Approximate Deep Learning Accelerators

Improving performance and energy efficiency of deep-learning hardware accelerators with controlled arithmetic approximations

Olivier Sentieys
Univ. Rennes, Inria
Energy Cost in a Processor/SoC

- 64-bit FPU: 20pJ/op
- 32-bit addition: 0.05pJ
- 16-bit multiply: 0.25pJ

- Wire energy
 - 240fJ/bit/mm per \(\downarrow \uparrow \)
 - 32 bits: 40pJ/word/mm
 - 8 bits: 10pJ/word/mm

- Memory/Register-File
 - Depends on word-length

Energy strongly depends on data representation and size
Complexity Issues of Deep NNs

- Deep (Convolutional) Neural Networks

Poplar® graphs have many more vertices than TensorFlow graphs – typically millions, to load-balance a machine executing tens of thousands of codelets in parallel.

The TensorFlow IPU backend uses the Poplar® libraries to break TensorFlow compute functions and large tensors into fragments.
Approximate Computing

• Many applications are **error resilient**
 – media processing, data mining, machine learning, web search, etc.

• AxC performs **approximations** to reduce **energy** and increase execution speed while keeping **accuracy in acceptable limits**
 – Relaxing the need for fully precise operations
 – **Number representations and word-length**

• Design-time/run-time
• Different levels
Resilience of ANN?

Aoccdrnig to a rscheearch at Cmabrigde Unervtisy, it deosn’t mtttaer in waht oredr the ltteers in a wrod are, the olny iprmoatnt thihng is taht the frist and lsat ltteer be at the rghit pclae. And we spnet hlaf our lfie larennig how to splel wrods. Amzanig, no! [O. Temam, ISCA10]

- Our biological neurons are tolerant to computing errors and noisy inputs
- Quantization of parameters and computations provides benefits in throughput, energy, storage
Even Worse for Training...

- Carbon footprint of DNN training

Analyzing the carbon footprint of current natural-language processing models shows an alarming trend: training one huge model for machine translation emits the same amount of CO2 as five cars in their lifetimes (fuel included)

- Many more operations than inference
- More pressure on memory access
- Much more difficult to accelerate

Need for a Significant Reduction of the Carbon Footprint of Neural Network Training Hardware

[Strubell et al., ACL 2019]
This rest of this talk is about

• Approximations in DNNs

• Reducing the numerical precision of arithmetic operations is a general way to increase performance and energy efficiency in computing
 – How does this apply to DNN?
 – Can we design low-precision accelerators for inference and training?
Number Representations

- **Floating-Point (FIP)**
 \[x = (-1)^s \times m \times 2^{e-127} \]
 - \(s \): sign, \(m \): mantissa, \(e \): exponent
 - Easy to use
 - High dynamic range
 - IEEE 754

<table>
<thead>
<tr>
<th>Format</th>
<th>e</th>
<th>m</th>
<th>bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Precision</td>
<td>8</td>
<td>23</td>
<td>127</td>
</tr>
<tr>
<td>Double Precision</td>
<td>11</td>
<td>52</td>
<td>1023</td>
</tr>
</tbody>
</table>

- **Fixed-Point (FxP)**
 \[x = p \times K \]
 - \(p \): integer, \(K=2^{-n} \): fixed scale factor
 - Integer arithmetic
 - Efficient operators
 - Speed, power, cost
 - Hard to use...

\[x = s.(-2)^m + \sum_{i=-n}^{m-1} b_i.2^i \]
 - \(s \): sign, \(m \): magnitude, \(n \): fractional

\[2^{m-1} \quad 2^1 \quad 2^0 \quad 2^{-1} \quad 2^{-n} \]
 - Integer part: \(m \) bits
 - Fractional part: \(n \) bits
Number Representations

- Energy, delay, and area vary a lot between numeric formats and word-length

<table>
<thead>
<tr>
<th></th>
<th>Addition</th>
<th>Multiplication</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-bit integer</td>
<td>0.03pJ / 36μm²</td>
<td>0.2pJ / 282μm²</td>
</tr>
<tr>
<td>32-bit float</td>
<td>0.9pJ / 4184μm²</td>
<td>3.7pJ / 7700μm²</td>
</tr>
</tbody>
</table>

Energy numbers are from Mark Horowitz "Computing's Energy problem (and what we can do about it)". ISSCC 2014
Area numbers are from synthesized result using Design compiler under TSMC 45nm tech node. FP units used DesignWare Library.
Floating-Point Arithmetic

- Floating-point hardware is doing the job for you!
- FLP operators are therefore more complex

[J.-M. Muller et al., Handbook of Floating-point arithmetic, Springer, 2009]
What can be customized?

• Of course precision
 – Exponent (E) and Mantissa (M) bit-width
 – e and m both impact accuracy
• Play with exponent bias
• Sub-normal numbers or not?
• 0, ∞, NaN?
• Rounding modes
 – to nearest, truncation, to 0/∞
• Inexact integer operators
LP-Floating-Point Multiplication

• Example: 7 bits, (2,5)

\[s_x \quad e_x \quad e_y \quad 1 \quad 0/1 \quad 1.m_x = \{1.0; 1.5\} \]

\[s_y \quad e_y \quad e_y \quad 1 \quad 0/1 \quad 1.m_y = \{1.0; 1.5\} \]

\[s_z = s_x \text{ NXOR } s_y \quad e_z = e_x + e_y + (m_x \text{ AND } m_y) \quad 1.m_z = \{1.0; 1.5; 2.25\} \]

\[s_z \quad 1 \quad 1.m_z = \{1.0; 1.5; 1.5 \text{ or } 1.0\} \]

\[m_z = m_x \text{ OR/XOR } m_y \]

• 5-bit adder and 3 gates!
FxP vs. FIP: Adders

- FxP\textsubscript{N}
 - N-bit Fixed-Point
- FIP\textsubscript{N}(E)
 - N-bit Float
 - Exponent E bits

- FxP adders are always smaller, faster, less energy

28nm FDSOI technology, Catapult (HLS), Design Compiler, PrimeTime
FxP vs. FlP: Multipliers

- FxP_N
 - Fixed-Point
 - N bits
- $\text{FlP}_N(E)$
 - Floating-Point
 - N bits
 - Exponent E bits

- FlP multipliers are smaller, faster, but consume more energy

28nm FDSOI technology, Catapult (HLS), Design Compiler, PrimeTime
Custom Floating-Point

- Difference in cost/energy between float/fixed is smaller for low-precision operators
- Slower increase of errors for floating-point
 - e.g., 8-bit float is still effective for K-means clustering
 [SiPS’17]
Custom Floating-Point

• **ct_float**: a Custom Floating-Point C++ Library
 - Synthesizable (with HLS) library
 - Templated C++ class
    ```
    ct_float<e,m,r> x,y,z;
    x = 1.5565e-2;
    z = x + y;
    ```

• Many possible design points
 - latency constraints, rounding modes, etc.
Approximate DNNs

- **Float**
 - half-precision
 - Bfloat16
- **Fixed-point**
 - INT8
- **Block floating-point**
- **BNN/TNN**
Approximate DNNs: Low-Precision

- Not only **Weights**, but also **Activations**, Per-Layer Quantization, etc.

![Graph showing accuracy with different quantization sizes](image)

4-bit activations and 10-bit weights keeps accuracy near (98.4%) 32-bit float reference.
What is still difficult: learning

- Learning: gradient descent and backpropagation

\[w_{ij}^t = w_{ij}^{t-1} - \alpha \frac{\partial \ell}{\partial w_{ij}^{t-1}} \]

- This is very expensive to compute, even in HW
 - Approximating and accelerating learning is much more difficult
2. Make an FP16 copy and forward/backward propagate in FP16

1. Keep weights in FP32

3. Do weight update in FP32

[NVIDIA, Mixed precision training, 2018]
Low-Precision Training of DNNs

VGG16 training with Cifar-10
Accuracy and Hw Aware Exploration

Approximate Operators Library (AOL) and Accuracy Analytical Model Databases (AAMD) and Performance Models (PM): Area, Power, Execution Time, etc..

Training & Test Databases

Data Conditioning → Modeling → Learning → Optimization → Test → Code Generator

AAMD PM

AxCNN C++

Accuracy Aware Optimizer (AAO)

C++

Optimized Code

AOL

HLS

Open-CI

Back-end

AxCNN HW Accelerator

N2D2
Accuracy and Hw Aware Exploration

- Optimization process
 - Determine the number format and word-length for each data
 - Constrained by quality degradation

\[
\begin{align*}
\min (C(w, t)) \quad \text{s.t.} \\
\lambda(w, t) &\leq \lambda_{obj} \\
\max (\lambda(w, t)) \quad \text{s.t.} \\
C(w, t) &\leq C_{max}
\end{align*}
\]
Conclusions

• Most applications tolerate imprecision

• Playing with precision is an effective way to save energy consumption
 – Number representations, low-precision
 – Not only computation, but also memory and transfers
 – Run-time accuracy adaptation would increase energy efficiency even further

• Low-Precision Training and Inference
Open Issues

• Exploring number representations and word-length is a difficult problem for large applications
 – Mainly limited by simulation time to evaluate accuracy
 – Automatizing the choice between (or combining) float and fixed is a challenge
 • Towards an automatic optimizing compiler framework
 – Domain-specific knowledge is a key

• Evaluating cost is also an important (and less studied) issue
 – e.g., #weights alone is not a good metric
 – e.g., unstructured pruning reduces performance
 – Hardware-aware pruning/quantization requires a good cot model