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The goal of this paper is to promote the use of fixed point strategies in data science by showing that they provide a simplifying and unifying framework to model, analyze, and solve a great variety of problems. They are seen to constitute a natural environment to explain the behavior of advanced convex optimization methods as well as of recent nonlinear methods in data science which are formulated in terms of paradigms that go beyond minimization concepts and involve constructs such as Nash equilibria or monotone inclusions. We review the pertinent tools of fixed point theory and describe the main state-of-the-art algorithms for provenly convergent fixed point construction. We also incorporate additional ingredients such as stochasticity, block-implementations, and non-Euclidean metrics, which provide further enhancements. Applications to signal and image processing, machine learning, statistics, neural networks, and inverse problems are discussed.

I. INTRODUCTION

Attempts to apply mathematical methods to the extraction of information from data can be traced back to the work of Boscovich [START_REF] Boscovich | De literaria expeditione per pontificiam ditionem et synopsis amplioris operis[END_REF], Gauss [START_REF] Gauss | Theoria Motus Corporum Coelestium[END_REF], Laplace [START_REF] Laplace | Sur quelques points du système du monde[END_REF], and Legendre [START_REF] Legendre | Nouvelles Méthodes pour la Détermination des Orbites des Comètes[END_REF]. Thus, in connection with the problem of estimating parameters from noisy observations, Boscovich and Laplace invented the least-deviations data fitting method, while Legendre and Gauss invented the least-squares data fitting method. On the algorithmic side, the gradient method was invented by Cauchy [START_REF] Cauchy | Méthode générale pour la résolution des systèmes d'équations simultanées[END_REF] to solve a data fitting problem in astronomy, and more or less heuristic methods have been used from then on. The early work involving provenly convergent numerical solutions methods was focused mostly on quadratic minimization problems or linear programming techniques, e.g., [START_REF] Artzy | Quadratic optimization for image reconstruction II[END_REF], [START_REF] Herman | ART: Mathematics and applications[END_REF], [START_REF] Hunt | The inverse problem of radiography[END_REF], [START_REF] Twomey | The application of numerical filtering to the solution of integral equations encountered in indirect sensing measurements[END_REF], [START_REF] Wagner | Linear programming techniques for regression analysis[END_REF]. Nowadays, general convex optimization methods have penetrated virtually all branches of data science [START_REF] Bach | Optimization with sparsity-inducing penalties[END_REF], [START_REF] Byrne | Iterative Optimization in Inverse Problems[END_REF], [START_REF] Chambolle | An introduction to continuous optimization for imaging[END_REF], [START_REF] Combettes | The convex feasibility problem in image recovery[END_REF], [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF], [START_REF]Splitting Methods in Communication[END_REF], [START_REF] Sra | Optimization for Machine Learning[END_REF], [START_REF] Theodoridis | Machine Learning: A Bayesian and Optimization Perspective[END_REF]. In fact, the optimization and data science communities have never been closer, which greatly facilitates technology transfers towards applications. Reciprocally, many of the recent advances in convex optimization algorithms have been motivated by data processing problems in signal recovery, inverse problems, or machine learning. At the same time, the design and the convergence analysis of some of the most potent splitting methods in highly structured or large-scale optimization are based on concepts that are not found in the traditional optimization toolbox but reach deeper into nonlinear analysis. Furthermore, an increasing number of problem formulations go beyond optimization in the sense that their solutions are not optimal in the classical sense of minimizing a function but, rather, satisfy more general notions of equilibria. Among the formulations that fall outside of the realm of standard minimization methods, let us mention variational inequality and monotone inclusion models, game theoretic approaches, neural network structures, and plug-and-play methods.

Given the abundance of activity described above and the increasingly complex formulations of some data processing problems and their solution methods, it is essential to identify general structures and principles in order to simplify and clarify the state of the art. It is the objective of the present paper to promote the viewpoint that fixed point theory constitutes an ideal technology towards this goal. Besides its unifying nature, the fixed point framework offers several advantages. On the algorithmic front, it leads to powerful convergence principles that demystify the design and the asymptotic analysis of iterative methods. Furthermore, fixed point methods can be implemented using stochastic perturbations, as well as block-coordinate or block-iterative strategies which reduce the computational load and memory requirements of the iterations.

Historically, one of the first uses of fixed point theory in signal recovery is found in the bandlimited reconstruction method of [START_REF] Landau | The recovery of distorted bandlimited signals[END_REF], which is based on the iterative Banach-Picard contraction process

x n+1 = T x n , (1) 
where the operator T has Lipschitz constant δ < 1. The importance of dealing with the more general class of nonexpansive operators, i.e., those with Lipschitz constant δ = 1, was emphasized by Youla in [START_REF] Youla | Generalized image restoration by the method of alternating orthogonal projections[END_REF] and [START_REF] Youla | Image restoration by the method of convex projections: Part 1 -theory[END_REF]; see also [START_REF] Schafer | Constrained iterative restoration algorithms[END_REF], [START_REF] Tom | Convergence of iterative nonexpansive signal reconstruction algorithms[END_REF], [START_REF] Wiley | On an iterative technique for recovery of bandlimited signals[END_REF]. Since then, many problems in data science have been modeled and solved using nonexpansive operator theory; see for instance [START_REF]Fixed-Point Algorithms for Inverse Problems in Science and Engineering[END_REF], [START_REF] Byrne | Iterative Optimization in Inverse Problems[END_REF], [START_REF] Combettes | The convex feasibility problem in image recovery[END_REF], [START_REF] Combettes | Lipschitz certificates for layered network structures driven by averaged activation operators[END_REF], [START_REF] Combettes | Signal recovery by proximal forwardbackward splitting[END_REF], [START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF], [START_REF] Mariadassou | Image reconstruction from noisy digital holograms[END_REF], [START_REF] Potter | A dual approach to linear inverse problems with convex constraints[END_REF], [START_REF]Image Recovery: Theory and Application[END_REF], [START_REF] Theodoridis | Adaptive learning in a world of projections[END_REF]. The outline of the paper is as follows. In order to make the paper as self-contained as possible, we present in Section II the essential tools and results from nonlinear analysis on which fixed point approaches are grounded. These include notions of convex analysis, monotone operator theory, and averaged operator theory. Section III provides an overview of basic fixed point principles and methods. Section IV addresses the broad class of monotone inclusion problems and their fixed point modeling. Using the tools of Section III, various splitting strategies are described, as well as blockiterative and block-coordinate algorithms. Section V discusses applications of splitting methods to a large panel of techniques for solving structured convex optimization problems. Moving beyond traditional optimization, algorithms for Nash equilibria are investigated in Section VI. Section VII shows how fixed point strategies can be applied to four additional categories of data science problems that have no underlying minimization interpretation. Some brief conclusions are drawn in Section VIII. For simplicity, we have adopted a Euclidean space setting. However, most results remain valid in general Hilbert spaces up to technical adjustments.

II. NOTATION AND MATHEMATICAL FOUNDATIONS

We review the basic tools and principles from nonlinear analysis that will be used throughout the paper. Unless otherwise stated, the material of this section can be found in [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]; for convex analysis see also [START_REF] Rockafellar | Convex Analysis[END_REF].

A. Notation

Throughout, H, G, (H i ) 1 i m , and (G k ) 1 k q are Euclidean spaces. We denote by 2 H the collection of all subsets of H and by

H = H 1 × • • • × H m and G = G 1 × • • • × G q
the standard Euclidean product spaces. A generic point in H is denoted by x = (x i ) 1 i m . The scalar product of a Euclidean space is denoted by • | • and the associated norm by • . The adjoint of a linear operator L is denoted by L * . Let C be a subset of H. Then the distance function to C is d C : x → inf y∈C x -y and the relative interior of C, denoted by ri C, is its interior relative to its affine hull.

B. Convex analysis

The central notion in convex analysis is that of a convex set: a subset C of H is convex if it contains all the line segments with end points in the set, that is,

(∀x ∈ C)(∀y ∈ C)(∀α ∈ ]0, 1[ ) αx + (1 -α)y ∈ C. (2)
The projection theorem is one of the most important results of convex analysis.

Theorem 1 (projection theorem) Let C be a nonempty closed convex subset of H and let x ∈ H. Then there exists a unique point proj C x ∈ C, called the projection of x onto C, such that x -proj C x = d C (x). In addition, for every p ∈ H,

p = proj C x ⇔ p ∈ C (∀y ∈ C) y -p | x -p 0. (3) 
Convexity for functions is inherited from convexity for sets as follows. Consider a function f :

H → ]-∞, +∞]. Then f is convex if its epigraph epi f = (x, ξ) ∈ H × R f (x) ξ (4) 
is a convex set. This is equivalent to requiring that (∀x ∈ H)(∀y ∈ H)(∀α ∈ ]0, 1[ )

f αx + (1 -α)y αf (x) + (1 -α)f (y). ( 5 
)
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Fig. 1: The graph of a function f ∈ Γ 0 (H) is shown in brown.

The area above the graph is the closed convex set epi f of (4). Let u ∈ H and let the red line be the graph of the linear function • | u . In view of [START_REF] Baillon | On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces[END_REF], the value of f * (u) (in green) is the maximum signed difference between the red line and the brown line. Now fix x ∈ H and w ∈ ∂f (x). By [START_REF] Baillon | There is no variational characterization of the cycles in the method of periodic projections[END_REF], the affine function m x,w : y → y -x | w + f (x) satisfies m x,w f and it coincides with f at x. Its graph is represented in blue. Every subgradient w gives such an affine minorant.

If epi f is closed, then f is lower semicontinuous in the sense that, for every sequence (x n ) n∈N in H and x ∈ H,

x n → x ⇒ f (x) lim f (x n ). (6) 
Finally, we say that f : H → ]-∞, +∞] is proper if epi f = ∅, which is equivalent to

dom f = x ∈ H f (x) < +∞ = ∅. (7) 
The class of functions f : H → ]-∞, +∞] which are proper, lower semicontinuous, and convex is denoted by Γ 0 (H). The following result is due to Moreau [START_REF] Moreau | Fonctions convexes duales et points proximaux dans un espace hilbertien[END_REF].

Theorem 2 (proximation theorem) Let f ∈ Γ 0 (H) and let x ∈ H. Then there exists a unique point prox f x ∈ H, called the proximal point of x relative to f , such that

f prox f x + 1 2 x -prox f x 2 = min y∈H f (y) + 1 2 x -y 2 . ( 8 
)
In addition, for every p ∈ H,

p = prox f x ⇔ (∀y ∈ H) y -p | x -p + f (p) f (y). (9) 
The above theorem defines an operator prox f called the proximity operator of f (see [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF] for a tutorial, and [21, Chapter 24] and [START_REF] Combettes | Monotone operator theory in convex optimization[END_REF] for a detailed account with various properties). Now let C be a nonempty closed convex subset of H. Then its indicator function ι C , defined by

ι C : H → ]-∞, +∞] : x → 0, if x ∈ C; +∞, if x / ∈ C, (10) 
lies in Γ 0 (H) and it follows from (3) and ( 9) that

prox ιC = proj C . (11) 
This shows that Theorem 2 generalizes Theorem 1. Let us now introduce basic convex analytical tools (see Fig. 1). The conjugate of f : H → ]-∞, +∞] is

f * : H → [-∞, +∞] : u → sup x∈H x | u -f (x) . ( 12 
)
The subdifferential of a proper function f : H → ]-∞, +∞] is the set-valued operator ∂f : H → 2 H which maps a point

x ∈ H to the set (see Fig. 2)

∂f (x) = u ∈ H (∀y ∈ H) y -x | u + f (x) f (y) . ( 13 
) A vector in ∂f (x) is a subgradient of f at x. If C is a nonempty closed convex subset of H, N C = ∂ι C is the normal cone operator of C, that is, for every x ∈ H, N C x = u ∈ H (∀y ∈ C) y -x | u 0 , if x ∈ C; ∅, otherwise. (14) 
Let us denote by Argmin f the set of minimizers of a function f : H → ]-∞, +∞] (the notation Argmin x∈H f (x) will also be used). The most fundamental result in optimization is actually the following immediate consequence of [START_REF] Baillon | There is no variational characterization of the cycles in the method of periodic projections[END_REF].

Theorem 3 (Fermat's rule) Let f : H → ]-∞, +∞] be a proper function. Then Argmin f = x ∈ H 0 ∈ ∂f (x) . Theorem 4 (Moreau) Let f ∈ Γ 0 (H). Then f * ∈ Γ 0 (H), f * * = f , and prox f + prox f * = Id. A function f ∈ Γ 0 (H) is differentiable at x ∈ dom f if there exists a vector ∇f (x) ∈ H, called the gradient of f at x, such that (∀y ∈ H) lim α↓0 f (x + αy) -f (x) α = y | ∇f (x) . ( 15 
)
Example 5 Let C be a nonempty closed convex subset of H.

Then ∇d 2 C /2 = Id -proj C . Proposition 6 Let f ∈ Γ 0 (H), let x ∈ dom f , and suppose that f is differentiable at x. Then ∂f (x) = {∇f (x)}.
We close this section by examining fundamental properties of a canonical convex minimization problem.

Proposition 7 Let f ∈ Γ 0 (H), let g ∈ Γ 0 (G), and let L : H → G be linear. Suppose that L(dom f ) ∩ dom g = ∅ and set S = Argmin (f + g • L). Then the following hold:

i) Suppose that lim x →+∞ f (x) + g(Lx) = +∞. Then S = ∅. ii) Suppose that ri(L(dom f )) ∩ ri(dom g) = ∅. Then S = x ∈ H 0 ∈ ∂f (x) + L * ∂g(Lx) = x ∈ H (∃ v ∈ ∂g(Lx)) -L * v ∈ ∂f (x) . H R | -1 --1 | 1 H H --2 -1 | 1
Fig. 2: Left: Graph of a function defined on H = R. Right: Graph of its subdifferential.

C. Nonexpansive operators

We introduce the main classes of operators pertinent to our discussion. First, we need to define the notion of a relaxation for an operator.

Definition 8 Let T : H → H and let λ ∈ ]0, +∞[. Then the operator R = Id + λ(T -Id) is a relaxation of T . If λ 1, then R is an underrelaxation of T and, if λ 1, R is an overrelaxation of T ; in particular, if λ = 2, R is the reflection of T . Definition 9 Let α ∈ ]0, 1]. An α-relaxation sequence is a sequence (λ n ) n∈N in ]0, 1/α[ such that n∈N λ n (1 -αλ n ) = +∞.
Example 10 Let α ∈ ]0, 1] and let (λ n ) n∈N be a sequence in ]0, +∞[. Then (λ n ) n∈N is an α-relaxation sequence in each of the following cases: i) α < 1 and

(∀n ∈ N) λ n = 1. ii) (∀n ∈ N) λ n = λ ∈ ]0, 1/α[. iii) inf n∈N λ n > 0 and sup n∈N λ n < 1/α. iv) There exists ε ∈ ]0, 1[ such that (∀n ∈ N) ε/ √ n + 1 λ n 1/α -ε/ √ n + 1. An operator T : H → H is Lipschitzian with constant δ ∈ ]0, +∞[ if (∀x ∈ H)(∀y ∈ H) T x -T y δ x -y . ( 16 
) If δ < 1 above, then T is a Banach contraction (also called a strict contraction). If δ = 1, that is, (∀x ∈ H)(∀y ∈ H) T x -T y x -y , ( 17 
)
then T is nonexpansive. On the other hand, T is cocoercive

with constant β ∈ ]0, +∞[ if (∀x ∈ H)(∀y ∈ H) x -y | T x -T y β T x -T y 2 . ( 18 
)
If β = 1 in (18), then T is firmly nonexpansive. Alternatively, T is firmly nonexpansive if Equivalently, T is firmly nonexpansive if the reflection

(∀x ∈ H)(∀y ∈ H) T x -T y 2 x -y 2 -(Id -T )x -(Id -T )y 2 . ( 19 
)
Id + 2(T -Id) is nonexpansive. ( 20 
)
More generally, let α ∈ ]0, 1]. Then T is α-averaged if the overrelaxation

Id + α -1 (T -Id) is nonexpansive (21) 
or, equivalently, if there exists a nonexpansive operator Q : H → H such that T can be written as the underrelaxation

T = Id + α(Q -Id). (22) 
An alternative characterization of α-averagedness is

(∀x ∈ H)(∀y ∈ H) T x -T y 2 x -y 2 - 1 -α α (Id -T )x -(Id -T )y 2 . ( 23 
)
Averaged operators will be the most important class of nonlinear operators we use in this paper. They were introduced in [START_REF] Baillon | On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces[END_REF] and their central role in many nonlinear analysis algorithms was pointed out in [START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF], with further refinements in [START_REF] Combettes | Compositions and convex combinations of averaged nonexpansive operators[END_REF], [START_REF] Huang | Tight coefficients of averaged operators via scaled relative graph[END_REF]. Note that

T is firmly nonexpansive ⇔ Id -T is firmly nonexpansive ⇔ T is 1/2-averaged ⇔ T is 1-cocoercive. ( 24 
)
Here is an immediate consequence of ( 9) and [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF].

Example 11 Let f ∈ Γ 0 (H). Then prox f and Id -prox f are firmly nonexpansive. In particular, if C is a nonempty closed convex subset of H, then [START_REF] Bach | Optimization with sparsity-inducing penalties[END_REF] implies that proj C and Id -proj C are firmly nonexpansive.

The relationships between the different types of nonlinear operators discussed so far are depicted in Fig. 3. The next propositions provide further connections between them.

Proposition 12 Let δ ∈ ]0, 1[, let T : H → H be δ- Lipschitzian, and set α = (δ + 1)/2. Then T is α-averaged. Proposition 13 Let T : H → H, let β ∈ ]0, +∞[, and let γ ∈ ]0, 2β[. Then T is β-cocoercive if and only if Id -γT is γ/(2β)-averaged.
It follows from the Cauchy-Schwarz inequality that a βcocoercive operator is β -1 -Lipschitzian. In the case of gradients of convex functions, the converse is also true.

Proposition 14 (Baillon-Haddad) Let f : H → R be a dif- ferentiable convex function such that ∇f is β -1 -Lipschitzian for some β ∈ ]0, +∞[. Then ∇f is β-cocoercive.
We now describe operations that preserve averagedness and cocoercivity.

Proposition 15 Let T : H → H, let α ∈ ]0, 1[, and let λ ∈ ]0, 1/α[. Then T is α-averaged if and only if (1 -λ)Id + λT is λα-averaged. Proposition 16 For every i ∈ {1, . . . , m}, let α i ∈ ]0, 1[, let ω i ∈ ]0, 1], and let T i : H → H be α i -averaged. Suppose that m i=1 ω i = 1 and set α = m i=1 ω i α i . Then m i=1 ω i T i is α-averaged.
Example 17 For every i ∈ {1, . . . , m}, let ω i ∈ ]0, 1] and let T i : H → H be firmly nonexpansive. Suppose that

m i=1 ω i = 1. Then m i=1 ω i T i is firmly nonexpansive.
Proposition 18 For every i ∈ {1, . . . , m}, let α i ∈ ]0, 1[ and let T i : H → H be α i -averaged. Set

T = T 1 • • • • • T m and α = 1 1 + 1 m i=1 α i 1 -α i . ( 25 
)
Then T is α-averaged.

Example 19 Let α 1 ∈ ]0, 1[, let α 2 ∈ ]0, 1[, let T 1 : H → H be α 1 -averaged, and let T 2 : H → H be α 2 -averaged. Set T = T 1 • T 2 and α = α 1 + α 2 -2α 1 α 2 1 -α 1 α 2 . ( 26 
)
Then T is α-averaged. 

T = T 1 • (T 2 -Id + T 3 • T 2 ) + Id -T 2 . ( 27 
)
Then T is α-averaged.

Proposition 21 For every k ∈ {1, . . . , q}, let 0 = L k : H → G k be linear, let β k ∈ ]0, +∞[, and let

T k : G k → G k be β k -cocoercive. Set T = q k=1 L * k • T k • L k and β = 1 q k=1 L k 2 β k . ( 28 
)
Then the following hold: i) T is β-cocoercive [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF].

ii) Suppose that q k=1 L k 2 1 and that the operators (T k ) 1 k q are firmly nonexpansive. Then T is firmly nonexpansive [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]. iii) Suppose that q k=1 L k 2 1 and that (T k ) 1 k q are proximity operators. Then T is a proximity operator [START_REF] Combettes | Monotone operator theory in convex optimization[END_REF].

Remark 22

The statement of Proposition 21iii) can be made more precise [START_REF] Combettes | Monotone operator theory in convex optimization[END_REF]. To wit, for every k ∈ {1, . . . , q}, let

ω k ∈ ]0, +∞[, let 0 = L k : H → G k be linear, let g k ∈ Γ 0 (G k ), and let h k : v → inf w∈G k (g * k (w) + v -w 2 /2) be the Moreau envelope of g * k . Then, if q k=1 ω k L k 2 1, we have q k=1 ω k L * k • prox g k • L k = prox f , where f = q k=1 ω k h k • L k * - • 2 2 . ( 29 
)
Let T : H → H and let

Fix T = x ∈ H T x = x (30) 
be its set of fixed points. If T is a Banach contraction, then it admits a unique fixed point. However, if T is merely nonexpansive, the situation is quite different. Indeed, a nonexpansive operator may have no fixed point (take T : x → x + z, with z = 0), exactly one (take T = -Id), or infinitely many (take T = Id). Even those operators which are firmly nonexpansive can fail to have fixed points.

Example 23 T : R → R : x → (x + √ x 2 + 4)/2 is firmly nonexpansive and Fix T = ∅.

Proposition 24 Let T : H → H be nonexpansive. Then Fix T is closed and convex. Proposition 25 Let (T i ) 1 i m be nonexpansive operators from H to H, and let

(ω i ) 1 i m be real numbers in ]0, 1] such that m i=1 ω i = 1. Suppose that m i=1 Fix T i = ∅. Then Fix ( m i=1 ω i T i ) = m i=1 Fix T i .
Proposition 26 For every i ∈ {1, . . . , m}, let

α i ∈ ]0, 1[ and let T i : H → H be α i -averaged. Suppose that m i=1 Fix T i = ∅. Then Fix (T 1 • • • • • T m ) = m i=1 Fix T i .

D. Monotone operators

Let A : H → 2 H be a set-valued operator. Then A is described by its graph

gra A = (x, u) ∈ H × H u ∈ Ax , (31) 
and its inverse A -1 , defined by the relation always exists (see Fig. 4). The operator A is monotone if

(∀(x, u) ∈ H × H) x ∈ A -1 u ⇔ u ∈ Ax, (32) 
∀(x, u) ∈ gra A ∀(y, v) ∈ gra A x -y | u -v 0, (33) 
in which case A -1 is also monotone.

Example 27 Let f : H → ]-∞, +∞] be a proper function, let (x, u) ∈ gra ∂f , and let (y, v) ∈ gra ∂f . Then (13) yields

x -y | u + f (y) f (x) y -x | v + f (x) f (y). (34) 
Adding these inequality yields x -y | u -v 0, which shows that ∂f is monotone.

A natural question is whether the operator obtained by adding a point to the graph of a monotone operator A : H → 2 H is still monotone. If it is not, then A is said to be maximally monotone. Thus, A is maximally monotone if, for every (x, u) ∈ H × H,

(x, u) ∈ gra A ⇔ (∀(y, v) ∈ gra A) x -y | u -v 0. ( 35 
)
These notions are illustrated in Fig. 5. Let us provide some basic examples of maximally monotone operators, starting with the subdifferential of (13) (see Fig. 2).

Example 28 (Moreau) Let f ∈ Γ 0 (H). Then ∂f is maximally monotone and (∂f ) -1 = ∂f * .

Example 29 Let T : H → H be monotone and continuous. Then T is maximally monotone. In particular, if T is cocoercive, it is maximally monotone.

Example 30 Let T : H → H be nonexpansive. Then Id -T is maximally monotone.

Example 31 Let T : H → H be linear (hence continuous) and positive in the sense that (∀x ∈ H) x | T x 0. Then T is maximally monotone. In particular, if T is skew, i.e., T * = -T , then it is maximally monotone.

Given A : H → 2 H , the resolvent of A is the operator

J A = (Id + A) -1 , that is, (∀(x, p) ∈ H × H) p ∈ J A x ⇔ x -p ∈ Ap. (36)
In addition, the reflected resolvent of A is

R A = 2J A -Id. (37) 
A profound result which connects monotonicity and nonexpansiveness is Minty's theorem [START_REF] Minty | Monotone (nonlinear) operators in Hilbert space[END_REF]. It implies that if, A : H → 2 H is maximally monotone, then J A is single-valued, defined everywhere on H, and firmly nonexpansive. Let f and g be functions in Γ 0 (H) which satisfy the constraint qualification ri(dom f ) ∩ ri(dom g) = ∅. In view of Proposition 7ii) and Example 28, the minimizers of f + g are precisely the solutions to the inclusion 0 ∈ Ax + Bx involving the maximally monotone operators A = ∂f and B = ∂g. Hence, it may seem that in minimization problems the theory of subdifferentials should suffice to analyze and solve problems without invoking general monotone operator theory. As discussed in [START_REF] Combettes | Monotone operator theory in convex optimization[END_REF], this is not the case and monotone operators play an indispensable role in various aspects of convex minimization. We give below an illustration of this fact in the context of Proposition 7.

Example 34 ([44]) Given f ∈ Γ 0 (H), g ∈ Γ 0 (G), and a linear operator L : H → G, the objective is to minimize

x∈H f (x) + g(Lx) (38) 
using f and g separately by means of their respective proximity operators. To this end, let us bring into play the Fenchel-Rockafellar dual problem

minimize v∈G f * (-L * v) + g * (v). ( 39 
)
We derive from [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Theorem 19.1] that, if (x, v) ∈ H × G solves the inclusion

0 0 ∈ ∂f 0 0 ∂g * subdifferential x v + 0 L * -L 0 skew x v , (40) 
then x solves [START_REF] Bravo | Bandit learning in concave N -person games[END_REF] and v solves [START_REF] Brègman | The method of successive projection for finding a common point of convex sets[END_REF]. Now introduce the variable z = (x, v), the function [START_REF] Briceño-Arias | A monotone+skew splitting model for composite monotone inclusions in duality[END_REF] to solve [START_REF] Brègman | The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming[END_REF] and, thereby, [START_REF] Bravo | Bandit learning in concave N -person games[END_REF] and [START_REF] Brègman | The method of successive projection for finding a common point of convex sets[END_REF]. Applications of this framework can be found in image restoration [START_REF] O'connor | Primal-dual decomposition by operator splitting and applications to image deblurring[END_REF] and in empirical mode decomposition [START_REF] Pustelnik | Empirical mode decomposition revisited by multicomponent non-smooth convex optimization[END_REF].

Γ 0 (H × G) ∋ h : z → f (x) + g * (v)

Example 35

The primal-dual pair ( 38)-( 39) can be exploited in various ways; see for instance [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF], [START_REF] Combettes | A forwardbackward view of some primal-dual optimization methods in image recovery[END_REF], [START_REF] Combettes | Dualization of signal recovery problems[END_REF], [START_REF] Komodakis | Playing with duality: An overview of recent primal-dual approaches for solving large-scale optimization problems[END_REF]. A simple illustration is found in sparse signal recovery and machine learning, where one often aims at solving [START_REF] Bravo | Bandit learning in concave N -person games[END_REF] by choosing g to be a norm ||| • ||| [START_REF] Argyriou | Sparse prediction with the ksupport norm[END_REF], [START_REF] Bach | Optimization with sparsity-inducing penalties[END_REF], [START_REF] Combettes | Learning with optimal interpolation norms[END_REF], [START_REF] Donoho | Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ 1 minimization[END_REF], [START_REF] Mcdonald | New perspectives on ksupport and cluster norms[END_REF]. 

Now let ||| • ||| * : G → R : v → sup |||y||| 1 y | v be
This dual formulation underlies several investigations, e.g., [START_REF] Ghaoui | Safe feature elimination in sparse supervised learning[END_REF], [START_REF] Ndiaye | Gap safe screening rules for sparsity enforcing penalties[END_REF].

III. FIXED POINT ALGORITHMS

We review the main fixed point construction algorithms.

A. Basic iteration schemes

First, we recall that finding the fixed point of a Banach contraction is relatively straightforward via the standard Banach-Picard iteration scheme [START_REF] Abe | Linearly involved generalized Moreau enhanced models and their proximal splitting algorithm under overall convexity condition[END_REF].

Theorem 36 ([21]) Let δ ∈ ]0, 1[, let T : H → H be δ- Lipschitzian, and let x 0 ∈ H. Set (∀n ∈ N) x n+1 = T x n . ( 42 
)
Then T has a unique fixed point x and x n → x. More precisely, (∀n ∈ N)

x n -x δ n x 0 -x .
If T is merely nonexpansive (i.e., δ = 1) with Fix T = ∅, Theorem 36 fails. For instance, let T = Id be a rotation in the Euclidean plane. Then it is nonexpansive with Fix T = {0} but the sequence (x n ) n∈N constructed by the successive approximation process [START_REF] Briceño-Arias | A random block-coordinate Douglas-Rachford splitting method with low computational complexity for binary logistic regression[END_REF] does not converge. Such scenarios can be handled via the following result.

Theorem 37 ([21]) Let α ∈ ]0, 1], let T : H → H be an αaveraged operator such that Fix T = ∅, let (λ n ) n∈N be an α-relaxation sequence. Set

(∀n ∈ N) x n+1 = x n + λ n T x n -x n . (43) 
Then (x n ) n∈N converges to a point in Fix T .

Remark 38

In connection with Theorems 36 and 37, let us make the following observations. i) If α < 1 in Theorem 37, choosing λ n = 1 in (43) (see Example 10i)) yields [START_REF] Briceño-Arias | A random block-coordinate Douglas-Rachford splitting method with low computational complexity for binary logistic regression[END_REF]. ii) In contrast with Theorem 36, the convergence in Theorem 37 is not linear in general [START_REF] Bauschke | Characterizing arbitrarily slow convergence in the method of alternating projections[END_REF], [START_REF] Borwein | Norm convergence of realistic projection and reflection methods[END_REF]. iii) When α = 1, (43) is known as the Krasnosel'skiȋ-Mann iteration.

Next, we present a more flexible fixed point theorem which involves iteration-dependent composite averaged operators.

Theorem 39 ([111]) Let ε ∈ ]0, 1/2[ and let x 0 ∈ H. For ev- ery n ∈ N, let α 1,n ∈ ]0, 1/(1 + ε)], let α 2,n ∈ ]0, 1/(1 + ε)],
let T 1,n : H → H be α 1,n -averaged, and let T 2,n : H → H be α 2,n -averaged. In addition, for every n ∈ N, let

λ n ∈ ε, (1 -ε)(1 + εα n )/α n , (44) 
where

α n = (α 1,n + α 2,n -2α 1,n α 2,n )/(1 -α 1,n α 2,n ), and set x n+1 = x n + λ n T 1,n (T 2,n x n ) -x n . ( 45 
)
Suppose that S = n∈N Fix (T 1,n • T 2,n ) = ∅. Then the following hold: i) (∀x ∈ S) n∈N T 2,n x n -x n -T 2,n x + x 2 < +∞.
ii) Suppose that a subsequence of (x n ) n∈N converges to a point in S. Then (x n ) n∈N converges to a point in S.

Remark 40

The assumption in Theorem 39ii) holds in particular when, for every n ∈ N, T 1,n = T 1 and T 2,n = T 2 .

Below, we present a variant of Theorem 37 obtained by considering the composition of m operators. In the case of firmly nonexpansive operators, this result is due to Martinet [START_REF] Martinet | Algorithmes pour la Résolution de Problèmes d'Optimisation et de Minimax[END_REF].

Theorem 41 ([87]) For every i ∈ {1, . . . , m}, let

α i ∈ ]0, 1[ and let T i : H → H be α i -averaged. Let x 0 ∈ H, suppose that Fix (T 1 • • • • • T m ) = ∅, and iterate for n = 0, 1, . . .           x mn+1 = T m x mn x mn+2 = T m-1 x mn+1 . . . x mn+m-1 = T 2 x mn+m-2 x mn+m = T 1 x mn+m-1 . (46) 
Then (x mn ) n∈N converges to a point

x 1 in Fix (T 1 • • • • • T m ). Now set x m = T m x 1 , x m-1 = T m-1 x m , . . . , x 2 = T 2 x 3 .
Then, for every i ∈ {1, . . . , m -1}, (x mn+i ) n∈N converges to x m+1-i .

B. Algorithms for fixed point selection

The algorithms discussed so far construct an unspecified fixed point of a nonexpansive operator T : H → H. In some applications, one may be interested in finding a specific fixed point, for instance one of minimum norm or, more generally, one that minimizes some quadratic function [START_REF] Artzy | Quadratic optimization for image reconstruction II[END_REF], [START_REF] Combettes | A block-iterative surrogate constraint splitting method for quadratic signal recovery[END_REF]. One will find in [START_REF] Combettes | A block-iterative surrogate constraint splitting method for quadratic signal recovery[END_REF] several algorithms to minimize convex quadratic functions over fixed point sets, as well as signal recovery applications. Beyond quadratic selection, one may wish to minimize a strictly convex function g ∈ Γ 0 (H) over the closed convex set (see Proposition 24) Fix T , i.e., minimize

x∈Fix T g(x). (47) 
Instances of such formulations can be found in signal interpolation [START_REF] Ono | Hierarchical convex optimization with primaldual splitting[END_REF] and machine learning [START_REF] Nakayama | A hierarchical convex optimization for multiclass SVM achieving maximum pairwise margins with least empirical hinge-loss[END_REF]. Algorithms to solve [START_REF] Briceño-Arias | Forward-backward-half forward algorithm for solving monotone inclusions[END_REF] have been proposed in [START_REF] Combettes | Strong convergence of block-iterative outer approximation methods for convex optimization[END_REF], [START_REF] Hirstoaga | Iterative selection methods for common fixed point problems[END_REF], [START_REF] Yamada | The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings, in: Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications[END_REF] under various hypotheses. Here is an example. 

(∀n ∈ N) x n+1 = T x n -α n ∇g(T x n ). (48) 
Then (x n ) n∈N converges to the solution to [START_REF] Briceño-Arias | Forward-backward-half forward algorithm for solving monotone inclusions[END_REF].

C. A fixed point method with block operator updates

We turn our attention to a composite fixed point problem.

Problem 43 Let (ω i ) 1 i m be real numbers in ]0, 1] such that m i=1 ω i = 1.
For every i ∈ {0, . . . , m}, let T i : H → H be α i -averaged for some α i ∈ ]0, 1[. The task is to find a fixed point of T 0 • m i=1 ω i T i , assuming that such a point exists. A simple strategy to solve Problem 43 is to set R = m i=1 ω i T i , observe that R is averaged by Proposition 16, and then use Theorem 39 and Remark 40 to find a fixed point of T 0 • R. This, however, requires the activation of the m operators (T i ) 1 i m to evaluate R at each iteration, which is a significant computational burden when m is sizable. In the degenerate case when the operators (T i ) 0 i m have common fixed points, Problem 43 amount to finding such a point (see Propositions 25 and 26) and this can be done using the strategies devised in [START_REF] Bauschke | On projection algorithms for solving convex feasibility problems[END_REF], [START_REF] Bauschke | Extrapolation algorithm for affine-convex feasibility problems[END_REF], [START_REF] Combettes | The convex feasibility problem in image recovery[END_REF], [START_REF] Kiwiel | Surrogate projection methods for finding fixed points of firmly nonexpansive mappings[END_REF] which require only the activation of blocks of operators at each iteration. Such approaches fail in our more challenging setting, which assumes only that Fix (T 0 • m i=1 ω i T i ) = ∅. However, with a strategy based on tools from mean iteration theory [START_REF] Combettes | Quasinonexpansive iterations on the affine hull of orbits: From Mann's mean value algorithm to inertial methods[END_REF], it is possible to devise an algorithm which operates by updating only a block of operators (T i ) i∈In at iteration n.

Theorem 44 ([95]) Consider the setting of Problem 43. Let M be a strictly positive integer and let (I n ) n∈N be a sequence of nonempty subsets of {1, . . . , m} such that

(∀n ∈ N) n+M-1 k=n I k = {1, . . . , m}. ( 49 
)
Let x 0 ∈ H, let (t i,-1 ) 1 i m ∈ H m , and iterate for n = 0, 1, . . .          for every i ∈ I n t i,n = T i x n for every i ∈ {1, . . . , m} I n t i,n = t i,n-1 x n+1 = T 0 m i=1 ω i t i,n . (50) 
Then the following hold: i) Let x be a solution to Problem 43 and let i ∈ {1, . . . , m}. Then

x n -T i x n → x -T i x. ii) (x n ) n∈N converges to a solution to Problem 43.
iii) Suppose that, for some i ∈ {0, . . . , m}, T i is a Banach contraction. Then (x n ) n∈N converges linearly to the unique solution to Problem 43.

At iteration n, I n is the set of indices of operators to be activated. The remaining operators are not used and their most recent evaluations are recycled to form the update x n+1 . Condition [START_REF] Bùi | Bregman forward-backward operator splitting, Set-Valued Var. Anal[END_REF] imposes the mild requirement that each operator in (T i ) 1 i m be evaluated at least once over the course of any M consecutive iterations. The choice of M is left to the user.

D. Perturbed fixed point methods

For various modeling or computational reasons, exact evaluations of the operators in fixed point algorithms may not be possible. Such perturbations can be modeled by deterministic additive errors [START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF], [START_REF] Lemaire | Stability of the iteration method for nonexpansive mappings[END_REF], [START_REF] Martinet | Algorithmes pour la Résolution de Problèmes d'Optimisation et de Minimax[END_REF] but also by stochastic ones [START_REF] Combettes | Stochastic quasi-Fejér blockcoordinate fixed point iterations with random sweeping[END_REF], [START_REF] Yu | On the method of generalized stochastic gradients and quasi-Fejér sequences[END_REF]. Here is a stochastically perturbed version of Theorem 37, which is a straightforward variant of [START_REF] Combettes | Stochastic quasi-Fejér blockcoordinate fixed point iterations with random sweeping[END_REF]Corollary 2.7].

Theorem 45 Let α ∈ ]0, 1], let T : H → H be an α-averaged operator such that Fix T = ∅, and let (λ n ) n∈N be an αrelaxation sequence. Let x 0 and (e n ) n∈N be H-valued random variables. Set

(∀n ∈ N) x n+1 = x n + λ n T x n + e n -x n . ( 51 
)
Suppose that

n∈N λ n E( e n 2 | X n ) < +∞ a. s.
, where X n is the σ-algebra generated by (x 0 , . . . , x n ). Then (x n ) n∈N converges a. s. to a (Fix T )-valued random variable.

E. Random block-coordinate fixed point methods

We have seen in Section III-C that the computational cost per iteration could be reduced in certain fixed point algorithms by updating only some of the operators involved in the model. In this section, we present another approach to reduce the iteration cost by considering scenarios in which the underlying Euclidean space H is decomposable in m

factors H = H 1 × • • • × H m .
In the spirit of the Gauss-Seidel algorithm, one can explore the possibility of activating only some of the coordinates of certain operators at each iteration of a fixed point method. The potential advantages of such a procedure are a reduced computational cost per iteration, reduced memory requirements, and an increased implementation flexibility.

In the product space H, consider the basic update process

x n+1 = T n x n , (52) 
under the assumption that the operator T n is decomposable explicitly as

T n : H → H : x → (T 1,n x, . . . , T m,n x), (53) 
with T i,n : H → H i . Updating only some coordinates is performed by modifying iteration [START_REF] Buzzard | Plugand-play unplugged: Optimization-free reconstruction using consensus equilibrium[END_REF] as

(∀i ∈ {1, . . . , m}) x i,n+1 = x i,n + ε i,n T i,n x n -x i,n , (54) 
where ε i,n ∈ {0, 1} signals the activation of the i-th coordinate of x n . If ε i,n = 1, the i-th component is updated whereas, if ε i,n = 0, it is unchanged.
The main difficulty facing such an approach is that the nonexpansiveness property of an operator is usually destroyed by coordinate sampling. To remove this roadblock, a possibility is to make the activation variables random, which results in a stochastic algorithm for which almost sure convergence holds [START_REF] Combettes | Stochastic quasi-Fejér blockcoordinate fixed point iterations with random sweeping[END_REF], [START_REF] Iutzeler | Asynchronous distributed optimization using a randomized alternating direction method of multipliers[END_REF].

Theorem 46 ([102]) Let α ∈ ]0, 1], let ǫ ∈ ]0, 1/2[, and let T : H → H : x → (T i x) 1 i m be an α-averaged operator where T i : H → H i . Let (λ n ) n∈N be in [ǫ, α -1 -ǫ], set D = {0, 1} m {0}, let x 0 be an H-valued random variable, and let (ε n ) n∈N be identically distributed D-valued random variables. Iterate for n = 0, 1, . . . for i = 1, . . . , m x i,n+1 = x i,n + ε i,n λ n T i x n -x i,n . (55) 
In addition, assume that the following hold:

i) Fix T = ∅. ii) For every n ∈ N, ε n and (x 0 , . . . , x n ) are mutually independent. iii) (∀i ∈ {1, . . . , m}) Prob [ε i,0 = 1] > 0. Then (x n ) n∈N converges a. s. to a Fix T -valued random variable.
Further results in this vein for iterations involving nonstationary compositions of averaged operators can be found in [START_REF] Combettes | Stochastic quasi-Fejér blockcoordinate fixed point iterations with random sweeping[END_REF]. Mean square convergence results are also available under additional assumptions on the operators (T n ) n∈N [START_REF] Combettes | Stochastic quasi-Fejér blockcoordinate fixed point iterations with random sweeping II: Mean-square and linear convergence[END_REF].

IV. FIXED POINT MODELING OF MONOTONE INCLUSIONS

A. Splitting sums of monotone operators

Our first basic model is that of finding a zero of the sum of two monotone operators. It will be seen to be central in understanding and solving data science problems in optimization form (see also Example 34 for a special case) and beyond.

Problem 47 Let A : H → 2 H and B : H → 2 H be maximally monotone operators. The task is to

find x ∈ H such that 0 ∈ Ax + Bx, (56) 
under the assumption that a solution exists.

A classical method for solving Problem 47 is the Douglas-Rachford algorithm, which was first proposed in [START_REF] Lions | Splitting algorithms for the sum of two nonlinear operators[END_REF] (see also [START_REF] Eckstein | On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators[END_REF]; the following relaxed version is from [START_REF] Combettes | Fejér-monotonicity in convex optimization[END_REF]).

Proposition 48 (Douglas-Rachford splitting) Let (λ n ) n∈N be a 1/2-relaxation sequence, let γ ∈ ]0, +∞[, and let y 0 ∈ H.

Iterate

for n = 0, 1, . . .

    x n = J γB y n z n = J γA (2x n -y n ) y n+1 = y n + λ n (z n -x n ). (57) 
Then (x n ) n∈N converges to a solution to Problem 47.

The Douglas-Rachford algorithm requires the ability to evaluate two resolvents at each iteration. However, if one of the operators is single-valued and Lipschitzian, it is possible to apply it explicitly, hence requiring only one resolvent evaluation per iteration. The resulting algorithm, proposed by Tseng [START_REF] Tseng | A modified forward-backward splitting method for maximal monotone mappings[END_REF], is often called the forward-backward-forward splitting algorithm since it involves two explicit (forward) steps using B and one implicit (backward) step using A.

Proposition 49 (Tseng splitting) In Problem 47, assume that B is δ-Lipschitzian for some δ ∈ ]0, +∞[. Let x 0 ∈ H, let ε ∈ ]0, 1/(δ + 1)[, let (γ n ) n∈N be in [ε, (1 -ε)/δ], and iterate for n = 0, 1, . . .       y n = x n -γ n Bx n z n = J γnA y n r n = z n -γ n Bz n x n+1 = x n -y n + r n . (58) 
Then (x n ) n∈N converges to a solution to Problem 47.

As noted in Section II-C, if B is cocoercive, then it is Lipschitzian, and Proposition 49 is applicable. However, in this case it is possible to devise an algorithm which requires only one application of B per iteration, as opposed to two in [START_REF] Candès | The power of convex relaxation: Near-optimal matrix completion[END_REF]. To see this, let γ n ∈ ]0, 2β[ and x ∈ H. Then it follows at once from [START_REF] Bot | Convergence analysis for a primal-dual monotone + skew splitting algorithm with applications to total variation minimization[END_REF] 

that x solves Problem 47 ⇔ -γ n Bx ∈ γ n Ax ⇔ (x -γ n Bx) -x ∈ γ n Ax ⇔ x = J γnA (x -γ n Bx) ⇔ x ∈ Fix (T 1,n •T 2,n ), where T 1,n = J γnA and T 2,n = Id-γ n B.
As seen in Theorem 32, T 1,n is 1/2-averaged. On the other hand, we derive from Proposition 13 that, if α 2,n = γ n /(2β), then T 2,n is α 2,n -averaged. With these considerations, we invoke Theorem 39 to obtain the following algorithm, which goes back to [START_REF] Mercier | Lectures on Topics in Finite Element Solution of Elliptic Problems[END_REF].

Proposition 50 (forward-backward splitting [START_REF] Combettes | Compositions and convex combinations of averaged nonexpansive operators[END_REF]) Suppose that, in Problem 47, B is β-cocoercive for some

β ∈ ]0, +∞[. Let ε ∈ ]0, min{1/2, β}[, let x 0 ∈ H, and let (γ n ) n∈N be in [ε, 2β/(1 + ε)]. Let (∀n ∈ N) λ n ∈ ε, (1 -ε) 2 + ε -γ n /(2β) . ( 59 
)
Iterate

for n = 0, 1, . . . u n = x n -γ n Bx n x n+1 = x n + λ n J γnA u n -x n . ( 60 
)
Then (x n ) n∈N converges to a solution to Problem 47.

We now turn our attention to a more structured version of Problem 47, which includes an additional Lipschitzian monotone operator.

Problem 51 Let A : H → 2 H and B : H → 2 H be maximally monotone operators, let δ ∈ ]0, +∞[, and let C : H → H be monotone and δ-Lipschitzian. The task is to

find x ∈ H such that 0 ∈ Ax + Bx + Cx, (61) 
under the assumption that a solution exists.

The following approach provides also a dual solution.

Proposition 52 (splitting three operators I [START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF])

Consider Problem 51 and let ε ∈ ]0, 1/(2 + δ)[. Let (γ n ) n∈N be in [ε, (1 -ε)/(1 + δ)], let x 0 ∈ H, and let u 0 ∈ H. Iterate for n = 0, 1, . . .          y n = x n -γ n (Cx n + u n ) p n = J γnA y n q n = u n + γ n x n -J B/γn (u n /γ n + x n ) x n+1 = x n -y n + p n -γ n (Cp n + q n ) u n+1 = q n + γ n (p n -x n ). (62) 
Then (x n ) n∈N converges to a solution to Problem 51 and

(u n ) n∈N converges to a solution u to the dual problem, i.e., 0 ∈ -(A + C) -1 (-u) + B -1 u.
When C is β-cocoercive in Problem 51, we can take δ = 1/β. In this setting, an alternative algorithm is obtained as follows. Let us fix γ ∈ ]0, +∞[ and define

T = J γA • 2J γB -Id -γC • J γB + Id -J γB . ( 63 
)
By setting T 1 = J γA , T 2 = J γB , and T 3 = Id -γC in Proposition 20, we deduce from Proposition 13 that, if γ ∈ ]0, 2β[ and α = 2β/(4β -γ), then T is α-averaged. Now take y ∈ H and set x = J γB y, hence y -x ∈ γBx by [START_REF] Bot | Convergence analysis for a primal-dual monotone + skew splitting algorithm with applications to total variation minimization[END_REF]. Then [START_REF] Bot | Convergence analysis for a primal-dual monotone + skew splitting algorithm with applications to total variation minimization[END_REF]. Thus, 0 = (x -y) + (y -x) ∈ γ(Ax + Bx + Cx), which shows that x solves Problem 51. Altogether, since y can be constructed via Theorem 37, we obtain the following convergence result.

y ∈ Fix T ⇔ J γA (2x -y -γCx) + y -x = y ⇔ J γA (2x-y -γCx) = x ⇔ x-y -γCx ∈ γAx by
Proposition 53 (splitting three operators II [START_REF] Davis | A three-operator splitting scheme and its optimization applications[END_REF]) In Problem 51, assume that C is β-cocoercive for some

β ∈ ]0, +∞[. Let γ ∈ ]0, 2β[ and set α = 2β/(4β -γ).
Furthermore, let (λ n ) n∈N be an α-relaxation sequence and let y 0 ∈ H. Iterate

for n = 0, 1, . . .       x n = J γB y n r n = y n + γCx n z n = J γA (2x n -r n ) y n+1 = y n + λ n (z n -x n ). (64) 
Then (x n ) n∈N converges to a solution to Problem 51.

Remark 54 i) Work closely related to Proposition 53 can be found in [START_REF] Briceño-Arias | Forward-Douglas-Rachford splitting and forwardpartial inverse method for solving monotone inclusions[END_REF], [START_REF] Briceño-Arias | Forward-backward-half forward algorithm for solving monotone inclusions[END_REF], [START_REF] Raguet | A generalized forward-backward splitting[END_REF]. See also [START_REF] Raguet | A note on the forward-Douglas-Rachford splitting for monotone inclusion and convex optimization[END_REF], which provides further developments and a discussion of [START_REF] Briceño-Arias | Forward-Douglas-Rachford splitting and forwardpartial inverse method for solving monotone inclusions[END_REF], [START_REF] Davis | A three-operator splitting scheme and its optimization applications[END_REF], [START_REF] Raguet | A generalized forward-backward splitting[END_REF]. ii) Unlike algorithm [START_REF] Censor | Algorithms and convergence results of projection methods for inconsistent feasibility problems: A review[END_REF], [START_REF] Censor | Parallel Optimization -Theory, Algorithms and Applications[END_REF] imposes constant proximal parameters and requires the cocoercivity of C, but it involves only one application of C per iteration. An extension of (64) appears in [START_REF] Yan | A new primal-dual algorithm for minimizing the sum of three functions with a linear operator[END_REF] in the context of minimization problems.

B. Splitting sums of composite monotone operators

The monotone inclusion problems of Section IV-A are instantiations of the following formulation, which involves an arbitrary number of maximally monotone operators and compositions with linear operators.

Problem 55 Let δ ∈ ]0, +∞[ and let A : H → 2 H be maxi- mally monotone. For every k ∈ {1, . . . , q}, let B k : G k → 2 G k be maximally monotone, let 0 = L k : H → G k be linear, and let C k : G k → G k be monotone and δ-Lipschitzian. The task is to find x ∈ H such that 0 ∈ Ax + q k=1 L * k (B k + C k )(L k x) , (65) 
under the assumption that a solution exists.

In the context of Problem 55, the principle of a splitting algorithm is to involve all the operators individually. In the case of a set-valued operator A or B k , this means using the associated resolvent, whereas in the case of a single-valued operator C k or L k , a direct application can be considered. An immediate difficulty one faces with [START_REF] Chambolle | On the convergence of the iterates of the "fast iterative shrinkage/thresholding algorithm[END_REF] is that it involves many set-valued operators. However, since inclusion is a binary relation, for reasons discussed in [START_REF] Briceño-Arias | A monotone+skew splitting model for composite monotone inclusions in duality[END_REF], [START_REF] Combettes | Can one genuinely split m > 2 monotone operators? Workshop on Algorithms and Dynamics for Games and Optimization[END_REF] and analyzed in more depth in [START_REF] Ryu | Uniqueness of DRS as the 2 operator resolvent-splitting and impossibility of 3 operator resolvent-splitting[END_REF], it is not possible to deal with more than two such operators. To circumvent this fundamental limitation, a strategy is to rephrase Problem 55 as a problem involving at most two set-valued operators in a larger space. This strategy finds its root in convex feasibility problems [START_REF] Pierra | Decomposition through formalization in a product space[END_REF] and it was first adapted to the problem of finding a zero of the sum of m operators in [START_REF] Gol | shtein, A general approach to decomposition of optimization systems[END_REF], [START_REF] Spingarn | Partial inverse of a monotone operator[END_REF]. In [START_REF] Briceño-Arias | A monotone+skew splitting model for composite monotone inclusions in duality[END_REF], it was used to deal with the presence of linear operators (see in particular Example 34), with further developments in [START_REF] Bot | A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallelsum type monotone operators[END_REF], [START_REF] Bot | Convergence analysis for a primal-dual monotone + skew splitting algorithm with applications to total variation minimization[END_REF], [START_REF] Combettes | A forwardbackward view of some primal-dual optimization methods in image recovery[END_REF], [START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF], [START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF]. In the same spirit, let us reformulate Problem 55 by introducing

         L : H → G : x → (L 1 x, . . . , L q x) B : G → 2 G : (y k ) 1 k q → × q k=1 B k y k C : G → G : (y k ) 1 k q → (C k y k ) 1 k q V = range L. ( 66 
)
Note that L is linear, B is maximally monotone, and C is monotone and δ-Lipschitzian. In addition, the inclusion (65) can be rewritten more concisely as

find x ∈ H such that 0 ∈ Ax + L * (B + C)(Lx) . (67)
In particular, suppose that A = 0. Then, upon setting y = Lx ∈ V , we obtain the existence of a point u ∈ (B + C)y in ker L * = V ⊥ . In other words,

0 ∈ N V y + By + Cy. ( 68 
)
Solving this inclusion is equivalent to solving a problem similar to Problem 51, formulated in G. Thus, applying Proposition 53 to (68) leads to the following result.

Proposition 56 In Problem 55, suppose that A = 0, that the operators (C k ) 1 k q are β-cocoercive for some β ∈ ]0, +∞[,

and that Q = q k=1 L * k • L k is invertible. Let γ ∈ ]0, 2β[, set α = 2β/(4β -γ), and let (λ n ) n∈N be an α-relaxation sequence. Further, let y 0 ∈ G, set s 0 = Q -1 q k=1 L * k y 0,k , and iterate for n = 0, 1, . . .                   for k = 1, . . . , q p n,k = J γB k y n,k x n = Q -1 q k=1 L * k p n,k c n = Q -1 q k=1 L * k C k p n,k z n = x n -s n -γc n for k = 1, . . . , q y n+1,k = y n,k + λ n (x n + z n -p n,k ) s n+1 = s n + λ n z n . (69) 
Then (x n ) n∈N converges to a solution to [START_REF] Chambolle | On the convergence of the iterates of the "fast iterative shrinkage/thresholding algorithm[END_REF].

A strategy for handling Problem 55 in its general setting consists of introducing an auxiliary variable v ∈ B(Lx) in [START_REF] Chambolle | An introduction to continuous optimization for imaging[END_REF], which can then be rewritten as

0 ∈ Ax + L * v + L * C(Lx) 0 ∈ -Lx + B -1 v. (70) 
This results in an instantiation of Problem 47 in K = H × G involving the maximally monotone operators

           A 1 : K → 2 K : (x, v) → A 0 0 B -1 x v B 1 : K → K : (x, v) → L * • C • L L * -L 0 x v .
(71) We observe that, in K, B 1 is Lipschitzian with constant χ = L (1+δ L ). By applying Proposition 49 to (70), we obtain the following algorithm.

Proposition 57 ([101]) Consider Problem 55. Set χ = q k=1 L k 2 1 + δ q k=1 L k 2 . ( 72 
)
Let x 0 ∈ H, let v 0 ∈ G, let ε ∈ ]0, 1/(χ + 1)[, let (γ n ) n∈N be in [ε, (1 -ε)/χ],
and iterate

for n = 0, 1, . . .                  u n = x n -γ n q k=1 L * k (C k (L k x n ) + v n,k ) p n = J γnA u n for k = 1, . . . , q       y n,k = v n,k + γ n L k x n z n,k = y n,k -γ n J γ -1 B k y n,k /γ n s n,k = z n,k + γ n L k p n v n+1,k = v n,k -y n,k + s n,k r n = p n -γ n q k=1 L * k (C k (L k p n ) + z n,k ) x n+1 = x n -u n + r n . (73)
Then (x n ) n∈N converges to a solution to Problem 55.

An alternative approach consists of reformulating [START_REF] Cheney | Proximity maps for convex sets[END_REF] in the form of Problem 47 with the maximally monotone operators

           A 2 : K → 2 K : (x, v) → A L * -L B -1 x v B 2 : K → K : (x, v) → L * • C • L 0 0 0 x v . (74) 
Instead of working directly with these operators, it may be judicious to use preconditioned versions V • A 2 and V • B 2 , where V : K → K is a self-adjoint strictly positive linear operator. If K is renormed with

• V : (x, v) → (x, v) | V -1 (x, v) , (75) 
then V • A 2 is maximally monotone in the renormed space and, if C is cocoercive in G, then V • B 2 is cocoercive in the renormed space. Thus, setting

V = W 0 0 (σ -1 Id -L • W • L * ) -1 , (76) 
where W : H → H, and applying Proposition 50 in this context yields the following result (see [START_REF] Combettes | A forwardbackward view of some primal-dual optimization methods in image recovery[END_REF]).

Proposition 58 Suppose that, in Problem 55, A = 0 and (C k ) 1 k q are β-cocoercive for some β ∈ ]0, +∞[. Let W : H → H be a self-adjoint strictly positive linear operator and let

σ ∈ ]0, +∞[ be such that κ = L • W • L * < min{1/σ, 2β}. Let ε ∈ ]0, min{1/2, β/κ}[, let x 0 ∈ H, and let v 0 ∈ G. For every n ∈ N, let λ n ∈ ε, (1 -ε) 2 + ε -κ/2β . ( 77 
)
Iterate for n = 0, 1, . . .                   for k = 1, . . . , q s n,k = C k (L k x n ) z n = x n -W q k=1 L * k (s n,k + v n,k ) for k = 1, . . . , q     w n,k = v n,k + σL k z n y n,k = w n,k -σJ σ -1 B k (w n,k /σ) v n+1,k = v n,k + λ n (y n,k -v n,k ) u n = x n -W q k=1 L * k (s n,k + y n,k ) x n+1 = x n + λ n (u n -x n ). ( 78 
)
Then (x n ) n∈N converges to a solution to Problem 55.

Other choices of the metric operator V are possible, which lead to different primal-dual algorithms [START_REF] Combettes | Variable metric forward-backward splitting with applications to monotone inclusions in duality[END_REF], [START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF], [START_REF] Komodakis | Playing with duality: An overview of recent primal-dual approaches for solving large-scale optimization problems[END_REF], [START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF]. An advantage of ( 73) and ( 78) over ( 69) is that the first two do not require the inversion of linear operators.

C. Block-iterative algorithms

As will be seen in Problems 84 and 86, systems of inclusions arise in multivariate optimization problems (they will also be present in Nash equilibria; see, e.g., [START_REF] Huang | Tight coefficients of averaged operators via scaled relative graph[END_REF] and ( 183)). We now focus on general systems of inclusions involving maximally monotone operators as well as linear operators coupling the variables.

Problem 59 For every i ∈ I = {1, . . . , m} and k ∈ K = {1, . . . , q}, let A i : H i → 2 Hi and B k : G k → 2 G k be maximally monotone, and let L k,i :

H i → G k be linear. The task is to find x 1 ∈ H 1 , . . . , x m ∈ H m such that (∀i ∈ I) 0 ∈ A i x i + k∈K L * k,i B k j∈I L k,j x j , (79) 
under the assumption that the Kuhn-Tucker set

Z = (x, v) ∈ H × G (∀i ∈ I) - k∈K L * k,i v k ∈ A i x i and (∀k ∈ K) i∈I L k,i x i ∈ B -1 k v k (80) 
is nonempty.

We can regard m as the number of coordinates of the solution vector x = (x i ) 1 i m . In large-scale applications, m can be sizable and so can the number of terms q, which is often associated with the number of observations. We have already discussed in Sections III-C and III-E techniques in which not all the indices i or k need to be activated at a given iteration. Below, we describe a block-iterative method proposed in [START_REF] Combettes | Asynchronous block-iterative primaldual decomposition methods for monotone inclusions[END_REF] which allows for partial activation of both the families (A i ) 1 i m and (B k ) 1 k q , together with individual, iteration-dependent proximal parameters for each operator. The method displays an unprecedented level of flexibility and it does not require the inversion of linear operators or knowledge of their norms.

The principle of the algorithm is as follows. Denote by I n ⊂ I and K n ⊂ K the blocks of indices of operators to be updated at iteration n. We impose the mild condition that there exist M ∈ N such that each operator index i and k is used at least once within any M consecutive iterations, i.e., for every n ∈ N, For each i ∈ I n and k ∈ K n , we select points

(a i,n , a * i,n ) ∈ gra A i and (b k,n , b * k,n ) ∈ gra B k and use them to construct a closed half-space H n ⊂ H × G which contains Z.
The primal variable x n and the dual variable v n are updated as (x n+1 , v n+1 ) = proj Hn (x n , v n ). The resulting algorithm can also be implemented with relaxations and in an asynchronous fashion [START_REF] Combettes | Asynchronous block-iterative primaldual decomposition methods for monotone inclusions[END_REF]. For simplicity, we present the unrelaxed synchronous version. Recent developments on splitting algorithms for Problem 59 as well as variants and extensions thereof can be found in [START_REF] Bùi | Warped proximal iterations for monotone inclusions[END_REF], [START_REF] Bùi | Multivariate monotone inclusions in saddle form[END_REF], [START_REF] Giselsson | Nonlinear forward-backward splitting with projection correction[END_REF], [START_REF] Johnstone | Projective splitting with forward steps[END_REF], [START_REF] Johnstone | Single-forward-step projective splitting: Exploiting cocoercivity[END_REF].

for n = 0, 1, . . .                                                           for every i ∈ I n      l * i,n = k∈K L * k,i v k,n a i,n = J γi,nAi x i,n -γ i,n l * i,n a * i,n = γ -1 i,n (x i,n -a i,n ) -l * i,n for every i ∈ I I n (a i,n , a * i,n ) = (a i,n-1 , a * i,n-1 ) for every k ∈ K n      l k,n = i∈I L k,i x i,n b k,n = J µ k,n B k l k,n + µ k,n v k,n b * k,n = v k,n + µ -1 k,n (l k,n -b k,n ) for every k ∈ K K n (b k,n , b * k,n ) = (b k,n-1 , b * k,n-1 ) for every i ∈ I t * i,n = a * i,n + k∈K L * k,i b * k,n for every k ∈ K t k,n = b k,n -i∈I L k,i a i,n τ n = i∈I t * i,n 2 + k∈K t k,n 2 if τ n > 0     θ n = 1 τ n max 0, i∈I x i,n | t * i,n -a i,n | a * i,n + k∈K t k,n | v k,n -b k,n | b * k,n else θ n = 0 for every i ∈ I x i,n+1 = x i,n -θ n t * i,n for every k ∈ K v k,n+1 = v k,n -θ n t k,n . (82 

V. FIXED POINT MODELING OF MINIMIZATION PROBLEMS

We present key applications of fixed point models in convex optimization.

A. Convex feasibility problems

The most basic convex optimization problem is the convex feasibility problem, which asks for compliance with a finite number of convex constraints the object of interest is known to satisfy. This approach was formalized by Youla [START_REF] Youla | Generalized image restoration by the method of alternating orthogonal projections[END_REF], [START_REF] Youla | Image restoration by the method of convex projections: Part 1 -theory[END_REF] in signal recovery and it has enjoyed a broad success [START_REF] Combettes | The foundations of set theoretic estimation[END_REF], [START_REF] Combettes | The convex feasibility problem in image recovery[END_REF], [START_REF] Herman | Fundamentals of Computerized Tomography: Image Reconstruction from Projections[END_REF], [START_REF]Image Recovery: Theory and Application[END_REF], [START_REF] Thao | Time encoding of bandlimited signals: Reconstruction by pseudo-inversion and time-varying multiplierless FIR filtering[END_REF], [START_REF] Trussell | The feasible solution in signal restoration[END_REF].

Problem 61 Let (C i ) 1 i m be nonempty closed convex sub- sets of H. The task is to find x ∈ m i=1 C i . (83) 
Suppose that Problem 61 has a solution and that each set C i is modeled as the fixed point set of an α i -averaged operator T i : H → H for some α i ∈ ]0, 1[. Then, applying Theorem 37 with

T = T 1 • • • • • T m (
which is averaged by Proposition 18) and λ n = 1 for every n ∈ N, we obtain that the sequence (x n ) n∈N constructed via the iteration

(∀n ∈ N) x n+1 = (T 1 • • • • • T m )x n (84) 
converges to a fixed point

x of T 1 • • • • • T m .
In view of Proposition 26, x is a solution to [START_REF] Combettes | Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections[END_REF]. In particular, if each T i is the projection operator onto C i (which was seen to be 1/2-averaged), we obtain the classical POCS (Projection Onto Convex Sets) algorithm [START_REF] Brègman | The method of successive projection for finding a common point of convex sets[END_REF], [START_REF] Eremin | Generalization of the relaxation method of Motzkin-Agmon[END_REF] (∀n ∈ N)

x n+1 = proj C1 • • • • • proj Cm x n (85) 
popularized in [START_REF] Youla | Image restoration by the method of convex projections: Part 1 -theory[END_REF] and which goes back to [START_REF] Kaczmarz | Angenäherte Auflösung von Systemen linearer Gleichungen[END_REF] in the case of affine hyperplanes. In this algorithm, the projection operators are used sequentially. Another basic projection method for solving [START_REF] Combettes | Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections[END_REF] is the barycentric projection algorithm

(∀n ∈ N) x n+1 = 1 m m i=1 proj Ci x n , (86) 
which uses the projections simultaneously and goes back to [START_REF] Cimmino | Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari[END_REF] in the case of affine hyperplanes. Its convergence is proved by applying Theorem 37 to T = m -1 m i=1 proj Ci which is 1/2-averaged by Example 17. More general fixed point methods are discussed in [START_REF] Bauschke | On projection algorithms for solving convex feasibility problems[END_REF], [START_REF] Bauschke | Extrapolation algorithm for affine-convex feasibility problems[END_REF], [START_REF] Combettes | Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections[END_REF], [START_REF] Kiwiel | Surrogate projection methods for finding fixed points of firmly nonexpansive mappings[END_REF].

B. Split feasibility problems

The so-called split feasibility problem is just a convex feasibility problem involving a linear operator [START_REF] Byrne | Iterative oblique projection onto convex sets and the split feasibility problem[END_REF], [START_REF] Censor | A multiprojection algorithm using Bregman projections in a product space[END_REF], [START_REF] Censor | The multiple-sets split feasibility problem and its applications for inverse problems[END_REF].

Problem 62 Let C ⊂ H and D ⊂ G be closed convex sets and let 0 = L : H → G be linear. The task is to

find x ∈ C such that Lx ∈ D, (87) 
under the assumption that a solution exists.

In principle, we can reduce this problem to a 2-set version of [START_REF] Combettes | Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections[END_REF] with C 1 = C and C 2 = L -1 (D). However the projection onto C 2 is usually not tractable, which makes projection algorithms such as ( 85) or ( 86) not implementable. To work around this difficulty, let us define T 1 = proj C and

T 2 = Id -γG 2 , where G 2 = L * • (Id -proj D ) • L and γ ∈ ]0, +∞[. Then (∀x ∈ H) Lx ∈ D ⇔ G 2 x = 0. 1 Hence, Fix T 1 = C and Fix T 2 = x ∈ H Lx ∈ D . (88) 
Furthermore, T 1 is α 1 -averaged with α 1 = 1/2. In addition, Id -proj D is firmly nonexpansive by [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] 

(∀n ∈ N) x n+1 = x n + λ n • proj C x n -γL * (Lx n -proj D (Lx n )) -x n = x n + λ n T 1 (T 2 x n ) -x n ( 89 
)
converges to a point in Fix T 1 ∩ Fix T 2 , i.e., in view of ( 88), to a solution to Problem 62. In particular, if we take λ n = 1, the update rule in (89) becomes

x n+1 = proj C x n -γL * Lx n -proj D (Lx n ) . (90) 

C. Convex minimization

We deduce from Fermat's rule (Theorem 3) and Proposition 6 the fact that a differentiable convex function f : H → R admits x ∈ H as a minimizer if and only if ∇f (x) = 0. Now let γ ∈ ]0, +∞[. Then this property is equivalent to x = x -γ∇f (x), which shows that Argmin f = Fix T, where T = Id -γ∇f.

(

) 91 
If we add the assumption that ∇f is δ-Lipschitzian, then it is 1/δ-cocoercive by Proposition 14. Hence, if 0 < γ < 2/δ, it follows from Proposition 13, that T in ( 91) is α-averaged with α = γδ/2. We then derive from Theorem 37 the convergence of the steepest-descent method.

Proposition 63 (steepest-descent) Let f : H → R be a differentiable convex function such that Argmin f = ∅ and ∇f is δ-Lipschitzian for some δ ∈ ]0, +∞[. Let γ ∈ ]0, 2/δ[, let (λ n ) n∈N be a γδ/2-relaxation sequence, and let x 0 ∈ H. Set

(∀n ∈ N) x n+1 = x n -γλ n ∇f (x n ). (92) 
Then (x n ) n∈N converges to a point in Argmin f . Now, let us remove the smoothness assumption by considering a general function f ∈ Γ 0 (H). Then it is clear from ( 9) that (∀x ∈ H) x = prox f x ⇔ (∀y ∈ H) f (x) f (y). In other words, we obtain the fixed point characterization

Argmin f = Fix T, where T = prox f . ( 93 
)
1 Set T = Idproj D and fix x ∈ H such that Lx ∈ D. Then T (Lx) = 0 and thus G 2 x = 0. Conversely, take x ∈ H such that G 2 x = 0. Since T is firmly nonexpansive by Example 11, applying [START_REF] Bauschke | Legendre functions and the method of random Bregman projections[END_REF] 

with β = 1 yields 0 = 0 | x -x = G 2 x -G 2 x | x -x = L * (T (Lx) -T (Lx)) | x -x = T (Lx) -T (Lx) | Lx -Lx T (Lx) -T (Lx) 2 = T (Lx) 2 . So T (Lx) = 0 and therefore Lx = proj D (Lx) ∈ D.
In turn, since prox f is firmly nonexpansive (see Example 11), we derive at once from Theorem 37 the convergence of the proximal point algorithm.

Proposition 64 (proximal point algorithm) Let f ∈ Γ 0 (H) be such that Argmin f = ∅. Let γ ∈ ]0, +∞[, let (λ n ) n∈N be a 1/2-relaxation sequence, and let x 0 ∈ H. Set

(∀n ∈ N) x n+1 = x n + λ n prox γf x n -x n . ( 94 
)
Then (x n ) n∈N converges to a point in Argmin f .

Remark 65

We can interpret the barycentric projection algorithm [START_REF] Combettes | A block-iterative surrogate constraint splitting method for quadratic signal recovery[END_REF] as an unrelaxed instance of the proximal point algorithm [START_REF] Combettes | Proximal activation of smooth functions in splitting algorithms for convex image recovery[END_REF] with γ = 1 by applying Remark 22 with q = m and, for every k ∈ {1, . . . , q}, ω k = 1/q, G k = H, L k = Id, and

g k = ι C k .
A more versatile minimization model is the following instance of the formulation discussed in Proposition 7.

Problem 66 Let f ∈ Γ 0 (H) and g ∈ Γ 0 (H) be such that

(ri dom f ) ∩ (ri dom g) = ∅ and lim x →+∞ f (x) + g(x) = +∞. The task is to minimize x∈H f (x) + g(x). (95) 
It follows from Proposition 7i) that Problem 66 has a solution and from Proposition 7ii) that it is equivalent to Problem 47 with A = ∂f and B = ∂g. It then remains to invoke Proposition 48 and Example 33 to obtain the following algorithm, which employs the proximity operators of f and g separately.

Proposition 67 (Douglas-Rachford splitting) Let (λ n ) n∈N be a 1/2-relaxation sequence, let γ ∈ ]0, +∞[, and let y 0 ∈ H.

Iterate

for n = 0, 1, . . .

    x n = prox γg y n z n = prox γf (2x n -y n ) y n+1 = y n + λ n (z n -x n ). (96) 
Then (x n ) n∈N converges to a solution to Problem 66.

The Douglas-Rachford algorithm was first employed in signal and image processing in [START_REF] Combettes | A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery[END_REF] and it has since been applied to various problems, e.g., [START_REF] Chizat | An interpolating distance between optimal transport and Fisher-Rao metrics[END_REF], [START_REF] Lindstrom | Survey: Sixty years of Douglas-Rachford[END_REF], [START_REF] Papadakis | Optimal transport with proximal splitting[END_REF], [START_REF] Steidl | Removing multiplicative noise by Douglas-Rachford splitting methods[END_REF], [START_REF] Yu | A primal Douglas-Rachford splitting method for the constrained minimization problem in compressive sensing[END_REF]. For a recent application to joint scale/regression estimation in statistical data analysis involving several product space reformulations, see [START_REF] Combettes | Perspective maximum likelihoodtype estimation via proximal decomposition[END_REF]. We now present two applications to matrix optimization problems. Along the same lines, the Douglas-Rachford algorithm is also used in tensor decomposition [START_REF] Gandy | Tensor completion and low-n-rank tensor recovery via convex optimization[END_REF].

Example 68 Let H be the space of N × N real symmetric matrices equipped with the Frobenius norm. We denote by ξ i,j the ijth component of X ∈ H. Let O ∈ H. The graphical lasso problem [START_REF] Friedman | Sparse inverse covariance estimation with the graphical lasso[END_REF], [START_REF] Ravikumar | Highdimensional covariance estimation by minimizing ℓ 1 -penalized logdeterminant divergence[END_REF] 

is to minimize X∈H f (X) + ℓ(X) + trace(OX), (97) 
where

f (X) = χ N i=1 N j=1 |ξ i,j |, with χ ∈ [0, +∞[ , (98) 
and

ℓ(X) = -ln det X, if X is positive definite; +∞, otherwise. (99) 
Problem [START_REF] Combettes | Perspective maximum likelihoodtype estimation via proximal decomposition[END_REF] arises in the estimation of a sparse precision (i.e., inverse covariance) matrix from an observed matrix O and it has found applications in graph processing. Since ℓ ∈ Γ 0 (H) is a symmetric function of the eigenvalues of its arguments, by [21, Corollary 24.65], its proximity operator at X is obtained by performing an eigendecomposition [U, (µ i )

1 i N ] = eig(X) ⇔ X = U Diag(µ 1 , . . . , µ N )U ⊤ .
Here, given γ ∈ ]0, +∞[, [21, Example 24.66] yields

prox γℓ X = U Diag (prox -γ ln µ 1 , . . . , prox -γ ln µ N ) U ⊤ , (100) 
where prox -γ ln : ξ → (ξ + ξ 2 + 4γ)/2. Let (λ n ) n∈N be a 1/2-relaxation sequence, let γ ∈ ]0, +∞[, and let Y 0 ∈ H. Upon setting g = ℓ + • | O , the Douglas-Rachford algorithm of (96) for solving [START_REF] Combettes | Perspective maximum likelihoodtype estimation via proximal decomposition[END_REF] becomes

for n = 0, 1, . . .       [U n , (µ i,n ) 1 i N ] = eig(Y n -γO) X n = U n Diag (prox -γ ln µ i,n ) 1 i N U ⊤ n Z n = soft γχ (2X n -Y n ) Y n+1 = Y n + λ n (Z n -X n ), (101) 
where soft γχ denotes the soft-thresholding operator on [-γχ, γχ] applied componentwise. Applications of (101) as well as variants with other choices of ℓ and g are discussed in [START_REF] Benfenati | Proximal approaches for matrix optimization problems: Application to robust precision matrix estimation[END_REF].

Example 69 (robust PCA) Let M and N be integers such that M N > 0, and let H be the space of N × M real matrices equipped with the Frobenius norm. The robust Principal Component Analysis (PCA) problem [START_REF] Candès | Robust principal component analysis?[END_REF], [START_REF] Vaswani | Rethinking PCA for modern data sets: Theory, algorithms, and applications[END_REF] is to minimize

X∈H,Y ∈H X+Y =O Y nuc + χ X 1 , (102) 
where

• 1 is the componentwise ℓ 1 -norm,
• nuc is the nuclear norm, and χ ∈ ]0, +∞[. Let X = U Diag(σ 1 , . . . , σ N )V ⊤ be the singular value decomposition of X ∈ H. Then X nuc = N i=1 σ i and, by [21, Example 24.69], By combining Propositions 50, 6, and 14, together with Example 33, we obtain the convergence of the forward-backward splitting algorithm for minimization. The broad potential of this algorithm in data science was evidenced in [START_REF] Combettes | Signal recovery by proximal forwardbackward splitting[END_REF]. Inertial variants are presented in [START_REF] Apidopoulos | Convergence rate of inertial forward-backward algorithm beyond Nesterov's rule[END_REF], [START_REF] Attouch | Convergence of a relaxed inertial forwardbackward algorithm for structured monotone inclusions[END_REF], [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF], [START_REF] Bioucas-Dias | A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration[END_REF], [START_REF] Chambolle | On the convergence of the iterates of the "fast iterative shrinkage/thresholding algorithm[END_REF], [START_REF] Combettes | Quasinonexpansive iterations on the affine hull of orbits: From Mann's mean value algorithm to inertial methods[END_REF].

prox χ • nuc X = U Diag soft χ σ 1 , . . . , soft χ σ N V ⊤ . ( 103 
Proposition 70 (forward-backward splitting) Suppose that, in Problem 66, g is differentiable everywhere and that its gradient is δ-Lipschitzian for some δ ∈ ]0, +∞[. Let ε ∈ ]0, min{1/2, 1/δ}[, let x 0 ∈ H, and let (γ n ) n∈N be in [ε, 2/(δ(1 + ε))], and let

(∀n ∈ N) λ n ∈ ε, (1 -ε) 2 + ε -δγ n /2 . ( 104 
)

Iterate

for n = 0, 1, . . .

u n = x n -γ n ∇g(x n ) x n+1 = x n + λ n prox γnf u n -x n . (105) 
Then (x n ) n∈N converges to a solution to Problem 66.

Example 71 Let M and N be integers such that M N > 0, and let H be the space of N ×M real-valued matrices equipped with the Frobenius norm. The task is to reconstruct a low-rank matrix given its projection O onto a vector space V ⊂ H. Let L = proj V . The problem is formulated as

minimize X∈H 1 2 O -LX 2 + χ X nuc , (106) 
where χ ∈ ]0, +∞[. As seen in Example 69, the proximity operator of the nuclear norm has a closed form expression. In addition, g : X → O -LX 2 /2 is convex and its gradient ∇g : 106) can thus be solved by algorithm [START_REF] Combettes | Deep neural network structures solving variational inequalities[END_REF] where f = χ • nuc and δ = 1. A particular case of ( 106) is the matrix completion problem [START_REF] Candès | Exact matrix completion via convex optimization[END_REF], [START_REF] Candès | The power of convex relaxation: Near-optimal matrix completion[END_REF], where only some components of the sought matrix are observed. If K denotes the set of indices of the unknown matrix components, we have V = X ∈ H (∀(i, j) ∈ K) ξ i,j = 0 .

X → L * (LX -O) = LX -O is nonexpansive. Problem (
Example 72 Let X and W be mutually independent R Nvalued random vectors. Assume that X is absolutely continuous and square-integrable, and that its probability density function is log-concave. Further, assume that W is Gaussian with zero-mean and covariance σ 2 I N , where σ ∈ ]0, +∞[. Let Y = X + W . For every y ∈ R N , Qy = E(X | Y = y) is the minimum mean square error (MMSE) denoiser for X given the observation y. The properties of Q have been investigated in [START_REF] Gribonval | Reconciling "priors" & "priors" without prejudice?[END_REF]. It can be shown that Q is the proximity operator of the conjugate of h = (-σ 2 log p) * -• 2 /2 ∈ Γ 0 (R N ), where p is the density of Y . Let g : R N → R be a differentiable convex function with a δ-Lipschitzian gradient for some δ ∈ ]0, +∞[, and let γ ∈ ]0, 2/δ[. The iteration

(∀n ∈ N) x n+1 = Q x n -γ∇g(x n ) (107) 
therefore turns out to be a special case of the forwardbackward algorithm [START_REF] Combettes | Deep neural network structures solving variational inequalities[END_REF], where f = h * /γ and (∀n ∈ N) λ n = 1. This algorithm is studied in [START_REF] Xu | Provable convergence of plug-and-play priors with MMSE denoisers[END_REF] from a different perspective.

The projection-gradient method goes back to the classical papers [START_REF] Goldstein | Convex programming in Hilbert space[END_REF], [START_REF] Levitin | Convergence of minimizing sequences in conditional extremum problems[END_REF]. A version can be obtained by setting f = ι C in Proposition 70, where C is the constraint set. Below, we describe the simpler formulation resulting from the application of Theorem 37 to T = proj C • (Id -γ∇g).

Example 73 (projection-gradient) Let C be a nonempty closed convex subset of H and let g : H → R be a differentiable convex function, with a δ-Lipschitzian gradient for some δ ∈ ]0, +∞[. The task is to minimize x∈C g(x), [START_REF] Combettes | Signal recovery by proximal forwardbackward splitting[END_REF] under the assumption that lim x →+∞ g(x) = +∞ or C is bounded. Let γ ∈ ]0, 2/δ[ and set α = 2/(4 -γδ). Furthermore, let (λ n ) n∈N be an α-relaxation sequence and let x 0 ∈ H. Iterate for n = 0, 1, . . .

y n = x n -γ∇g(x n ) x n+1 = x n + λ n proj C y n -x n . (109) 
Then (x n ) n∈N converges to a solution to [START_REF] Combettes | Signal recovery by proximal forwardbackward splitting[END_REF].

As a special case of Example 73, we obtain the convergence of the alternating projections algorithm [START_REF] Cheney | Proximity maps for convex sets[END_REF], [START_REF] Levitin | Convergence of minimizing sequences in conditional extremum problems[END_REF].

Example 74 (alternating projections) Let C 1 and C 2 be nonempty closed convex subsets of H, one of which is bounded. Given x 0 ∈ H, iterate

(∀n ∈ N) x n+1 = proj C1 proj C2 x n . (110) 
Then (x n ) n∈N converges to a solution to the constrained minimization problem minimize

x∈C1 d C2 (x). ( 111 
)
This follows from Example 73 applied to g = d 2 C2 /2. Note that ∇g = Id -proj C2 has Lipschitz constant δ = 1 (see Example 5) and hence [START_REF] Combettes | Reconstruction of functions from prescribed proximal points[END_REF] is the instance of (109) obtained by setting γ = 1 and (∀n ∈ N)

λ n = 1 (see Example 10i)).
The following version of Problem 66 involves m smooth functions.

Problem 75 Let (ω i ) 1 i m be real numbers in ]0, 1] such that m i=1 ω i = 1. Let f 0 ∈ Γ 0 (H)
and, for every i ∈ {1, . . . , m}, let δ i ∈ ]0, +∞[ and let f i : H → R be a differentiable convex function with a δ i -Lipschitzian gradient. Suppose that

lim x →+∞ f 0 (x) + m i=1 ω i f i (x) = +∞. ( 112 
)
The task is to

minimize x∈H f 0 (x) + m i=1 ω i f i (x). ( 113 
)
To solve Problem 75, an option is to apply Theorem 44 to obtain a forward-backward algorithm with block-updates.

Proposition 76 ([95]) Consider the setting of Problem 75. Let (I n ) n∈N be a sequence of nonempty subsets of {1, . . . , m} such that [START_REF] Bùi | Bregman forward-backward operator splitting, Set-Valued Var. Anal[END_REF] 

holds for some M ∈ N {0}. Let γ ∈ ]0, 2/ max 1 i m δ i [, let x 0 ∈ H, let (t i,-1 ) 1 i m ∈ H m , and iterate for n = 0, 1, . . .         
for every i ∈ I n t i,n = x n -γ∇f i (x n ) for every i ∈ {1, . . . , m} I n t i,n = t i,n-1

x n+1 = prox γf0 m i=1 ω i t i,n . (114) 
Then the following hold: i) Let x be a solution to Problem 75 and let i ∈ {1, . . . , m}. Then ∇f i (x n ) → ∇f i (x). ii) (x n ) n∈N converges to a solution to Problem 75. iii) Suppose that, for some i ∈ {0, . . . , m}, f i is strongly convex. Then (x n ) n∈N converges linearly to the unique solution to Problem 75.

A method related to ( 114) is proposed in [START_REF] Mishchenko | A distributed flexible delaytolerant proximal gradient algorithm[END_REF]; see also [START_REF] Mokhtari | Surpassing gradient descent provably: A cyclic incremental method with linear convergence rate[END_REF] for a special case. Here is a data analysis application.

Example 77 Let (e k ) 1 k N be an orthonormal basis of H and, for every k ∈ {1, . . . , N }, let ψ k ∈ Γ 0 (R). For every i ∈ {1, . . . , m}, let 0 = a i ∈ H, let µ i ∈ ]0, +∞[, and let

φ i : R → [0, +∞[ be a differentiable convex function such that φ ′ i is µ i -Lipschitzian. The task is to minimize x∈H N k=1 ψ k ( x | e k ) + 1 m m i=1 φ i ( x | a i ). ( 115 
)
As shown in [START_REF] Combettes | Solving composite fixed point problems with block updates[END_REF], ( 115) is an instantiation of ( 113) and, given γ ∈ 0, 2/(max 1 i m µ i a i 2 ) and subsets (I n ) n∈N of {1, . . . , m} such that (49) holds, it can be solved by [START_REF] Danielyan | BM3D frames and variational image deblurring[END_REF], which becomes

for n = 0, 1, . . .            for every i ∈ I n t i,n = x n -γφ ′ i ( x n | a i )a i for every i ∈ {1, . . . , m} I n t i,n = t i,n-1 y n = m i=1 ω i t i,n x n+1 = N k=1 prox γψ k y n | e k e k . (116) 
A popular setting is obtained by choosing H = R N and (e k ) 1 k N as the canonical basis, α ∈ ]0, +∞[, and, for every k ∈ {1, . . . , K}, ψ k = α| • |. This reduces [START_REF] Darbon | On decomposition models in imaging sciences and multi-time Hamilton-Jacobi partial differential equations[END_REF] to minimize

x∈R N α x 1 + m i=1 φ i ( x | a i ). ( 117 
)
Choosing, for every i ∈ {1, . . . , m}, φ i : t → |t -η i | 2 where η i ∈ R models an observation, yields the lasso formulation, whereas choosing φ i : t → ln(1 + exp(t)) -η i t, where η i ∈ {0, 1} models a label, yields the penalized logistic regression framework [START_REF] Hastie | The Elements of Statistical Learning[END_REF].

Next, we extend Problem 66 to a flexible composite minimization problem. See [START_REF] Bot | Convergence analysis for a primal-dual monotone + skew splitting algorithm with applications to total variation minimization[END_REF], [START_REF] Chierchia | Epigraphical splitting for solving constrained convex optimization problems with proximal tools[END_REF], [START_REF] Chierchia | A non-local structure tensor-based approach for multicomponent image recovery problems[END_REF], [START_REF] Chouzenoux | A proximal interior point algorithm with applications to image processing[END_REF], [START_REF] Chouzenoux | A convex approach for image restoration with exact Poisson-Gaussian likelihood[END_REF], [START_REF] Combettes | A forwardbackward view of some primal-dual optimization methods in image recovery[END_REF], [START_REF] Combettes | Proximal activation of smooth functions in splitting algorithms for convex image recovery[END_REF], [START_REF] Combettes | Perspective maximum likelihoodtype estimation via proximal decomposition[END_REF], [START_REF] Moerkotte | Proximal operator of quotient functions with application to a feasibility problem in query optimization[END_REF], [START_REF] Papadakis | Optimal transport with proximal splitting[END_REF], [START_REF] Pham | Pesquet A primal-dual proximal algorithm for sparse template-based adaptive filtering: Application to seismic multiple removal[END_REF], [START_REF] Repetti | Scalable Bayesian uncertainty quantification in imaging inverse problems via convex optimization[END_REF] for concrete instantiations of this model in data science.

Problem 78 Let δ ∈ ]0, +∞[ and let f ∈ Γ 0 (H). For every k ∈ {1, . . . , q}, let g k ∈ Γ 0 (G k ), let 0 = L k : H → G k be linear, and let h k : G k → R be a differentiable convex function, with a δ-Lipschitzian gradient. Suppose that

lim x →+∞ f (x) + q k=1 (g k (L k x) + h k (L k x)) = +∞ and that (∃ z ∈ ri dom f )(∀k ∈ {1, . . . , q}) L k z ∈ ri dom g k . ( 118 
) The task is to minimize x∈H f (x) + q k=1 g k (L k x) + h k (L k x) . ( 119 
)
Thanks to the qualification condition [START_REF] Davis | A three-operator splitting scheme and its optimization applications[END_REF], Problem 78 is an instance of Problem 55 where A = ∂f and, for every k ∈ {1, . . . , q}, B k = ∂g k and C k = ∇g k . Since the operators (C k ) 1 k q are 1/δ-cocoercive, the iterative algorithms from Propositions 56, 57, and 58 are applicable. For example, Proposition 58 with the substitution J σ -1 B k = prox σ -1 g k (see Example 33) allows us to solve the problem. In particular, the resulting algorithm was proposed in [START_REF] Chen | A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration[END_REF], [START_REF] Loris | On a generalization of the iterative softthresholding algorithm for the case of non-separable penalty[END_REF] in the case when W = τ Id with τ ∈ ]0, +∞[. See also [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF], [START_REF] Combettes | Variable metric forward-backward splitting with applications to monotone inclusions in duality[END_REF], [START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF], [START_REF] Condat | Proximal splitting algorithms: A tour of recent advances, with new twists[END_REF], [START_REF] Esser | A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science[END_REF], [START_REF] He | Convergence analysis of primal-dual algorithms for a saddle-point problem: From contraction perspective[END_REF], [START_REF] Komodakis | Playing with duality: An overview of recent primal-dual approaches for solving large-scale optimization problems[END_REF], [START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF] for related work.

Example 79 Let o ∈ R N and let M ∈ R K×N be such that I N -M ⊤ M is positive semidefinite. Let ϕ ∈ Γ 0 (R N
) and let C be a nonempty closed convex subset of R N . The denoising problem of [START_REF] Selesnick | Non-convex total variation regularization for convex denoising of signals[END_REF] is cast as

minimize x∈C ψ(x) + 1 2 x -o 2 , ( 120 
)
where the function

ψ : x → ϕ(x) -inf y∈H ϕ(y) + 1 2 M (x -y) 2 (121) 
is generally nonconvex. However, ( 120) is a convex problem. Further developments can be found in [START_REF] Abe | Linearly involved generalized Moreau enhanced models and their proximal splitting algorithm under overall convexity condition[END_REF]. Note that ( 120) is actually equivalent to Problem 78 with q = 2, 

H = R N × R N , G 1 = H, G 2 = R N , f : (x, y) → ϕ(x), h 1 : (x, y) → ι C (x), g 1 : (x, y) → x ⊤ (I N -M ⊤ M )x/2 -x | o + M y 2 /2, g 2 = ϕ * , L 1 = Id, L 2 : (x, y) → M ⊤ M (x -y),
is a special case of Problem 78 and it can therefore be solved by any of the methods discussed above. Now let γ ∈ ]0, +∞[ and let us make the following additional assumptions: i) L * • L is invertible.

ii) The operator

prox L γf : G → H : y → argmin x∈H f (x) + Lx -y 2 2
is easy to implement.

Then, given y 0 ∈ G and z 0 ∈ G, the alternatingdirection method of multipliers (ADMM) constructs a sequence (x n ) n∈N that converges to a solution to (122) via the iterations [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF], [START_REF] Eckstein | On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators[END_REF], [START_REF] Gabay | Applications of the method of multipliers to variational inequalities[END_REF], [START_REF]Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics[END_REF] for n = 0, 1, . . .

       x n = prox L γf (y n -z n ) d n = Lx n y n+1 = prox γg (d n + z n ) z n+1 = z n + d n -y n+1 . ( 123 
)
This iteration process can be viewed as an application of the Douglas-Rachford algorithm [START_REF] Combettes | Learning with optimal interpolation norms[END_REF] to the Fenchel dual of ( 122) [START_REF] Gabay | Applications of the method of multipliers to variational inequalities[END_REF], [START_REF] Eckstein | On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators[END_REF]. Variants of this algorithm are discussed in [START_REF] Banert | Fixing and extending some recent results on the ADMM algorithm[END_REF], [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF], [START_REF] Eckstein | Parallel alternating direction multiplier decomposition of convex programs[END_REF], and applications to image recovery in [START_REF] Afonso | Fast image recovery using variable splitting and constrained optimization[END_REF], [START_REF] Afonso | An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems[END_REF], [START_REF] Figueiredo | Restoration of Poissonian images using alternating direction optimization[END_REF], [START_REF] Giovannelli | Positive deconvolution for superimposed extended source and point sources[END_REF], [START_REF] Goldstein | The split Bregman method for L1regularized problems[END_REF], [START_REF] Setzer | Deblurring Poissonian images by split Bregman techniques[END_REF].

D. Inconsistent feasibility problems

We consider a more structured variant of Problem 61 which can also be considered as an extension of Problem 62.

Problem 81 Let C be a nonempty closed convex subset of H and, for every i ∈ {1, . . . , m}, let L i : H → G i be a nonzero linear operator and let D i be a nonempty closed convex subset of G i . The task is to

find x ∈ C such that (∀i ∈ {1, . . . , m}) L i x ∈ D i . (124)
To address the possibility that this problem has no solution due to modeling errors [START_REF] Censor | Algorithms and convergence results of projection methods for inconsistent feasibility problems: A review[END_REF], [START_REF] Combettes | Inconsistent signal feasibility problems: Least-squares solutions in a product space[END_REF], [START_REF] Youla | Extensions of a result on the synthesis of signals in the presence of inconsistent constraints[END_REF], we fix weights

(ω i ) 1 i m in ]0, 1] such that m i=1 ω i = 1 and consider the surrogate problem minimize x∈C 1 2 m i=1 ω i d 2 Di (L i x), (125) 
where C acts as a hard constraint. This is a valid relaxation of [START_REF] Eckstein | Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming[END_REF] in the sense that, if [START_REF] Eckstein | Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming[END_REF] does have solutions, then those are the only solutions to [START_REF] Eckstein | Parallel alternating direction multiplier decomposition of convex programs[END_REF]. Now set f 0 = ι C . In addition, for every i ∈ {1, . . . , m}, set

f i : x → (1/2)d 2
Di (L i x) and notice that f i is differentiable and that its gradient [START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF] holds as long as C is bounded or, for some i ∈ {1, . . . , m}, D i is bounded and L i is invertible. We have thus cast [START_REF] Eckstein | Parallel alternating direction multiplier decomposition of convex programs[END_REF] as an instance of Problem 75 [START_REF] Combettes | Solving composite fixed point problems with block updates[END_REF]. In view of [START_REF] Danielyan | BM3D frames and variational image deblurring[END_REF], a solution is found as the limit of the sequence (x n ) n∈N produced by the block-update algorithm

∇f i = L * i • (Id -proj Di ) • L i has Lipschitz constant δ i = L i 2 . Furthermore,
for n = 0, 1, . . .          for every i ∈ I n t i,n = x n + γL * i proj Di (L i x n ) -L i x n for every i ∈ {1, . . . , m} I n t i,n = t i,n-1 x n+1 = proj C m i=1 ω i t i,n , (126) 
where γ and (I n ) n∈N are as in Proposition 76.

E. Stochastic forward-backward method

Consider the minimization of f + g, where f ∈ Γ 0 (H) and g : H → R is a differentiable convex function. In certain applications, it may happen that only stochastic approximations to f or g are available. A generic stochastic form of the forward-backward algorithm for such instances is [START_REF] Combettes | Stochastic approximations and perturbations in forward-backward splitting for monotone operators[END_REF] (∀n ∈ N)

x n+1 = x n +λ n prox γnfn (x n -γ n u n )+a n -x n , (127) 
where γ n ∈ ]0, +∞[, λ n ∈ ]0, 1], f n ∈ Γ 0 (H) is an approximation to f , u n is a random variable approximating ∇g(x n ), and a n is a random variable modeling a possible additive error. When f = f n = 0, λ n = 1, and a n = 0, we recover the standard stochastic gradient method for minimizing g, which was pioneered in [START_REF] Yu | On the method of generalized stochastic gradients and quasi-Fejér sequences[END_REF], [START_REF] Yu | Some methods of stochastic optimization[END_REF].

Example 82 As in Problem 75, let f ∈ Γ 0 (H) and let g = m -1 m i=1 g i , where each g i : H → R is a differentiable convex function. The following specialization of ( 127) is obtained by setting, for every n ∈ N, f n = f and u n = ∇g i(n) (x n ), where i(n) is a {1, . . . , m}-valued random variable. This leads to the incremental proximal stochastic gradient algorithm described by the update equation

x n+1 = x n +λ n prox γnf x n -γ n ∇g i(n) (x n ) -x n . (128) 
For related algorithms, see [START_REF] Bertsekas | Incremental proximal methods for large scale convex optimization[END_REF], [START_REF] Defazio | Finito: A faster, permutable incremental gradient method for big data problems[END_REF], [START_REF] Defazio | SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives[END_REF], [START_REF] Johnson | Accelerating stochastic gradient descent using predictive variance reduction[END_REF], [START_REF] Schmidt | Minimizing finite sums with the stochastic average gradient[END_REF].

Various convergence results have been established for algorithm [START_REF] Ghaoui | Safe feature elimination in sparse supervised learning[END_REF]. If ∇g is Lipschitzian, ( 127) is closely related to the fixed point iteration in Theorem 45. The almost sure convergence of (x n ) n∈N to a minimizer of f + g can be guaranteed in several scenarios [START_REF] Atchadé | On perturbed proximal gradient algorithms[END_REF], [START_REF] Combettes | Stochastic approximations and perturbations in forward-backward splitting for monotone operators[END_REF], [START_REF] Rosasco | Convergence of stochastic proximal gradient algorithm[END_REF]. Fixed point strategies allow us to derive convergence results such as the following.

Theorem 83 ([103]) Let f ∈ Γ 0 (H), let δ ∈ ]0, +∞[, and let g : H → R be a differentiable convex function such that ∇g is δ-Lipschitzian and S = Argmin (f + g) = ∅. Let γ ∈ ]0, 2/δ[ and let (λ n ) n∈N be a sequence in ]0, 1] such that n∈N λ n = +∞. Let x 0 , (u n ) n∈N , and (a n ) n∈N be Hvalued random variables with finite second-order moments. Let (x n ) n∈N be a sequence produced by [START_REF] Ghaoui | Safe feature elimination in sparse supervised learning[END_REF] with γ n = γ and f n = f . For every n ∈ N, let X n be the σ-algebra generated by (x 0 , . . . , x n ) and set

ζ n = E( u n -E(u n | X n ) 2 | X n ).
Assume that the following are satisfied a. s.:

i) n∈N λ n E( a n 2 | X n ) < +∞. ii) n∈N √ λ n E(u n | X n ) -∇g(x n ) < +∞. iii) sup n∈N ζ n < +∞ and n∈N √ λ n ζ n < +∞. Then (x n ) n∈N converges a. s. to an S-valued random variable.
Extensions of these stochastic optimization approaches can be designed by introducing an inertial parameter [START_REF] Rosasco | A stochastic inertial forwardbackward splitting algorithm for multivariate monotone inclusions[END_REF] or by bringing into play primal-dual formulations [START_REF] Combettes | Stochastic approximations and perturbations in forward-backward splitting for monotone operators[END_REF].

F. Random block-coordinate optimization algorithms

We design block-coordinate versions of optimization algorithms presented in Section V-C, in which blocks of variables are updated randomly.

Problem 84 For every i ∈ {1, . . . , m} and k ∈ {1, . . . , q},

let f i ∈ Γ 0 (H i ), let g k ∈ Γ 0 (G k ), and let 0 = L k,i : H i → G k be linear. Suppose that (∃ z ∈ H)(∃ w ∈ G)(∀i ∈ {1, . . . , m})(∀k ∈ {1, . . . , q}) - q j=1 L * j,i w j ∈ ∂f i (z i ) and m j=1 L k,j z j ∈ ∂g * k (w k ). ( 129 
)
The task is to

minimize x∈H m i=1 f i (x i ) + q k=1 g k m i=1 L k,i x i . (130) 
Let γ ∈ ]0, +∞[, let (λ n ) n∈N be a sequence in ]0, 2[, and set

V = (x 1 , . . . , x m , y 1 , . . . , y q ) ∈ H × G (∀k ∈ {1, . . . , q}) y k = m i=1 L k,i x i (131) 
Let us decompose the projection operator proj V as proj V : x → (Q j x) 1 j m+q . A random block-coordinate form of the Douglas-Rachford algorithm for solving Problem 84 is [START_REF] Combettes | Stochastic quasi-Fejér blockcoordinate fixed point iterations with random sweeping[END_REF] for n = 0, 1, . . .

                for i = 1, . . . , m      z i,n+1 = z i,n + ε i,n Q i (x n , y n ) -z i,n x i,n+1 = x i,n +ε i,n λ n prox γfi (2z i,n+1 -x i,n ) -z i,n+1 for k = 1, . . . , q      w k,n+1 = w k,n + ε m+k,n Q m+k (x n , y n ) -w k,n y k,n+1 = y k,n +ε m+k,n λ n prox γg k (2w k,n+1 -y k,n ) -w k,n+1 , (132) 
where x n = (x i,n ) 1 i m and y n = (y k,n ) 1 k q . Moreover, (ε j,n ) 1 j m+q,n∈N are binary random variables signaling the activated components.

Proposition 85 ([102]) Let S be the set of solutions to Problem 84 and set

D = {0, 1} m+q {0}. Let γ ∈ ]0, +∞[, let ǫ ∈ ]0, 1[, let (λ n ) n∈N be in [ǫ, 2 -ǫ]
, let x 0 and z 0 be Hvalued random variables, let y 0 and w 0 be G-valued random variables, and let (ε n ) n∈N be identically distributed D-valued random variables. In addition, suppose that the following hold: i) For every n ∈ N, ε n and (x 0 , . . . , x n , y 0 , . . . , y n ) are mutually independent. ii) (∀j ∈ {1, . . . , m + q}) Prob [ε j,0 = 1] > 0.

Then the sequence (z n ) n∈N generated by (132) converges a. s. to an S-valued random variable.

Applications based on Proposition 85 appear in the areas of machine learning [START_REF] Combettes | Learning with optimal interpolation norms[END_REF] and binary logistic regression [START_REF] Briceño-Arias | A random block-coordinate Douglas-Rachford splitting method with low computational complexity for binary logistic regression[END_REF].

If the functions (g k ) 1 k q are differentiable in Problem 84, a block-coordinate version of the forward-backward algorithm can also be employed, namely,

for n = 0, 1, . . .          for i = 1, . . . , m       r i,n = ε i,n x i,n - γ i,n q k=1 L * k,i ∇g k m j=1 L k,j x j,n x i,n+1 = x i,n + ε i,n λ n prox γi,nfi r i,n -x i,n , (133) 
where γ i,n ∈ ]0, +∞[ and λ n ∈ ]0, 1]. The convergence of (133) has been investigated in various settings in terms of the expected value of the cost function [START_REF] Necoara | Parallel random coordinate descent method for composite minimization: Convergence analysis and error bounds[END_REF], [START_REF] Richtárik | Iteration complexity of randomized blockcoordinate descent methods for minimizing a composite function[END_REF], [START_REF] Richtárik | On optimal probabilities in stochastic coordinate descent methods[END_REF], [START_REF] Salzo | Parallel random block-coordinate forwardbackward algorithm: A unified convergence analysis[END_REF], the mean square convergence of the iterates [START_REF] Combettes | Stochastic quasi-Fejér blockcoordinate fixed point iterations with random sweeping II: Mean-square and linear convergence[END_REF], [START_REF] Richtárik | Iteration complexity of randomized blockcoordinate descent methods for minimizing a composite function[END_REF], [START_REF] Richtárik | On optimal probabilities in stochastic coordinate descent methods[END_REF], or the almost sure convergence of the iterates [START_REF] Combettes | Stochastic quasi-Fejér blockcoordinate fixed point iterations with random sweeping[END_REF], [START_REF] Salzo | Parallel random block-coordinate forwardbackward algorithm: A unified convergence analysis[END_REF]. It is shown in [START_REF] Salzo | Parallel random block-coordinate forwardbackward algorithm: A unified convergence analysis[END_REF] that algorithms such as the so-called random Kaczmarz method to solve standard linear systems are special cases of [START_REF] Friedman | Sparse inverse covariance estimation with the graphical lasso[END_REF].

A noteworthy feature of the block-coordinate forwardbackward algorithm [START_REF] Friedman | Sparse inverse covariance estimation with the graphical lasso[END_REF] is that, at iteration n, it allows for the use of distinct parameters (γ i,n ) 1 i m to update each component. This was observed to be beneficial to the convergence profile in several applications [START_REF] Chouzenoux | A block coordinate variable metric forward-backward algorithm[END_REF], [START_REF] Richtárik | Iteration complexity of randomized blockcoordinate descent methods for minimizing a composite function[END_REF]. See also [START_REF] Salzo | Parallel random block-coordinate forwardbackward algorithm: A unified convergence analysis[END_REF] for further developments along these lines. 

G. Block-iterative multivariate minimization algorithms

f i (x i ) + q k=1 g k m i=1 L k,i x i , (134) 
along with its dual problem minimize

v∈G m i=1 f * i - q k=1 L * k,i v k + q k=1 g * k (v k ). (135) 
We solve Problem 86 with algorithm (82) by replacing J γi,nAi by prox γi,nfi and J µ k,n B k by prox µ k,n g k . This blockiterative method then produces a sequence (x n ) n∈N which converges to a solution to [START_REF] Gabay | Applications of the method of multipliers to variational inequalities[END_REF] and a sequence (v n ) n∈N which converges to a solution to [START_REF] Gandy | Tensor completion and low-n-rank tensor recovery via convex optimization[END_REF] [START_REF] Combettes | Asynchronous block-iterative primaldual decomposition methods for monotone inclusions[END_REF].

Examples of problems that conform to the format of Problems 84 or 86 are encountered in image processing [START_REF] Bergounioux | Mathematical analysis of a inf-convolution model for image processing[END_REF], [START_REF] Briceño-Arias | Convex variational formulation with smooth coupling for multicomponent signal decomposition and recovery[END_REF], [START_REF] Briceño-Arias | Proximal algorithms for multicomponent image recovery problems[END_REF] as well as in machine learning [START_REF] Argyriou | Sparse prediction with the ksupport norm[END_REF], [START_REF] Bach | Optimization with sparsity-inducing penalties[END_REF], [START_REF] Combettes | Learning with optimal interpolation norms[END_REF], [START_REF] Jacob | Group lasso with overlap and graph lasso[END_REF], [START_REF] Jenatton | Proximal methods for hierarchical sparse coding[END_REF], [START_REF] Mcdonald | New perspectives on ksupport and cluster norms[END_REF], [START_REF] Villa | Proximal methods for the latent group lasso penalty[END_REF], [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF].

H. Splitting based on Bregman distances

The notion of a Bregman distance goes back to [START_REF] Brègman | The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming[END_REF] and it has been used since the 1980s in signal recovery; see [START_REF] Byrne | Proximity function minimization using multiple Bregman projections, with applications to split feasibility and Kullback-Leibler distance minimization[END_REF], [START_REF] Censor | Parallel Optimization -Theory, Algorithms and Applications[END_REF]. Let ϕ ∈ Γ 0 (H) be strictly convex, and differentiable on int dom ϕ = ∅ (more precisely, we require a Legendre function, see [START_REF] Bauschke | Legendre functions and the method of random Bregman projections[END_REF], [START_REF] Bauschke | Bregman monotone optimization algorithms[END_REF] for the technical details). The associated Bregman distance between two points x and y in H is

D ϕ (x, y) =      ϕ(x) -ϕ(y) -x -y | ∇ϕ(y) , if y ∈ int dom ϕ; +∞, otherwise. (136) 
This construction captures many interesting discrepancy measures in data analysis such as the Kullback-Leibler divergence. Another noteworthy instance is when ϕ = • 2 /2, which yields D ϕ (x, y) = x-y 2 /2 and suggests extending standard tools such as projection and proximity operators (see Theorems 1 and 2) by replacing the quadratic kernel by a Bregman distance [START_REF] Bauschke | Legendre functions and the method of random Bregman projections[END_REF], [START_REF] Bauschke | Bregman monotone optimization algorithms[END_REF], [START_REF] Brègman | The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming[END_REF], [START_REF] Censor | Proximal minimization algorithm with D-functions[END_REF], [START_REF] Eckstein | Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming[END_REF], [START_REF] Teboulle | Entropic proximal mappings with applications to nonlinear programming[END_REF]. For instance, under mild conditions on f ∈ Γ 0 (H) [START_REF] Bauschke | Bregman monotone optimization algorithms[END_REF], the Bregman proximal point of y ∈ int dom ϕ relative to f is the unique point prox ϕ f y which solves minimize

p∈int dom ϕ f (p) + D ϕ (p, y). (137) 
The Bregman projection proj ϕ C y of y onto a nonempty closed convex set C in H is obtained by setting f = ι C above. Various algorithms such as the POCS algorithm [START_REF] Combettes | Fejér-monotonicity in convex optimization[END_REF] or the proximal point algorithm [START_REF] Combettes | Proximal activation of smooth functions in splitting algorithms for convex image recovery[END_REF] have been extended in the context of Bregman distances [START_REF] Bauschke | Legendre functions and the method of random Bregman projections[END_REF], [START_REF] Bauschke | Bregman monotone optimization algorithms[END_REF]. For instance [START_REF] Bauschke | Legendre functions and the method of random Bregman projections[END_REF] establishes the convergence to a solution to Problem 61 of a notable extension of POCS in which the sets are Bregmanprojected onto in arbitrary order, namely

(∀n ∈ N) x n+1 = proj ϕ C i(n) x n , (138) 
where i : N → {1, . . . , m} is such that, for every p ∈ N and every j ∈ {1, . . . , m}, there exists n p such that i(n) = j.

A motivation for such extensions is that, for certain functions, proximal points are easier to compute in the Bregman sense than in the standard quadratic sense [START_REF] Bauschke | A descent lemma beyond Lipschitz gradient continuity: First-order methods revisited and applications[END_REF], [START_REF] Combettes | Solving composite monotone inclusions in reflexive Banach spaces by constructing best Bregman approximations from their Kuhn-Tucker set[END_REF], [START_REF] Nguyen | Forward-backward splitting with Bregman distances[END_REF]. Some work has also focused on monotone operator splitting using Bregman distances as an extension of standard methods [START_REF] Combettes | Solving composite monotone inclusions in reflexive Banach spaces by constructing best Bregman approximations from their Kuhn-Tucker set[END_REF]. The Bregman version of the basic forward-backward minimization method of Proposition 70, namely, for n = 0, 1, . . .

u n = ∇ϕ(x n ) -γ n ∇g(x n ) x n+1 = ∇ϕ + γ n ∂f -1 u n (139) 
has also been investigated in [START_REF] Bauschke | A descent lemma beyond Lipschitz gradient continuity: First-order methods revisited and applications[END_REF], [START_REF] Bùi | Bregman forward-backward operator splitting, Set-Valued Var. Anal[END_REF], [START_REF] Nguyen | Forward-backward splitting with Bregman distances[END_REF] (note that the standard quadratic kernel corresponds to ∇ϕ = Id). In these papers, it was shown to converge in instances when (105) cannot be used because ∇g is not Lipschitzian.

VI. FIXED POINT MODELING OF NASH EQUILIBRIA In addition to the notation of Section II-A, given i ∈ {1, . . . , m}, x i ∈ H i , and y ∈ H, we set     

H i = H 1 × • • • × H i-1 × H i+1 × • • • × H m y i = (y j ) 1 j m,j =i (x i ; y i ) = (y 1 , . . . , y i-1 , x i , y i+1 , . . . , y m ). (140) 
In various problems arising in signal recovery [START_REF] Aujol | Image decomposition into a bounded variation component and an oscillating component[END_REF], [START_REF] Aujol | Structure-texture image decomposition -modeling, algorithms, and parameter selection[END_REF], [START_REF] Bergounioux | Mathematical analysis of a inf-convolution model for image processing[END_REF], [START_REF] Briceño-Arias | Convex variational formulation with smooth coupling for multicomponent signal decomposition and recovery[END_REF], [START_REF] Briceño-Arias | Proximal algorithms for multicomponent image recovery problems[END_REF], [START_REF] Danielyan | BM3D frames and variational image deblurring[END_REF], [START_REF] Darbon | On decomposition models in imaging sciences and multi-time Hamilton-Jacobi partial differential equations[END_REF], [START_REF] Mol | Inverse imaging with mixed penalties[END_REF], telecommunications [START_REF] Lasaulce | Game Theory and Learning for Wireless Networks: Fundamentals and Applications[END_REF], [START_REF] Scutari | Convex optimization, game theory, and variational inequality theory[END_REF], machine learning [START_REF] Bravo | Bandit learning in concave N -person games[END_REF], [START_REF] Dasgupta | A survey of game theoretic approaches for adversarial machine learning in cybersecurity tasks[END_REF], network science [START_REF] Yi | Distributed generalized Nash equilibria computation of monotone games via double-layer preconditioned proximal-point algorithms[END_REF], [START_REF] Yin | Nash equilibrium problems with scaled congestion costs and shared constraints[END_REF], and control [START_REF] Belgioioso | Distributed generalized Nash equilibrium seeking in aggregative games on time-varying networks[END_REF], [START_REF] Borzì | Formulation and numerical solution of Nash equilibrium multiobjective elliptic control problems[END_REF], [START_REF] Zhang | Controllability of stochastic game-based control systems[END_REF], the solution is not a single vector but a collections of vectors x = (x 1 , . . . , x m ) ∈ H representing the actions of m competing players. Oftentimes, such solutions cannot be modeled via a standard minimization problem of the form

minimize x∈H h(x) (141) 
for some function h : H → ]-∞, +∞], but rather as a Nash equilibrium [START_REF] Nash | Non-cooperative games[END_REF]. In this game-theoretic setting [START_REF] Laraki | Mathematical Foundations of Game Theory[END_REF] 

i : H i → 2 Hi : x i → x i ∈ H i (∀y i ∈ H i ) h i (y i ; x i ) h i (x i ; x i ) (143) 
denotes the best response operator of player i, x ∈ H is a Nash equilibrium if and only if

(∀i ∈ {1, . . . , m}) x i ∈ best i (x i ). (144) 
This property can also be expressed in terms of the set-valued operator

B : H → 2 H : x → best 1 (x 1 ) × • • •× best m (x m ). (145) 
Thus, a point x ∈ H is a Nash equilibrium if and only if it is a fixed point of B in the sense that x ∈ Bx.

A. Cycles in the POCS algorithm

Let us go back to feasibility and Problem 61. The POCS algorithm [START_REF] Combettes | Fejér-monotonicity in convex optimization[END_REF] converges to a solution to the feasibility problem (83) when one exists. Now suppose that Problem 61 is inconsistent, with C 1 bounded. Then, as seen in Example 74, in the case of m = 2 sets, the sequence (x 2n ) n∈N produced by the alternating projection algorithm [START_REF] Combettes | Reconstruction of functions from prescribed proximal points[END_REF], written as for n = 0, 1, . . .

x 2n+1 = proj C2 x 2n x 2n+2 = proj C1 x 2n+1 , (146) 
converges to a point x 1 ∈ Fix (proj C1 • proj C2 ), i.e., to a minimizer of d C2 over C 1 . More precisely [START_REF] Cheney | Proximity maps for convex sets[END_REF], if we set

x 2 = proj C2 x 1 , then x 1 = proj C1 x 2 and (x 1 , x 2 ) solves minimize x1∈C1, x2∈C2 x 1 -x 2 . ( 147 
)
An extension of the alternating projection method [START_REF] Gubin | The method of projections for finding the common point of convex sets[END_REF] to m sets is the POCS algorithm [START_REF] Combettes | Fejér-monotonicity in convex optimization[END_REF], which we write as

for n = 0, 1, . . .       
x mn+1 = proj Cm x mn x mn+2 = proj Cm-1 x mn+1 . . .

x mn+m = proj C1 x mn+m-1 . (148) 
As first shown in [START_REF] Gubin | The method of projections for finding the common point of convex sets[END_REF] (this is also a consequence of Theorem 41), for every i ∈ {1, . . . , m}, (x mn+i ) n∈N converges to a point x m+1-i ∈ C m+1-i ; in addition (x i ) 1 i m forms a cycle in the sense that (see Fig. 6)

x 1 = proj C1 x 2 , . . . , x m-1 = proj Cm-1 x m ,
and

x m = proj Cm x 1 . ( 149 
)
As shown in [START_REF] Baillon | There is no variational characterization of the cycles in the method of periodic projections[END_REF], in stark contrast with the case of m = 2

C 2 C 3 C 1 x 0 x 2 x 1 x 3 x 4
x 5

x 2

x 3

x 1 Fig. 6: The POCS algorithm with m = 3 sets and initialized at x 0 produces the cycle (x 1 , x 2 , x 3 ). 

which deprives cycles of a minimization interpretation. Nonetheless, cycles are equilibria in a more general sense, which can be described from three different perspectives.

• Fixed point theory: Define two operators P and L from H m to H m by P : x → (proj C1 x 1 , . . . , proj Cm x m ) L : x → (x 2 , . . . , x m , x 1 ).

Then, in view of ( 149), the set of cycles is precisely the set of fixed points of P • L, which is also the set of fixed points of 

h i : (x i ; x i ) → ι Ci (x i ) + 1 2 x i -x i+1 2 , (152) 
i.e., to be in C i and as close as possible to the action of player i + 1 (with the convention x m+1 = x 1 ). Then a cycle (x 1 , . . . , x m ) is a solution to [START_REF] Gol | shtein, A general approach to decomposition of optimization systems[END_REF] and therefore a Nash equilibrium. Let us note that the best response operator of player i is best i : x i → proj Ci x i+1 .

• Monotone inclusion: Applying Fermat's rule to each line of [START_REF] Gol | shtein, A general approach to decomposition of optimization systems[END_REF] in the setting of (152), and using [START_REF] Banert | Fixing and extending some recent results on the ADMM algorithm[END_REF], we obtain

           0 ∈ N C1 x 1 + x 1 -x 2 . . . 0 ∈ N Cm-1 x m-1 + x m-1 -x m 0 ∈ N Cm x m + x m -x 1 . (153) 
In terms of the maximally monotone operator A = N C1ו••×Cm and the cocoercive operator

B : x → (x 1 -x 2 , . . . , x m-1 -x m , x m -x 1 ), (154) 
(153) can be rewritten as an instance of Problem 47 in H m , namely, 0 ∈ Ax + Bx.

B. Proximal cycles

We have seen in Section VI-A a first example of a Nash equilibrium. This setting can be extended by replacing the indicator function ι Ci in (152) by a general function ϕ i ∈ Γ 0 (H) modeling the self-loss of player i, i.e.,

h i : (x i ; x i ) → ϕ i (x i ) + 1 2 x i -x i+1 2 . ( 155 
)
The solutions to the resulting problem [START_REF] Gol | shtein, A general approach to decomposition of optimization systems[END_REF] are proximal cycles, i.e., m-tuples

(x i ) 1 i m ∈ H m such that x 1 = prox ϕ1 x 2 , . . . , x m-1 = prox ϕm-1 x m ,
and

x m = prox ϕm x 1 . (156) 
Furthermore, the equivalent monotone inclusion and fixed point representations of the cycles in Section VI-A remain true with

P : H → H : x → prox ϕ1 x 1 , . . . , prox ϕm x m (157) 
and A = ∂f , where f : x → m i=1 ϕ i (x i ). Here, the best response operator of player i is best i : x i → prox ϕi x i+1 . Examples of such cycles appear in [START_REF] Briceño-Arias | Convex variational formulation with smooth coupling for multicomponent signal decomposition and recovery[END_REF], [START_REF] Combettes | Signal recovery by proximal forwardbackward splitting[END_REF].

C. Construction of Nash equilibria

A more structured version of the Nash equilibrium formulation [START_REF] Gol | shtein, A general approach to decomposition of optimization systems[END_REF], which captures [START_REF] Iutzeler | Asynchronous distributed optimization using a randomized alternating direction method of multipliers[END_REF] and therefore [START_REF] Hirstoaga | Iterative selection methods for common fixed point problems[END_REF], is provided next.

Problem 87 For every i ∈ {1, . . . , m}, let

ψ i ∈ Γ 0 (H i ), let f i : H → ]-∞, +∞], let g i : H → ]-∞, +∞] be such that, for every x ∈ H, f i (•; x i ) ∈ Γ 0 (H i ) and g i (•; x i ) ∈ Γ 0 (H i ). The task is to find x ∈ H such that (∀i ∈ {1, . . . , m}) x i ∈ Argmin xi∈Hi ψ i (x i ) + f i (x i ; x i ) + g i (x i ; x i ). (158)
Under suitable assumptions on (f i ) 1 i m and (g i ) 1 i m , monotone operator splitting strategies can be contemplated to solve Problem 87. This approach was initiated in [START_REF] Cohen | Nash equilibria: Gradient and decomposition algorithms[END_REF] in a special case of the following setting, which reduces to that investigated in [START_REF] Briceño-Arias | Monotone operator methods for Nash equilibria in non-potential games[END_REF] when (∀i ∈ {1, . . . , m}) ψ i = 0.

Assumption 88 In Problem 87, the functions (f i ) 1 i m coincide with a function f ∈ Γ 0 (H). For every i ∈ {1, . . . , m} and every x ∈ H, g i (•; x i ) is differentiable on H i and ∇ i g i (x) denotes its derivative relative to x i . Moreover,

(∀x ∈ H)(∀y ∈ H) m i=1 ∇ i g i (x) -∇ i g i (y) | x i -y i 0, (159) 
and

(∃ z ∈ H) -∇ 1 g 1 (z), . . . , ∇ m g m (z) ∈ ∂f (z) + m × i=1 ∂ψ i (z i ). ( 160 
)
In the context of Assumption 88, let us introduce the maximally monotone operators on

H      A = ∂f B : x → × m i=1 ∂ψ i (x i ) C : x → ∇ 1 g 1 (x), . . . , ∇ m g m (x) . ( 161 
)
Then the solutions to the inclusion problem (see Problem 51) 0 ∈ Ax + Bx + Cx solve Problem 87 [START_REF] Briceño-Arias | Monotone operator methods for Nash equilibria in non-potential games[END_REF]. In turn, applying the splitting scheme of Proposition 52 leads to the following implementation.

Proposition 89 Consider the setting of Assumption 88 with the additional requirement that, for some δ ∈ ]0, +∞[, 

(∀x ∈ H)(∀y ∈ H) m i=1 ∇ i g i (x) -∇ i g i (y) 2 δ 2 m i=1 x i -y i 2 . (162) Let ε ∈ ]0, 1/(2 + δ)[, let (γ n ) n∈N be in [ε, (1 -ε)/(1 + δ)], let x 0 ∈ H, and let v 0 ∈ H. Iterate for n = 0, 1, . . .              for i = 1, . . . , m ⌊ y i,n = x i,n -γ n ∇ i g i (x n ) + v i,n p n = prox γnf y n for i = 1, . . . , m     q i,n = v i,n + γ n x i,n -prox ψi/γn (v i,n /γ n + x i,n ) x i,n+1 = x i,n -y i,n + p i,n -γ n ∇ i g i (p n ) + q i,n v i,n+1 = q i,n + γ n (p i,n -x i,n ). ( 163 
z ∈ H 1 × H 2 such that -(∇ϕ 1 (z 1 ) + L * z 2 , ∇ϕ 2 (z 2 ) -Lz 1 ) ∈ N D (z 1 , z 2 ) + N C1 z 1 × N C2 z 2 . Then the 2-player game      x 1 ∈ Argmin x1∈C1 ι D (x 1 , x 2 ) + ϕ 1 (x 1 ) + Lx 1 | x 2 x 2 ∈ Argmin x2∈C2 ι D (x 1 , x 2 ) + ϕ 2 (x 2 ) -Lx 1 | x 2 (164) 
is an instance of Problem 87 with

f 1 = f 2 = ι D , ψ 1 = ι C1 , ψ 2 = ι C2 , and 
g 1 : (x 1 , x 2 ) → ϕ 1 (x 1 ) + Lx 1 | x 2 g 2 : (x 1 , x 2 ) → ϕ 2 (x 2 ) -Lx 1 | x 2 . (165) 
In addition, Assumption 88 is satisfied, as well as ( 162) with δ = max{δ 1 , δ 2 } + L . Moreover, in view of [START_REF] Bach | Optimization with sparsity-inducing penalties[END_REF], algorithm [START_REF] Kiwiel | Surrogate projection methods for finding fixed points of firmly nonexpansive mappings[END_REF] becomes

for n = 0, 1, . . .                       y 1,n = x 1,n -γ n ∇ϕ 1 (x 1,n ) + L * x 2,n + v 1,n y 2,n = x 2,n -γ n ∇ϕ 2 (x 2,n ) -Lx 1,n + v 2,n p n = proj D y n q 1,n = v 1,n + γ n x 1,n -proj C1 (v 1,n /γ n + x 1,n ) q 2,n = v 2,n + γ n x 2,n -proj C2 (v 2,n /γ n + x 2,n ) x 1,n+1 = x 1,n -y 1,n + p 1,n -γ n ∇ϕ 1 (p 1,n ) + L * p 2,n + q 1,n x 2,n+1 = x 2,n -y 2,n + p 2,n -γ n ∇ϕ 2 (p 2,n ) -Lp 1,n + q 2,n v 1,n+1 = q 1,n + γ n (p 1,n -x 1,n ) v 2,n+1 = q 2,n + γ n (p 2,n -x 2,n ). (166) 
Condition [START_REF] Lemaire | Stability of the iteration method for nonexpansive mappings[END_REF] means that the operator C of ( 161) is δ-Lipschitzian. The stronger assumption that it is cocoercive, allows us to bring into play the three-operator splitting algorithm of Proposition 53 to solve Problem 87.

Proposition 91 Consider the setting of Assumption 88 with the additional requirement that, for some β ∈ ]0, +∞[,

(∀x ∈ H)(∀y ∈ H) m i=1 x i -y i | ∇ i g i (x) -∇ i g i (y) β m i=1 ∇ i g i (x) -∇ i g i (y) 2 . (167) Let γ ∈ ]0, 2β[ and set α = 2β/(4β -γ). Furthermore, let (λ n ) n∈N be an α-relaxation sequence and let y 0 ∈ H. Iterate for n = 0, 1, . . .          for i = 1, . . . , m x i,n = prox γψi y i,n r i,n = y i,n + γ∇ i g i (x n ) z n = prox γf (2x n -r n ) y n+1 = y n + λ n (z n -x n ). ( 168 
)
Then there exists a solution x to Problem 87 such that, for every i ∈ {1, . . . , m}, x i,n → x i .

Example 92 For every i ∈ {1, . . . , m}, let C i ⊂ H i be a nonempty closed convex set, let L i : H i → G be linear, and

x W 1 + b 1 R 1 • • • W m + b m R m T x
Fig. 7: Feedforward neural network: the ith layer involves a linear weight operator W i , a bias vector b i , and an activation operator R i , which is assumed to be an averaged nonexpansive operator.

let o i ∈ G. The task is to solve the Nash equilibrium (with the convention L m+1 x m+1 = L 1 x 1 ) find x ∈ H such that (∀i ∈ {1, . . . , m})

x i ∈ Argmin xi∈Ci ψ i (x i ) + L i x i + L i+1 x i+1 -o i 2 2 . (169) 
Here, the action of player i must lie in C i , and it is further penalized by ψ i and the proximity of the linear mixture L i x i + L i+1 x i+1 to some vector o i . For instance if, for every i ∈ {1, . . . , m}, C i = H i , o i = 0, and L i = (-1) i Id, we recover the setting of Section VI-B. The equilibrium ( 169) is an instantiation of Problem 87 with 

f 1 = f 2 : x → m i=1 ι Ci (x i ) and, for every i ∈ {1, . . . , m}, g i : x → L i x i + L i+1 x i+1 - o i 2 /2.
= (2 max 1 i m L i 2 ) -1 . Finally, ( 168 
) reduces to (with the convention L m+1 x m+1,n = L 1 x 1,n ) for n = 0, 1, . . .          for i = 1, . . . , m       x i,n = prox γψi y i,n r i,n = y i,n + γL * i (L i x i,n + L i+1 x i+1,n -o i ) z i,n = proj Ci (2x i,n -r i,n ) y i,n+1 = y i,n + λ n (z i,n -x i,n ). (170) 
Remark 93 i) As seen in Example 90, the functions of (165) satisfy the Lipschitz condition [START_REF] Lemaire | Stability of the iteration method for nonexpansive mappings[END_REF]. However the cocoercivity condition (167) does not hold. For instance, if ϕ 1 = 0 and ϕ 2 = 0 then, for every x and y in

H 1 × H 2 , ∇ 1 g 1 (x) -∇ 1 g 1 (y) | x 1 -y 1 + ∇ 2 g 2 (x) -∇ 2 g 2 (y) | x 2 -y 2 = 0. (171) 
ii) Distributed splitting algorithms for finding Nash equilibria are discussed in [START_REF] Belgioioso | A Douglas-Rachford splitting for semi-decentralized equilibrium seeking in generalized aggregative games[END_REF], [START_REF] Belgioioso | Distributed generalized Nash equilibrium seeking in aggregative games on time-varying networks[END_REF], [START_REF] Yi | Distributed generalized Nash equilibria computation of monotone games via double-layer preconditioned proximal-point algorithms[END_REF], [START_REF] Yi | An operator splitting approach for distributed generalized Nash equilibria computation[END_REF]. iii) An asynchronous block-iterative decomposition algorithm to solve Nash equilibrium problems involving a mix of nonsmooth and smooth functions acting on linear mixtures of actions is proposed in [START_REF] Bùi | A warped resolvent algorithm to construct Nash equilibria[END_REF].

VII. FIXED POINT MODELING OF OTHER NON-MINIMIZATION PROBLEMS

A. Neural network structures

A feedforward neural network (see Fig. 7) consists of the composition of nonlinear activation operators and affine operators. More precisely, such an m-layer network can be modeled as

T = T m • • • • • T 1 , (172) 
where

T i = R i • (W i • + b i ), with W i ∈ R Ni×Ni-1 , b i ∈ R Ni
, and R i : R Ni → R Ni (see Fig. 7). If the i-th layer is convolutional, then the corresponding weight matrix W i has a Toeplitz (or block-Toeplitz) structure. Many common activation operators are separable, i.e.,

R i : (ξ k ) 1 k Ni → ̺ i,k (ξ k ) 1 k Ni , (173) 
where ̺ i,k : R → R. For example, the ReLU activation function is given by

̺ i,k : ξ → ξ, if ξ > 0; 0, if ξ 0, (174) 
and the unimodal sigmoid activation function is

̺ i,k : ξ → 1 1 + e -ξ - 1 2 . ( 175 
)
An example of a nonseparable operator is the softmax activator

R i : (ξ k ) 1 k Ni →   e ξ k Ni j=1 e ξj   1 k Ni . (176) 
It was observed in [START_REF] Combettes | Lipschitz certificates for layered network structures driven by averaged activation operators[END_REF] that almost all standard activators are actually averaged operators in the sense of [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]. In particular, as discussed in [START_REF] Combettes | Deep neural network structures solving variational inequalities[END_REF], many activators are proximity operators in the sense of Theorem 2. In this case, in [START_REF] Lions | Splitting algorithms for the sum of two nonlinear operators[END_REF], there exist functions

(φ k ) 1 k Ni in Γ 0 (R) such that R i : (ξ k ) 1 k Ni → prox φ k ξ k 1 k Ni . (177) 
For ReLU, φ k reduces to ι [0,+∞[ whereas, for the unimodal sigmoid, it is the function

ξ →          (ξ + 1/2) ln(ξ + 1/2) + (1/2 -ξ) ln(1/2 -ξ) -(|ξ| 2 + 1/4)/2, if |ξ| < 1/2; -1/4, if |ξ| = 1/2; +∞, if |ξ| > 1/2. ( 178 
) For softmax, we have R i = prox ϕi where

ϕ i : (ξ k ) 1 k Ni →            Ni i=1 ξ k ln ξ k -|ξ k | 2 /2 , if min 1 k Ni ξ k 0 and Ni k=1 ξ k = 1; +∞, otherwise.
(179) The weight matrices (W i ) 1 i m play a crucial role in the overall nonexpansiveness of the network. Indeed, under suitable conditions on these matrices, the network T is averaged. For example, let W = W m • • • W 1 and let

θ m = W + m-1 ℓ=1 0 j1<•••<j ℓ m-1 W m • • • W j ℓ +1 × W j ℓ • • • W j ℓ-1 +1 • • • W j1 • • • W 0 . (180) Then, if there exists α ∈ [1/2, 1] such that W -2 m (1 -α)Id -W + 2θ m 2 m α, (181) 
T is α-averaged. Other sufficient conditions have been established in [START_REF] Combettes | Deep neural network structures solving variational inequalities[END_REF]. These results pave the way to a theoretical analysis of neural networks from the standpoint of fixed point methods. In particular, assume that N m = N 0 and consider a recurrent network of the form

(∀n ∈ N) x n+1 = (1 -λ n )x n + λ n T x n , (182) 
where λ n ∈ ]0, +∞[ models a skip connection. Then, according to Theorem 37, the convergence of (x n ) n∈N to a fixed point of T is guaranteed under condition [START_REF] Mishchenko | A distributed flexible delaytolerant proximal gradient algorithm[END_REF] provided that (λ n ) n∈N is an α-relaxation sequence. As shown in [START_REF] Combettes | Deep neural network structures solving variational inequalities[END_REF], when for every i ∈ {1, . . . , m}, R i is the proximity operator of some function ϕ i ∈ Γ 0 (R Ni ), the recurrent network delivers asymptotically a solution to the system of inclusions

           b 1 ∈ x 1 -W 1 x m + ∂ϕ 1 (x 1 ) b 2 ∈ x 2 -W 2 x 1 + ∂ϕ 2 (x 2 ) . . . b m ∈ x m -W m x m-1 + ∂ϕ m (x m ), (183) 
where x m ∈ Fix T and, for every i ∈ {2, . . . , m}, x i = T i x i-1 . Alternatively, ( 183) is a Nash equilibrium of the form ( 142) where (we set x 0 = x m )

h i : (x i ; x i ) → ϕ i (x i ) + 1 2 x i -b i -W i x i-1 2 . ( 184 
)
Fixed point theory also allows us to provide conditions for T to be Lipschitzian and to calculate an associated Lipschitz constant. Such results are useful to evaluate the robustness of the network to adversarial perturbations of its input [START_REF] Szegedy | Intriguing properties of neural networks[END_REF]. As shown in [START_REF] Combettes | Lipschitz certificates for layered network structures driven by averaged activation operators[END_REF], if θ m is given by [START_REF] Minty | Monotone (nonlinear) operators in Hilbert space[END_REF], θ m /2 m-1 is a Lipschitz constant of T and

W θ m 2 m-1 W 1 • • • W m . ( 185 
)
This bound is thus more accurate than the product of the individual bounds corresponding to each layer used in [START_REF] Szegedy | Intriguing properties of neural networks[END_REF]. Tighter estimations can also be derived, especially when the activation operators are separable [START_REF] Combettes | Lipschitz certificates for layered network structures driven by averaged activation operators[END_REF], [START_REF] Latorre | Lipschitz constant estimation of neural networks via sparse polynomial optimization[END_REF], [START_REF] Scaman | Lipschitz regularity of deep neural networks: Analysis and efficient estimation[END_REF]. Note that the lower bound in [START_REF] Moreau | Fonctions convexes duales et points proximaux dans un espace hilbertien[END_REF] would correspond to a linear network where all the nonlinear activation operators would be removed. Interestingly, when all the weight matrices have components in [0, +∞[ and the activation operators are separable, W is a Lipschitz constant of the network [START_REF] Combettes | Lipschitz certificates for layered network structures driven by averaged activation operators[END_REF]. Special cases of the neural network model of [START_REF] Combettes | Deep neural network structures solving variational inequalities[END_REF] are investigated in [START_REF] Hasannasab | Parseval proximal neural networks[END_REF], [START_REF] Tang | Deep transform and metric learning network: Wedding deep dictionary learning and neural networks[END_REF]. Another special case of interest is when the operator T in (172) corresponds to the unrolling (or unfolding) of a fixed point algorithm [START_REF] Monga | Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing[END_REF], that is, each operator T i corresponds to one iteration of such an algorithm [START_REF] Banert | Data-driven nonsmooth optimization[END_REF], [START_REF] Gregor | Learning fast approximations of sparse coding[END_REF], [START_REF] Yang | Deep ADMM-Net for compressive sensing MRI[END_REF], [START_REF] Zhang | ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing[END_REF]. The algorithm parameters, as well as possible hyperparameters of the problem, can then be optimized from a training set by using differentiable programming. Let us note that the results of [START_REF] Combettes | Deep neural network structures solving variational inequalities[END_REF], [START_REF] Combettes | Lipschitz certificates for layered network structures driven by averaged activation operators[END_REF] can be used to characterize the nonexpansiveness properties of the resulting neural network [START_REF] Bertocchi | Deep unfolding of a proximal interior point method for image restoration[END_REF].

B. Plug-and-play methods

The principle of the so-called plug-and-play (PnP) methods [START_REF] Buzzard | Plugand-play unplugged: Optimization-free reconstruction using consensus equilibrium[END_REF], [START_REF] Ono | Primal-dual plug-and-play image restoration[END_REF], [START_REF] Rond | Poisson inverse problems by the plug-and-play scheme[END_REF], [START_REF] Ryu | Plug-andplay methods provably converge with properly trained denoisers[END_REF], [START_REF] Sun | An online plug-and-play algorithm for regularized image reconstruction[END_REF], [START_REF] Venkatakrishnan | Plug-and-play priors for model based reconstruction[END_REF] is to replace a proximity operator appearing in some proximal minimization algorithm by another operator Q. The rationale is that, since a proximity operator can be interpreted as a denoiser [START_REF] Combettes | Signal recovery by proximal forwardbackward splitting[END_REF], one can consider replacing this proximity operator by a more sophisticated denoiser Q, or even learning it in a supervised manner from a database of examples. Example 72 described implicitly a PnP algorithm that can be interpreted as a minimization problem.

Here are some techniques that go beyond the optimization setting.

Algorithm 94 (PnP forward-backward) Let f : H → R be a differentiable convex function, let Q : H → H, let γ ∈ ]0, +∞[, let (λ n ) n∈N be a sequence in ]0, +∞[, and let x 0 ∈ H. Iterate for n = 0, 1, . . .

y n = x n -γ∇f (x n ) x n+1 = x n + λ n (Qy n -x n ). (186) 
The convergence of (x n ) n∈N in ( 186) is related to the properties of T = Q • (Id -γ∇f ). Suppose that T is αaveraged with α ∈ ]0, 1], and that S = Fix T = ∅. Then it follows from Theorem 37 that, if (λ n ) n∈N is an α-relaxation sequence, then (x n ) n∈N converges to a point in S. 

In view of [START_REF] Nash | Non-cooperative games[END_REF],

(∀n ∈ N) y n+1 = 1 - λ n 2 y n + λ n 2 T y n , (188) 
where T = (2Q -Id) • (2prox γf -Id). Now assume that Q is such that T is α-averaged for some α ∈ ]0, 1] and Fix T = ∅.

Then it follows from Theorem 37 that, if (λ n /2) n∈N is an α-relaxation sequence, then (y n ) n∈N converges to a point in Fix T and we deduce that (x n ) n∈N converges to a point in S = prox γf (Fix T ). Conditions for T to be a Banach contraction in the two previous algorithms are given in [START_REF] Ryu | Plug-andplay methods provably converge with properly trained denoisers[END_REF].

Applying the Douglas-Rachford algorithm to the dual of Problem 66 leads to a simple form of the alternating direction method of multipliers. Thus, consider algorithm 95, where f , γ, and Q are replaced by f * , 1/γ and Id + γ -1 Q(-γ•), respectively, and (∀n ∈ N) λ n = 1. Then we obtain the following algorithm [START_REF] Chan | Plug-and-play ADMM for image restoration: Fixed-point convergence and applications[END_REF], which is applied to image fusion in [START_REF] Teodoro | A convergent image fusion algorithm using scene-adapted Gaussianmixture-based denoising[END_REF]. 

Note that, beyond the above fixed point descriptions of S, the properties of the solutions in plug-and-play methods are elusive in general.

C. Adjoint mismatch problem

A common inverse problem formulation is to

minimize x∈H f (x) + 1 2 Hx -y 2 + κ 2 x 2 , ( 190 
)
where f ∈ Γ 0 (H), y ∈ G models the observation, H : H → G is a linear operator, and κ ∈ [0, +∞[. This is a particular case of Problem 66 where

g = 1 2 H • -y 2 + κ 2 • 2 , (191) 
has Lipschitzian gradient ∇g : x → H * (Hx -y) + κx. It can therefore be solved via Proposition 70, which therefore requires the application of the adjoint operator H * at each iteration. Due to both physical and computational limitations in certain applications, this adjoint may be hard to implement and it is replaced by a linear approximation K : G → H [START_REF] Lorenz | The randomized Kaczmarz method with mismatched adjoint[END_REF], [START_REF] Zeng | Unmatched projector/backprojector pairs in an iterative reconstruction algorithm[END_REF]. This leads to a surrogate of the proximal-gradient scheme (105) of the form x -x χ (H * -K)(H x -y) .

A sufficient condition ensuring that L is cocoercive is that ζ min > 0. The problem of adjoint mismatch when f = 0 is studied in [START_REF] Dong | Fixing nonconvergence of algebraic iterative reconstruction with an unmatched backprojector[END_REF].

D. Problems with nonlinear observations

We describe the framework presented in [START_REF] Combettes | A fixed point framework for recovering signals from nonlinear transformations[END_REF], [START_REF] Combettes | Reconstruction of functions from prescribed proximal points[END_REF] to address the problem of recovering an ideal object x ∈ H from linear and nonlinear transformations (r k ) 1 k q of it.

Problem 97 For every k ∈ {1, . . . , q}, let R k : H → G k and let r k ∈ G k . The task is to find x ∈ H such that (∀k ∈ {1, . . . , q}) R k x = r k . [START_REF] Papadakis | Optimal transport with proximal splitting[END_REF] In the case when q = 2, G 1 = G 2 = H, and R 1 and R 2 are projectors onto vector subspaces, Problem 97 reduces to the classical linear recovery framework of [START_REF] Youla | Generalized image restoration by the method of alternating orthogonal projections[END_REF] which can be solved by projection methods. We can also express Problem 61 as a special case of Problem 97 by setting m = q and (∀k ∈ {1, . . . , q}) r k = 0 and R k = Id-proj C k . [START_REF] Pham | Pesquet A primal-dual proximal algorithm for sparse template-based adaptive filtering: Application to seismic multiple removal[END_REF] In the presence of more general nonlinear operators, however, projection techniques are not applicable to solve [START_REF] Papadakis | Optimal transport with proximal splitting[END_REF]. Furthermore, standard minimization approaches such as minimizing the least-squares residual q k=1 R k x -r k 2 typically lead to an intractable nonconvex problem. Yet, we can employ fixed point arguments to approach the problem and design a provenly convergent method to solve it. To this end, assume that [START_REF] Papadakis | Optimal transport with proximal splitting[END_REF] has a solution and that each operator R k is proxifiable in the sense that there exists S k : G k → H such that

S k • R k is firmly nonexpansive (∀x ∈ H) S k (R k x) = S k r k ⇒ R k x = r k . (196) 
Clearly, if R k is firmly nonexpansive, e.g., a projection or proximity operator (see Fig. 3), then it is proxifiable with S k = Id. Beyond that, many transformations found in data analysis, including discontinuous operations such as wavelet coefficients hard-thresholding, are proxifiable [START_REF] Combettes | A fixed point framework for recovering signals from nonlinear transformations[END_REF], [START_REF] Combettes | Reconstruction of functions from prescribed proximal points[END_REF]. Now set

(∀k ∈ {1, . . . , q}) T k = S k r k + Id -S k • R k . (197) 
Then the operators (T k ) 1 k q are firmly nonexpansive and Problem 97 reduces finding one of their common fixed points. In view of Propositions 18 and 26, this can be achieved by applying Theorem 37 with T = T 1 • • • • • T q . The more sophisticated block-iterative methods of [START_REF] Bauschke | Extrapolation algorithm for affine-convex feasibility problems[END_REF], [START_REF] Combettes | Reconstruction of functions from prescribed proximal points[END_REF] are also applicable.

Let us observe that the above model is based purely on a fixed point formalism which does not involve monotone inclusions or optimization concepts. See [START_REF] Combettes | A fixed point framework for recovering signals from nonlinear transformations[END_REF], [START_REF] Combettes | Reconstruction of functions from prescribed proximal points[END_REF] for data science applications.

VIII. CONCLUDING REMARKS

We have shown that fixed point theory provides an essential set of tools to efficiently model, analyze, and solve a broad range of problems in data science, be they formulated as traditional minimization problems or in more general forms such as Nash equilibria, monotone inclusions, or nonlinear operator equations. Thus, as illustrated in Section VII, nonlinear models that would appear to be predestined to nonconvex minimization methods can be effectively solved with the fixed point machinery. The prominent role played by averaged operators in the construction of provenly convergent fixed point iterative methods has been highlighted. Also emphasized is the fact that monotone operators are the backbone of many powerful modeling approaches. We believe that fixed point strategies are bound to play an increasing role in future advances in data science.
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 45 Fig. 4: Left: Graph of a (nonmonotone) set-valued operator. Right: Graph of its inverse.

  the dual norm and let B * = v ∈ G |||v||| * 1 be the associated unit ball. Then (39) is the constrained optimization problem minimize v∈B * f * (-L * v).

n+M- 1 j=nI

 1 j = {1, . . . , m} and n+M-1 j=n K j = {1, . . . , q}.[START_REF] Combettes | Inconsistent signal feasibility problems: Least-squares solutions in a product space[END_REF] 

Proposition 60 (

 60 [START_REF] Combettes | Asynchronous block-iterative primaldual decomposition methods for monotone inclusions[END_REF]) Consider the setting of Problem 59. Take sequences (I n ) n∈N in I and (K n ) n∈N in K satisfying[START_REF] Combettes | Inconsistent signal feasibility problems: Least-squares solutions in a product space[END_REF], with I 0 = I and K 0 = K. Let ε ∈ ]0, 1[ and, for every i ∈ I and every k ∈ K, let (γ i,n ) n∈N and (µ k,n ) n∈N be sequences in [ε, 1/ε]. Let x 0 ∈ H, let v 0 ∈ G, and iterate

  ) Then (x n ) n∈N converges to a solution to Problem 59.

  ) An implementation of the Douglas-Rachford algorithm in the product space H × H to solve (102) is detailed in[START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] Example 28.6].

and h 2

 2 = 0. Remark 80 (ADMM) Let us revisit the composite minimization problem of Proposition 7 and Example 34. Let f ∈ Γ 0 (H), let g ∈ Γ 0 (G), and let L : H → G be linear. Suppose that lim x →+∞ f (x) + g(Lx) = +∞ and ri(L(dom f )) ∩ ri(dom g) = ∅. Then the problem minimize x∈H f (x) + g(Lx)

  We investigate a specialization of a primal-dual version of the multivariate inclusion Problem 59 in the context of Problem 84. Problem 86 Consider the setting of Problem 84. The task is to solve the primal minimization problem minimize x∈H m i=1

sets and ( 147 )

 147 , there exists no function Φ : H m → R such that cycles solve the minimization problem minimize x1∈C1,..., xm∈Cm Φ(x 1 , . . . , x m ),

Algorithm 95 (

 95 PnP Douglas-Rachford) Let f ∈ Γ 0 (H), let Q : H → H, let γ ∈ ]0, +∞[, let (λ n) n∈N be a sequence in ]0, +∞[, and let x 0 ∈ H. Iterate for n = 0, 1, . . .x n = prox γf y n y n+1 = y n + λ n Q(2x n -y n ) -x n .

Algorithm 96 (

 96 PnP ADMM) Let f ∈ Γ 0 (H), let Q : H → H, let γ ∈ ]0, +∞[, let y 0 ∈ H, let z 0 ∈ H, and let γ ∈ ]0, +∞[. Iterate for n = 0, 1, . . .     x n = Q(y n -z n ) y n+1 = prox γf (x n + z n ) z n+1 = z n + x n -y n+1 .

(

  ∀n ∈ N) x n+1 = x n + λ n prox γf (1 -γκ)x n -γK(Hx n -y) -x n ,[START_REF] Ono | Primal-dual plug-and-play image restoration[END_REF] with γ ∈ ]0, +∞[ and {λ n } n∈N ⊂ ]0, 1]. Let us assume that L = K • H + κId is a cocoercive operator. Then the above algorithm is an instance of the forward-backward splitting algorithm introduced in Proposition 50 to solve Problem 47 where A = ∂f and B = L • -Ky. This means that a solution produced by algorithm[START_REF] Ono | Primal-dual plug-and-play image restoration[END_REF] no longer solves a minimization problem since L is not a gradient in general[START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] Proposition 2.58]. However, suppose that g is ν-strongly convex with ν ∈ ]0, +∞[, let ζ min be the minimum eigenvalue of L + L * , set χ = 1/(ν + ζ min ), let x be the solution to Problem 66, and let x be the solution to Problem 47. Then, as shown in[START_REF] Chouzenoux | Convergence of proximal gradient algorithm in the presence of adjoint mismatch[END_REF],

  Example 33 Let f ∈ Γ 0 (H). Then J ∂f = prox f .

	Theorem 32 (Minty) Let T : H → H. Then T is firmly nonexpansive if and only if it is the resolvent of a maximally
	monotone operator A : H → 2 H .

  and therefore 1cocoercive. It follows from Proposition 21 that G 2 is cocoercive with constant 1/ L 2 . Now let γ ∈ 0, 2/ L 2 and set α 2 = γ L 2 /2. Then Proposition 13 asserts that Id -γG 2 is α 2 -averaged. Altogether, we deduce from Example 19 that T 1 • T 2 is α-averaged. Now let (λ n ) n∈N be an α-relaxation sequence. According to Theorem 37 and Proposition 26, the sequence produced by the iterations

  , player i aims at minimizing his individual loss (or negative payoff) function h i : H → ]-∞, +∞], that incorporates the actions of the other players. An action profile x ∈ H is called a Nash equilibrium if unilateral deviations from it are not profitable, i.e.,(∀i ∈ {1, . . . , m}) h i (x i ; x i ) = min xi∈Hi h i (x i ; x i ).

	(142)
	In other words, if
	best

  T = P • F , where F = (Id + L)/2 (see [21, Corollary 26.3]). Since Example 11 implies that P is firmly nonexpansive and since L is nonexpansive, F is firmly nonexpansive as well. It thus follows from Example 19, that the cycles are the fixed points of the 2/3-averaged operator T . • Game theory: Consider a game in H m in which the goal of player i is to minimize the loss

)

  Then there exists a solution x to Problem 87 such that, for every i ∈ {1, . . . , m}, x i,n → x i .Example 90 Let ϕ 1 : H 1 → R be convex and differentiable with a δ 1 -Lipschitzian gradient, let ϕ 2 : H 2 → R be convex and differentiable with a δ 2 -Lipschitzian gradient, let L : H 1 → H 2 be linear, and let C 1 ⊂ H 1 , C 2 ⊂ H 2 , and D ⊂ H 1 × H 2 be nonempty closed convex sets. Suppose that there exists
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