electricity-only ESOMs, for which reducing the temporal resolution generates significant discrepancies when wind and solar dominate the electricity mix.

Introduction

Motivation

To be of greatest use for climate and energy policies, energy system optimization models (ESOMs) should ideally include the main energy sectors, and optimally allocate the different energy sources and carriers to meet the end-use energy demand; this is referred to as 'sector coupling' (Brown et al., 2018a[START_REF] Lund | Smart energy and smart energy systems[END_REF], Zhu et al., 2020).

Unfortunately, the optimization of an ESOM featuring sector coupling over a full year (let alone several years) with an hourly resolution at the country level (and even more for a whole continent) is computationally demanding. Not only does it require large amounts of memory, but the calculation time is very long. For example, with the ESOM we use in the present paper [START_REF] Shirizadeh | Relative role of electricity and gas in a carbon-neutral future: insights from an energy system optimization model[END_REF] optimization of a single scenario over one year requires more than 60 hours on a standard personal computer 1 . Therefore, finding ways to reduce the calculation time without sacrificing accuracy is particularly welcome for sector-coupled ESOMs, and avoiding the modeling of every hour in a full year would reduce the calculation time a lot. The question is to what extent this would reduce the accuracy of the results.

Previous studies

Most electricity-only ESOMs applied at the country scale and featuring a high proportion of wind and solar generation use hourly temporal resolution. This choice is justified by the literature: on the one hand, if the size of the modeled area is that of a large European State, hourly resolution suffices since for both wind and solar generation, sub-hourly fluctuations, which are significant at the local scale, cancel each other out (Brown et al., 2018b, and references therein). On the other hand, with a temporal resolution coarser than one hour, demand peaks and wind or solar generation troughs are smoothed, resulting in an underestimation of the generation and storage capacities necessary to satisfy electricity demand [START_REF] Pfenninger | Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of interannual variability[END_REF][START_REF] De Guibert | Variable time-step: a method for improving computational tractability for energy system models with long-term storage[END_REF].

An increasing number of ESOMs include coupling between electricity and the other energy sectors (mostly heat and transportation). As shown in the recent review by [START_REF] Prina | Multi-objective investment optimization for energy system models in high temporal and spatial resolution[END_REF], some of these sector-coupled ESOMs model a full year based on hourly resolution while others select representative periods (also called time slices), e.g. one week with an hourly resolution to represent a specific period that has similar hourly profile for all the weeks in the studied period. [START_REF] Hoffmann | A Review on Time Series Aggregation Methods for Energy System Models[END_REF] review the development of both time-series aggregation methods (temporal resolution reduction and representative period selection) and their implementation in ESOMs.

Research gaps

While representative period selection is widely applied, e.g. in the TIMES models 1 , only a few studies mentioned in the exhaustive survey by [START_REF] Hoffmann | A Review on Time Series Aggregation Methods for Energy System Models[END_REF] apply resolution reduction, and to our knowledge, none of them apply the latter method to sector-coupled ESOMs.

Although the need for hourly temporal resolution has been established for electricity-only countrysize ESOMs [START_REF] Brown | Response to 'Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems[END_REF], this result does not necessarily hold for sector-coupled ESOMs. Indeed, sector coupling might mitigate the impact of demand peaks and wind or solar generation troughs, thanks to flexibility gains from non-electricity energy sectors [START_REF] Victoria | The role of storage technologies throughout the decarbonization of the sector-coupled European energy system[END_REF][START_REF] Gea-Bermúdez | The role of sector coupling in the green transition: A least-cost energy system development in Northern-central Europe towards 2050[END_REF]. Therefore, the required temporal resolution might be coarser than one hour, unlike for electricity-only ESOMs.

Study aims

Our broad research question is the following: what time-series aggregation method works best (in terms of results accuracy and calculation time) for a multi-sector ESOM featuring sector-coupling? To the best of our knowledge, this is the first paper to address this question for a multi-sector ESOM.

We apply the two above-mentioned time-series aggregation methods (temporal resolution reduction and representative period selection) to a multi-sector capacity expansion ESOM applied to France: EOLES_mv (which stands for Energy Optimization for Low Emission Systems -multi-vector; [START_REF] Shirizadeh | Relative role of electricity and gas in a carbon-neutral future: insights from an energy system optimization model[END_REF]. To this end, we develop seven different versions of the EOLES_mv model. Four represent a full year with constant temporal resolution (time steps of one, two, four and eight hours), while three use representative periods, in this case weeks (one per month, one per two months and one per three months) for a full year.

We conclude that temporal resolution reduction provides a much better trade-off between the calculation time and the output discrepancies than selection of representative periods. Moreover, the former method generates very small discrepancies even if the temporal resolution is as coarse as eight hours, while the calculation time is reduced 640-fold. This result still holds when we exclude nuclear energy, which results in an optimal energy mix of which 98% comes from renewable energy sources.

As a final check, we optimize investment at coarse temporal resolution (two, four or eight hours) and then optimize dispatch with an hourly resolution, to analyze whether the resulting lost electricity load changes the results. Discrepancies remain very small, which further confirms our main result. 1 The TIMES (The Integrated MARKAL-EFOM System) models, initially developed by the International Energy Agency, are widely used energy system optimization models. They are based on sequential optimization: first investment and later operation (dispatch) of the energy system. These models represent either one energy sector (electricity in [START_REF] Krakowski | Reprint of Feasible path toward 40-100% renewable energy shares for power supply in France by 2050: A prospective analysis[END_REF], or several sectors (electricity and gas in [START_REF] Doudard | Flexibilité et interactions de long terme dans les systèmes multi-énergies: analyse technico-économique des nouvelles filières gazières et électriques en France[END_REF], they represent either one country (the previously cited versions) or a larger area (for example the world in [START_REF] Kang | Is GHG mitigation policy enough to develop bioenergy in Asia: a long-term analysis with TIAM-FR[END_REF]. They all rely on representative period selection, such as one week-day and one weekend-day per month [START_REF] Doudard | Flexibilité et interactions de long terme dans les systèmes multi-énergies: analyse technico-économique des nouvelles filières gazières et électriques en France[END_REF] or different number of time-slices per year (for example 84 time-slices in [START_REF] Krakowski | Reprint of Feasible path toward 40-100% renewable energy shares for power supply in France by 2050: A prospective analysis[END_REF].

The remainder of this paper is organized as follows. Sections 2 and 3 present the methods (the different versions of the EOLES_mv model) and the input data, Section 4 presents the results and Section 5 concludes.

Methods

The EOLES_mv model

We use EOLES_mv, which belongs to the EOLES (Energy Optimization for Low Emission Systems) family of models. The EOLES family of models performs simultaneous optimization of the investment in and the operation of the energy system in order to minimize the total cost while satisfying energy demand on an hourly basis. The electricity-only versions of the EOLES family of models [START_REF] Shirizadeh | How sensitive are optimal fully renewable systems to technology cost uncertainty[END_REF][START_REF] Bshi Shirizadeh | Low-carbon options for the French power sector: What role for renewables, nuclear energy and carbon capture and storage?[END_REF] are representative of other capacity expansion models like DIETER [START_REF] Schill | Long-run power storage requirements for high shares of renewables: Results and sensitivities[END_REF], FLORE [START_REF] Perrier | The second French nuclear bet[END_REF] or Calliope [START_REF] Pfenninger | Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of interannual variability[END_REF].

The "mv" in EOLES_mv stands for multi-vector and this model minimizes the annualized energy generation, conversion and storage costs, including the cost of connection to the grid. EOLES_mv considers all the major energy sectors (residential and tertiary buildings, industry, transport and agriculture) in an integrated manner, enabling sector-coupling. It is similar to other recent multisector capacity expansion models such as those presented in Brown et al. (2018a[START_REF] Gea-Bermúdez | The role of sector coupling in the green transition: A least-cost energy system development in Northern-central Europe towards 2050[END_REF], [START_REF] Henning | A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies-Part I: Methodology[END_REF], [START_REF] Prina | Multi-objective investment optimization for energy system models in high temporal and spatial resolution[END_REF], [START_REF] Victoria | The role of storage technologies throughout the decarbonization of the sector-coupled European energy system[END_REF], as well as [START_REF] Zhu | Impact of CO2 prices on the design of a highly decarbonised coupled electricity and heating system in Europe[END_REF]. However, not all these models cover every sector included in EOLES_mv, and the geographical coverage differs across these models.

EOLES_mv is a greenfield optimization model, which calculates a cost-optimal steady state, taking into account the main technical and resource availability constraints. Therefore, this model does not produce a dynamic trajectory but a static optimal state. In order to account for precise dispatch with correct dimensioning of storage technologies and the seasonal and intra-daily variability of demand and energy production from renewable resources, the selected optimization period is a full year with hourly time-steps.

As all the optimization of dispatch and investment models, EOLES_mv is used for the capacity expansion of the considered system. This model shows the lowest cost future energy system, based on the hypotheses in the considered time horizon. Optimization of investment is the enabler of this functionality of the model. However, to make sure both the short-term and long-term (seasonality) variability of renewable sources and energy demand are correctly taken into account, hourly energy production and storage operation profiles are optimized. The latter is the optimization of the dispatch. Therefore, thanks to simultaneous optimization of both, a functioning optimal future energy system is the result of this model which can be used to (1) introduce a national optimal lowcarbon future energy system target, (2) study the impact of different policy measures in the evolution of the energy system, (3) provide investment advisory based on the future technologies and (4) simulate the hourly operation of power system and identify the main economic characteristics of the future energy market.

This model considers a country as a single node using the copper-plate assumption: spatial optimization is, therefore, not considered in this model. Although including spatial optimization and therefore transmission costs can increase or decrease the overall system cost, in a previous article we showed that modeling France as a single node while assuming that onshore wind and solar capacities are located in proportion to existing facilities (which is the case in this study) leads to much faster calculation (240 times) than considering France as four nodes, with negligible error in installed capacity of the key technologies and the overall cost of the system [START_REF] Shirizadeh | How sensitive are optimal fully renewable systems to technology cost uncertainty[END_REF].

The EOLES_mv model includes seven power generation technologies: floating and monopile offshore wind power, onshore wind power, photovoltaic solar power (PV), run-of-river and lake-generated hydro-electricity, nuclear power (EPR, i.e. third generation European Pressurized Water Reactors) and three gas production technologies: natural (fossil) gas, methanization from anaerobic digestion and pyro-gasification of solid biomass. Sector-coupling is enabled by vector-change (energy conversion) technologies: open-cycle gas turbines (OCGT), combined-cycle gas turbines (CCGT) and CCGTs equipped with post-combustion carbon capture and storage (CCS) technologies are used to convert gas to electricity. Vector-change from electricity to gas is enabled by electrolysis (power to hydrogen to inject into the gas network with a volume share limit) and methanation (hydrogen production from electrolysis of water and use of the Sabatier reaction between the hydrogen thus produced and green CO 2 to produce synthetic methane) as power-to-gas options. Similarly, centralized and decentralized boilers are used to produce heat from gas while centralized and individual heat pumps and resistive heat production technologies are used to produce heat from electricity. The model includes two electricity storage technologies (Li-Ion batteries and pumped hydro storage), the existing gas network as the gas storage option and two heat storage technologies (centralized and decentralized hot water tanks). Moreover, EOLES_mv allows demand for transport to be met with an endogenous choice between electric vehicles and internal combustion engine vehicles, for three main transport categories: light vehicles, heavy vehicles and buses (trains are all set to be electric since they are currently electric in France). The interactions of different energy end-use demands, supply side, storage and energy carriers are presented in Figure 1.

The EOLES_mv model is based on representative technologies chosen from groups of technologies with similar technical and economic behavior. For instance, only two engine types are considered in the transport sector: gas-fueled internal combustion engine (ICE) vehicles and battery electric vehicles (BEV). Other transport options include liquid-fueled ICE vehicles and hydrogen-fueled fuel cell electric vehicles but since they have similar economic and technical behavior to gas-fueled ICE vehicles and BEVs respectively, they have been excluded in order to maintain computational tractability.

The main simplification assumptions in the EOLES family of models are as follows: demand is inelastic, and the optimization is based on full information about the weather and electricity demand. This model uses only linear optimization: non-linear constraints might improve accuracy, especially when studying unit commitment, but they entail significant increase in computation time. Palmintier (2014) has shown that linear programming provides an interesting trade-off, with little impact on cost, CO 2 emissions and investment estimations, but speeds up processing by up to 1,500 times. The model is written in GAMS and solved using the CPLEX solver. In the current study, we provide a greenfield optimization by considering continental France as an isolated country for the year 2050. : power-to-gas, gasto-power, power-to-heat, gas-to-heat, power-to-transport and gas-to-transport. Transport is modelled as a demand that has the form of distance travelled. The circles represent the energy supply technologies that are connected to their primary energy forms, and they satisfy different end-uses represented as triangles. To distinguish between energy and feedstock flow, we represent the CO 2 flux in dashed lines. All the above-mentioned interactions are modelled by the constraint equations of the EOLES_mv model.

A more detailed description of the EOLES_mv model can be found in [START_REF] Shirizadeh | Relative role of electricity and gas in a carbon-neutral future: insights from an energy system optimization model[END_REF]. The sets, parameters, variables and equations of the model with hourly resolution can be found in Appendix 1. All the versions of the EOLES_mv model and their input data are available on GitHub1 .

Resolution variation

To account for the importance of temporal resolution, we developed several versions of the model using two-, four-and eight-hour resolutions. These coarser-resolution versions reduce the number of time-steps from 8760 to 4380, 2190 and 1095 respectively. To adapt the EOLES_mv model to each of these time-steps, the original equations (Equations (A. This equation represents the sum of all costs over the chosen period, including the annualized investment costs as well as the fixed and variable O&M costs, and the penalty associated to CO 2 emissions, i.e. the 'Social Cost of Carbon' (SCC) 1 . For some storage options, another CAPEX-related cost proportional to the energy capacity in is accounted for ( ). It is modified to Equation [START_REF] Bshi Shirizadeh | Low-carbon options for the French power sector: What role for renewables, nuclear energy and carbon capture and storage?[END_REF] in Box 1 by inclusion of the parameter which is the correction factor to account for the full energy production over a year by each technology.

In Equation (II) (A.12 in Appendix 1), monthly available energy for the hydroelectricity generated by lakes and reservoirs is defined using monthly lake inflows which means that energy stored can be used within the month but not across months.

(II)

Where

is the hourly power production by lakes and reservoirs, and is the maximum electricity that can be produced from this energy resource in one month. Equation (2) adapts it to different time-steps using the length of the considered time-step (parameter ).

Equation (III) (A.16 in Appendix 1) defines the reservoir size of the mobility technologies.

(III)

Where accounts for the reservoir size of each transport technology (kWh e for electric vehicles and kWh th for ICE vehicles). The storage volume of each transport technology accounts for an upper limit for the weekly charge and weekly energy consumption of it. While this storage volume is free of charge for ICE vehicles, electric vehicles' main cost component is this battery storage volume. Its adaptation to coarser-than-hourly time-steps leads to Equation ( 3).

For open-cycle and combined-cycle gas turbines, there are some safety-and maintenance-related breaks. Equations (IV), (V) and (VI) (A.19, A.20 and A.21 in Appendix 1) limit the annual power production for each of these plants to their maximum annual capacity factors, and Equations (4), ( 5) and ( 6) in Box 1 are the modified versions for the resolution variation cases by the inclusion of the length of time-step parameter ( ).

(IV) (V) (VI)
Where and are the capacity factors of OCGT and CCGT power plants.

Nuclear power plants have limited flexibility, so definitions of hourly ramp-up and ramp-down rates matter to model them accurately. Equations (VII) and (VIII) (A.25 and A.26 in Appendix 1) limit the power production of nuclear power plants with these ramping constraints.

(VII) (VIII)

Where is the nuclear power production at hour , is the nuclear power production at hour , is the reserve capacity provided by nuclear power plants at hour and and are the ramp-up and ramp-down rates for nuclear power production.

Only Equation (VII) is translated for the coarse temporal resolutions, since the nuclear ramp rate is 50% and for coarser temporal resolutions (2-, 4-and 8-hour) this limit does not apply. Moreover, the nuclear power plants' capacity factor should also be limited by safety and maintenance constraints (Equation IX, A.27 in Appendix 1).

(IX)

Where is the maximum annual capacity factor of nuclear power plants. Equations (VII) and (IX) are translated to Equations ( 7) and ( 8) in Box 1.

Equations (X) to (XII) (A.8, A.28 and A.29 in Appendix 1) define the storage mechanism and constraint in terms of power. The two first equations don't need to be adapted to varying temporal resolution cases. Indeed, since the parameters are defined by taking an average over the hours in the considered time-step, the resulting hourly variables (STORAGE and G) are hourly values, as if they were repeated consequently at each hour during the whole time-step as the same value. However, the equation that limits the available volume of energy that can be stored by each storage option (Equation XII) should be modified to take into account the length of the time-steps (Equation 9in Box 1).

(X)

(XI) (XII)
Where is the state of charge of the storage option str at hour h, while and are the charging and discharging efficiencies.

is the discharge of the storage technology str at hour h.

The captured carbon dioxide can't be stored infinitely, and geographical and social constraints limit the exploitation of CCS technology. Equation (XIII) (A.34 in Appendix 1) introduces this limit, which is translated to Equation (10).

(XIII)

Where is the maximal CO 2 storage potential, is hourly power production from CCGT power plants equipped with CCS units, is the carbon capture rate of post combustion CCS units, and is the specific emission of CCGT power plant with natural gas (considered with no CCS input). Equation (XIV) (A.32 in Appendix 1) limits the annual renewable gas production from each of two renewable gas production technologies; methanization and pyro-gasification of biomass, and its modified version is in Equation (11) in Box 1.

(XIV)

Where is the hourly biogas production from each of renewable gas production technologies and is the maximal yearly biogas that can be produced from each of renewable gas production technologies, both in energy values.

Using the time-step length parameter ( ) all the above-mentioned equations are translated into the equations in Box 1.

Representative periods

Representative periods can take several forms to account for different variations. [START_REF] Doudard | Flexibilité et interactions de long terme dans les systèmes multi-énergies: analyse technico-économique des nouvelles filières gazières et électriques en France[END_REF] considers 576 time-slices per year, by considering one weekday and one weekend day for each month. [START_REF] Samsatli | Optimal design and operation of integrated windhydrogen-electricity networks for decarbonising the domestic transport sector in Great Britain[END_REF] use one weekday and one weekend day for each season, resulting in 192 time-slices for each year. Although weekday and weekend classification accounts for the difference between a working day and weekend, it does not capture differences between weekdays or between the two days of the weekend. To overcome this issue, Perrier (2018) chooses a representative week over a two-month period. In this paper, we follow the same method, by choosing a representative week taking the average of all the weeks in one month, two months and

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) Box 1.
The modified equations of EOLES_mv model to adapt it to coarser-than-hourly temporal resolutions three months. Thus, each day of the week is repeated identically each time it appears in the month. Considering one representative week per month, one representative week per two months and one representative week per three months reduces the number of time-slices from 8760 to 2016, 1008 and 672 respectively.

To adapt the EOLES_mv model to this time-series aggregation method, we defined two different storage types: short-& medium-term storage options which can be fully charged and discharged in one week, and long-term storage options which can be fully charged and discharged in one month, two months or three months. In a continuous period, the storage options operate endogenously depending on their economic characteristics and technical limits: a storage option with high energy capacity cost and low power capacity cost, such as batteries, will operate as a short-term storage option, while a technology with low energy capacity cost and high power capacity cost, such as methanation storage, will operate as a long-term storage option [START_REF] Shirizadeh | How sensitive are optimal fully renewable systems to technology cost uncertainty[END_REF][START_REF] Schill | Long-run power storage requirements for high shares of renewables: Results and sensitivities[END_REF][START_REF] Schill | Long-run power storage requirements for high shares of renewables: Results and sensitivities[END_REF].

However, in a model with non-continuous periods, the charging and discharging cycles must be defined exogenously because from a modelling perspective it is necessary to know whether the operation of a storage technology will be repeated during each week of the chosen period to be represented or if it will be added up during the whole chosen period to be represented. For instance, the state of charge of a short-term storage option at the end of one representative week should equal the state of charge of that storage option at the beginning of the next representative week (cyclicity constraint), but the state of charge of a long-term storage option at the beginning of a representative week is its state of charge at the end of the previous representative week multiplied by the number of weeks in the considered period to be represented by a week. To apply this condition, Equation (X) (A.8 in Appendix 1) which was introduced in subsection is modified and divided into three equations (Equations 12, 13 and 14 in Box 2).

Box 2. Definition of long-term and short-term storage options in EOLES_mv models with representative periods

Where is the state of charge of storage option at hour , is the hourly energy entering storage option at hour is the energy generation (discharging) of storage option at hour , while and are the charging and discharging efficiencies.

represents short-term storage technologies (Li-Ion batteries, PHS and individual thermal energy storage), represents long-term energy storage options (gas storage and central thermal energy storage). represents the week and is the relative length of the chosen period to the representing week, which is equal to the number of hours in the chosen period divided by the number of hours in a week (168).

(12) (13) ( 14) Equations (I), (II), (IV), (V), (VI), (IX), (XII), (XIII) and (XIV) in in the previous section have been modified respectively as in that section. Box 2 summarized these equations.

In Box 3, is the ratio of the real length of a whole year to the represented fraction of the year which is equal to 8760/2016 for one week representing one month, 8760/1008 for one week representing two months and 8760/672 for one week representing three months.

Box 3. The modified equations of EOLES_mv to adapt them to the models with representative periods

Input data

In this section we present the input data briefly. The time horizon considered is 2050, which is also the official target date of the French government in reaching carbon neutrality. A more detailed description of the preparation of hourly profiles can be found in [START_REF] Shirizadeh | Relative role of electricity and gas in a carbon-neutral future: insights from an energy system optimization model[END_REF].

VRE profiles

The hourly variable renewable load factors are taken from the 'renewables.ninja' 1 website [START_REF] Pfenninger | Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of interannual variability[END_REF]Staffel, 2016 andStaffel andPfenninger, 2016). We choose one point per each county of France (département), and, assuming that onshore wind and solar capacities remain proportional to the existing ones, we aggregate the hourly load factors of the 95 counties to one single node. For solar power, we specify 10% of system loss, and for onshore wind power, we chose Vestas V90 2000 wind turbine with a hub height of 80 meters. Offshore wind power profiles are based on the existing projects taken from '4C offshore' 1 website, but we eliminate the projects from the Mediterranean Sea. All the floating offshore projects are considered floating, and all the mounted projects are considered to be on monopile foundation. The wind turbine assumed for offshore wind power is Siemens SWT 4.0 130 with a hub height of 120 meters.

In a previous work, we showed that 2006 can be chosen as the representative year for the period of 2000-2018 regarding the weather variability of VRE technologies; thus, we use the hourly VRE and hydro-electricity profiles for the year 2006 [START_REF] Shirizadeh | How sensitive are optimal fully renewable systems to technology cost uncertainty[END_REF].

Energy demand

The energy demand is categorized for each end-use: electricity, heat, transport and hydrogen (as a substitute for coal in the industry) covering all the main energy sectors: residential and tertiary buildings, industry and construction, agriculture and transport sectors. The preparation of energy demand profiles is explained in detail in [START_REF] Shirizadeh | Relative role of electricity and gas in a carbon-neutral future: insights from an energy system optimization model[END_REF], Table 1 shows the annual energy demand values, their hourly profiles and their sources. 

Economic parameters

Features of the technologies modeled

Tables 2, 3 and 4 show the economic parameters of energy production, conversion and storage technologies, and their sources. (2015). **Methanation is the combination of hydrogen production from electrolysis and the Sabatier reaction of green CO2 as a by-product from methanization with the hydrogen produced, therefore the economic parameters of each production are presented as electrolysis/Sabatier. ***As in [START_REF] De Guibert | Variable time-step: a method for improving computational tractability for energy system models with long-term storage[END_REF]. Table 5 shows the economic parameters for the two types of vehicle engine technologies considered, internal combustion engines fueled with compressed gas and electric vehicles. 

Discount rate

The discount rate recommended by the French government for use in public socio-economic analyses is 4.5% [START_REF] Quinet | L'évaluation socioéconomique des investissements publics[END_REF]. This discount rate is used to calculate the annuity in the objective function, using the following equation:

(

) 25 
Where DR is the discount rate, is the construction time, is the technical lifetime and is the annualized investment of the technology . [START_REF] Shirizadeh | Relative role of electricity and gas in a carbon-neutral future: insights from an energy system optimization model[END_REF] concludes that in the EOLES_mv model using an hourly resolution, carbonneutrality is reached for a Social Cost of Carbon (SCC) of €200/tCO 2 . Therefore, all the results presented are for this SCC value.

Social cost of carbon

Other limiting constraints and model parametrization

All the remaining input data (limiting capacity and annual energy supply constraints, model parametrization for the French case for the year 2050 etc.) can be found in Shirizadeh (2021).

Application to time-series aggregation methods

Resolution variation

For the coarser-resolution versions of EOLES_mv, the input profiles are prepared by taking an average over the hourly data that are in the considered time-step. Therefore, for a four-hour timestep from the fifth to the eighth hour of the day, an average of the hourly values from these four hours is taken to give the value of the profiles in the time-step under consideration.

Representative periods

To prepare the input data, each day of each week has been categorized as day 1 to 7, then hourly profiles of each input data series have been considered by taking an average over the days of the same category. Therefore, the hourly profiles of each typical day for the representative week for a considered period are the average of all the days with the same category in that period (one month, two months or three months).

Results

In this section, we present the results from the optimization with the seven versions of the EOLES_mv model presented in Sections 2.2 and 2.3 above. In Sections 4.1 to 4.4, we present the results of optimizations applying the time-series aggregation methods, in which the objective function (the social cost) and the other output variables are also calculated applying these methods. In Section 4.5, we optimize the capacity mix based on one time-series aggregation method and then we optimize the dispatch at hourly resolution, to assess the extra cost of this sub-optimal capacity mix, when applied to hourly data.

Energy mix

For electricity-generating technologies and gas (offshore and onshore wind, solar PV, run-of-river, dams & reservoirs and nuclear energy), we present the amount of electricity generated. For natural (fossil) gas, methanization (anaerobic digestion of organic waste) and pyro-gasification of biomass, we present the thermal energy of natural gas. These primary energy vectors can be either used directly to satisfy the final energy demand, or converted to other energy forms (heat, natural gas, electricity and hydrogen) to form secondary energy vectors. For both primary and secondary energy vectors, storage possibilities can also allow the energy to be stored for later use.

Figures 2 and3 show the energy mix for both time-series aggregation methods: resolution variation (hourly, two-hourly, four-hourly and eight-hourly temporal resolutions) and representative periods (hourly continuous case and the versions with representative weeks over one, two and three months). Note that Figures 2.a and 3.a are identical since both present the results with hourly resolution over a full year. For nuclear energy, the values in these figures show the electricity generated and do not include the waste heat generated in the process.

In addition, Appendix 2 and 3 present the installed capacities and annual energy production for both time-series aggregation methods. Since the optimal energy mix (with hourly resolution) includes around 80 GW of solar PV and the same amount of onshore wind, the generation profile varies massively from one hour to the other, especially during the morning and the afternoon1 . In the model with an hourly resolution over the whole year (Figure 2.a), the primary energy is mostly in the form of electricity (78% for all temporal resolutions) and this electricity is mainly (71%) from renewable sources. The only primary energy supply technology providing energy in the form of gas is methanization: no fossil gas is used, the explanation being that it is too costly due to the relatively high SCC value (€200/t CO 2 ).

All the three coarser resolution versions (Figure 2b, 2c and 2d) provide almost identical results. The contribution from renewables increases slightly, replacing 14TWh e /year of nuclear energy. This increase is mainly led by Solar PV. A likely explanation is that PV variability decreases by lowering the temporal resolution of the model. However, the energy mix for the eight-hourly temporal resolution remains very similar to the energy mix with one-hourly temporal resolution.

The energy production from methanization is the same for all the temporal resolutions, and it is the upper bound of energy that can be produced from this technology (152TWh th /year). The same is true for hydroelectricity.

On the contrary, for representative periods, the energy mix shows a very wide deviation from the base case that gives continuous representation of a year. Nuclear power (initially 24% of primary energy supply) disappears completely from the energy supply side, while offshore wind and fossil gas are now part of the mix (12% to 13% and up to 5% of the energy supply respectively). The contribution of onshore wind energy to the primary energy supply increases from 32% in the base case to 50% for the case with one representative week over three months. A likely explanation is that representative week selection decreases the variability of weather, reducing one of the main drawbacks of wind power: the large variation of the capacity factor within a year.

To compare the error caused by each time-series aggregation method, we calculate the mean absolute percentage error (MAPE) which represents the average error when several variables are considered together (Figure 4). Here the mean absolute percentage error of annual energy production from offshore and onshore wind, solar PV, nuclear power, methanization, hydroelectricity, pyro-gasification of biomass and fossil gas is considered, and it is calculated by summing the normalized absolute differences over these technologies 1 and dividing it by the number of technologies considered:

(26)

Where is the annual energy production of each technology for each temporal resolution, is the annual energy production of that technology for the case with hourly temporal resolution and is the number of technologies considered. The MAPE for any of the coarser-than-hourly temporal resolutions studied is negligible compared to that of the representative week selection method. The former increases from 0.0077 (0.77%) for the two-hourly resolution to 0.0248 (2.48%) for the eight-hourly resolution, while with the representative week selection method the MAPE is around 0.5 (50%) for the three representative week selection periods. Interestingly, the MAPE barely improves when the number of weeks increases, from one week per three month (hence four weeks at hourly resolution) to one week per month (hence twelve weeks at hourly resolution).

Electricity mix

Since the literature highlights the importance of temporal resolution in power system modelling with a large proportion of wind and PV, it is worth focusing on the electricity mix. Figures 5 and6 show the electricity mix and its role in satisfying final energy demand for different sectors, for each of the studied time-series aggregation methods. The electricity supply and consumption mixes remain nearly stable across different temporal resolutions (Figure 5). As this temporal resolution becomes coarser, the contribution of nuclear power to the electricity supply decreases slightly from 29.5% to 26.9%, and it is partially replaced by solar PV and onshore wind power (from 19.9% to 21.8% and from 40.3% to 40.9% respectively). The electricity consumption side remains nearly the same whatever the temporal resolution.

Electricity supply for different representative weeks is very different from the continuous base case (Figure 6). For representative week modelling, nuclear power is eliminated, while both onshore and offshore wind power technologies reach their maximal installation limits (120GW and 20GW) and they provide a very large proportion of the electricity supply (from 73.6% to 80.7%). Increasing the length of the represented period reduces the contribution of solar power to the electricity supply from 19.9% in the base case to 10.7% in the case with one representative week over three months. Therefore, nuclear energy and (to a lesser extent) solar PV are replaced by offshore and onshore wind power. Besides, as the variability of wind and solar production decreases with representative weeks, so does the need for dispatchable OCGT and CCGT (with and without CCS). From the base case with continuous time-series to the case with one representative week over three months, the contribution of these gas turbines to the electricity supply decreases from 2.5% to 0.4%. For representative periods, the difference in electricity consumption from the continuous base case is larger than in the cases where temporal resolution is varied. However, it remains marginal: the already small proportion of electric vehicles in light transport disappears as the represented period grows and the only use of electricity in the transport sector is for rail (30TWh e /an). To sum up, relying on representative periods has massive impacts on the electricity mix in terms of both supply and consumption.

Cost and emissions

Table 6 shows the annualized cost of the energy system, CO 2 emissions from the energy system, the calculation time of the EOLES_mv model for different temporal resolutions, and the difference from the case with hourly temporal resolution. Changing the temporal resolution from one hour to two hours leads to a nearly 11-fold decrease in calculation time, with an error of less than 0.1% in the annualized cost of the energy system. As this temporal resolution becomes coarser, the calculation time becomes even smaller (a 640-fold reduction in calculation time for the case with eight-hour temporal resolution), while the costrelated error only reaches 0.27%. While the error in CO 2 emissions (which are negative whatever the temporal resolution) is higher in percentage terms, it remains very low in absolute terms (at most 0.32 MtCO 2 /year). The social cost is slightly lower with coarser-than-one-hour resolutions because by averaging two (or four, or eight), adjacent time-steps, we reduce the peak residual demand (i.e. the difference between electricity demand and variable renewable energy generation) hence the need for storage and dispatchable power.

Representative period selection also provides a huge reduction in calculation time; one representative week over one month leads to a nearly 250-fold reduction in the overall simulation time (Table 7). This gain lies between that produced by the 4-hour and 8-hour resolution simulations presented above. However, the difference in cost and emissions is not negligible. The error in the estimation of the energy system cost is much higher than for the resolution variation methods, varying from 4.7% to 10.1%. Because of the proportion of fossil gas in the primary energy supply, emissions become positive for the cases of one week over one and two months. 1 The computer used for these simulations has 128 GB of RAM and its CPU is an Intel® Xeon® Bronze 3106 with 8 cores at 1.7 GHz.

2 Time required for the modelling software (GAMS) to load all the input data, identify different variables and equations, and make the link between the sets, parameters, variables and equations.

3 Time required for the CPLEX solver to solve the linear optimization problem. 

Variant case: suppression of nuclear power as a dispatchable power production option

In the previous sections we saw that the results of coarser-than-hourly temporal resolutions are very similar to those with hourly temporal resolution. The contrast between this result and that of preexisting research based on electricity-only models raises the question of how robust it is. The contrast might be due to the lower quantity of short-term storage in the result of our optimization: battery storage only reaches 5 GW compared to, for example 11 to 16 GW in the central-cost scenario electricity-only optimization presented in [START_REF] Bshi Shirizadeh | Low-carbon options for the French power sector: What role for renewables, nuclear energy and carbon capture and storage?[END_REF], and 20 GW in the 100% renewable optimization presented in [START_REF] Shirizadeh | How sensitive are optimal fully renewable systems to technology cost uncertainty[END_REF], both articles being based on the EOLES family of models.

In the results presented above, the importance of short-term storage is reduced by sector coupling (which allows curtailment of variable renewable energy production to be reduced) but also by nuclear power, which reaches 20GW and 160TWh e /year. The latter is used as a dispatchable electricity source, when variable renewables are not enough to satisfy demand. Nuclear power therefore contributes to reducing the need for storage.

In this section, we present the results for the same temporal resolution reduction methods as above, but with nuclear power removed from the available technologies. Figure 7 shows the primary energy supply mix for the case with no nuclear power. The proportion of the energy supply technologies remains almost the same for all four temporal resolutions. In the absence of nuclear power, offshore wind appears in the energy mix, varying between 3% and 4% of the primary energy supply (from 25 TWh to 27.8 TWh), and onshore wind is installed to its maximal capacity, producing 341.33 TWh of electricity at all temporal resolutions. The addition of fossil gas can be observed, generating 18.5 TWh for the hourly temporal resolution. By decreasing the resolution from one hour to eight hours, the required flexibility, and thus the fossil gas supply, decreases (from 18.5 TWh to 13.9 TWh).

Figure 8 shows the electricity production and consumption for simulations with different temporal resolutions (without nuclear power). Electricity production and consumption remain nearly identical among the various temporal resolutions. The largest error is a 1.2% increase in the proportion of solar PV. On the consumption side, all the end-uses keep the same energy consumption from electricity. A slight increase in methanation from 3.7% to 4.3% leads to a slight decrease in curtailment and other losses (from 3.5% to 2.5%). However, even for a temporal resolution of eight hours the power system remains nearly identical compared to the optimization with hourly temporal resolution.

Similarly, Table 8 compares the cost and the emissions at each temporal resolution. As can be seen, when the model uses an eight-hour temporal resolution, the cost is only 0.35% lower than with hourly temporal resolution. Similarly, annual CO 2 emissions are almost nil in every case, varying between 0.04MtCO 2 /year and -0.74MtCO 2 /year. Thus coarser-than-hourly temporal resolutions remain very accurate while drastically reducing the calculation time, even when a major low carbon dispatchable energy supply technology is eliminated. Appendix 5 shows installed capacities and annual energy production for each technology.

The extra cost of optimizing capacities based on a coarse temporal resolution

In the previous sections, we showed that the error values of modelling with a time resolution coarser than one hour are negligible, while the gains in computational tractability are very high.

Therefore, modelling with coarser temporal resolution seems to provide an attractive trade-off between precision and calculation time.

However, if generation and storage capacities are optimized based on a coarser-than-hourly temporal resolution, shortages in energy supply may occur during parts of the resulting longer periods between data points. For instance, supply may match demand over two hours considered as a whole, but not over each of these two hours considered separately. The value of these shortages may be assessed through an assumed value of lost load. Therefore, the aim of this section is to assess the extra cost of optimizing generation and storage capacities based on coarser-than-hourly temporal resolutions, when the dispatch of these capacities is optimized with an hourly temporal resolution1 .

To address this question, we run the hourly model with the installed capacities of the energy supply, conversion and storage technologies obtained by the optimizations with coarse temporal resolutions, and we define a value of lost load of €10,000/MWh e for electricity supply [START_REF] Gils | Assessment of the Theoretical Demand Response Potential in Europe[END_REF]. We saw previously that using an SCC of €200/tCO 2 and with nuclear power allowed, fossil gas is eliminated from the optimal mix. Since this may change when dispatch is optimized on a finer resolution than investment, we present two cases.

The first case aims to limit the extra cost from lost load by allowing fossil gas imports, and thus potentially positive CO 2 emissions. The cost, CO 2 emissions and lost electricity load are presented in Table 9. Although the extra cost is very limited (between €0.02bn./year and €0.15bn./year), the CO 2 emissions differ (especially for the 4-hourly resolution), because a small proportion of the primary energy is provided by fossil gas (up to 15.9TWh th /year for the 4-hourly temporal resolution, i.e. 2% of electricity generation). In every case, the lost load is very small: at most 10GWh e /year for the 4hourly temporal resolution (0.0019% of the load).

The importation of fossil gas is the reason why the CO 2 emissions slightly increase from the hourly temporal resolution case (France has no longer any fossil gas resources). Keeping the emissions below zero would require importation of fossil gas to be limited to its value resulting from the optimization with hourly temporal resolution (i.e. zero). Table 10 shows the same results as in Table 9, but for the second case, with no ability to import fossil gas. CO 2 emissions remain very close to the 1-hour case, which is expected since the fossil gas import capacity is fixed. The small variation is explained by a small change in BECCS. Although the extra cost is higher than in the previous case, it remains very low based on the 2-hourly resolution: less than 0.03%. The maximal value is for a four-hourly temporal resolution with an extra cost of €1.42bn/year, which remains reasonable (+2.4%).

Results, discussion and conclusion

Modelling energy systems covering the main energy sectors and the main energy supply, carrier and storage options with high temporal resolution over a full year is computationally demanding. Timeseries aggregation methods can reduce the calculation time of energy system models, but the tradeoff between computational tractability and accuracy in the optimal allocation of different options in an energy system model with sector coupling had yet to be analyzed -unlike the case of electricityonly models, which has been analyzed in depth.

In this paper, we have applied the two main time-series aggregation methods (temporal resolution reduction and representative period selection) to an energy system model with sector coupling, in order to test their benefit (in terms of reduced simulation time) and cost (in terms of output inaccuracy). The results are clear: while both methods massively reduce the calculation time, the accuracy of the representative period selection method is low while that of the temporal resolution reduction method is very high.

The inaccuracy of the representative period selection is seemingly caused by the implied reduction in weather (especially wind) variability over time, which leads to a higher proportion of wind power and to a lower cost. This is consistent with the findings by [START_REF] Alimou | Assessing the security of electricity supply through multi-scale modeling: The TIMES-ANTARES linking approach[END_REF]; by comparing TIMES-FR (a model optimizing dispatch and investment with representative weeks) and ANTARES (a dispatch model developed by RTE, the French transmission network operator, with hourly temporal resolution) they show that the former underestimates the system cost by 28% and that the capacity mix derived from TIMES-FR does not meet the supply/demand adequacy requirements of the French public authorities (i.e. annual loss of load of no more than three hours).

The accuracy of the resolution variation method is more puzzling: even moving from hourly to eighthourly resolution has almost no impact on the energy mix, energy system cost, emissions and load curtailment. Moreover, this result stands irrespective of the inclusion of nuclear power among the generation technologies -without which the energy mix is 98% renewable. A less than 2.5% mean absolute percentage error for the primary energy mix and less than 0.3% variation in the energy system cost seems an acceptable price to pay for a 640-fold reduction in calculation time using eight-hourly resolution. This result is especially noticeable since the intra-day variability of wind and especially PV is high, and the installed capacities in these technologies are large (around 80 GW each if nuclear is part of the mix, around 120 GW each if not). Therefore we can expect that in a similar model with less PV, coarser-than-hourly resolution would generate even less discrepancies.

Why is the resolution variation method more accurate for a model with sector coupling such as the one used here, compared to an electricity-only model? We suspect that the reason is the relatively low curtailment (~3%) and the very low short-term storage requirement permitted by sector coupling. With the same model without sector coupling, around 10 to 15% of electricity is curtailed and batteries are used as a short-term storage option [START_REF] Shirizadeh | How sensitive are optimal fully renewable systems to technology cost uncertainty[END_REF][START_REF] Bshi Shirizadeh | Low-carbon options for the French power sector: What role for renewables, nuclear energy and carbon capture and storage?[END_REF]. In such an electricity-only model, reducing temporal resolution would decrease energy losses through storage and curtailment. Therefore, it would reduce the total cost and change the energy mix significantly.

Coarser-than-hourly temporal precision would allow future modelling studies to increase their computational tractability, maintaining the required precision in calculations with much faster solution time. In those circumstances, other aspects of energy system modelling could be developed, such as better technical representation of different technologies, inclusion of a greater number of options in the modelling and application of detailed sensitivity and robustness studies that require wide ranges of scenarios to account for the uncertainties regarding energy demand, technology costs, resource availability and weather variability.

Comparing both methods for other energy system optimization models featuring sector coupling would be welcome to confirm the external validity of our results. In the meantime, we highlight that the key features of our model are similar to that of other well-known such models, such as PyPSAeur-sec-30 (Brown et al., 2018a): both use linear optimization to minimize annual operational and investment costs subject to physical constraints, assuming perfect foresight, and both use wind and PV generation profiles based on weather data and downscaling methods. The set of technologies represented is also very close. The main differences are that the choice between gas and electricity for transport is endogenous in EOLES_mv and that PyPSA-eur-sec-30 features several nodes, but we do not see why these differences would change our results concerning the relative performance of the two time-series aggregation methods.

Our representative week choice is based on preparation of an average week for each month, without considering other grouping characteristics of different periods. One interesting extension of this work could be the choice of representative periods based on similar weather and demand characteristics, which might improve the performance of representative period selection, such as seasonal representative periods.

Similarly, the coarser-than-hourly time-slices are based on simple division of 24 hours of a day to two-hour, four-hour and eight-hour long time-steps with no particular consideration of variable time-step choice for a day as we did previously for an electricity-only model [START_REF] De Guibert | Variable time-step: a method for improving computational tractability for energy system models with long-term storage[END_REF]. The performance of the resolution variation methods could be improved by smarter sub-sampling of daily time-steps.

However, even without variable time-step choice, this method performs very well with negligible error compared to modelling with hourly temporal resolution. If this positive result is confirmed for other models, it could allow modelling teams to benefit from the computer resources which are saved by this coarser time resolution, e.g. to analyze more complex models and richer sets of scenarios. The green CO 2 available as a byproduct of methanization for methanation [-] The maximal penetration rate of hydrogen in the gas network

Appendices

Where is the energy produced by each VRE resource at hour h, is the installed capacity and is the hourly capacity factor.

A.1.3.4. Energy storage

Energy stored by storage option str at hour h+1 is equal to the energy stored at hour h plus the difference between the energy entering and leaving the storage option at hour h, accounting for charging and discharging efficiencies (Equation A.8):

(A.8)

Where is the state of charge of the storage option str at hour h, while and are the charging and discharging efficiencies.

A.1.3.5. Secondary reserve requirements

Three types of operating reserves are defined by ENTSO-E ( 2013), depending on their activation speed. The fastest reserves are Frequency Containment Reserves (FCRs), which must be able to be on-line within 30 seconds. The second group is made up of Frequency Restoration Reserves (FRRs), in turn divided into two categories: a fast, automatic component (aFRRs), also called 'secondary reserves', with an activation time of no more than 7.5 min; and a slow manual component (mFRRs), or 'tertiary reserves', with an activation time of no more than 15 min. Finally, reserves with a startup-time beyond 15 minutes are classified as Replacement Reserves (RRs).

Each category meets specific system needs. The fast FCRs are useful in the event of a sudden break, like a line fall, to avoid system collapse. FRRs are useful for variations over several minutes, such as a decrease in wind or PV output. Finally, the slow RRs act as a back-up, slowly replacing FCRs or FRRs when the system imbalance lasts more than 15 minutes.

In the model we only consider FRRs, since they are the most heavily impacted by the inclusion of VRE. FRRs can be defined either upwards or downwards, but since the electricity output of VREs can be curtailed, we consider only upward reserves.

The quantity of FRRs required to meet ENTSO-E's guidelines is given by Equation (A.9). These FRR requirements vary with the variation observed in the production of renewable energies. They also depend on the observed variability in demand and on forecast errors: (A.9) Where is the required hourly reserve capacity from each of the reserve-providing technologies (dispatchable technologies) indicated by the subscript frr;

is the additional FRR requirement for VRE because of forecast errors, is the load variation factor and is the uncertainty factor in the load because of hourly demand forecast errors. The method for calculating these various coefficients according to ENSTO-E guidelines is detailed by [START_REF] Van Stiphout | The impact of operating reserves on investment planning of renewable power systems[END_REF].

Appendix 2. Installed capacities and annual energy production for simulation with coarse temporal resolutions

In order to better visualize the accuracy of each variant case, the energy mix and the associated errors must be studied. Tables A.4 and A.5 show the installed capacity and the annual energy production for the base case with hourly temporal resolution and for each variant case with coarser temporal resolution and the error associated with it. 

Figure 1 .

 1 Figure1. Interactions between energy supply, demand, storage and carriers by energy flux and CO 2 exchanges in the EOLES_mv model. The horizontal lines show the different final energy forms, as well as the CO 2 network. Among these horizontal lines, the bold ones are energy carriers (except CO 2 which is a feedstock. The interactions between the different energy carriers and end-uses are enabled by vertical arrows that represent vector-change technologies: power-to-gas, gasto-power, power-to-heat, gas-to-heat, power-to-transport and gas-to-transport. Transport is modelled as a demand that has the form of distance travelled. The circles represent the energy supply technologies that are connected to their primary energy forms, and they satisfy different end-uses represented as triangles. To distinguish between energy and feedstock flow, we represent the CO 2 flux in dashed lines. All the above-mentioned interactions are modelled by the constraint equations of the EOLES_mv model.

Figure 2 .

 2 Figure 2. Annual energy supply from each supply technology for different temporal resolutions. These values are in TWh e for nuclear power, offshore and onshore wind power, solar PV and hydroelectricity, and in TWh th for methanization.

Figure 3 .

 3 Figure 3. Annual energy supply from each primary supply technology for different representative period selections. These values are in TWh e for nuclear power, offshore and onshore wind power, solar PV and hydroelectricity, and in TWh th for methanization and fossil gas.

Figure 4 .

 4 Figure 4. Mean absolute percentage errors in installed capacity for each time-series aggregation method compared to the base case (continuous hourly temporal resolution over a full year)
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 5 Figure 5. Annual electricity supply and consumption mix for different temporal resolutions

Figure 6 .

 6 Figure 6. Annual electricity supply and consumption for different representative periods

Figure 7 .

 7 Figure7. Annual energy supply from each primary supply technology for different temporal resolutions without nuclear power. These values are in TWh e for nuclear power, offshore and onshore wind power, solar PV and hydroelectricity, and in TWh th for methanization and fossil gas.

Figure 8 .

 8 Figure 8. Annual electricity supply and consumption mix for different temporal resolutions in the absence of nuclear power

Table 1 .

 1 Sectorial demands for each end-use

	Sector	End-use		Annual Value	source	Profiles from
				(Mtoe)		
	Residential	Electricity Heat	6.2 18.5	ADEME (2017), DGEC (2019)	ADEME (2015) Doudard (2018)
	Tertiary	Electricity Heat	7.2 7.1	ADEME (2017), DGEC (2019)	ADEME (2015) Doudard (2018)
	Agriculture	Electricity Heat	1.4 1.6	ADEME (2017), négaWatt (2017)	ADEME (2015)
	Industry	Electricity Heat	6.7 12.7	ADEME (2017), négaWatt (2017)	ADEME (2015) Flat 2
		Hydrogen	3.5	ADEME (2017)	Flat
	Transport	Passengers (in Gp.km)	Light public Train	554 51 187	ADEME (2017)	Doudard (2018) Flat
		Freight	Heavy	347		Doudard (2018)
		(in Gt.km)	Train	127		Flat

Table 2 .

 2 Economic parameters of energy supply technologies

	Technology Overnight	Lifetime	Annuity	Fixed O&M	Variable	Construction	Source
		costs	(years)	(€/kW/year)	(€/kW/year)	O&M	time (years)	
		(€/kW)				(€/MWh)		
	Offshore wind farm	3,660	30	236.2	73.2	0	1	JRC (2017)
	-floating							
	Offshore wind farm	2,330	30	150.9	47	0	1	JRC (2017)
	-monopile*							
	Onshore wind	1,130	25	81.2	34.5	0	1	JRC (2017)
	farm*							
	Solar PV* 423	25	30.7	9.2	0	0.5	JRC (2017)
	Hydroelectricity -	2,275	60	115.2	11.4	0	1	JRC (2017)
	lake and reservoir							
	Hydroelectricity -	2,970	60	150.4	14.9	0	1	JRC (2017)
	run-of-river							
	Nuclear power 3,750	60	262.6	97.5	9.5**	10	JRC (2014)
	Natural (fossil) gas -	-	-	-	23.5***	-	IEA (2019)
	Methanization 370****	20	29.7	37	50	1	ADEME
								(2018)
	Pyro-gasification 2500	20	200.8	225	32*****	1	ADEME
								(2018)

*For offshore wind power on monopiles at 30km to 60km from the shore, for onshore wind power, turbines with medium specific capacity (0.3kW/m 2 ) and medium hub height (100m) and for solar power, an average of the costs of utility scale, commercial scale and residential scale systems without tracking are taken into account. In this cost allocation, we consider solar power as a simple average of groundmounted, rooftop residential and rooftop commercial technologies. For lake and reservoir hydro we take the mean value of low-cost and high-cost power plants. **This variable cost accounts for €2.5/MWh-e of fuel cost and €7/MWh of other variable costs, excluding waste management and insurance costs. *** The price projected for Europe in 2040 in the sustainable development scenario, standing for $7.5/MBtu. ****The overnight cost for methanization is the investment cost of the purification plants for syngas. *****The overnight cost only accounts for the gasification plants, while the wood used for energy is accounted for in variable costs.

Table 3 .

 3 Economic parameters of energy conversion technologies

	Technology	Overnight
		costs
		(€/

kW) Lifetime (years) Annuity (€/kW/year) Fixed O&M (€/kW/year) Variable O&M (€/MWh) Construction time (years) Conversion efficiency

  

									Source
	OCGT	550	30	35.28	16.5	0	1	0.45	JRC (2014)
	CCGT	850	30	54.53	21.25	0	1	0.63	JRC (2014)
	CCGT-CCS	1280	30	82.12	32	5.76*	1	0.55	JRC (2017)
	Electrolysis	450	25	31.03	6.75	0	0.5	0.8	ENEA
	(Power-to-H2)								(2016)
	Methanation	450/700	25/20	86.05	59.25	5***	0.5	0.8/0.79	ENEA
	(Power-to-								(2016)
	CH4)**								
	Resistive	100	20	7.86	2	0	0.5	0.9	Brown et
									al. (2018b)
	Individual heat	1050	20	82.54	36.75	0	0.5	3.5	Henning
	pump								and Palzer
									(2014)
	Central heat	700	20	55.02	24.5	0	0.5	2	Henning
	pump								and Palzer
									(2014)
	Central gas	63	20	4.95	0.945	0	0.5	0.9	Brown et
	boiler								al. (2018b)
	Decentral gas	175	20	13.76	3.5	0	0.5	0.9	Brown et
	boiler								al. (2018b)

* This variable cost accounts for a 500km transport pipeline and offshore storage costs estimated by Rubin et al.

Table 4 .

 4 Economic parameters of energy storage technologiesThe French gas network is already operational for methane injection; therefore, no network development cost is considered. However, the network usage fee of €2/MWhth for the gas network is derived from the French energy regulation commission(CRE, 2018).

	Technology	Overnig	CAPEX	Lifetime	Annuity	Fixed	Variable	Storage	Construc	Efficiency	Source
		ht costs	(€/kWh)	(years)	(€/kW/y	O&M	O&M	annuity	tion	(input /	
		(€/kW)			ear)	(€/kW/year)	(€/MWh)	(€/kWh/year)	time	output)	
									(years)		
	Pumped										
	hydro storage	500	5	55	25.8050	7.5	0	0.2469	1	95%/90%	FCH-JU (2015)
	(PHS)										
	Battery storage (Li-Ion)	140	100	12.5	15.2225	1.96	0	10.6340	0.5	90%/95%	Schmidt (2019)
											Brown
	ITES	0	18.38	20	-	0	0	1.4127	0.5	90%/90%	et al.
											(2018b)
											Brown
	CTES	0	0.64	40	-	0	0	0.0348	1	90%/75%	et al.
											(2018b)
	Gas storage*	0	0	80	0	0	2	0	-	100%/99%	CRE (2018)

*

Table 5 .

 5 Economic parameters of two vehicles engine types: internal combustion engines fuelled with compressed gas and battery electric vehicles (including their charging infrastructure)

	Technology

Charging infrastructure (€/kW) Reservoir (€/kWh) Lifetime (years) Charging annuity (€/kW/year) Reservoir annuity (€/kWh/year) Source

  

	Electric	81.7*	100	10	11.08	12.64	CGDD (2017)
	vehicles						
	ICE vehicles	180**	0	15	17.14	0	Doudard (2018)
	*We consider a charging point cost of €600 for 7kW of charging power.			
	**According to Doudard (2018), a gas charging station which can serve 400 vehicles per day costs €300,000: assuming nearly 100kWhth
	(384km of autonomy) of charging at each charge, we obtain this cost.			

Table 6 .

 6 Simulation time, cost and CO 2 emissions for different temporal resolutions and their difference from the base case of hourly resolution * The technical cost includes the annualized fixed cost and the variable cost. In addition, the social cost includes the value of CO 2 emissions, evaluated at the social cost of carbon (€200/t CO 2 ).

	1								
						Temporal Resolution	
	Main characteristics			1-h	2-h	Difference*	4-h	Difference*	8-h	Difference*
	Total simulation time (s)	216 254	19 974	-90.8%	3 180	-98.5%	339	-99.8%
	LP generation time (s)	2		210	84	-60%	8	-96.2%	2	-99.1%
	CPLEX solution time (s)	3	216 044	19 890	-90.8%	3 172	-98.5%	337	-99.8%
	Annual social cost of the	59.55	59.51	-0.07%	59.43	-0.20%	59.39	-0.27%
	energy system (€bn./year)						
	**								
	Annual CO 2 emissions			-2.51	-2.43	-3.19%	-2.37	-5.58%	-2.19	-12.75%
	(MtCO 2 /year)								
	* Difference from the 1-h resolution model.					

*

Table 7 .

 7 Simulation time, cost and CO 2 emissions for different representative periods and their difference from the base case of hourly resolution for a continuous period of one year * The technical cost includes the annualized fixed cost and the variable cost. In addition, the social cost includes the value of CO 2 emissions, evaluated at the social cost of carbon (€200/t CO 2 ).

	Representative periods

*

Table 8 .

 8 Cost and emissions resulting from modelling with hourly temporal resolution and coarser-than-hourly temporal resolutions for the case with no nuclear power

Temporal Resolution Main characteristics 1-h 2-h Difference 4-h Difference 8-h Difference Annual social cost of the energy system (€bn/year) *

  The technical cost includes the annualized fixed cost and the variable cost. In addition, the social cost includes the value of CO 2 emissions, evaluated at the social cost of carbon (€200/t CO 2 ).

		60.16	60.10	0.10%	59.99	0.28%	59.95	0.35%
	Annual CO 2 emissions (MtCO 2 /year)	0.04	-0.37	-	-0.69	-	-0.74	-

*

Table 9 .

 9 Social and technical costs, lost load and CO 2 emissions with the installed capacities optimized at coarse temporal resolution and dispatch optimized at hourly resolution, with the ability to import fossil gas

	1-h	2-h	4-h	8-h

Annual technical cost of the energy system (€bn./year) *

  The technical cost includes the annualized fixed cost and the variable cost. In addition, the social cost includes the value of lost load and the value of CO 2 emissions, evaluated at the social cost of carbon (€200/t CO 2 ).

		60.05	60.05	+0%	59.61 -0.73% 60.03 -0.03%
	Lost Load (GWh e /year)	0	0		3.77	10.03
	Lost load (percentage of entire electricity	0	0		0.0007%	0.0019%
	load)				
	Fossil gas consumption (TWh th /year)	0	0.101	15.9	2.72
	CO 2 emissions (MtCO 2 /year)	-2.51	-2.42	1.33	-1.68

*

Table 10 .

 10 Social and technical costs, lost load and CO 2 emissions with the installed capacities optimized at coarse temporal resolution and dispatch optimized at hourly resolution, with no ability to import fossil gas

	1-h	2-h	4-h	8-h

Table A .

 A 1 presents the sets and indices of the EOLES_mv model and table A.2 the parameters. Throughout the paper, every energy unit (e.g. MWh) or capacity unit (e.g. MW) is expressed in useful form. For instance, some energy is converted from gas to electricity by OCGT. The input energy in MWh is in the gas carrier, therefore the unit is MWh th and conversion efficiency by OCGT is 45%. The output energy is in MWh e equivalent to the value in MWh th multiplied by 0.45.

Table A .

 A 1. Sets and indices of the EOLES_mv model

		STRGAS ⊆		Gas storage: technologies providing storage for gas (gas storage) renewable energy
		GAS			
		STRHEAT ⊆ [ HEAT CONV ⊆ TEC [M€/	]	Heat storage: technologies providing storage for heat (ITES and CTES) Existing installed capacity by each hydroelectric technology Conversion: energy vector-change technologies (OCGT, CCGT, CCGT with CCS, electrolysis, methanation, resistive heating, electric heat pump, gas /year] Annualized capital cost of each technology
		CONVELEC [M€/		heat pump, central boiler and decentralized boiler) Conversion from electricity: energy vector-change technologies from /year] Annualized capital cost of energy volume for storage
		⊆ TEC			electricity to other carriers (electrolysis, methanation, resistive heating and technologies
			[M€/		electric heat pump) /year] Annualized capital cost of energy reservoir volume
		CONGAS ⊆		Conversion from gas: energy vector-change technologies from gas to other of transport technology
		TEC	[M€/		carriers (OCGT, CCGT, CCGT with CCS, gas heat pump, centralized boiler and decentralized boiler) /year] Annualized fixed operation and maintenance cost
		CENTRAL ⊆ HEAT [M€/ TVECTOR [-]		Central heating: heating technologies needing heat network (electric heat ] Variable operation and maintenance cost of each pump, gas heat pump and centralized boilers) technology Transport vector: two different engine types for transport sector (EV and ICE) Charging efficiency of storage technologies
		TCAT			Transport category: four categories of transport demand (heavy, light, bus
	Index	Set	[-]		Description and train)	Discharging efficiency of storage technologies
		EV ⊆			Electric transport: the electric transport technologies (heavy EV, light EV,
		H D W TRANSPORT ICE ⊆ TRANSPORT [-] FRR ⊆ TEC [	]	Hour: the number of hours in a year, from 0 to 8759 Day: The number of days in a year, from 1 to 365 Week: The number of weeks in a year, from 1 to 52 (the 52 EV bus and train) Conversion efficiency for energy conversion Gas transport: the ICE transport technologies using gas as fuel (heavy ICE, technologies light ICE and ICE bus) Transport efficiency of each transport technology Frequency restauration reserves: Technologies contributing to secondary nd week accounts for 10 days) reserves requirements (lake, PHS, battery, OCGT, CCGT, CCGT with CCS and nuclear) Pumping capacity for Pumped hydro storage
		M CO2			Month: the twelve months, from January to December Social cost of carbon scenario: The scenarios are 1, 2, 3, 4, 5 and 6
	TEC Table A.2. Parameters of the EOLES_mv model [ ] Technologies: The set of all energy supply, conversion, storage and non-Maximum energy volume that can be stored in PHS reservoirs existing carrier technologies (floating offshore, monopile offshore, onshore, PV, river, lake, nuclear, natural gas, methanization, pyro-[ ] Maximum yearly energy that can be generated from renewable gas supply technologies gasification, OCGT, CCGT, CCGT with CCS, electrolysis, methanation, heat network, resistive heating, electric heat pump, gas heat pump, central Parameter Unit Description [-] Uncertainty coefficient for hourly electricity demand
			[-] [-] [-]		boiler, decentralized boiler, heavy EV, light EV, EV bus, train, heavy ICE, light ICE, ICE bus, PHS, battery, gas storage, individual thermal energy storage -ITES-and central thermal energy storage -CTES) A parameter to show which day each hour is in A parameter to show which week each hour is in Load variation factor
		GEN ⊆ TEC [-] [-]		Generation: Energy supply technologies (floating offshore, monopile offshore, onshore, PV, river, lake, nuclear, natural gas, methanization and A parameter to show which month each hour is in Maximal ramping up rate of nuclear power
		ELEC ⊆ TEC [-] [-] [-] [-]		pyro-gasification) Electricity: The technologies providing electricity by supply, conversion or Hourly production profiles of variable renewable Maximal ramping down rate of nuclear power energies storage (floating offshore, monopile offshore, onshore, PV, river, lake, nuclear, OCGT, CCGT, CCGT with CCS, PHS and battery) Hourly charging profile of each transport technology The maximal annual capacity factor for nuclear
		GAS ⊆ TEC [ [-]		Gas: The technologies providing gas by supply, conversion or storage (natural gas, methanization, pyro-gasification, electrolysis, methanation ] power Hourly heat demand profile The maximal annuity capacity factor for OCGT plant
					and gas storage)
		HEAT ⊆ TEC Heat: The technologies providing heat by conversion and storage (heat network, resistive heating, electric heat pump, gas heat pump, central [ ] Hourly hydrogen demand profile (for industry) [-] The maximal annual capacity factor for CCGT plant
		[ [-] TRANSPORT ⊆ TEC [	]	boiler, decentralized boiler, individual thermal energy storage and central Hourly electricity demand profile The maximal annual capacity factor for CCGT with thermal energy storage) Transport: The technologies that meet different types of transport demand (heavy EV, light EV, EV bus, train, heavy ICE, light ICE and ICE bus) CCS plants Hourly transport demand for heavy vehicles ] Emission rate of each technology
		ELECGEN ⊆ ELEC GASGEN ⊆ [		Electricity supply: The technologies generating electricity (floating offshore, monopile offshore, onshore, PV, river, lake and nuclear) Gas supply: Technologies supplying gas (natural gas, methanization and Hourly transport demand for light vehicles ] Social cost of carbon for each SCC scenario
		GAS BIOGAS ⊆ GAS [ VRE ⊆ ELEC [ [-]		pyro-gasification) ] Renewable gas: biogas supply technologies (methanization and pyro-Hourly transport demand for buses The maximal carbon dioxide that can be stored gasification) VRE: variable renewable electricity generation technologies (offshore, ] annually Hourly transport demand for trains (flat)
		STR ⊆ TEC [		onshore, PV and run-of-river) Storage: energy storage technologies (PHS, battery, gas storage, individual ] Monthly extractable energy from lakes
		STRELEC ⊆ ELEC [-]		thermal energy storage and central thermal energy storage) Frequency restoration requirement because of Electric storage: technologies providing storage for electricity (battery and PHS) forecast errors on the production of each variable

Table A .

 A 4. Installed capacities of energy production, conversion and storage technologies for different temporal resolutions and their error from the base case of hourly resolution

				Temporal Resolution		
	Technology Installed Capacity (GW)	1-h	2-h	error	4-h	error	8-h	error
	Energy Production							
	Offshore wind	0.0	0.0	0.00%	0.0	0.00%	0.0	0.00%
	Onshore Wind	80.21	80.53	0.40%	80.35	0.17%	81.62	1.76%
	Solar PV	79.35	81.84	3.14%	85.59	7.86%	86.96	9.59%
	Hydroelectricity	20.4	20.4	0.00%	20.4	0.00%	20.4	0.00%
	Nuclear energy	22.6	22.26	1.50%	21.77	3.67%	21.21	6.15%
	Fossil Gas	0.0	0.0	0.00%	0.0	0.00%	0.0	0.00%
	Methanization	17.35	17.35	0.00%	17.35	0.00%	17.35	0.00%
	Pyro-gasification of Biomass	0.0	0.0	0.00%	0.0	0.00%	0.0	0.00%
	Energy Conversion							
	OCGT	2.14	2.15	0.47%	1.88	12.15%	2.2	2.80%
	CCGT	5.03	5.22	3.78%	5.88	16.90%	6.36	26.44%
	CCGT-CCS	5.72	5.52	3.50%	5.35	6.47%	4.99	12.76%
	Electrolysis	6.37	6.35	0.31%	6.37	0.00%	6.37	0.00%
	Methanation	3.48	3.48	0.00%	3.47	0.29%	3.46	0.57%
	Central heat pump	26.42	26.67	0.95%	27.45	3.90%	27.82	5.30%
	Individual heat pump	41.84	41.60	0.57%	41.23	1.46%	40.92	2.20%
	Resistive heating	17.78	17.96	1.01%	17.50	1.57%	17.92	0.79%
	Central gas boiler	0.0	0.0	0.00%	0.0	0.00%	0.0	0.00%
	Individual gas boiler	0.0	0.0	0.00%	0.0	0.00%	0.0	0.00%
	Energy Storage							
	Battery storage	4.72	5.11	8.26%	5.19	9.96%	5.46	15.68%
	Battery storage (GWh)	0.0	0.0	0.00%	0.0	0.00%	0.0	0.00%
	Gas Storage	24.61	24.55	0.24%	24.66	0.20%	25.48	3.54%
	Gas Storage (TWh)	134.6	134.6	0.00%	134.6	0.00%	134.6	0.00%
	Individual thermal energy storage	35.8	18.15	49.30%	9.23	74.22%	3.57	90.03%
	Individual thermal energy storage (GWh)	44.31	36.30	18.08%	36.93	16.66%	28.558	35.55%
	Central thermal energy storage	46.25	46.76	1.10%	46.99	1.60%	47.689	3.11%
	Central thermal energy storage (TWh)	31.58	31.28	0.95%	30.26	4.17%	29.644	6.12%
	Heat Network	46.25	46.76	1.10%	46.99	1.60%	47.69	3.11%

Table A .

 A 5. Annual energy production from energy production, conversion and storage technologies for different temporal resolutions and their error from the base case of hourly resolutionTableA.6. Installed capacities of energy production, conversion and storage technologies for different periods represented by a week (1 month, two months and three months) and their error from the base case Represented period by one week

						Temporal Resolution
	Technology Energy Supply (TWh/year)	1-h	2-h			error	4-h		error	8-h	error
	Energy Production								
	Offshore wind	0.0	0.0			0.00%	0.0		0.00%	0.0	0.00%
	Onshore Wind 228.16	229.07	0.40%	228.55	0.17%	232.15	1.75%
	Solar PV 112.83	116.38	3.15%	121.71	7.87%	123.66	9.60%
	Hydroelectricity	43.8	43.8			0.00%	43.8		0.00%	43.8	0.00%
	Nuclear energy 166.99	162.59	2.63%	157.94	5.42%	153.02	8.37%
	Fossil Gas Methanization 152.0 0.0 Technology Installed Capacity (GW) base Pyro-gasification of Biomass 0.0 Energy Production Offshore wind 0.0 Energy Conversion OCGT 1.04 Onshore Wind 80.21	0.0 152.0 0.0 1.05	1M 20 120	0.00% 0.00% error 0.00% 100% 0.96% 49.61%	0.0 152.0 2M 0.0 20 0.86 120	0.00% 0.00% error 0.00% 100% 17.31% 49.61%	0.0 152.0 3M 0.0 20 1 120	0.00% error 0.00% 0.00% 100% 3.85% 49.61%
	CCGT Solar PV	4.54 79.35	4.78	70.89	5.29% 10.66%	5.33 43.39	17.40% 45.31%	5.81 40.52	27.97% 48.94%
	CCGT-CCS Hydroelectricity	8.59 20.4	8.33		20.4	3.03% 0%	8.10 20.4	5.70% 0 %	7.51 20.4	12.57% 0%
	Electrolysis 51.21 Nuclear energy 22.6	51.18	0	0.06% 100%	51.17	0	0.08% 100%	51.18 0	0.06% 100%
	Methanation 16.57 Fossil Gas 0.0	16.51	39.6	0.36% 100%	16.58 44.84	0.06% 100%	16.5 20.43	0.42% 100%
	Central heat pump 117.13 Methanization 17.35	117.34 16.01	0.18% 7.72%	118.38 16.86	1.07% 2.81%	118.47 18.03	1.14% 3.94%
	Pyro-gasification of Biomass Individual heat pump 329.49 0.0 Resistive heating 19.18 Energy Conversion Central gas boiler 0.0 OCGT 2.14 Individual gas boiler 0.0 5.03 CCGT 5.72 CCGT-CCS Energy Storage Battery storage 0.0 6.37 Electrolysis Gas Storage 25.61 3.48 Methanation Individual thermal energy storage 7.93 26.42 Central heat pump Central thermal energy storage 34.06 41.84 Individual heat pump Heat Network 151.19 17.78 Resistive heating EV train 30 0.0 Central gas boiler EV light 3.98 0.0 Individual gas boiler EV heavy 0.0 Energy Storage EV bus 0.0 4.72 Battery storage ICE light 89.64 0.0 Battery storage (GWh) ICE heavy 56.97 24.61 Gas Storage ICE bus 6.47 134.6 Gas Storage (TWh) Individual thermal energy storage 35.8	328.76 19.48 0.0 0.0 3.92 0.0 0 4.19 0.0 6.24 25.53 4.54 6.56 39.51 33.85 33.41 151.19 14.77 30 0.0 3.97 12.42 0.0 0.0 0.0 89.66 0.0 56.97 24.88 6.47 134.6 41.52	0.22% 0% 1.56% 0.00% 100% 0.00% 22.07% 26.75% 0.00% 2.04% 0.31% 30.46% 17.28% 49.55% 0.62% 20.15% 0.00% 16.93% 0.00% 0% 0.25% 100% 0.00% 0.00% 100% 0.02% 0% 0.00% 1.10% 0.00% 0% 15.98%	326.90 0.0 19.89 0.0 0 0.0 4.094 4.97 0.0 6.245 25.59 2.059 5.90 31.183 32.81 36.586 151.19 10.738 30 0.0 3.96 13.791 0.0 0.0 0.0 89.68 0.0 56.97 29.31 6.47 134.6 0.0	0.79% 0% 3.70% 0.00% 100% 0.00% 18.61% 13.11% 0.00% 1.96% 0.08% 40.83% 25.60% 18.03% 3.67% 12.56% 0.00% 39.61% 0.00% 0% 0.50% 100% 0.00% 0.00% 100% 0.04% 0% 0.00% 19.10% 0.00% 0% 100%	325.59 0.0 20.86 0.0 0 0.0 0 1.336 0.0 6.227 25.55 0.632 4.02 31.266 32.72 41.071 151.19 12.36 30 0.0 3.97 0.0 0.0 0.0 0.0 89.69 0.0 56.97 20.045 6.47 134.6 0.0	1.18% 0% 8.76% 100% 0.00% 100% 0.00% 76.64% 2.24% 0.00% 81.84% 0.23% 18.34% 49.31% 1.84% 3.93% 30.48% 0.00% 0% 0.00% 0% 0.25% 0.00% 100 % 0.00% 0% 0.06% 18.55% 0.00% 0% 0.00% 100%
	Individual thermal energy storage	44.311		82.16	85.42%	0.0	100%	0.0	100%
	(GWh)								
	Central thermal energy storage	46.25		39.86	13.82%	37.47	18.98%	40.88	11.61%
	Central thermal energy storage (TWh)	31.58			0.23	99.27%	3.16	90.00%	4.87	84.53%
	Heat Network	46.25		39.86	13.82%	37.47	18.98%	40.88	11.61%

Table A .

 A Table A.7. Annual energy production from energy production, conversion and storage technologies for different representative week precisions and their error from the base caseRepresented period by one week 9. Annual energy production from energy production, conversion and storage technologies for different temporal resolutions and their error from the base case of hourly resolution for the case with no nuclear power

				Temporal Resolution		
	Technology Energy Supply (TWh/year) Technology Energy Supply (TWh/year)	base 1-h	1M 2-h	error Error	2M 4-h	error Error	3M 8-h	error Error
	Energy Production Energy Production							
	Offshore wind Offshore wind 27.82 0.0	92.07 26.3	100% 5.46%	92.181 24.99	100% 10.17%	92.138 26.21	100% 5.79%
	Onshore Wind Onshore Wind 341.33 228.16	341.31 341.33	49.59% 0.00%	342.097 341.33	49.94% 0.00%	341.79 341.33	49.80% 0.00%
	Solar PV Solar PV 174.14 112.83	101.14 178.89	10.36% 2.73%	61.647 183.23	45.36% 5.22%	57.612 182.37	48.94% 4.73%
	Hydroelectricity Hydroelectricity	43.8 43.8	43.8 43.8	0% 0.00%	43.8 43.8	0% 0.00%	43.8 43.8	0% 0.00%
	Nuclear energy Nuclear energy	166.99 0	0 0	100% 0.00%	0 0	100% 0.00%	0 0	100% 0.00%
	Fossil Gas Fossil Gas 18.51 0.0	35.28 16.05	100% 13.29%	35.293 14.06	100% 24.04%	0.696 13.89	100% 24.96%
	152.0 Methanization 152.0 Methanization 0.0 Pyro-gasification of Biomass 0.0 Pyro-gasification of Biomass Energy Conversion Energy Conversion 1.04 OCGT 2.58 OCGT CCGT 4.54 CCGT 6.72	126 152 0.0 0.0 0.0 2.53 4.04 6.94	17.11% 0.00% 0% 0.00% 100% 1.94% 11.01% 3.27%	138.602 152.0 0.0 0.0 0.0 2.33 4.149 6.94	8.81% 0.00% 0% 0.00% 100% 9.69% 8.61% 3.27%	151.994 152.0 0.0 0.0 0.0 2.52 0.0 6.52	0% 0.00% 0% 0.00% 100% 2.33% 100% 2.98%
	CCGT-CCS CCGT-CCS	8.59 14.4	6.34 13.94	26.19% 3.19%	6.513 13.41	24.18% 6.88%	1.919 13.44	77.66% 6.67%
	Electrolysis Electrolysis 53.24 51.21	50.07 53.2	2.23% 0.08%	50.121 53.11	2.13% 0.24%	49.709 53.1	2.93% 0.26%
	Methanation Methanation 14.39 16.57	20.34 16.23	22.75% 12.79%	10.992 16.87	33.66% 17.23%	3.364 16.91	79.70% 17.51%
	Central heat pump Central heat pump 96.24 117.13	148.25 99.47	26.57% 3.36%	132.915 103.32	13.48% 7.36%	131.976 102.7	12.67% 6.71%
	Individual heat pump Individual heat pump 319.61 329.49	261.74 315.22	20.56% 1.37%	292.48 307.08	11.23% 3.92%	309.242 306.86	6.15% 3.99%
	Resistive heating Resistive heating 52.74 19.18	36.27 57.64	89.10% 9.29%	22.261 60.95	16.06% 15.57%	18.62 61.53	2.92% 16.67%
	Central gas boiler Central gas boiler	0.0 0.0	0.0 0.0	0% 0.00%	0.0 0	0% 0.00%	0.0 0.0	0% 0.00%
	Individual gas boiler Individual gas boiler	0.0 0.0	10.06 0.0	100% 0.00%	12.582 0	100% 0.00%	0.0 0.0	0% 0.00%
	Energy Storage Energy Storage							
	Battery storage Battery storage 13.71 0.0	0 13.44	0% 1.97%	0.0 12.58	0% 8.24%	0.0 11.63	0% 15.17%
	Gas Storage Gas Storage 83.42 25.61	7.87 81.72	69.27% 2.04%	8.39 79.34	67.24% 4.89%	7.86 78.28	69.30% 6.16%
	Individual thermal energy storage Individual thermal energy storage 10.93 7.93	17.52 13.66	120.93% 24.98%	0.0 16.38	100% 49.86%	0.0 12.17	100% 11.34%
	Central thermal energy storage Central thermal energy storage 54.95 34.06	2.38 51.72	93.01% 5.88%	17.907 47.87	47.43% 12.88%	18.88 48.49	44.57% 11.76%
	Heat Network Heat Network 151.19 151.19	150.63 151.19	0.37% 0.00%	150.82 151.19	0.24% 0.00%	150.86 151.19	0.22% 0.00%
	EV train EV train	30 30	30 30	0% 0.00%	30 30	0% 0.00%	30 30	0% 0.00%
	EV light EV light	3.98 4	0.0 4	100% 0.00%	0.0 3.99	100% 0.25%	0.0 3.98	100% 0.50%
	EV heavy EV heavy	0.0 0.0	0.0 0.0	0% 0.00%	0.0 0.0	0% 0.00%	0.0 0.0	0% 0.00%
	EV bus EV bus	0.0 0.0	0.0 0.0	0% 0.00%	0.0 0.0	0% 0.00%	0.0 0.0	0% 0.00%
	ICE light ICE light 89.59 89.64	97.92 89.6	9.24% 0.01%	97.92 89.61	9.24% 0.02%	97.92 89.64	9.24% 0.06%
	ICE heavy ICE heavy 56.97 56.97	56.97 56.97	0% 0.00%	56.97 56.97	0% 0.00%	56.97 56.97	0% 0.00%
	ICE bus ICE bus	6.47 6.47	6.47 6.47	0% 0.00%	6.47 6.47	0% 0.00%	6.47 6.47	0% 0.00%

The computer has 128 GB of RAM and its CPU is an Intel® Xeon® Bronze 3106 with 8 cores at 1.7 GHz.

https://github.com/BehrangShirizadeh/EOLES_mv_temp

For the value of the SCC parameter, we have chosen the one which allows carbon neutrality (an official target of France for

2050) in the EOLES_mv model, i.e. €200/tCO 2 .

https://www.4coffshore.com/

Flat profile means a profile that has the same value for all the time-steps. Thus, once the values are plotted as a function of the time-steps, the graph shows a flat horizontal line.

Cf. Figure 

[START_REF] Shirizadeh | How sensitive are optimal fully renewable systems to technology cost uncertainty[END_REF], which presents the hourly profile for two typical weeks, for the EOLES_elecRES model. The method to generate the VRE profiles is the same as in the present paper, so the hourly generation profile is similar.

The installed capacity of hydroelectricity is fixed, and pyro-gasification of biomass never appears in the optimal mix for the social cost of carbon that we consider.

As we have seen, the capacities optimized using the representative period selection method are very different from those optimized using the continuous, hourly base case. Thus, it is obvious that optimizing the dispatch of those capacities over a continuous, hourly period would lead to a large extra cost, so we do not assess this case.

Data availability

All the versions of the model and the input data are available on GitHub: https://github.com/BehrangShirizadeh/EOLES_mv_temp.

A.1.2. Variables

The variables resulting from the optimization are presented in table A.3. The energy reservoir volume for each transport technology Energy capacity by storage technology Hourly upward frequency restoration requirement to manage the variability of renewable energies and demand uncertainties b€ Total energy system cost annualized (minus the investment cost of already installed capacities). This is the objective function to be minimized.

A.1.3. Equations

A.1.3.1. Objective function

The objective function, shown in Equation (A.1), is the sum of all costs over the chosen period, including the annualized investment costs as well as the fixed and variable O&M costs. For some storage options, another CAPEX-related cost proportional to the energy capacity in is accounted for ( ).

(A.1)

Where represents the production capacities, represents the existing capacity (notably for hydro-electricity technologies with long lifetime), is the energy storage capacity in GWh, is the power capacity of the storage option in GW, is the annualized investment cost, and respectively represents fixed and variable operation and maintenance costs, is the hourly generation of each technology, is the specific emission of each technology in tCO 2 /GWh of power production and is the social cost of carbon in €/tCO 2 .

A.1.3.2. Adequacy equations

Energy demand must be met for each hour. If energy production exceeds energy demand, the excess energy can be either sent to storage units or curtailed (Equations A.2,A.3,A.4,).

(A.2)

Where , , is the energy produced by electricity, gas and heat technologies at hour h and , , is the energy entering storage electricity, gas and heat storage technologies at hour h. is the energy conversion from electricity to other energy carriers and is the energy conversion from gas to other carriers at hour h and is the charging of internal combustion engine vehicles and is the charging of electric vehicles at hour h. For each transport category the energy demand in vehicle.km should be satisfied either by ev or ice as transport energy carrier options ( ), and the conversion from the energy in gas or electricity form to the demand by transport category ( , and ) in vehicle.km is done by the vehicle efficiency, which depends on both the energy carrier and the transport category;

. We only consider the electricity to satisfy the trains' demand.

According to [START_REF] Vogl | Assessment of hydrogen direct reduction for fossil-free steelmaking[END_REF], the coal demand for steel industry can be replaced by hydrogen. Therefore, we define an hourly hydrogen demand for steel industry ( ) which should be satisfied (Equation A.6) beside other adequacy equations.

A.1.3.3. Variable renewable power production

For each variable renewable energy (VRE) technology, for each hour, the hourly power production is given by the hourly capacity factor profile multiplied by the installed capacity available (Equation A.7).

(A.7)

A.1.3.6. Energy-generation-related constraints

The relationship between hourly-generated energy and installed capacity can be calculated using Equation (A.10). Since the chosen time slice for the optimization is one hour, the capacity enters the equation directly instead of being multiplied by the time slice value.

(A.10)

The installed capacity of all the dispatchable technologies should be more than the electricity generation required of those technologies to meet demand; it should also satisfy the secondary reserve requirements. Installed capacity for dispatchable technologies can therefore be expressed by Equation (A.11). (A.11) Monthly available energy for the hydroelectricity generated by lakes and reservoirs is defined using monthly lake inflows (Equation A.12). This means that energy stored can be used within the month but not across months. This is a parsimonious way of representing the non-energy operating constraints faced by dam operators, as in Perrier ( 2018).

(A.12) Where is the hourly power production by lakes and reservoirs, and is the maximum electricity that can be produced from this energy resource in one month.

A.1.3.7. Energy conversion

Energy generated by any energy conversion technology should include the conversion efficiency of the conversion technology. Equation (A.13) relates the energy generation and generation by each conversion technology. (A.13)

Where is the conversion efficiency of the energy conversion technology , and is the converted energy by the same conversion technology at hour h.

A.1.3.8. Charging of transport technologies

Electric vehicles and internal combustion engine vehicles have different charging profiles. Equation (A.14) applies these charging profiles;

Where is the hourly charging of each transport technology (both EVs and ICEs four all four transport categories), is the predefined hourly charging profile of each of the transport technologies and is the charging capacity of transport technology .

We consider an average of one charge per week for each transport technology, and since the energy can be stored in the vehicle during the whole one week, the transport demand that should be satisfied is considered to have a weekly adequacy. The hourly demand of transport in vehicle.km should be satisfied from Equations (A.5a-d) and the charging profiles should be applied to account for the charging behavior of different transport technologies from Equation (A.14). We define Equation (A.15) to keep both charging and demand constraints above and to let the vehicles choose the day of charging during the week; (A.15) The storage volume of each transport technology accounts for an upper limit for the weekly charge and weekly energy consumption of it. While this storage volume is free of charge for ICE vehicles, electric vehicles' main cost component is this battery storage volume. Therefore, we define the reservoir size (storage volume) for each transport technology (Equation A.16). (A.16) Where accounts for the reservoir size of each transport technology (kWh e for electric vehicles and kWh th for ICE vehicles).

A.1.3.9. Inclusion of heat networks

Heat can be produced by two different technology classes: distributed technologies such as resistive heating technology, and centralized technologies such as central boilers. Decentralized heating technologies use electricity or gas from the network and provide heating for the local demand, therefore no heat network is needed. On the other hand, the centralized technologies produce heat in large quantities and distribute it for the demand in different locations, which require a heat network. Equation (A.17) separates the central heating technologies and define a heat network capacity for the distribution of produced heat;

(A.17)

Where

is the heat network capacity and is the installed capacity of each central heat production technology in kW th .

Equation ( 17) allows the heat network to have lower capacity than all the central heating technologies combined, depending on the optimal dispatching of each of them. Another equation is needed to restrict the central heating technologies to pass through the heat network (Equation 18); (A.18) Where is the heat generation passed through heat network and is the heat generation by each central heating technology at hour h.

A.1.3.10. Operational constraints of conversion technologies

For open-cycle and combined-cycle gas turbines, there are some safety-and maintenance-related breaks. Equations (A.19), (A.20) and (A.21) limit the annual power production for each of these plants to their maximum annual capacity factors:

Where and are the capacity factors of OCGT and CCGT power plants.

The hydrogen produced from electrolysis (power-to-gas conversion) is either consumed directly in the industry (therefore we make the assumption of local electrolysis for industrials) or injected to the gas network. Because of different thermochemical properties of hydrogen, it cannot be injected at any rate to the gas network. Equations (A.22), (A.23) and (A.24) limit the hydrogen in that can exist in the gas network as a proportion of the overall existing gas in this network both in the storage level and in the distribution/transmission level;

Where is the energy value of hydrogen injected to gas network from electrolysis at hour h, is the maximal relative energy share of hydrogen to the overall gas in the gas network which can be different for different countries depending on the capability of gas network in hosting hydrogen.

is the state of charge of gas storage, which is the energy value of overall existing gas in the gas network and is the overall gas production at hour . Equation (A.22) limits the relative share of hydrogen to other gas options in the storage infrastructures and Equation (A.23) limits the relative share of hydrogen in the gas network. Equation (A.24) makes sure that the overall hydrogen that is produced is not more than the capacity of the gas network.

A.1.3.11. Nuclear-power-related constraints

Addition of nuclear power plants to the model brings three main constraint type equations: ramping up and ramping down rates (because we allow these plants to be used in load-following mode, [START_REF] Loisel | Load-following with nuclear power: Market effects and welfare implications[END_REF] and the annual maximal capacity factor.

Nuclear power plants have limited flexibility, so definitions of hourly ramp-up and ramp-down rates are essential to model them accurately. Equations (A.25) and (A.26) limit the power production of nuclear power plants with these ramping constraints:

Where is the nuclear power production at hour , is the nuclear power production at hour , is the reserve capacity provided by nuclear power plants at hour and and are the ramp-up and ramp-down rates for nuclear power production.

The nuclear power plants' capacity factor should also be limited by safety and maintenance constraints. Equation (A.27) quantifies this limitation:

Where is the maximum annual capacity factor of nuclear power plants.

A.1.3.12. Storage-related constraints

To prevent optimization leading to a very high quantity of stored energy in the first hour represented and a low quantity in the last hour, we add a constraint to ensure the replacement of the consumed stored energy in every storage option (Equation A.28):

(A.28)

While Equations (A.8) and (A.26) define the storage mechanism and constraint in terms of power, we also limit the available volume of energy that can be stored by each storage option (Equation A.29):

(A.29) Equation (A.30) limits the entry of energy into the storage units to the charging capacity of each storage unit. Similarly, we consider a charging capacity lower than or equal to the discharging capacity (mainly to limit the charging capacity of batteries) which means that the charging capacity cannot exceed the discharging capacity.

(A.30)

A.1.3.13. Resource availability related constraints

The maximum installed capacity of each technology depends on land-use-related constraints, social acceptance, the maximum available natural resources and other technical constraints; therefore, a technological constraint on maximum installed capacity is defined in Equation (A.31) where is this capacity limit: (A.31) Renewable gas production technologies are limited due to land-use and agricultural constraints. Equation (A.32) limits the annual renewable gas production from each of two renewable gas production technologies; methanization and pyro-gasification of biomass. (A.32) Where is the hourly biogas production from each of renewable gas production technologies and is the maximal yearly biogas that can be produced from each of renewable gas production technologies, both in energy values.

Methanation consists of the Sabatier reaction of hydrogen produced from electrolysis of water and green CO 2 produced as a by-product of methanization process. Implication of this limit in the overall methane production from methanation process is presented in Equation (A.33): (A.33) Where accounts for the hourly methane produced from power-to-methane (methanation) process, is the hourly biogas production from methanization process and is the relative share of carbon dioxide to biogas produced from methanization process.

The captured carbon dioxide can't be stored infinitely, and geographical and social constraints limit the exploitation of CCS technology. Equation (A.34) limits the captured CO 2 to the available offshore and onshore storage formations; (A.34) Where is the maximal CO 2 storage potential, is hourly power production from CCGT power plants equipped with CCS units, is the carbon capture rate of post combustion CCS units, and is the specific emission of CCGT power plant with natural gas (considered with no CCS input).

Appendix 3. Installed capacities and annual energy production for representative period selection methods

Tables A.6 and A.7 show the installed capacity and the annual energy production of each technology for the base case with hourly temporal resolution over the continuous period of a whole year and for each of the representative period precisions.

Appendix 4. Installed capacities and annual energy supply for each temporal resolution for the case with no nuclear power

Tables A.8 and A.9 show the installed capacity and the annual energy production for the base case with hourly temporal resolution and for each variant case with coarser temporal resolution and the error associated with it, for the variant case where there is no nuclear power. Although the energy supply and conversion remain nearly identical, storage options can have higher than 10% of error in the required storage power capacity, particularly for the case of individual thermal storage option this error goes up to 80%. However, the impact of temporal resolution variation is marginal in energy system planning and the cost of the energy system.