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Filter bubbles ?
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State of the art: not very bubbly...
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Figure 1: Use profiles and classes, where each dot on the
ternary plot corresponds to a user of barycentric coordinates
(Pas Pe, Po), and each color refers to one of the four cate-
gories a (blue), e (red), o (green), o+ (yellow).

' 8639 users in total, of which:

e 989 a

* 655 e

e 1614 o
e 5381 o+




* Dispersion generally lower as a
function of activity

Two dimensions of diversity
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Fig. 3. Breakdown of dispersion values for each user class and for each access mode. Histograms are further binned by deciles
of increasing S/P values (from 0 to 1 from left to right) and indicate how many users of each class (a, e, 0 and o+) exhibit which
dispersion value for a certain access mode (algorithmic, editorial or organic). Average activity values for users of each decile bar are
further indicated by a grayscale, where darkest shades correspond to highest P values.



Two dimensions of diversity
Artist popularity

bin # artists o ccess.moode .
algorithmic  editorial  organic

%] 73 9% 8 % 83% 100%

Vo 319 16% 8 %o 76% 100%

V3 1462 18 % 5% 77% 100%

Uy 166869 15% 5% 80% 100%

all 164955 149% 1% 79% 100%

Table 1: Proportion of access modes for each nicheness bin
(preferred bins for each access mode are marked 1n bold).

e algorithmic: less popular
e editorial: more popular

e organic: U-curve




Two dimensions of diversity

Artist popularity and dispersion

* dispersion increases with less popular

. . access mode
bin  # artists algorithmic  editorial  organic content on average, for all user types
%] 73 9% 8 % 83% 100%
Vo 319 16% 8 %o 76% 100%
V3 1462 18 % 5% 77% 100%
Uy 166869 15% 5% 80% 100%
all 164955 14% 7% 79% 100% 1 00+ 1004
Table 1: Proportion of access modes for each nicheness bin A
(preferred bins for each access mode are marked 1n bold). 0.751 0.75 1
e 0.50- &5 0.501 I\ \
e algorithmic: less popular .
U.25 " ndend
* editorial: more popular \I/
0.004 0.001
. : : ‘ ' V v V Vv
* organic: U-curve | oy “ | 2 3 “




Two dimensions of diversity

Artist popularity and access modes

a e O o+
0.4+

Q
o
0.2- 8
—o0——0 ]
0.0- O\o\o/o 2
@
-0.21 3
&

_0.4- | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

Fig. 5. Relative consumption of content from each popularity bin, average log-ratio with respect to a uniformly random baseline for
each bin (0 corresponds to no deviation, the x-axis is ordered from 14 to 14 i.e., for musical content from more to less popular artists).
Top: average over all plays. Bottom: breakdown by access mode.



Two dimensions of diversity

Artist popularity and access modes
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* algorithmic: towards niche,
except for e users

e editorial: monotonous

* organic: it depends
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Fig. 5. Relative consumption of content from each popularity bin, average log-ratio with respect to a uniformly random baseline for

each bin (0 corresponds to no deviation, the x-axis is ordered from 14 to 14 i.e., for musical content from more to less popular artists).

Top: average over all plays. Bottom: breakdown by access mode.
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rather than bubbles
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types (more exploitation), while they are wide
variations in terms of artist popularity

e Algorithmic access modes generally avoid popular
content, but not for editorial users
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RN editorial

Filter niches :
rather than bubbles

* Radio playlists generally less dispersed than user
types (more exploitation), while they are wide
variations in terms of artist popularity

* Algorithmic access modes generally avoid popular | *—<_

content, but not for editorial users

— — algorithmic
----- editorial
organic

* Organic users focus most on less popular content
— yet, these users precisely exhibit a relatively
balanced diet of platform affordances,

* hypothesis: these are the most “expert” users
who best exploit platform affordances

| | |
V1 Vo V3

organic algo




RN editorial

Filter niches :
rather than bubbles

Radio playlists generally less dispersed than user
types (more exploitation), while they are wide
variations in terms of artist popularity

Algorithmic access modes generally avoid popular | “=—<__ R §

content, but not for editorial users
— — algorithmic
----- editorial
organic

Organic users focus most on less popular content
— yet, these users precisely exhibit a relatively
balanced diet of platform affordances,

* hypothesis: these are the most “expert” users
who best exploit platform affordances

organic algo

Editorial access, by contrast, even more so for
editorial users, fulfills a role traditionally ascribed to
radios in terms of mainstream exploration,

yet with more exploration / higher dispersion
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