Follow the guides to the filter niches

Disentangling human and algorithmic curation in online music consumption

Quentin Villermet

Jérémie Poiroux

Manuel Moussallam

Thomas Louail

Three types of affordances

Filter bubbles?

State of the art: not very bubbly...

youtube
Zhou, Khemmarat,
Goo, 2010
"The impact of YouTube recommendation system on video views"
movielens

Nguyen, Hui, Harper, Terveen, Konstan, 2014
"Exploring the filter bubble: the effect of using recommender systems on content diversity"
facebook
Bokshy, Messing, Adamic, 2015
"Exposure to ideologically diverse news and opinion on Facebook"
tumblr
Aiello, Barbieri, 2017
"Evolution of egonetworks in socia media with link recommendations"
spotify
Datio, Knox, Bronnenberg, 2018
"Changing Their Tune: How Consumers' Adoption of Online Streaming Affects Music Consumption and Discovery"
google news
Hoim, Groefe, Brosius, 2018
"Burst of the Filter Bubble? Effects of personalization on the diversity of Google News"

Filter bubbles?

State of the art: not very bubbly...

youtube
Zhou, Khemmarat,
Gao, 2010
"The impact of YouTube
recommendation
system on video views"
movielens

Nguyen, Hui, Harper, Terveen, Konstan, 2014
"Exploring the filter bubble: the effect of using recommender systems on content diversity"
facebook
Bokshy, Messing, Adamic, 2015
"Exposure to ideologically diverse news and opinion on Facebook"

"Evolution of egonetworks in social media with link recommendations"
spotify
Datio, Knox, Bronnenberg, 2018
"Changing Their Tune: How Consumers' Adoption of Online Streaming Affects Music Consumption and Discovery"
google news
Hoim, Graefe, Brosius, 2018
"Burst of the Filter Bubble? Effects of personalization on the diversity of Google News"
except (admittedly...) in the case of explicit preferences

Thurman,
Schifferes, 2012
"The Future of Personalization at News

Websites"

Zuiderveen Borgesius, Trilling, Möller, Bodó, de Vreese, Helberger, 2016

Dylko, Dolgov, Hoffman, Eckhort, Molina, Auziz, 2017
"The dark side of technology: An experimental investigation of the influence of customizability technology on online

Filter bubbles?

State of the art: not very bubbly...

youtube

```
Zhou, Khemmorait
Gao, 2010
```

"The impact of YouTube recommendation system on video views"
movielens

Nguyen, Hui, Harper, Terveen, Konstan, 2014
"Exploring the filter bubble: the effect of using recommender systems on content diversity"
facebook
Bokshy, Messing, Adamic, 2015
"Exposure to ideologically diverse news and opinion on Facebook"
tumblr
Aiello, Barbieri, 2017
"Evolution of egonetworks in socia media with link recommendations"
spotify
Datio, Knox, Bronnenberg, 2018
"Changing Their Tune: How Consumers' Adoption of Online Streaming Affects Music Consumption and Discovery"
google news
Hoim, Groefe, Brosius, 2018
"Burst of the Filter Bubble? Effects of personalization on the diversity of
Google News"
except (admittedly...) in the case of explicit preferences
...and some cases

Thurman,
 Schifferes, 2012

"The Future of Personalization at News

Websites"

Dylko, Dolgov, Hoffman, Eckhart, Molina, Auziz, 2017

"The dark side of technology: An experimental investigation of the influence of customizability technology on online political selective exposure"
youtube

Roth, Mazières, Menezes, 2020

"Tubes and bubbles: topological confinement of YouTube recommendations"
spotify
Anderson, Maysire, Anderson,
Mehroitra, Lolmas, 2020
"Algorithmic effects on the diversity of consumption on spotify"

(105

Figure 1: Use profiles and classes, where each dot on the ternary plot corresponds to a user of barycentric coordinates $\left(p_{a}, p_{e}, p_{o}\right)$, and each color refers to one of the four categories a (blue), e (red), \mathbf{o} (green), $\mathbf{0}+$ (yellow).

```
8639 users in total, of which:
-989 a
-655 e
-1614 o
-5381 o+
```


Two dimensions of diversity

Dispersion, i.e. S/P

Fig. 3. Breakdown of dispersion values for each user class and for each access mode. Histograms are further binned by deciles of increasing S / P values (from 0 to 1 from left to right) and indicate how many users of each class (a, e, o and $\mathbf{o}+$) exhibit which dispersion value for a certain access mode (algorithmic, editorial or organic). Average activity values for users of each decile bar are further indicated by a grayscale, where darkest shades correspond to highest P values.

- Dispersion generally lower as a function of activity
- Dispersion lower for the main access mode, especially as activity increases
- Generally lower for organic access, especially for o+ users
- o users still appear to have lower dispersion in the algorithmic access mode

Two dimensions of diversity

Artist popularity

bin	\# artists	access mode			
		algorithmic	editorial	organic	
ν_{1}	73	9%	$\mathbf{8 \%}$	$\mathbf{8 3 \%}$	100%
ν_{2}	319	16%	$\mathbf{8 \%}$	76%	100%
ν_{3}	1462	$\mathbf{1 8 \%}$	5%	77%	100%
ν_{4}	166869	15%	5%	80%	100%
all	164955	14%	7%	79%	100%

Table 1: Proportion of access modes for each nicheness bin (preferred bins for each access mode are marked in bold).

- algorithmic: less popular
- editorial: more popular
- organic: U-curve

Two dimensions of diversity

Artist popularity and dispersion

bin	\# artists	access mode			
		algorithmic	editorial	organic	
ν_{1}	73	9%	$\mathbf{8 \%}$	$\mathbf{8 3 \%}$	100%
ν_{2}	319	16%	$\mathbf{8 \%}$	76%	100%
ν_{3}	1462	$\mathbf{1 8 \%}$	5%	77%	100%
ν_{4}	166869	15%	5%	80%	100%
all	164955	14%	7%	79%	100%

Table 1: Proportion of access modes for each nicheness bin (preferred bins for each access mode are marked in bold).

- algorithmic: less popular
- editorial: more popular
- organic: U-curve

Two dimensions of diversity

Artist popularity and access modes

Fig. 5. Relative consumption of content from each popularity bin, average log-ratio with respect to a uniformly random baseline for each bin (0 corresponds to no deviation, the x-axis is ordered from v_{1} to v_{4} i.e., for musical content from more to less popular artists). Top: average over all plays. Bottom: breakdown by access mode.

Two dimensions of diversity

Artist popularity and access modes

\circ

- algorithmic: towards niche, except for e users
- editorial: monotonous
- organic: it depends

Fig. 5. Relative consumption of content from each popularity bin, average log-ratio with respect to a uniformly random baseline for each bin (0 corresponds to no deviation, the x-axis is ordered from v_{1} to v_{4} i.e., for musical content from more to less popular artists). Top: average over all plays. Bottom: breakdown by access mode.

Filter niches rather than bubbles

Filter niches rather than bubbles

- Radio playlists generally less dispersed than user types (more exploitation), while they are wide variations in terms of artist popularity

Filter niches rather than bubbles

- Radio playlists generally less dispersed than user types (more exploitation), while they are wide variations in terms of artist popularity
- Algorithmic access modes generally avoid popular content, but not for editorial users

Filter niches rather than bubbles

- Radio playlists generally less dispersed than user types (more exploitation), while they are wide variations in terms of artist popularity
- Algorithmic access modes generally avoid popular content, but not for editorial users
- Organic users focus most on less popular content - yet, these users precisely exhibit a relatively balanced diet of platform affordances,
- hypothesis: these are the most "expert" users who best exploit platform affordances

Filter niches rather than bubbles

- Radio playlists generally less dispersed than user types (more exploitation), while they are wide variations in terms of artist popularity
- Algorithmic access modes generally avoid popular content, but not for editorial users
- Organic users focus most on less popular content - yet, these users precisely exhibit a relatively balanced diet of platform affordances,
- hypothesis: these are the most "expert" users who best exploit platform affordances
- Editorial access, by contrast, even more so for editorial users, fulfills a role traditionally ascribed to radios in terms of mainstream exploration, yet with more exploration / higher dispersion

No blanket answer to the impact of recommendation

but more clear-cut answers
if we distinguish beforehand persona, user types, affordance use

No blanket answer to the impact of recommendation

but more clear-cut answers
if we distinguish beforehand persona, user types, affordance use

thanks!

