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Recently, an unusual scaling law has been observed in circular hydraulic jumps and has been9
attributed to a supposed missing term in the local energy balance of the flow [Bhagat et al.10
(2018)]. In this paper, we show that - though the experimental observation is valuable and11
interesting - this interpretation is presumably not the good one. When transposed to the case12
of a axial sheet formed by two impinging liquid jets, the assumed principle leads in fact to13
a velocity distribution in contradiction with the present knowledge for this kind of flows.14
We show here how to correct this approach by keeping consistency with surface tension15
thermodynamics: for Savart-Taylor sheets, when adequately corrected, we recover the well16
known 1/𝑟 liquid thickness with a constant and uniform velocity dictated by Bernoulli’s17
principle.18
In the case of circular hydraulic jumps, we propose here a simple approach based onWatson19

description of the flow in the central region [Watson (1964)]], combined with appropriate20
boundary conditions on the formed circular front. Depending on the specific condition, we21
find in turn the new scaling by Bhagat et al. (2018) and the more conventional scaling law22
found long ago by Bohr et al. (1993). We clarify here a few situations in which one should23
hold rather than the other, hoping to reconcile Bhagat et al. observations with the present24
knowledge of circular hydraulic jump modeling. However, the question of a possible critical25
Froude number imposed at the jump exit and dictating logarithmic corrections to scaling26
remains an opened and unsolved question.27

1. Introduction28

Stationary axisymmetrical liquid structures formed by jet impacts, have motivated an29
enormous amount of literature. Three examples that will be important here are sketched30
on Fig. 1. First of all, the well-known circular hydraulic jump [Rayleigh (1914); Tani (1949);31
Watson (1964); Craik et al. (1981); Bohr et al. (1993); Bush & Aristoff (2003); Duchesne32
et al. (2014); Mohajer & Li (2015); Salah et al. (2018); Bhagat et al. (2018); Wang & Khayat33
(2019, 2021)], sketched on Fig.1-a, with a well developed liquid film extending all around.34
Its equivalent on a "dry" surface, possibly superhydrophobic [Jameson et al. (2010); Button35
et al. (2010); Maynes et al. (2011)], the "rim atomization" is sketched on Fig.1-b. Finally the36
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Figure 1: Three axisymmetric film flows are discussed in the present article. (a) The
classical circular hydraulic jump formed by a jet impacting a solid disk at its center, (b)
atomization ring formed by a jet impacting a dry surface possibly superhydrophobic, (c)

liquid sheet formed by impact of two liquid jets of opposite direction.

well-known radial liquid sheet [Savart (1833); Huang (1970); Clanet & Villermaux (2002);37
Villermaux et al. (2013)], formed either by impinging two opposite symmetrical liquid jets,38
having the same central axis or by impinging a liquid jet on a solid surface with a diameter39
similar to the jet diameter is depicted on Fig.1-c.40
These three geometries are of course linked together by the same general equation for the41

energy balance. In this article, we will therefore show that apparent paradoxes raised by the42
modeling of the surface tension on the circular hydraulic jump by Bhagat et al. (2018) may43
be solved or at least clarified by considering the geometry depicted in Fig.1-c.44
The selection of jump radius 𝑅𝐽 in the circular hydraulic jump case (Fig.1-a) has motivated45

many studies. The two most well known approaches are the one from Watson and Bush46
[Watson (1964); Bush & Aristoff (2003)], in which the height of the outer film remains a47
control parameter, and the one from Bohr et al. (1993), rather devised when a liquid film48
extends all around at large distance, and inspired from boundary layer theories. As well49
known, this second approach leads to a scaling law dependence of 𝑅𝐽 upon flow rate 𝑄 and50
the physical parameters (𝜈 the kinematic viscosity of the fluid, 𝑔 gravity), that reads:51
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𝑅𝐽 ∼ 𝑄
5
8 𝜈−

3
8 𝑔−

1
8 . (1.1)52

Later, Duchesne et al. (2014) emphasized the importance of logarithmic corrections to53
scaling, due to viscous dissipation in the outer film, yet observed numerically by Bohr, and54
also showed that the prefactor was experimentally linked to the value of the Froude number55
at the exit of the jump, that seemed to be locked to a critical value. This phenomenon was56
recovered by Mohajer & Li (2015) and by Argentina et al. (2017) with a non-linear modeling57
of film flow equations including the first finite slope terms.58
Very recently, an attempt of revision of this picture has been published by Bhagat et al.59

(2018), who performed new experiments, and reported the observation of a different scaling60
in which surface tension 𝛾 was involved, but not gravity:61

𝑅𝐽 ∼ 𝑄
3
4 𝜌

1
4 𝜈−

1
4 𝛾− 14 , (1.2)62

in which 𝜌 is the liquid density. To rationalize this finding, these authors claimed that63
most available approaches of surface tension influence lead to only small corrections [Bush64
& Aristoff (2003)] and that the description of the circular hydraulic jump had thus to be65
completely reconsidered. They introduced an energy balance, between two radii 𝑟 and 𝑟 + 𝛿𝑟 ,66
that reads:67 [

𝜌
𝑢̄2

2
𝑢̄𝑟ℎ

]𝑟+𝛿𝑟
𝑟

= [𝛾𝑟𝑢̄]𝑟+𝛿𝑟𝑟 − [𝑝𝑢̄ℎ]𝑟+𝛿𝑟𝑟 −
[
𝜌𝑔

ℎ2

2
𝑟𝑢̄

]𝑟+𝛿𝑟
𝑟

− 𝑟𝜏𝑊 𝑢̄𝛿𝑟, (1.3)68

with the notation [𝐴]𝑟+𝛿𝑟 = 𝐴(𝑟 + 𝛿𝑟) − 𝐴(𝑟), and in which 𝑢̄ designates the flux-average69
radial velocity, 𝑟 the distance to the axis, ℎ(𝑟) the thickness of the liquid layer, 𝑝(𝑟) the70
pressure at 𝑧 = 0 and 𝜏𝑊 the wall shear stress. The last term on the right designates the71
viscous dissipation by friction on the substrate, while the first one is an additional term72
compared to previous approaches, that is presumed to be “at the origin” of the new scaling73
(1.2). This conjecture has been contested [Duchesne et al. (2019); Bohr & Scheichl (2021)]74
(see alsoBhagat & Linden (2020) answer), and it is also known that a scaling like (1.2) can75
also appear without such an assumption, as shown for instance byButton et al. (2010) for76
liquid bells formed below a ceiling.77
We find here useful to have a look on what would happen in the simplified geometry of78

Fig.1-c, when applying this principle. As we shall show in section 2, this modeling leads to79
a velocity distribution in complete contradiction with the present knowledge of liquid sheets80
(and with Bernoulli’s principle), which suggests that Bhagat et al argument is flawed. In fact81
the obtained flow field is not new, and has been proposed in the past by Bouasse (1923)82
who attributed the calculation to Hagen (see Hagen (1849)). It will be instructive here to83
remind the argument followed by Hagen and Bouasse, in section 3, in a Lagrangian frame,84
analyzing a circular expanding piece of film. We will then show, in the same section, how85
one can correct the argument to get the more classical and now admitted result deduced86
from Bernoulli’s principle of a uniform radial velocity around the impact point, and how,87
missing some terms in the balance, one can get the flawed result of Bouasse and Hagen.88
Finally, coming back to a Eulerian description, we will explain how these considerations89
impact the principle proposed in eq.(1.3). We will show that an extra term exactly equal90
and opposite to the capillary contribution should cancel this one, in a way consistent with91
classical thermodynamics, leading to the expression usually written from the balance of92
momentum.93
This does not mean, however, that Bhagat et al. scaling discovery is of none interest. In94

section 4 and 5, we will try to precise to which capillary structures – different from the95
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stationary hydraulic jump observed by Bohr – it could apply, and a possible way to justify its96
occurrence.97

2. A look to a simple situation: the axisymmetrical liquid sheet.98

Let us try to apply the principle suggested in eq.(1.3) to the case suggested on Fig.1-c, i.e. to99
a axisymmetrical sheet formed by the coaxial impact of two jets in a situation of negligible100
gravity. The viscous shear on the substrate having disappeared, eq.(1.3) reduces to a very101
simple balance that reads:102 [

𝜌𝑟ℎ
𝑢3

2

]𝑟+𝛿𝑟
𝑟

= [𝛾𝑟𝑢]𝑟+𝛿𝑟𝑟 , (2.1)103

where the horizontal velocity 𝑢 has no dependence upon the transverse direction, and104
coincides with any of its average values. This implies that the following quantity is constant105
all over the sheet:106

𝜌𝑟ℎ
𝑢3

2
− 𝛾𝑟𝑢 = Cte. (2.2)107

Combined with the mass balance 𝑄 = 2𝜋𝑟ℎ𝑢, this leads to the following expression for 𝑢:108

𝑢 = 2𝜋
𝛾

𝜌𝑄
𝑟 +

√︄
𝑢20 − 4𝜋

𝛾

𝜌𝑄
𝑟0𝑢0 + 4𝜋2

𝛾2

𝜌2𝑄2
𝑟2, (2.3)109

in which 𝑟0 designates the jet radius at impact and 𝑢0 the asymptotic value for 𝑢, reached110
when 𝑟 = 𝑟0, which satisfies the equality 𝑄 = 𝜋𝑟20𝑢0 in a quasi-elastic shock approximation111

[Villermaux et al. (2013)]. In the limit of large jet velocity, i.e. 𝑢20 � 2𝛾/(𝜌𝑟0), this expression112
reduces to the slowly varying upon 𝑟 approximate:113

𝑢 ≈ 𝑢0 + 2𝜋
𝛾

𝜌𝑄
(𝑟 − 𝑟0), (2.4)114

which is known to be false, as it has been checked experimentally that the velocity is115
constant all over the sheet, recovering the Bernoulli’s principle (see in particular Fig. 3 in116
[Villermaux et al. (2013)]). It is however amazing to remind that a similar expression is117
proposed by Bouasse (1923) who attributed this result to Hagen (1849), but with a slight118
sign change, that is in fact due to a mistake on his own:119

𝑢 ≈ 𝑢0 − 2𝜋
𝛾

𝜌𝑄
(𝑟 − 𝑟0). (2.5)120

Though obtained erroneously, this expression is very seductive and Bouasse used it to121
calculate the radius of the liquid sheet 𝑅𝐿𝑆 assuming that the sheet border should stay122
at the place in which 𝑢 vanishes which leads to 𝑅𝐿𝑆 = (𝜌𝑄𝑢0)/2𝜋𝛾(= 𝜌𝑟20𝑢

2
0)/2𝛾 .123

Surprisingly this result coincides with the right one that is in fact obtained, now, by assuming124
a constant velocity, dictated by Bernoulli’s principle, and the balance of momentum at the125
sheet perimeter, i.e. 𝜌ℎ𝑢2 = 𝛾 [Villermaux et al. (2013)]. But on the other hand, we would126
like to stress out that the radial velocity is uniform in the sheet of Fig.1-c, which means that127
the principle proposed in eq.(1.3), and therefore the basis of the theory developed by Bhagat128
et al. (2018) is flawed.129

Focus on Fluids articles must not exceed this page length
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Figure 2: Lagrangien (a) and Eulerian (b) frame for discussing energy balance in a annular
portion of a liquid film used in the text.

3. Reconsidering Hagen argument, and its implications for hydraulic jump.130

We try to understand the fault underlying Bouasse and Hagen principle. Their line of thought131
is easier to explain considering a Lagrangian frame, and more precisely the balance of energy132
on a annular piece of fluid, convected by the radial flow, and it is in fact the method proposed133
by Bouasse himself in his treatise of fluid mechanics [Bouasse (1923)].134
Let us consider a piece of annular piece of film as on Fig.2-a, convected and distorted135

by the flow. Mass conservation implies that, at any time ℎ𝑟𝛿𝑟 = Cte, while the balance of136
energy for the whole annulus reads, in the limit of 𝛿𝑟 small enough to satisfies the condition137
𝛿𝑟 𝜕𝑢

𝜕𝑟
� 𝑢 of a slowly varying velocity field :138

𝜕

𝜕𝑡

[
2𝜋

(
1
2
𝜌𝑢2𝑟ℎ𝛿𝑟 + 𝛾𝑟𝛿𝑟

)]
≈ 2𝜋𝛾𝛿𝑟𝑢. (3.1)139

The first term in the left hand side of this equation stands for kinetic energy, and the second140
for the surface energy enclosed between 𝑟 and 𝑟 + 𝛿𝑟 . The right hand term comes from the141
work of surface forces, and does not vanish. Indeed, the same surface tension force is pulling142
on a different arc length, as the external boundary has a larger perimeter than the other (note143
that this is the intuitive argument underlying Bhagat’s analysis). Still in the limit of a slowly144
varying velocity field at the scale 𝛿𝑟 , after noting that 𝜕

𝜕𝑡
= 𝑢 𝜕

𝜕𝑟
, eq.(3.1) reads:145

𝑟ℎ𝛿𝑟𝑢
𝜕

𝜕𝑟

(
𝜌𝑢2

2

)
+ 𝛾𝑢𝛿𝑟 ≈ 𝛾𝑢𝛿𝑟. (3.2)146

In fact, the two surface tension terms are canceling each other, which means that the work147
provided to the annulus by surface tension of the outer interfaces is completely transformed148
into the surface energy stored at the free surface of the annulus, in agreement with simple149
thermodynamic considerations. As a result, the fluid velocity is unaffected by surface tension150
balance and remains constant as one would deduce from a more classical argument in terms151
of Bernoulli’s principle, i.e. 𝑢(𝑟) is in fact independent of 𝑟:152

𝑢(𝑟) = 𝑢0 = Cte. (3.3)153

Note here that skipping from eq.(3.1) to eq.(3.2) is not completely trivial as there is an154
extra 𝛾 term remaining, but this one vanishes for the constant and uniform 𝑢0 solution.155
To reconnect with Bouasse, instead of this, if one would forget the internal surface energy156
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contribution in the left hand member of eq.(3.2), one would get the following equation for 𝑢,157
that reduces to:158

𝑟ℎ𝛿𝑟
𝜕

𝜕𝑟

(
𝜌𝑢2

2

)
≈ 𝛾𝛿𝑟. (3.4)159

After simplifying 𝛿𝑟 , and using the fact that 𝑄 = 2𝜋𝑟𝑢ℎ, this equation leads to:160

𝜕𝑢

𝜕𝑟
≈ 2𝜋 𝛾

𝜌𝑄
, (3.5)161

which leads finally to eq.(2.4). Alternatively, eq.(2.5) is obtainedwhen one forgets the work162
provided to the annulus by the outer parts of the liquid sheet, i.e. by neglecting the right hand163
member of eq.(3.2), following the intuitive but erroneous idea of Hagen (1849) that surface164
tension could slow down the flow. Historically Bouasse followed the first argument, but165
committed a sign mistake, obtaining eq.(2.5), that was physically more natural, considering166
presumably what Hagen said long ago.167
To summarize, a correct treatment of the expansion of liquid annula in the flow leads to168

the classical result of a uniform velocity, while the approximates defended by Hagen and169
Bouasse would follow from neglecting a part of capillary terms. We believe that a similar170
problem is involved in eq.(1.3). If we consider now a Eulerian description of the flow, as171
suggested on Fig.2-b, the balance of energy should rather read:172

[
𝜌
𝑢̄2

2
𝑢̄𝑟ℎ + 𝛾𝑟𝑢̄

]𝑟+𝛿𝑟
𝑟

= [𝛾𝑟𝑢̄]𝑟+𝛿𝑟𝑟 − [𝑝𝑢̄ℎ]𝑟+𝛿𝑟𝑟 −
[
𝜌𝑔

ℎ2

2
𝑟𝑢̄

]𝑟+𝛿𝑟
𝑟

− 𝑟𝜏𝑊 𝑢̄𝛿𝑟, (3.6)173

in which we have added in the left hand side the surface energy convected by the film. It174
is true that one can consider a capillary force, as in Bhagat et al, in the right hand member,175
but in this case, one should not miss the flux of surface crossing the two circles displayed on176
Fig.2-b in the left hand side of the equation. And just as what happens in a Lagrangian frame,177
the physics being the same in both frame, the capillary effects should exactly compensate178
each other in this equation, that should then reduce to the more conventional form:179 [

𝜌
𝑢̄2

2
𝑢̄𝑟ℎ

]𝑟+𝛿𝑟
𝑟

= − [𝑝𝑢̄ℎ]𝑟+𝛿𝑟𝑟 −
[
𝜌𝑔

ℎ2

2
𝑟𝑢̄

]𝑟+𝛿𝑟
𝑟

− 𝑟𝜏𝑊 𝑢̄𝛿𝑟, (3.7)180

that apart some coefficients that will depend on the detailed structure of the flow profile is181
consistent with what people are used to write starting rather from the balance of momentum182
[Bohr et al. (1993)]. Therefore, we do not consider, in the interpretation of eq.(1.2), that183
one should add a new capillary force distributed all over space as proposed by Bhagat et al.184
(2018). To our opinion, this would imply to redo the initial mistake of Hagen and Bouasse.185
Just as for the calculation of the size of radial liquid sheets, the solution should rather lies186
inside the boundary conditions written at the circle which radius is under question. We are187
now developing more this idea.188

4. Alternative explanation of unusual scaling: the boundary condition at the189
"jump" radius. Comparison with atomization rings.190

To interpret the occurrence of Bhagat et al. (2018) scaling, we propose an alternative191
approach. We just treat the two ideal situations of Fig.1-a and Fig.1-b with the same method,192
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and seewhat happens.Wewill then see that the situation obtained in Fig.1-bmay be compared193
to the one suggested by Bhagat et al. (2018).194
To simplify the analysis, the “internal” flow for 𝑟0 < 𝑟 < 𝑅𝐽 is assimilated to the one195

discussed long ago by Watson (1964), in which fluid inertia is progressively dissipated by196
viscous friction, i. e. for 𝑟 < 𝑅𝐽 :197

𝑢(𝑟, 𝑧) = 27𝑐
3

8𝜋4
𝑄2

𝜈(𝑟3 + 𝑙3)
𝑓

( 𝑧
ℎ

)
, (4.1)198

in which 𝑐 ≈ 1.402, 𝑙 = 0.567𝑟0𝑅 (with 𝑅 the Reynolds number of the jet) and 𝑓 is the199

function: 𝑓 (𝜂) =
√
3 + 1− 2

√
3

1+𝑐𝑛(3
1
4 𝑐 (1−𝜂) )

. Mass conservation implies that the film thickness200

and the flux of momentum are given by:201

𝜌ℎ < 𝑢2 >=
27
√
3𝑐3

16𝜋6
𝜌𝑄3

𝑅𝐽𝜈(𝑅3𝐽 + 𝑙3)
, (4.2)202

where < 𝑢2 >=
∫ ℎ

0 𝑢2d𝑧. In the case of Fig.1-a, this flow must be matched for 𝑟 > 𝑅𝐽 to a203
film flow under the action of gravity, that, according to lubrication [Duchesne et al. (2014)],204
has a thickness distribution 𝐻 (𝑟) given by:205

𝐻 (𝑟)4 = 𝐻4∞ + 6
𝜋

𝜈𝑄

𝑔
𝑙𝑛

(
𝑅∞
𝑟

)
, (4.3)206

where 𝑅∞ designates the outer radius of the substrate, where the thickness 𝐻 reaches a207
value called 𝐻∞ that will depend on the specific geometrical conditions of the flow there (see208
Fig.1-a for the graphical definition). At 𝑟 = 𝑅𝐽 , one has to write some matching condition,209
that is consistent with the approximations made on each side of 𝑟 = 𝑅𝐽 , and stands for a shock210
[Bélanger (1841); Rayleigh (1914)]. If we assume ℎ � 𝐻 and neglect the surface tension211
at the shock (i.e. for circular hydraulic jumps large enough such as the ones considered by212
Bhagat et al. (2018)), this shock condition reads:213

𝜌ℎ(𝑟) < 𝑢(𝑅𝐽 )2 >≈ 𝜌𝑔𝐻 (𝑅𝐽 )2, (4.4)214

In the limit of negligible values for 𝐻∞ and 𝑟0, compared to the other scales, it is easy to215
check that these equations lead to the following scaling law for 𝑅𝐽 :216

𝑅𝐽 𝑙𝑛

(
𝑅∞
𝑅𝐽

) 1
8

=
(3𝑐) 34
2
9
8 𝜋

1
1 8

𝑄
5
8

𝜈
3
8 𝑔

1
8
, (4.5)217

i.e. the scaling obtained by Bohr et al. (1993) and modified by logarithmic corrections.218
We now consider the regime described in Fig.1-b that may be obtained in stationary regime219

with particular superhydrophobic treatment [Maynes et al. (2011)] or with inverse gravity220
[Jameson et al. (2010); Button et al. (2010)]. In this regime the force opposed to fluid inertia221
at the boundaries is dictated only by surface tension and not by gravity, there is no developed222
shock, no liquid "wall". In other words, the flux of momentum is only balanced by surface223
tension, which means that equations (4.3) and (4.4) are simply replaced now by:224

𝜌ℎ(𝑟) < 𝑢(𝑅𝐽 )2 >≈ 𝛾(1 − cos 𝜃), (4.6)225

with 𝜃 the static contact angle226
Using eq.(4.2) in the limit 𝑟 = 𝑅𝐽 � 𝑟0, this condition yields a new scaling that reads:227
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Figure 3: sketch of the intermediate regime for a low viscosity liquid in partial wetting.

𝑅𝐽 =

(
27
√
3𝑐3

16𝜋6

) 1
4

(1 − 𝑐𝑜𝑠𝜃) 14𝑄 3
4 𝜈−

1
4 𝜌

1
4 𝛾− 14 . (4.7)228

This scaling is the same than the one suggested by Bhagat et al. (2018) and previously by229
Button et al. (2010). It explains why the scaling obtained by Bhagat et al. (2018) applies to230
the experimental data of Jameson et al. (2010) even if the theory leading to this scaling is231
not the right one.232
We thus do not believe that there is a “universal” scaling that should hold for any circular233

"print" formed around an impacting jet. Sometimes one canfindBohr’s scaling and sometimes234
Baghat and Button one, it is the analysis of the conditions around the impact that will matter.235

5. Another possible occurrence of Bhagat and Button scaling.236

We now show that Bahgat’s scaling may also be observed in classical circular hydraulic237
jumps. In Bhagat et al. (2018) paper, the authors consider an intermediate regime where the238
liquid has not yet reached the edge of the plate (see Fig.3). In their experimental evidence the239
authors consider partial wetting conditions (they use Perspex, glass and Teflon) and aqueous240
solutions. Given that the front propagation speed is rather small, we can consider that the241
liquid front height is approximately given by242

ℎ𝑐𝑎𝑝 ≈
(
𝛾

𝜌𝑔

) 1
2

(1 − cos 𝜃) 12 . (5.1)243

Considering the eq.(4.3) for low viscosity liquid and moderate flow rate one can conclude244
that:245

𝐻 (𝑟) ≈ 𝐻∞ ≈ ℎ𝑐𝑎𝑝 . (5.2)246

Therefore the (simplified) shock condition (4.4) previously obtained leads to:247

𝜌ℎ(𝑟) < 𝑢(𝑅𝐽 )2 >≈
1
2
𝜌𝑔ℎ2𝑐𝑎𝑝 . (5.3)248

Surprisingly, this argument leads again exactly to the "surface tension dominated" scaling249
:250

𝑅𝐽 =

(
27
√
3𝑐3

16𝜋6

) 1
4

(1 − 𝑐𝑜𝑠𝜃) 14𝑄 3
4 𝜈−

1
4 𝜌

1
4 𝛾− 14 . (5.4)251

Following now a remark from Bhagat et al. (2018), one can also denote that by defining252
the Weber number as253

We ≈ 𝜌ℎ(𝑟) < 𝑢(𝑅𝐽 )2 >
𝛾

≈ 𝑐𝑠𝑡𝑒, (5.5)254
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i.e., a constant Weber number that replaces the constant Froude number encountered in255
fully established hydraulic jump with a complete, flowing outer film.256
Considering 𝜃 = 𝜋

2 , we obtain that:257

We ≈ 1
2
, (5.6)258

which is the order of magnitude of the Weber number reported in Bhagat et al. (2018).259

6. Conclusion260

In summary, we have reconsidered the problem of scaling law selection of the "radius of261
influence" in the problem of vertical jet impact on a horizontal solid surface. In our opinion,262
the ideal law (1.1) proposed by Bohr and coworkers (to which, one should not forget to add263
logarithmic corrections as in Duchesne et al. (2014)) corresponds to the ideal situation of a264
stationary hydraulic jump formed inside a liquid film extending on the whole solid surface.265
On the opposite, the scaling (1.2) suggested in ref. [Bhagat et al. (2018)] rather holds in266
different situations, some of these ones being:267
- stationary impact of a jet on a dry surface, possibly superhydrophobic, without formation268

of the outer film (atomization ring),269
- stationary impact of a jet on a dry surface in inverse gravity (impact of a jet on a ceiling),270
- transient regime of circular hydraulic jump formation for low viscosity liquids in partial271

wetting.272
It would be interesting to explore in more details these three situations, and to identify273

possible other ones. In our opinion, there is no need to imagine some universal extra capillary274
term imposing the scaling (1.2) as imagined in ref [Bhagat et al. (2018)]. Though this extra275
term really exists, when the control volume contains the free surface of the film instead of276
excluding it, it is in practice compensated by another one in a way consistent with classical277
thermodynamics. As usual in free surface flows there is no increase or decrease of velocity278
that could be due alone to the action of surface tension, except when Marangoni effects are279
involved [Marmottant et al. (2000)]. Going on in this direction would be just reproducing for280
thin film flows on a solid, the initial mistake of Hagen and Bouasse.281
If we come back to the question of Bohr scaling we have left a bit aside the questions of the282

logarithmic corrections and the possible existence of a critical Froude number at the jump283
exit, suggested in [Duchesne et al. (2014)]. The possible existence of this critical Froude284
number leads to a different exponent for the Logarithmic corrections (3/8 instead of 1/8)285
and this question is still not solved. As told in the introduction, recent non-linear analytical286
treatment of the film flow suggests that such a critical Froude number could exist, but this287
remains to be established and convincingly explained.288
A specific problem of great interest where these considerations shouldmater is the question289

of jet impacts on inclined plates. It is not obvious in this kind of problem that a perfect290
hydraulic jump can exist, or not, and the two scaling should compete against each other291
in a way that merits to be investigated. The influence of a external fields, here the tangent292
component of gravity on a circular shock is a fundamental question of great interest. A293
specific effort should be done in this direction [Wilson et al. (2012); Duchesne et al. (2013)].294
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