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Abstract

The design and implementation of Deep Learning (DL) models is currently receiving a lot of
attention from both industrials and academics. However, the computational workload associated
with DL is often out of reach for low-power embedded devices and is still costly when run on
datacenters. By relaxing the need for fully precise operations, Approximate Computing (AxC)
substantially improves performance and energy efficiency. DL is extremely relevant in this context,
since playing with the accuracy needed to do adequate computations will significantly enhance
performance, while keeping the quality of results in a user-constrained range. This chapter will
explore how AxC can improve the performance and energy efficiency of hardware accelerators in
DL applications during inference and training.
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1 Introduction

Deep Neural Networks (DNNs) [LBHI15], and in particular, Convolutional Neural Networks
(CNN:ss), are currently one of the most intensively and widely used predictive models in the field of
machine learning. CNNs have been shown to give very good results for many complex tasks such
as object recognition in images/videos, drug discovery, natural language processing, autonomous
driving, and playing complex games [DLH*13, KSH17, CSKX15, SHM*16].

Despite these benefits, the computational workload involved in CNNSs is often out of reach for
low-power embedded devices, and/or is still very costly when ran on datacenter-style Component-
Off-The-Shelf (COTS) hardware platforms. To give an example, the amazing performance of
AlphaGo [SHM™16] required 4 to 6 weeks of training executed on 2000 CPUs and 250 GPUs for
a total of about 600kW of power consumption (while the human brain of a Go player requires
about 20W), which translates to over 2 TJ of energy consumption. Thus, a lot of research
effort from both industrials and academics has been concentrated on defining/designing custom
hardware platforms supporting these types of algorithms, to improve performance and/or energy
efficiency [WGY*16, CKES16, LDJ*17].

CNNs show inherent resilience to insignificant errors due to their iterative nature and the under-
lying learning process. Therefore, an intrinsic tolerance to inexact computation is clear, and using
the AxC paradigm to improve power and speed characteristics is, therefore, relevant [SSH15].
Indeed, CNNs mesh well with AxC techniques, especially with fixed-point arithmetic or low-
precision floating-point implementations (it has been shown that even binary or ternary weights
and arithmetic can be used), which moreover expose large fine-grain parallelism. They are there-
fore ideally suited for hardware acceleration using Field Programmable Gate Arrays (FPGAs)
and/or Application-Specific Integrated Circuit (ASIC) implementations, as acknowledged by the
large body of work on this topic. Although accelerators have demonstrated significant perfor-
mance/energy gains compared to GPU/CPU implementations, they still require further efficiency
to address future performance requirements [THBR17].

The goal of this chapter is to present an up-to-date view of state-of-the-art solutions applying
AxC techniques to CNNs for both inference and training phases. It is structured as follows:
Section 2 presents the background & context of using DNNs, the main focus of the chapter.
Section 3 overviews AxC methods found in the literature that improve deep neural network
inference performance. Approximation techniques for improving the training part of neural
network design, which accounts for the majority of computing time and resources, are presented
in Section 4. Section 5 discusses DNN accelerator research and the dedicated approximation
methods, whereas Section 6 presents incubent directions for AxC research in DL. Section 7
concludes the chapter.

2 Background

Artificial intelligence (Al) is a broad field of study focused on replicating or simulating the intel-
ligence of living beings (human or not). It encompasses various methods and techniques. These
range from design space exploration methods like ant colony optimization that focuses on finding
increasingly efficient paths through simple random exploration and reward-based reinforcement, to



more complex approaches such as genetic algorithms that evolve a population towards a hopefully
optimized solution by iteratively picking the best candidates and mutating them. In the last couple
of decades, Machine Learning (ML) algorithms have gained the most traction, producing effective
predictions/answers based on some trained behavior/model.

2.1 Context: From AI to DNNs

The ML subset of Al is focused on algorithms able to improve themselves through seeing already
labeled input-output sample pairs and constructing models that attempt to match the expected
outputs to this given data. An example is email filtering, deciding whether or not an email is
spam based on its provenance, recipients, object, and other (meta)data. Generally, a model for
this task is trained (i.e., it learns) on a set of already labeled set of spam email data (the training
data set) until it reaches the desired behavior (the expected response) with sufficient accuracy. It is
then used with unseen data in the hope that it will still prove to be accurate (i.e., generalize well).
Evaluation of this generalization ability is frequently done on a so-called test or validation data
set, different from the training data.

While email filtering can seem like a simple task, there are a plethora of use cases of varying
difficulty where ML modeling is used, ranging from security (e.g., in fraud detection) and business
data analysis (e.g., churn rate measurement) to computer vision, self-driving technologies, and
other complex tasks. The model inputs can be both raw data or high-level features (for instance
statistical aggregates of multiple input data samples) or other complex features that are task-
dependent (e.g., the presence of a horizontal line in an image). It is the task of the model to
interpret this data and construct useful responses. Among the many tasks suitable for ML one can
mention classification, regression, and semantic segmentation.

Traditionally, high-level features needed by a model were derived following a feature extraction
step that was often performed by a human, requiring expert knowledge of relevant information.
More recently, however, through the rise of DNNs in the ML ecosystem of approaches, this step
can be performed automatically, the model is trained to discover relevant features, thus avoiding
both the need for human expertise and the induced biases that might result from this.
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Figure 1: A basic DNN example and the associated terminology (adapted from [SCYE20, Figure
1.3]).



Artificial neural networks are based on the notion that the computation performed by a neuron
is centered around a weighted sum of its input values. This is shown in Figure 1a, where multiple
inputs {x;}}_, are summed (scaled with weights {wg;}}_,) together with an optional bias term
b;. The neuron output y; is determined by the application of a nonlinear activation function f
to this weighted sum. There are many activation functions used in practice, but among the most
common are f(x) = ReLU(x) := max{0,x} and f(x) = tanh(x) := (e¢* — e™)/(e* + 7).

Such neurons are grouped together to form layers. The present chapter is focused on feedfor-
ward networks, where the outputs of a layer are then used as inputs for subsequent layers!. This is
exemplified in Figure 1b. The inputs and outputs of a layer are also known as input and output acti-
vations, respectively. When discussing visual data, they are also known as input and output feature
maps. The first and last layer in the network are generally known as the input and output layer,
respectively. In between them, there is a number of intermediate layers, called hidden layers. The
main characteristic of DL and DNNs is that the number of hidden layers can grow quite large,
from two layers up to even one thousand.
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Figure 2: A backpropagation example through a neural network (adapted from [SCYE20, Figure 1.6]).

The process of using an artificial neural network with a set of given parameters (e.g., weights
and bias terms) is called inference. For the neural network to be useful, its inference output has to
match as closely as possible an expected/ideal output. This is measured through a loss function ¢
that compares how far the resulting output on (subsets of) the training and test data sets is to the
expected output. Thus, the goal of training a neural network is to find/learn a set of parameters
that minimizes the average loss over a large training set.

To train a network, its weights (w;;) are usually updated using a form of Stochastic Gradient
Descent (SGD) iterative optimization process. This means that weight is updated by a scaled
version of the partial derivative of the loss function ¢ with respect to the weight. In the most basic
form, at iteration ¢, the weight update formula is given by:

t _ =1 _ ot

=W 0%
ij ij —1’
Bwij

6]

=

where « is called the learning rate?. The partial derivatives of £ can be computed efficiently
through a process called backpropagation [RHWS86]. It is effectively an application of the chain

IThere are classes of recurrent neural networks that allow outputs of a layer to be connected to inputs of previous layers.
While they are not discussed here any further, they are frequently used to process sequential data (e.g., speech, text).

2The deep learning optimization literature describes many ways how to perform the parameter updates and how to choose
the learning rate.



rule from calculus, and it works by passing values backward through the network to compute
how ¢ is affected by each weight. At each layer, the procedure is twofold and is exemplified in
Figure 2. To backpropagate through a layer: (a) compute the gradient of the loss with respect to
the weights, 0¢/0w;;, from the layer inputs (i.e., the forward activations x;) and the gradients of
the loss relative to the layer outputs, d¢/dy;; and (b) compute the gradient of the loss relative to
the layer inputs, 9¢/0x;, from the layer weights, w;;, and the gradients of the loss relative to the
layer outputs, 6¢/0y ;.

Computing the gradients of the loss function ¢ over the entire dataset is generally much too
complicated in practice, which is why the loss is usually taken only on a (small) subset, called
a mini batch, of the training data. The use of batches allows taking advantage of single instruction
multiple data (SIMD)-like parallelism on modern GPUs while keeping the complexity of gradient
computation manageable. A complete iteration of the training process is called an epoch and
requires passing through all of the mini-batches, applying (1) for each one of the corresponding
average losses €. Training is carried out for several epochs until convergence to an appropriate
solution is reached.

Both inference and training amount in most part to the same type of computations (i.e., ma-
trix/vector additions and multiplications). There are important differences, however. For one,
as the previous paragraph suggests, training is much more expensive, since apart from passing
through the entire training data multiple times, it also requires that intermediate outputs and partial
derivatives be stored when performing backpropagation. Secondly, due to the gradient update rule,
the precision requirements for training are generally higher than for inference, thus also affecting
performance. The effect is that the inference quantization techniques that will be discussed in this
chapter are not usually directly applicable to training as well.

2.2 Deep Learning Landscape

While artificial neural networks have a long history dating as far back as the 1940s, practical
applications using digital neurons did not arrive until the late 1980s, when the LeNet-5 [LCJB*89,
LBBHO98] network architecture was used for hand-written digit recognition. It is only in the early
2010s however, with the synergy of three major factors, that artificial neural network models have
started to take off, under the names deep learning and deep neural networks. These factors are:
(1) the availability of large and labeled datasets that are needed to train complex models; (2) the
advance in computational power of units such as GPUs that allow DNN training to be executed in
reasonable time (days or weeks instead of years); (3) development of new algorithmic techniques
(e.g., the Adam gradient descent optimization algorithm [KB14]) that enable improved accuracy
at a larger scale.

The importance of large and comprehensive datasets cannot be overstated. If not careful,
a small training dataset used in conjunction with a complex DNN can easily lead to overfitting
(i.e., the model matches the training data extremely well but does not generalize to unseen data
accurately). For computer vision, arguably the most popular dataset in recent years has been Ima-
geNet [DDS*09], a collection of one million high-resolution images that are generally associated
with the ILSVRC [RDS*15] image recognition contest that uses 1000 labeled categories. Smaller
datasets such as MNIST [LC10] and CIFAR [Kri09] have also been used extensively in DNN
research for inference and training acceleration.

Apart from the data, the choice of model (network architecture and associated parameters) is
also crucial in the success of a DL approach. In what follows (Section 2.3), our focus is on CNN
models suited to process visual data.

The current surge of interest in DL is also facilitated by the availability of tools and frameworks
that allow for the easy prototyping and design of DNN models. Prominent examples include
Tensorflow [A*15] and Pytorch [PGM*19]. The open-source nature of these alternatives offers
the possibility to design extensions that can be leveraged throughout a model’s lifecycle (from
initial prototype to deployment).

Depending on the intended use of DNN models, they can be found in different environments



with various computing power and energy consumption characteristics. At one end of the spectrum
there are edge devices characterized by low-power and limited computational capabilities, while
at the other end power-hungry cloud devices with a high-performance computing profile are
dominant.

2.3 Convolutional Neural Networks

The most basic layer in a feedforward network is the Fully Connected (FC) or dense layer. It is
characterized by the fact that each neuron in the layer is connected to all the neurons in the previous
layer. FC layers are parameterized by the number of neurons they contain. An example is shown
in Figure 1, which only has FC layers.
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Figure 3: Expanded view of a typical 2D CONYV layer inside a CNN.

While the expressive power of networks using only FC layers is impressive, it comes at the cost
of a very large number of connections (and hence network parameters), making them hard to train
and easily prone to overfitting. This is why other types of structured layers, with fewer parameters,
but which are more efficient for certain tasks, have been explored. In the case of visual data, this
has led to the development of CNN:ss, a staple of DL today.

The main elements that have led to the introduction of CNNs are Convolutional (CONV) layers,
composed of high-dimensional convolutions that allow extraction of shift-invariant features from
the input. An example is Figure 3, showing a traditional 2D CONYV layer. In this context, the
input activation is structured as a 3D set of input feature maps, with input width (Wj,), input height
(Hin) and input channel (Cj,) dimensions. The weights of the layer are structured as a 3D filter,
with kernel width (Wy,,), kernel height (Hye) and input channel (Cj,) dimensions. For each input
channel, the corresponding input feature map is transformed through a 2D convolution with the
appropriate kernel in the filter. The convolution results at each point are summed across all the
input channels to generate the output partial sums. The results of these partial sums comprise
one output feature map with output width (Wyy) and output height (H,y) dimensions. Several



2D filters can be stacked together to generate additional output channels, denoted with Cyy in this
case.

Depending on the size of 2D kernels and their count, the output feature maps can be large
and deep, motivating the use of pooling (i.e., subsampling) layers that reduce the scale of feature
maps. Pooling is similar to convolution, with a kernel sliding over the input matrix, but instead of
performing matrix multiplication, an aggregation operation function is applied. The most common
such operations are taking the maximum element or the average. A visual example of a simple
CNN mixing in all these layers is given in Figure 4.
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16 @ 10 x 10
“ Y 16@5x5
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Figure 4: A visual representation of LeNet-5 (adapted from [LBBH9S, Fig. 2]), an early example of
a CNN that promoted the subsequent development of Deep Learning. It contains the main layers that
are usually found in CNNs: convolutional, pooling and fully connected.

Another frequently used layer is Batch Normalization [IS15] (BN). It contains two trainable
parameters that are used to re-center and re-scale the distribution of the values of a feature map,
to improve training performance. While there are also more recent and complicated layers, such
as depth-wise convolutions [HZC*17] or Inception modules [SLJ*14], their specifics are not
important for the rest of this chapter.

2.4 Performance and Energy Profiles of Recent Models

To gauge the complexity of current DNN models, there is a need for a set of metrics that allow for
a fair comparison between models. In this study, the metrics used are (1) the model accuracy over
a validation dataset, (2) the total number of weights in the model, and (3) the number of FLOating-
Point operations (FLOPs) necessary to carry out one complete inference. Accuracy is measured in
terms of the frequently used top-1 and top-5 percentages (i.e., the proportion of correct predictions
on the labeled validation dataset and the probability that the correct result is among the top five
predictions). The number of weights allows estimating the total memory storage requirements for
the model, whereas the FLOP count hints at the required computing power needed to execute the
model at a certain frequency.

Model Name AlexNet [KSH12]  GoogLeNet [SLI*14]  ResNet-50 [HZRS15] | MobileNet V2 [SHZ*18]  EfficientNet B1 [TL19]
Year 2012 2014 2016 2018 2019

Top-1 accuracy 57.2% 69.8% 76.2% 72.0% 79.1%

Top-5 accuracy 84.7% 93.3% 92.97% 90.6% 94.4%

Number of Weights | 62M 6.4M 26M 3.5M 7.8M

FLOPs 1.5B 2B 4.1B 0.3B 0.7B

Table 1: Recent evolution of DNNs for image classification on the ImageNet dataset.

Table 1 shows a comparison using these metrics on some popular DNNs for image classification



on the ImageNet dataset (adapted from [STKV20]). For a long time, the only metric of interest was
the network accuracy, resulting in models that were costly to train and operate. The cost of training
and inference became so large at one point that there is now an open engineering consortium called
MLCommons? that benchmarks DL models and fosters innovation in the field. Thus, there is an
increasing interest for faster, lighter, and overall more efficient models that are compatible with
edge device resource constraints and operate more efficiently in the cloud. The last two columns in
Table 1 reflect this, with newer network models achieving competitive accuracy with less memory
and a smaller FLOP count.

Some examples of the scale at which modern DNN training costs stand for recent NLP models
are given in Table 2 (adapted from [SGM19, Table 3]) and showcase the significant resources
needed for training state-of-the-art models.

Model Hardware Power (W) Hours COse (Ibs)
Transformery,se [VSPT17] P100x8 1415.78 12 26
Transformery;g [VSP*17] P100x8 1515.43 84 192
ELMo [PNI*18] P100x3 517.66 336 262
BERT}a [DCLT18] V100x64 12041.51 79 1438
BERT},s [DCLT18] TPUv2x64 — 96 —
NAS [SLL19] P100x8 1515.43 274.12 626.155
NAS [SLL19] TPUv2x1 — 32.623 —
GTP-2 [RWC*19] TPUv2x32 — 168 —

Table 2: Estimated cost of training recent NLP models in terms of power, time and CO, emissions.

The need for efficient DL computations coupled with the resilience of DNN5s to approximation
(due to the stochastic nature of training methods and a high level of inner redundancy [CCRR13])
has paved the way for the development of a large number of approximation methods, a part of
which are described in the rest of this chapter.

3 Approximation for Inference

DNN inference is a very computation-intensive task, having large memory and computation power
requirements. For example, inference on a single image using the original ResNet34 [HZRS16]
model requires 3.6 billion FLOPs and storing 22 million weights plus temporary feature maps.
While the execution of such tasks has moved from traditional CPUs having a latency-oriented
design to more parallel hardware like GPUs or even custom ASICs / FPGAs, inference is still a
costly task, and thus susceptible to benefit from performance improvements when using approx-
imate computing. Consequently, this section describes AxC methods found in the literature that
improve deep neural network inference performance.

One can distinguish three different classes of methods (see Figure 5), usable in isolation or
combined, to approximate DNN inference. The first one, structure refinement transformations,
includes the methods that modify the computational structure (i.e., the network layers and their
parameters) of the input model. Some notable examples include knowledge distillation [HVD15,
TSZ*20] which uses the model as a teacher to help train smaller students models or compact
architectures [HZC*17, IMA™16] where layers are transformed into more hardware friendly ones.
The second class, data-oriented refinement transformations, focuses on optimizing the finite
precision data representation(s) of the model while maintaining the initial computational structure
intact. Notable examples are pruning [CDS90, FC18] (i.e., setting less important parameters to
zero to increase sparsity) and quantization [ZWN*16, ZYG*17] (i.e., changing the types of the

3https://mlcommons.org/en/
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Figure 5: Different types of approximation techniques for DNN inference.

parameters and intermediate results to more efficient representations). While network structure
refinement substantially changes the network structure, data type refinement does not, giving
the possibility to emulate the inference of the approximated network in the original structure to
measure its accuracy loss.

The third class of approaches relies on operator refinement transformations which modify
the arithmetic operators used inside the CNN implementation (e.g., addition and multiplication)
to further improve energy efficiency. Such methods are not discussed any further here since they
mainly depend on the hardware implementation of the CNN. More details on the approximate
operators that fall in this class can be found in Chapters 3 and 4.

In the rest of this section, data-oriented refinement methods are covered. Specifically, Sec-
tion 3.1 gives an overview of various quantization methods, Section 3.2 discusses weight sharing
approaches, whereas pruning is analyzed in Section 3.3.

3.1 Quantization

Full precision DNNs usually rely on 32-bit floating-point values for representing parameters.
For standard backpropagation-based training, using high precision weights makes sense since
the gradient update rule generally modifies these weights by a small factor of the corresponding
gradient terms. While full precision float32 DNNs offer excellent result quality, they can
generally be compressed and accelerated using lower precision arithmetic with minimal or no
loss in the accuracy. Methods for addressing data quantization in DNNs are varied, ranging from
simple binary and ternary networks to larger fixed-point and custom floating-point formats. This
section gives an overview of the main ones.

Analysis of existing approaches relies on various aspects, such as (1) what parts of the network
are being quantized, (2) homogeneity/heterogeneity of the number formats used inside the layers,
(3) the type of representations being used, and (4) how and when is quantization performed (during
or after the network has been trained).

What to quantize. The most obvious quantization targets are the network parameters
(e.g., weights and biases). Reducing the number of bits used to represent them primarily brings
a memory footprint reduction for on-device storage of the network. Latency improvements are
potentially achievable with binary, ternary and bit-shift (i.e., power of two values) quantized pa-
rameters [CHS* 16, LZL.16, RORF16]. More generally, if faster execution times are to be obtained,
activation function inputs and outputs also need to be quantized. An example is [JKC*18], which
proposes an efficient 8-bit integer quantization scheme for both weights and activations. Addi-
tionally, one can quantize the weight and activation gradients used during backpropagation (see



for instance [ZWN*16, WLCS18]) to accelerate training, an aspect discussed in Section 4.

When and how to perform quantization. There are two established ways quantization can
be performed for efficient inference and a third, emerging method.

The first among the established approaches is Quantization-Aware Training (QAT). The idea
is to use a network parameter update procedure for several epochs (starting from scratch or after a
baseline £1oat32 training method is run) to adjust parameters in the quantization format(s) such
that generalization accuracy is hopefully kept the same or is at worst minimally degraded. Much
research has focused on such fine-tuning methods (see for instance [RORF16, ZWN*16, ZYG*17,
CWV*18,JKC*18, ZYYH18]), mainly because they achieve good results, especially for extremely
low precision formats (i.e., binary and ternary encodings).

While training is a powerful approach to compensate for a model’s accuracy drop due to
quantization, it is not always applicable in real-world scenarios (e.g., for online learning) since it is
costly, time-consuming and generally requires a full-size training dataset. This can be a problem
when the data is proprietary, privacy and regulatory issues are in effect (e.g., medical data that
cannot be uploaded to the cloud for remote processing), or when using pre-trained off-the-shelf
models for which data is no longer available. As such, there has been a push for faster Tost-Training
Quantization (PTQ) methods without any fine-tuning. It has been observed that for down to 8-
bit word lengths, PTQ results are close to full precision ones for several models [BNS19] (e.g.,
AlexNet, VGG, and ResNet), but it becomes significantly more difficult to maintain accuracy when
targeting lower precision formats. Work focused on PQT includes [BNS19, CYD*20, CKYK19,
NBBW19, ZHD*19].

A possible issue with QAT and PQT methods is that both generate networks that are sensitive
to how quantization is carried out (e.g., the target word length). As such, there has been recent
work [ABvB*20, SCB*20] on methods for robust quantization that provide intrinsic tolerance of
the model to a large family of quantization formats and policies by directly specifying it in the
training loss function. Such approaches are interesting for battery-powered edge devices, where
depending on the state of charge, a network model capable of operating effectively at various
quantization levels would be highly beneficial.

Granularity of applying a quantization format. Initially, quantization approaches were
homogeneous, with one word length being used for the entire network. This is the case for early
works on binary [CBD15] and ternary [LZL16] weight networks, for instance. Such approaches
can suffer from significant accuracy loss since different layers tend to have different sensitivities
to quantization levels/noise. Subsequent work has focused more on a heterogeneous, layer-wise
optimization of the quantization format [ZMDCF17, WWZ*18, WLL*19, DYG*19, DYC*19,
CYD*20].

There have been various metrics proposed to estimate the overall effect of a fixed-point
quantization format inside a layer on the overall accuracy of the network. One example is [LTA16],
which uses a Signal to Quantization Noise Ratio (SQNR) to empirically measure how suitable
a fixed-point format is. The approach in [ZMDCF17] generalizes the work from [LTA16] using
an adversarial noise to formulate the quantization error. Another adaptive quantization method
is [KL18], which uses the loss function gradient to determine an error margin for each parameter
such as to not degrade accuracy and assign a precision accordingly. Recent work [DYG*19,
DYC*19, SDY*20] also proposes using second-order information (Hessian-based) to gauge the
sensitivity of each layer. From an Information Theory perspective, [ZZL18] uses the entropy of
weights and activations as a saliency indicator to set fixed-point quantization levels at each layer.
Another popular statistical sensitivity measure is based on the Kullback-Leibler divergence, which
is used to measure layer sensitivity in [WLL*19, CYD*20] and is a core component for fine-tuning
low precision integer weights in NVIDIA’s TensorRT inference acceleration library.

On a different granularity level, [PY V18] proposes looking at the distribution of weight values
over the entire network to aggressively quantize weights in dense regions and more gently those in
sparse ones. Compared to float32 baselines, such an approach can achieve under 1% accuracy
loss for large networks (ResNet-152 & DenseNet-101) with a 4-bit format in the dense areas and
a 16 bit one for the sparse regions (< 1% of parameters).
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Quantization formats. There have been various representations used to quantize deep neural
networks. Atthe extreme, there are Binary Neural Networks (BNNs), where weights and activations
are stored with one of two possible values. If a {0, 1} (or equivalently a {—1,+1}) encoding is
used, then multiplications can be implemented efficiently using XNOR gates, making BNNs
compelling on FPGA and ASIC targets, but also for emerging computing paradigms such as
neuromorphic [EMA™16] or in-memory computing [SLPY18].

Among the first investigations of binary networks is BinaryConnect [CBD15], which maintains
a full precision copy of the weights to be updated during backpropagation, but are binarized
for inference. Activations are kept in full precision, meaning full precision accumulations are
still required during the forward propagation. The effect of binary activations is considered
in [RORF16, CHS*16, HCS*16]. These early papers are the basis for most subsequent research
on BNNs.

The XNOR-Net approach [RORF16] expands on the initial BNN ideas by proposing a model
where a gain term is added to the network at the level of each dot product in the convolutional layers.
Computed from statistics of weights and activations before binarization, the gain was a way to
improve the accuracy of BNNs on the ImageNet dataset. Such gain terms are nevertheless costly to
compute in practice, which is why later work modified their use. For instance, [ZWN*16] proposes
gain terms that are only based on the non-binarized weights of the network, meaning that they
never need to be recomputed after training. Additionally, [THW17] also advocates binarizing fully
connected layers by adding neuron-specific scaling factors, further improving compression without
a drastic decrease in the accuracy. A generalization of the BNN concept to multiple binary bases
used for quantizing weights and activations is presented in [LZP17], further reducing the accuracy
gap between full precision and binary architectures, at the expense of a higher computational
cost (compared to previous BNN methods). Changes to the backpropagation process in BNN
training [DBCN18] can also be effective for limiting accuracy loss.

Ternary neural networks offer a better representation of the (pseudo) normal distribution of
weights that is frequently observed after training. For instance, [HS14] achieved good results
on small networks with weights quantized to {-1,0,+1} and 3-bit fixed-point activations. For
greater flexibility, [LZL16] proposes using a threshold « for picking the ternary weights (-1 if
w < —a, 0if |w| < @ and +1 if w > @), while keeping activations in full precision. This is further
expanded in [ZHMDI16], which uses ternary weights from a set {—a", 0, +a”}, where o" and
aP? are learnable parameters. By also quantizing activations to 8-bits and adding residual edges
to branches in the architecture that are sensitive to quantization, [KBM*17] offers comparable
accuracy results to float32 for a ResNet-101 model on the ImageNet dataset, with no additional
low-precision (re)training. In a more aggressive compression strategy, [WSL*18] proposes the
use of ternary activations {—1,0,+1} and binary scalable weights {—a, +a}.

Extremely low-bit width networks like the ones just presented are susceptible to non-negligible
accuracy loss, which is why there has been work focusing on non-binary integer and fixed-point-
based quantization. Among the early proponents of integer quantization, there is [ZWN*16],
which extends the idea of BNNs to arbitrary word lengths for weights, activations, and gradients.
For fixed-point arithmetic, [LTA16] explored the use of various bit width combinations (4, 8
and 16 bits) of weights and activations. Notable results with integer arithmetic are presented
in [JKC*18], which showcases how 8-bit integer quantization on ARM CPUs can achieve near-
identical accuracy compared to baseline float32 models based on MobileNet architectures for
classification and detection tasks, but with improved on-device latency. Good quantization results
with 4-bit weights and activations are presented in [BNS19] by combining three complementary
methods for minimizing quantization error at the tensor level. Heterogeneous/mixed-precision
quantization approaches also heavily focus on integer/fixed-point formats [WWZ*18, WLL*19,
DYG*19, DYC*19, CYD*20].

One problem with low precision integer/fixed-point formats is that they have limited dynamic
range, which might make them inappropriate, especially for networks used in Natural Language
Processing (NLP) tasks, where weights tend to have values that are more than 10x larger than the
largest magnitude values found in popular CNNs [TYW*20, Fig. 1]. While not that widespread,
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there has been some work looking into low precision floating-point quantization for CNN inference.
For instance, [SBD" 18] explores the use of up to 8-bit (scaled) floating-point formats for weight and
activation quantization in classification networks such as GoogleNet, ResNet, and MobileNet,
without any accuracy degradation. More recently, [WWC*20, WWL*20] show how an 8-bit
floating-point quantization format (4-bit mantissa and 3-bit exponent) can be used in FPGA-based
accelerators for deep CNN inference, without any retraining. Another approach [TYW*20] consists
of an adaptive floating-point quantization method, where the exponent range of quantized values
is dynamically shifted at each network layer (through changing the bias term of the exponent),
yielding competitive results on NLP networks and tasks.

At a coarser level, it is also possible to improve dynamic range by sharing the exponent be-
tween parameters, storing only the mantissa and one copy of the exponent. This is the so-called
Block Floating-Point (BFP) format. For instance, [SLW17] propose using BFP with an 8-bit
mantissa for weight storage, showing negligible to no accuracy loss on CNN workloads (VGG16,
ResNet-18, ResNet-50, and GoogLeNet-based networks). On the FPGA side of things, [LLS*19]
showcases a BFP-based CNN accelerator design that uses 16-bit activations and 8-bit weights, re-
ducing memory requirements compared to a float32 baseline without any retraining/fine-tuning.
Another way to increase the dynamic range is to employ a logarithmic representation, which also
allows multiplications to be replaced with simple binary shift operations. For instance, [MLM16]
shows that a log representation can achieve higher classification accuracy than fixed-point formats
operating at the same word length. 8-bit log floating-point quantization was also shown [Joh18]
to perform close to baseline float32 values with several CNN classification networks.

(a) float16 tensor (b) integer/fixed-point/logarithmic tensor
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Figure 6: Diagrams for bit representations of various numerical formats discussed in the context of DL
quantization in this chapter. Red, green and blue shading are used to represent mantissa (M), exponent
(E), and sign (S) bits respectively. In (a), the 16-bit IEEE 754 float16 floating-point format is shown
(corresponding to (—1)S x 2815 x 1.M, for normalized values), with 1 sign bit, 5 exponent bits and
10 mantissa bits. (b) illustrates a 16-bit signed integer format. By choosing a fixed splitting point for
integer (/) and fractional (F) parts in the mantissa (M := I.F), it can also serve as a representation for
a fixed-point format (namely to (—1) x I,.F>). Additionally, (b) can represent a form of logarithmic
number system (see for instance [FML10]), with the encoded value being (—1)5 x 2M = (=1)% x2I-F,
Part (c) exemplifies a block floating-point format, namely the flex16+5 format [KWW*17] with a
15-bit mantissa and 5-bit shared exponent.



A summary of these aforementioned formats (minus the binary and ternary encoding that
generally require just 1 or 2 bits to represent) is given in Figure 6.

Looking at the value distribution of the data (weights and activations) is a good way to explore
what number formats and/or encodings are better suited for a particular network model. Uniform
precision was the go-to alternative for a long time, but more recent work is concentrated around
non-uniform quantization. This is because the actual distributions of trained weights tend to
follow bell-shaped curves. In this direction, [ZWW™17] focuses on balancing the quantization
values based on the distribution of the data. The quantizer can also be trained alongside the
model [ZYYHI18, JSL*19] and it is also possible to use reinforcement learning [WLL*19] and
meta learning [WWXX20] approaches to determine good choices for the quantizer.

Choosing quantized values. There are various methods for quantizing data, ranging from
simple heuristics like those used to convert network weights into binary values depending on their
sign [CBD15] or projecting real-valued parameters to (one of ) the closest discrete points [JKC*18],
to loss functions that regularize the network and force parameters into quantized states upon the
convergence of the training algorithm [CEKL20].

One notable approach is [ZYG*17], which incrementally quantizes network weights to power
of two terms. The set of non-quantized weights is progressively shrunk during re-training, with
their values being updated to counter any accuracy loss induced by quantization. Knowledge
distillation can also be a valid way to pick quantization values [BWKL19, PPA18].

Itis also possible to cast this task as a mathematical optimization problem. Forinstance, [LTA16]
converts pre-trained weights to fixed-point values by looking at their signal-to-noise ratio as an
optimization metric. In [WWC*20], the mean square error of the quantized data with respect
to the original data is used to choose the precise 8-bit floating-point quantization format (man-
tissa and exponent size) and corresponding values. In more involved approaches, the Alternating
Direction Method of Multipliers (ADMM) can be used to optimize the quantized values with
low precision formats [CWP19, LLZJ17]. Regularization terms and parameters that emphasize
quantized solutions are also available. The work of [CEKL20] looks at using mean squared
quantization error regularization to drive weights to quantized values and how ¢, regularization
can lead to sparse weight designs. Regularization also is an effective approach for doing robust
quantization [ABvB*20, SCB*20].

3.2 Weight Sharing

Weight sharing compresses the network by assigning shared values to parameters. This transforms
plain weight data storage into a reduced number of shared values in a dedicated memory, together
with the indices of these values in the weight matrix.

Weight Matrix Index Matrix Value table
17 3 18 11 19 e a e ¢ e a 0
5 14 9 13 7 b d b d b b 5
19 5 7 0 12 e b b a c c 10
10 12 20 8 10 C c JENl c | ¢c d 15
14 1 16 10 14 d a d ¢ d e 20

Figure 7: Weight sharing techniques allow network compression by storing indices instead of values.
Figure 7 shows an example. The first matrix corresponds to a 5 X 5 convolutional kernel (filter)

with values computed during training. The matrix contains N = 25 values ranging from 0 to 20.
Each value can be represented using B = 5 bits, resulting in a total size of N - B =25 -5 =125
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bits. There are 5 shared values, namely ‘a’, ‘b’, ‘c’, ‘d’ and ‘e’, replacing the 25 original values, as
shown in the second matrix.

Accordingly, the size of an element in the weight matrix can be reduced from B to log, (K)
bits, with K being the number of different shared values. The size of the stored data then becomes
N -log,(K) + K - B, instead of N - B.

original weights

8 shared weights
1000 - 16 shared weights
0 T T T T T T T
1000 -
O T T T T T T T
1000 -
O T T T T T T T
—0.3 —0.2 —0.1 0.0 0.1 0.2 0.3

Figure 8: Distribution of the weights composing the first layer of a trained ResNet50V2 [HZRS15],
original (top), with only 8 (middle) and 16 (bottom) shared values.

Depending on the number of shared values used, the distribution of the weights inside a layer
will change. An example of this before and after weight sharing (with 8 and 16 shared values) can
be found in Fig. 8.

Weight sharing approaches can be classified by the method used to group weights together and
by the granularity level it is applied at. Each of these aspects will be explained in some detail in
the following paragraphs.

Grouping methods. One of the first approaches involving weight sharing that showed it can
be a viable option for compressing neural networks is HashedNets [CWT*15]. The weights of
the network in this setting are randomly grouped into hash buckets sharing the same value. These
shared values are then trained and updated using backpropagation. The authors test their approach
on the MNIST dataset with two custom fully connected networks with 3 and 5 layers.

However, instead of applying random grouping before the network even sees any data, it is
also possible to approximate an already-trained network by determining groups based on weight
values. In this vein, DeepCompression [SH16] uses the K-means algorithm to iteratively group the
weights in a network in a global 3-step compression approach involving network pruning, weight
sharing, and parameter encoding. The K-means algorithm is used to cluster similar values together,
followed by an iterative retraining phase. Different initialization options for the shared values are
considered, with experiments showing that uniform initialization over the entire range of weight
values works best. Applied to the AlexNet and VGG architectures on the ImageNet dataset, the
compression algorithm achieves 35x and 49x compression, respectively, with negligible accuracy
loss.

The most common way of doing K-means clustering is through the Lloyd algorithm [L1082],
which uses mean square error minimization to solve the clustering. However, this clustering
approach does not imply performance loss minimization when taking into account quantization
as well. The use of mean square error minimization does not necessarily lead to high accuracy
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during inference, even when uniform initialization of the clusters is used, as suggested with
DeepCompression [SH16]. Because of this, [CEL16] proposes to use Hessian-weighted K-means
clustering to minimize accuracy loss. The approach consists of replacing the mean square error
with the distortion of the Hessian matrix (second-order derivative) of the loss function. With this
change, it can achieve a higher compression rate than DeepCompression, but with similar accuracy
loss.

It is also possible to consider weight distribution when performing clustering. For in-
stance, [PAY 17] proposes a clustering method based on weight entropy, using importance (mag-
nitude) and frequency of the weights to group them. Thus, frequent non-zero (low importance)
values are grouped, as well as rarer, but higher magnitude (high importance) values.

During the iterative process of training weights, clustering them, and training them again,
previously clustered weights will sometimes diverge from the shared values at retraining time,
making convergence to a good network model difficult. This is why, rather than applying iterative
clustering and retraining, [WWW*18] proposes the Deep-K-means approach that adds a regular-
ization term in the training objective function, enforcing weights to stay clustered during training.
After training is finished, the K-means algorithm is used to group the obtained weight values.

Other clustering algorithms can also be used. One main issue with using the K-means algorithm
in this context is that it targets multi-dimensional data, whereas weights clustering is a 1-D problem.
One example of approach using another clustering algorithm is DP-Net [Y'YZ*20], which is based
on a dynamic programming clustering algorithm that enables weight sharing in constant time,
reducing the clustering complexity compared to the K-means algorithm.

Weight-sharing granularity. The weights of a network can be shared at different levels of
granularity, as shown in Figure 9. While this can be done for the entire network, as initially
proposed in HashedNets [CWT*15], each layer has a different weight distribution, covering a
different range. Hence, sharing values for the whole network usually does not offer good enough

representation power to limit accuracy loss.
outputs

y 'm

I network
inputs layer
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Figure 9: The various scopes of applying weight sharing.

On the other hand, sharing the values at the layer level offers a better representation of the
original network, as shown with Deep Compression [SH16]. Such an approach also allows
different levels of compression to be used for each layer. The first and last layers are generally
more sensitive to compression and require a higher number of shared values to keep accuracy
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loss acceptable. It is even possible to target a smaller scope, like sharing values at the level of a
(convolutional) kernel — but then of course the compression rate will be much lower.

While reducing the scope allows a better representation of the initial weight distribution, thus
keeping accuracy loss low, it is possible to improve compression performance. For example, Deep-
K-means [WWW*18] shares values at a level that is optimal for the very efficient row-stationary
dataflow used in DNN hardware accelerators.

Even if weight sharing leads to good compression rates, it does not enable inference acceleration
by itself. This can be achieved if inputs are also discretized, reducing the number of combination
operations and allowing the use of a pre-computed look-up table multiplier. This approach is used
in LookNN [RIKR17], which applies K-means to the input feature map to achieve a nonlinear
quantization whereas the remaining feature maps are quantized in the traditional linear way.

Values can also be shared at a smaller level, as in Q-CNN [WLW*15]. Here, layers are
decomposed into sub-vectors, which are then clustered using the K-means algorithm. Sharing
vectors like this reduces the number of possibilities when performing products. This enables the
layer response to be approximated using product pre-computation with a look-up table.

3.3 Network Sparsification (Pruning)

DNNS tend to be more complex as their accuracy rate improves and this complexity usually carries
with it the fact that the network is over-parameterized. On the other hand, it has been argued
for a long time [CDS90] that structure is more important than density in neural networks, with
sparse models having the ability to generalize up to as well as their dense counterparts. Removing
model parameters has the direct effect of reducing the size of the model, but it can also be used
for speeding up the inference process by reducing the number of computations. Depending on the
objective, different parts of the network can be more interesting to prune than others. For instance,
fully connected layers usually concentrate most of the network weights in a CNN and should be
targeted for high compression. Convolutional layers, however, contain fewer model parameters
but account for most of the computations. Since they generate the majority of data movement in
the model, they should be targeted when model performance and energy efficiency are important.

Pruning methods can be classified by how they are applied to the network, the granularity of
the pruning, and finally the saliency determination approach. All these criteria are discussed in
the following paragraphs.

Target regions. The loss in accuracy incurred by removing parameters can be recovered by
re-training the remaining parameters using the initial training dataset if it is still available. This
pruning process can be performed at different steps of the network life-cycle, either prior, during,
or after training the model.

It has been shown that some parts of DNNs are more resilient to approximation than others.
As such, pruning each layer at the same rate is not very efficient for accuracy. But at the
same time, choosing the optimal sparsity level for the whole network is a complicated task.
For example, [HH18] proposes to heuristically optimize the pruning ratio of each layer using
reinforcement learning.

Similar to pruning weights, feature maps can also be pruned during the forward pass of the
network. This process is called dynamic sparsity and is used in many accelerators to avoid zero or
near zero computations [HQY*16, HQY*17]. Such approaches require dedicated architectures,
but since the focus is only on data type refinement methods for this survey, they will not be
discussed further.

Pruning Granularity. Depending on the pruning objective (compression or performance),
one can choose to focus on weight removal at various sparsity levels. For instance, even though
removing an entire structure (e.g., a convolution kernel) allows reducing the computational com-
plexity of the model, and thus, improving performance, it also has the effect of inducing a higher
accuracy loss.

The lowest pruning level is at the weight level, the goal being that of removing the individual
parameters with the lowest saliency [CDS90, SH16]. Although this generally results in the lowest
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Figure 10: Different granularities of pruning in a 4-dimensional weight tensor for DNN inference
(adapted from [MHP*17, Figure 1]).

accuracy loss, it does not systematically offer latency or energy improvements because sparse
tensor computations are quite difficult to accelerate. Its main purpose is therefore to compress the
network in memory.

To accelerate computations, a regular sparsity pattern is usually required. This is called struc-
tured pruning and aims at removing (spatially close) groups of weights so that network inference
can be simplified. To achieve this, [JLD* 18] iteratively reorders pruned weights to prune larger
structures, whereas [YLP*17] uses different pruning strategies depending on the hardware, opti-
mizing for the full utilization of available SIMD units.

As previously hinted, it is also possible to remove convolution kernels, thus simplifying
the processing of pruned convolutional kernels. An example is [MTK*16], which progressively
removes convolutional kernels through greedy-based fine-tuning. The method is applied to transfer
learning applications, resulting in a 2Xx speedup on ImageNet-class CNNs.

Another interesting structure amenable for removal is a channel. Once channels are removed,
one can remove the corresponding filters that take these channels as input. The filters producing
these channels in the previous layer can also be removed [LWLI17]. A representative approach
is [HZS17] which removes channels based on importance, resulting in a 2—5x speedup on multiple
ImageNet-class CNNs with under 1% accuracy loss. In subsequent work, [HH18] proposes to
pick the pruning ratio of each layer using reinforcement learning.

Weight Saliency Determination. Removing part(s) of the network usually requires knowing
which regions are least important for ensuring network accuracy. This is called saliency determi-
nation and it can be conducted using different methods, as described next. A simple way is to use
heuristics like weight magnitude or examining the ¢; /£, norm of a group of weights, whereas more
recent work employs optimization algorithms to address the trade-offs between accuracy loss and
compression/acceleration.

The earliest methods removed small magnitude weights because they tend to have the least
impact on accuracy [CDS90, HS92]. They work iteratively by fine-tuning unpruned weights to
recover lost accuracy [SH16]. It has been shown recently that one can also remove redundant
connections in FC layers since for weights having the same value, only one needs to be kept [SB15].
If accuracy is degraded too much during the pruning process, some methods can be used post-
pruning to restore certain weights and improve accuracy [GYC16, NDSE17]. For convolutional
layer filter removal, it is possible to rank filters based on their £; norm and prune the lowest
ranking filters of each layer [LKD*17]. Instead of ranking filters at the layer level, one can also
do it at a global, network-wide level by first doing a layer-wise filter ordering using £, norms
and then computing affine mappings that enable inter-layer filter rankings [CDZM20, CDZM19].
Such global approaches lead to a Pareto set of approximated networks that offer various trade-offs
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between performance and accuracy.

In [MTK™16], the authors also consider a Taylor expansion criterion that approximates accuracy
degradation due to feature map removal. This is done using activation and gradient values already
computed during a regular training iteration. Other approaches use weight gradients to compute
saliency. For instance, [DYJ17] proposes a sequential two-step process where (1) gradient-
based information is used to grow the network (adding ‘dormant’ connections and neurons that
are deemed important for accuracy) and (2) regular magnitude-based pruning of weights and
connections.

Another method to identify representative structures inside a network is [HZS17], which uses a
two-step process involving Least Absolute Shrinkage and Selection Operator (LASSO) regression
for channel selection and then a least squares-based reconstruction approach of subsequent feature
maps in the network.

It is also possible to state the problem of selecting which parts of the network to remove
as an optimization problem. One example is [LWL17], which relies on the correlation between
feature maps of the current layer and the next one to determine the importance of filters. In
another approach [YCS17], the optimization problem features the model’s energy efficiency as an
objective. It is based on an energy estimation methodology capable of approximating both the
power of MAC operations and data access (which is more complicated to compute, depending
on the data reuse technique). The resulting iterative process involves local fine-tuning to recover
accuracy loss in a layer before moving on to subsequent layers.

By formulating weight pruning as a non-convex optimization problem, it is possible to address
it using an ADMM approach [ZYZ*18]. Using the desired sparsity level as a constraint to be
satisfied and the loss of the network as the objective to minimize, ADMM can be used in a
two-step process. Since convergence can be quite slow, the target error is increased to accelerate
convergence and the resulting accuracy loss is compensated by network retraining. The method
can also be extended to address high sparsity target problems, by introducing a more progressive
algorithm using partial weight pruning with a moderate pruning rate [YZZ"18].

Another idea is to encourage weights to group around zero using regularization. The closer
weights are to zero, the less accuracy loss will be induced by removing them. For example, [LL16,
WWW*16] used group LASSO [YLO06] regularization to obtain structured sparsity, with the
same factor being applied to all the weight groups. In [LLS*17], £; regularization is applied to the
scaling factor of batch normalization layers to identify important channels. Different regularization
factors can be assigned to different groups, such as in [DDHT 18], where £, regularization is used to
transfer the model’s representational capacity to a fraction of its filters. An incremental approach
for choosing these factors can also be used [WZWH19]. In [LW20], feature map channels are
gradually zeroed during training using a dynamic regularization factor (whose value depends
on the current compression ratio in the network), allowing safe removal of corresponding filters
without a significant drop in the accuracy.

Another recent approach to optimize pruning is through architecture search. Usually, pruning
methods target a fully trained network and recover any accuracy loss using fine-tuning because
it is hard to train a sparse network. Recently, however, the idea that a classic network contains
sub-networks that, trained from scratch, can perform as well as the original network but with fewer
parameters and computation, was introduced [FC18]. This idea was also explored in [LSZ*19],
which claims that directly training (using some form of random initialization) a model found at
the end of a classic three-step pruning process (training, pruning, and fine-tuning) can perform
as well, if not better, in fewer training steps. The issue is that, in the beginning, none of these
studies provided a method for finding an efficient smaller architecture without doing full model
training beforehand. This is starting to change, with [LJxZ*20] proposing to use a bee colony
exploration algorithm to find an appropriate DNN pruning scheme. It is also possible to reduce
the fine-tuning cost by using an external network trained to predict weights of a certain network
structure, facilitating a fast exploration of various possible architectures [LMZ*19].
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4 Approximation for Training

The state-of-the-art models used in deep learning applications require a considerable hardware
infrastructure to be designed properly. There are various challenges related to computing, storage,
network/communication, as well as memory capacity and bandwidth that can potentially hinder
the scalability of current solutions to future models and applications. This is most visible during
the training part of neural network design, which accounts for the majority of the computing time
and resources.

Accelerating training at the arithmetic level has thus become a hot research topic, but early
work in this direction did not necessarily translate to a wide adoption and availability of low/mixed-
precision training hardware. For example, BinaryConnect [CBD15] introduced a CNN training
methodology with binary (+1 and —1) weights, with all other operations and data structures
(e.g., tensors) in full float32 precision. This binarization was soon extended to include activa-
tions [HCS*16], followed by experiments with quantization levels of 2,4 and 6 bits for weights
and activations [HCS*17], but with backpropagation gradients still computed and stored in full
precision. Binarization for all tensor operations, including gradient computations, is considered
in XNOR-Net [RORF16]. While ensuring impressive efficiency gains, these approaches lead to
non-trivial accuracy loss for larger CNN models that have since been introduced and adopted in
practice.

To manage accuracy loss, DoReFaNet [ZWN™*16] uses different quantization bit widths for
weights, activations, and gradients, but still incurs some accuracy loss and requires exploring
different bit width configurations on a per-network basis, which can be impractical for large models.
The approach introduced in [MNCM17] improves on previous accuracy results by doubling or
tripling the number of inputs and outputs of layers in popular CNN models, but again requires that
gradients be computed and stored in full precision and does not achieve the same accuracy as the
baseline non-quantized trained model.

Studies with fixed-point arithmetic on DNNs have also been conducted since the early
1990s [HB91, PH94, SG94, SMAOQ7] and more recently [GAGN15] has shown that a 16-bit fixed-
point representation coupled with stochastic rounding can be used to train CNNs on the MNIST
and CIFAR-10 datasets without accuracy loss. Nevertheless, it is unlikely that this approach would
work on larger CNNs trained on larger datasets.

There have also been several proposals for quantizing recurrent neural network (RNN) training.
For instance, in [HWZ*16], training for quantized versions of gated recurrent units and long short-
term memory cells with few bits for weights and activations are investigated, with a slight loss
in accuracy with respect to base full precision models. A different approach [OLZ*16] evaluates
binary, ternary and exponential quantization for weights used in various RNN models trained
for speech recognition and language modeling. Similar to the CNN-centered methods evoked
so far however, all these approaches use full precision gradients, and therefore do not improve
computation cost during backpropagation.

4.1 Mixed Precision Training approaches

The most widespread approach to increase performance and efficiency of DNN training at the
arithmetic level is through the use of mixed precision.

On the commercial side, NVIDIA has offered the possibility to do low precision training since
the Pascal architecture in 2016 and mixed precision training (combining float16 and float32
arithmetic) has really taken off with the subsequent introduction of TensorCore units in their Volta
and Turing architectures in 2017-2018. TensorCores are, in essence, programmable 4 X 4 x 4
matrix-multiply-and-accumulate units (performing the operation D = A X B + C, where A, B,C
and D are 4 X 4 matrices, with A and B stored using float16 and C and D being either float16
or float32 matrices). An execution of a large number of such units provides a huge performance
boost (several times when compared to NVIDIA’s previous Pascal hardware) to convolution and
matrix operations with mixed precision operands and results. Over at Google, their newer (from
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version V2 onward) Tensor Processing Units (TPUs) offer similar support for mixed precision
training with the introduction of bfloat16, a 16-bit floating-point format that, when compared
to float16, trades in mantissa bits for exponent bits (a 5-bit exponent and 10-bit mantissa for
float16 versus an 8-bit exponent and 7-bit mantissa for bfloat16). Intel and ARM are also
adopting bfloat16 in their push to offer Al-enhanced hardware, while AMD has introduced
software support for bfloat16 in recent versions of their ROCm platform. As of May 2020,
the Ampere architecture from NVIDIA also introduces bfloat16 operator support in their third
version of TensorCore units.

4.1.1 Mixed 16-32-bit precision training

An important remark about backpropagation training that should guide the choice of number for-
mats is how the values contained within various quantities (activations, gradients, and parameters)
vary during successive training iterations. It is noted in [CBD14] that “activations, gradients and
parameters have very different ranges”, whereas “gradient ranges slowly diminish during train-
ing”. There is also the idea that a higher numerical precision should be used when updating the
parameters than when using them during the back and forward propagation operations [CBD14,
Sec. 6]. Recent accelerated training approaches (at the arithmetic level) follow these observations.

2. Make an FP16 copy and forward/backward propagate in FP16
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Figure 11: Mixed precision training iteration for a network layer (adapted from [MNA™*17, Fig. 1]).

An approach for float16-based training acceleration. In [MNA*17], NVIDIA Tensor-
Cores are used to perform mixed float16 and float32 operations during each training iteration.
The process is illustrated in Figure 11: a full precision copy of the weights is always stored and
updated at each iteration, whereas the gradient computations of the weights and activations are
done using float16 quantizations of the weights. The dot-product and reduction (i.e., sums of
elements across a vector) operations are performed with a float32 accumulator (as is enabled
by TensorCores), which, according to [MNA*17], is needed in some cases to maintain the same
model accuracy as with a baseline f1oat32 approach.

The main reason for using 32-bit values for the weight updates is that during later iterations
of training, the update gradients become too small to be used with float16 addition, which will
result in them getting clipped when w' > s% and adversely affect the final model accuracy. For
float16, this happens when the ratio between weight and update is larger than 2048.

A related issue when gradients become too small is that they might not be accurately repre-
sentable in float16, even though the dynamic range of the weight/activation gradients at each
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Figure 12: The loss scaling procedure for updating the master weights in mixed precision training.

layer is much smaller than the 2*° range associated with float16. This means that a scaling
approach might be applicable. This is indeed what is advocated in [MNA™17], where gradient
values can be shifted to float16-representable ranges by scaling the loss value computed during
the forward pass, before performing backpropagation. By chain rule calculus during backprop-
agation, all gradient values will then be scaled by the same amount. Weight gradients will have
to be unscaled back before weight update to ensure the same update process as with float32
training. The entire procedure is summarized in Figure 12. Although not explored in [MNA*17],
the scaling factor can be chosen automatically: start with a very large scaling factor (e.g., 2°%),
if gradient overflows (with Inf or NaN) decrease the scale by a factor of 2 and skip the current
update, whereas if no overflow has occurred for some time (e.g., 2000 iterations), increase the
scale by a factor of 2.

The results presented in [MNA*17, Sec. 4] show that mixed-precision training is a viable
alternative (in the sense that it gives comparable results to baseline float32 training) for various
tasks such as image classification (with tests on AlexNet, VGG-D, GoogLeNet (Inception v1),
Inception v2 & v3 and ResNet50), object detection, speech recognition, machine translation,
language modeling and Generative Adversarial Networks (GAN) generation.

In addition to the speed benefit that such a mixed-precision training approach brings (which
varies from 2x to 6x with respect to baseline training on the experiments carried out in [MNA*17]
on a Volta GPU), the memory consumption for training is roughly halved, since the dominating
quantities are the activations (due to larger batch sizes and the fact that they need to be stored for
reuse during back-propagation), which are stored in float16.

Enabling bfloat16-based training methods. It seems that the need for loss scaling can be
avoided if the f1oat 16 format and associated operations are replaced with bfloat 16 (this is shown
in [KMM™19], where experiments with various state of the art networks in image classification,
speech recognition, language modelling, generative networks and industrial recommendation
systems show the versatility of bfloat16-based training). This is due to the fact that bfloat16
has the same exponent range as float32 and the lower mantissa width does not adversely impact
the final model accuracy. There are also additional hardware-related benefits that come with the
combination of bfloat16 and float32. Core computational primitives such as FMA units can
be built using 8-bit multipliers, leading to a significant area and power savings while preserving
the full dynamic range of float32.

The appeal of using bfloat16 is that it also does not require any changes to the training model
(as designed for a baseline float32 approach). The increasing (planned) hardware support from
several vendors seems to suggest it will soon be the de facto choice for performing DNN training,
replacing the aforementioned float16 approach. This statement is strengthened by the added
support of bfloat16 on NVIDIA’s Ampere GPU architecture.

Fixed-point-based training. Mixed precision training approaches that are based mostly on
integer/fixed-point arithmetic has also been proposed recently. These methods [CBD14, KWW™*17,
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DMM™*18, DTJF18] use during computation integer tensors with tensor-wide shared exponents.
The format explored in [CBD14] has an 11-bit mantissa and a 5-bit shared exponent, tested on
custom maxout [GWFM™13] networks for the MNIST, CIFAR-10, and SVHN datasets. At each
layer, every weight, bias, activation input & output, gradient vectors, and matrices have different
exponent values. These exponents are updated based on a passive over/underflow detection policy
which is run periodically during training. Because it is just reacting to the presence of overflows
in the networks, it can potentially impede convergence of the training process.

To address this problem, [KWW*17] proposes widening the dynamic fixed-point format to a
16-bit mantissa and a 5-bit shared exponent, a format which they call flexpoint (flex16+5).
They also introduce a new algorithm (Autoflex) for adjusting the shared exponents in an adaptive
the way each time a tensor is written to, using tensor-wide statistics gathered at previous iterations.
This essentially eliminates the appearance of overflow errors, leading to results on par with baseline
float32 training on AlexNet, ResNet-110 and Wasserstein GAN models. Choosing the bit widths
that resulted in the flex16+5 format was done such that the mantissa can encode most of the
variability of values inside a tensor during one training epoch and that for weight update operations
there will be sufficient mantissa overlap between tensors to ensure accurate computation (which
seems to eliminate the need for 32-bit master copies of the weights during the update process).

The Flexpoint approach would require the presence of dedicated hardware for it to truly show
its effectiveness. That is why in [DMM*18] another dynamic fixed-point representation that can
leverage already existing general-purpose hardware (through the use of existing integer operations)
is presented. The mantissa is again 16-bit, while the shared exponent is stored as an 8-bit integer.
The matrix multiply and dot product operations needed for the training procedure are done using
16-bit input 32-bit output integer FMAs, with some intermediate accumulations converted to
float32 in order to avoid overflows in long addition chains. Similar to [MNA*17], a float32
master copy of the weights is kept at each iteration for the update process. Tests are carried out
on Intel XeonPhi Knights-Mill hardware for several CNN models (ResNet-50, GoogLeNet-v1,
VGG-16 and AlexNet) on ImageNet, showing an 1.8x speedup over baseline float32 training on
the same platform.

While using tensors with shared exponents can lead to performance and efficiency gains in
the just discussed methods, [DTJF18] identifies three potential roadblocks in their use for training
acceleration: (1) whereas dot product operations can be area-efficient with such formats, other
operations might be less efficient; (2) exponent sharing can lead to data loss if magnitudes are
too large or too small, making exponent selection critical; (3) data loss can happen if the tensor
value distributions are too wide to be captured by the allotted number of mantissa bits. To address
them, [DTJF18] proposes a hybrid approach, where all dot product operations are performed
with shared exponent formats, while other operations are kept in floating-point. Since training
operations are dominated by dot products, there will be little overhead to using floating-point for
the remaining operations.

By using tiling for matrix multiplications (with shared exponent at tile level) and wider weight
storage for the weight update process (similar to other approaches), [DTJF18] can limit data loss
when compared to baseline float32 training on a large range of tasks, with little silicon density
penalty. Investigating the design space, they find that the hybrid approach is most convenient for
24 x 24 tile sizes, 8 to 12-bit mantissa and 16-bit size for weight storage.

4.1.2 Mixed 8-16-bit precision training

While combined 16-32-bit training seems to be the most widespread approach currently, for
accelerating DNN training, there has also been work recently to push the envelope further with
8-bit tensor datatypes and multiplication operators coupled with 16-bit accumulators and weight
updates [WCB*18, MSDK19] (instead of the 16-32-bit mix advocated in Section 4.1.1).
According to [WCB*18, Sec. 1], there are three main elements that can significantly impact
model test accuracy when using extremely low precision formats during training: (a) all operands
in a tensor matrix multiply operations (GEMMs and convolutions) are in 8-bit formats (2%
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degradation over a baseline £1oat32 training loop on ResNet18 with the ImageNet dataset), (b)
GEMM accumulation results reduced from 32 to 16 bits (while critical to reducing the area and
power of 8-bit hardware, such a move also leads to significant degradation — 1% with respect to
the same ResNet18 baseline) and (c) reducing weight updates from 32 to 16-bits (high precision
weight updates and gradients require expensive parameter copies to be kept in memory, whereas
reducing their precision can also lead to significant degradation — 1.7% with respect to the
ResNet18 baseline).

To cope with these problems, [WCB*18] advocates the choice of a 5-bit exponent and 2-bit
mantissa floating-point format to represent weights, activations, errors, and gradients in matrix
multiply operations (forward, backward and gradient), coupled with a 6-bit exponent 9-bit mantissa
format for all the accumulation results. These format choices are motivated by how data is
distributed inside networks in practice, with a focus on striking a balance between representation
accuracy and dynamic range. To optimize the accuracy of the accumulation, a blocked approach
(which is standard in high performance basic linear algebra routines) is used. The multiplications
are done in the 8-bit format, whereas the accumulation is done in 16-bits to more accurately
model the result (i.e., try to avoid stagnation/swamping from appearing: small x; y; terms cannot
contribute to }}7_, xx yx in the floating-point computation path).
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Figure 13: Summary of the precision settings for (a) the GEMM operations during the forward and
backward passes in backpropagation and (b) the AXPY operations during a standard SGD weight
update process (adapted from [WCB*18, Fig. 2]).

Another way to improve on the overall accuracy of summation results is to use stochastic
rounding, which shows similar results to block accumulation (see [WCB*18, Fig. 3]). In the
context of deep learning, it seems that using stochastic rounding is more natural for the weight
update process (in the dot product AXPY operations) since the weight gradient is accumulated
into the weight over mini-batches during several epochs (so not at once in a complete dot product
operation!).

The precision settings for all the operations done during training are summarized in Fig-
ure 13. In terms of results, a large spectrum of neural networks for both image classification
and object recognition are used (AlexNet and ResNet 18 and 50 versions for the ImageNet and
CIFARI10 datasets) with both SGD and ADAM-based optimizers. A loss scaling approach sim-
ilar to [MNA™*17] is used to preserve the dynamic range of back-propagated errors with small
magnitude.

In both [MNA*17, WCB™*18], the hardware complexity of the floating-point computation
pipeline is dominated by the accumulator bandwidth (32 & 16 bit, respectively), and in many
cases, this size seems much too conservative. The follow-up work [SWC*19] introduces an
analytical method for predicting the precision requirements for partial sum accumulation in the
three GEMM accumulation units from Figure 13. It studies in what (precision/format) scenarios
the variance of the accumulator units is maintained when doing dot product computations in
reduced precision.
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One downside of all these aforementioned methods is that they require certain knobs to be
finely tuned (such as appropriate chunk-based accumulator design, stochastic rounding techniques,
loss scaling, and maintaining some layers of the network in higher precision — in particular the
first and last ones), necessitating experimentation on a network-by-network basis. To eliminate
the need for such fine-tuning, [CBG*20] proposes a new, tensor-level 8-bit floating-point format.
Given an N-element tensor X = {Xl-}f.\zl 1» instead of encoding each element directly in an 8-bit
floating-point format, X is stored using N 8-bit floating-point values {Y;} f\i 1 and two extra factors
a and 3 that account for statistical information about X and capture its dynamic range. This tensor
format is called S2FPS8 and its use in the training procedure (for the forward & backward passes
and the gradient update computations) is summarized in Figure 14.

Tests on the effectiveness of this approach (FP32 vs S2FP8) are performed on residual networks
of varying depths on the CIFAR10 and ImageNet datasets, the Transformer network on an English-
Vietnamese translation dataset and neural collaborative filtering network architecture. The authors
of [CBG™20] state that the extra hardware complexity required to handle the conversion operations
and the management of the «, 8 parameters at each layer is small.

4.2 Low precision training algorithm design

Section 4.1 reviewed how mixed-precision computation can be used to speed up neural network
training algorithm execution, with minimal or no loss to the final test accuracy for the resulting
model. Such methods are attractive because they do not require any changes to the problem’s
hyperparameters (such as learning rate scheduling), making them potentially easy to use (for
instance the use of mixed precision training with NVIDIA GPUs is straightforward with the use
of their Automatic Mixed Precision (AMP) support for major deep learning frameworks).

An orthogonal and complementary direction is the development of learning algorithms tailored
for low precision computation. One such approach is MuPPET [RVVB20], which advocates for an
automatic intra epoch numerical precision switch of training quantization and computation levels.
It proposes a metric that estimates how much information each new training step obtains for a
given quantization level, by quantifying the diversity of computed gradients across epochs. This
allows for a heuristic runtime policy that progressively increases the working precision/format
such that the final test accuracy is comparable to that of baseline float32 training. The approach
is designed to take advantage of the myriad of numerical precisions that have started to appear
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in modern hardware (e.g., 4 and 8-bit integer computations and 16-bit floating-point formats).
For each iteration/minibatch and a working fixed-point precision ¢, a block floating-point training
scheme (similar to [CBD14, KWW*17, DMM*18, DTJF18]) with both values and scale factors
stored as g-bit integers and stochastic rounding for quantization is used. Similar to most other
mixed-precision approaches, a f1oat32 master copy of the weights is always kept in memory and
updated at each iteration with the low precision loss function gradients computed most recently.
To test this approach, five levels of precision (8-, 12-, 14- and 16-bit fixed-point formats and
ultimately float32) were used in [RVVB20] for training AlexNet, ResNet18/20 and GoogLeNet
networks with the CIFAR-10/100 and ImageNet datasets on an NVIDIA RTX 2080 Ti GPU. A
comparison with baseline float32 training shows a 1.25 — 1.32x speedup for MuPPET, whereas
with respect to [MNA™17], it achieves a 1.23x speedup for AlexNet and comparable performance
for ResNet18 and GoogleNet.

Following [DSLZ*18] “there is always a tradeoff with standard training algorithms: as the
number of bits is decreased, noise that limits statistical accuracy is increased”. To limit the loss
in statistical accuracy when doing low precision training, they propose HALP (High Accuracy
Low Precision), a low precision variant of stochastic gradient descent which uses low precision for
most of the time in its innermost loop, while infrequently recentering the weight parameters with
higher precision in an outer loop to counteract the noise effect of low precision quantization. The
idea of the algorithm is based on the Stochastic Variance Reduced Gradient (SVRG) approach,
introduced in [JZ13], and a bit centering representation, where each number is represented as the
sum of a high precision offset term, modified only infrequently, and a low precision delta term,
which is modified at each inner iteration.

For strongly convex problems, the authors show that the HALP approach can produce arbitrarily
accurate solutions retaining the same linear asymptotic convergence rate as SVRG in full precision.
On non-convex problems (namely CNN and LSTM neural network training), HALP (with a 16-
bit low precision format and 32-bit high precision one) is empirically shown to improve on low
precision variants of SGD and SVRG and equals or outperforms full precision SVRG and SGD. It
can also be used to effectively fine-tune low precision trained results as well, as the authors show
on a ResNet18 model, closely matching the result obtained from de facto SGD training in full
precision. On ImageNet, such variance-reduced mixed-precision training algorithms can obtain
state-of-the-art timing results [JSH*18].

A simpler approach for a low precision training algorithm is SWALP (Stochastic Weight
Averaging in Low Precision Training) [YZK*19]. It is based on the recent Stochastic Weight
Averaging (SWA) method [IPG*18]. SWA was introduced as an SGD variant that shows improved
generality in deep learning training. Low precision training on the other hand produces extra
quantization noise and generally tends to underperform when the learning rate is low. Averaging
weights that have been rounded both down and up during quantization can potentially reduce
quantization effects and is the reason why the authors of [YZK*19] propose that SWA can be
beneficial for low precision training. The SWALP approach consists of quantizing in low precision
all numbers during training, including the gradient accumulator (and potentially the velocity vector
for momentum-based approaches). On a theoretical level, the authors can show that SWALP can
converge to an optimal solution for quadratic objectives and a smaller noise ball than low precision
SGD for strongly convex objective functions. Empirically, for nonconvex objectives, an 8-bit
SWALP approach (with an 8-bit block floating-point format with 8-bit shared exponents) can
match full precision SGD baselines in DNN training tasks such as for VGG-16 and Preactivation
ResNet-164 on CIFAR-10/100 datasets.

S Support for approximation in DNN Accelerators

DNN models can be executed in different environments, ranging from high-power data center
servers to low-power edge devices. Within this large space, there is an even wider one representing
the different backends that can be used. Backends are differentiated in terms of both software
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and hardware. The solutions vary from general-purpose frameworks and computing units to
application-specific frameworks and computing units.

Like many applications, DNNs were initially executed on latency-oriented CPUs, but ever
since the start of the 2010s, there has been a major shift towards parallel hardware. Examples
include GPUs for performance-oriented scenarios and microcontrollers for low-power devices.
Still, due to their static and general-purpose data path, General-Purpose Processors (GPPs) are not
able to efficiently process DNNs in all application scenarios, motivating the need for dedicated
hardware accelerators.

The first proposed hardware accelerators were ASICs [CLL* 14, CES16, JYP*17], and they
achieved orders of magnitude improvements in energy efficiency compared to GPPs. This gain
nevertheless comes at the expense of flexibility, with the design cost being very high. FPGAs, on
the other hand, provide a good balance between flexibility, design cost, and performance [GSQ* 16,
RRR18].
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Figure 15: Comparing the systolic arrays based architecture of the ASIC Google TPU [JYP*17] (top)
and the Processing Element (PE) of the FPGA grid-based Eyeriss [CES16] architecture (bottom).

Independently of the target (ASIC or FPGA), hardware accelerators adopt the same strategy
of maximizing data reuse, an element that has been extensively studied by Chen & al. in [CES16].
The main architectures adopted by re-configurable accelerators such as FPGAs is a dedicated grid
of Processing Element (PE) [CES16], while the main architecture adopted by ASICs are based on
more generic systolic arrays [JYP*17]. This is mainly because a systolic array is more flexible
once designed and can efficiently process matrix products, while a PE array requires tuning some
parameters for efficiently executing a DNN (like the number of PEs and the size of the memory
bus), making them more suitable for re-configurable accelerators. A schematic view of the two
approaches is given in Figure 15.

Since DeepCompression [SH16] proved that approximation techniques can significantly im-
prove DNN processing efficiency with very small accuracy loss, approximation for DNN acceler-
ation has become quite popular, at the same time posing new challenges for efficient processing.
For example, accelerating a sparse DNN (after application of pruning methods like those presented
in Section 3.3) requires adapting the data-flow to take advantage of the available sparsity, whereas
accelerating a reduced precision DNN (after application of quantization methods as described in
Section 3.1) requires implementing dedicated operators.

5.1 Architectures for accelerating inference

Almost, if not all, dedicated DNN hardware accelerators rely on reduced precision computations.
This is mainly because a 32-bit floating-point is not mandatory to achieve high accuracy, and has
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a prohibitive computing cost. Most accelerators use 16-bit or 8-bit representations, like [CES16].
Some accelerators are dedicated to specific quantization formats, such as [GMC*18] that targets
acceleration of fully-binarized DNNs, or [KUA* 18] for accelerating logarithmic representations.

Whereas reduced precision acceleration-based solutions mainly require changes to the arith-
metic operators, accelerating pruned DNNs with a sparse representation requires changes to the
dataflow. Lu & al. proposed to use the combination of two structures representing the COOrdinates
(COO) of the values and the values as Compressed Sparse Rows (CSR) [LWGZ17], and developed
an accelerator to take advantage of these representations. It is also possible to take advantage of
Feature Map (FM) sparsity. Due to the use of ReLU activations, FMs contain a large number
of zeros which can be skipped during the next layer computation. CNVlutin [AJH*16] explores
this dynamic sparsity. It is also possible to accelerate structured sparse DNNs with a dedicated
dataflow like in [ZHY*20].

DNNs with shared weights can also benefit from a dedicated dataflow. This was studied
in [HLM*16], which targets DNNs compressed using the DeepCompression [SH16] three-step
method. It introduces an efficient implementation of the sparse matrix-vector multiplications with
weight sharing that are central to the approach from [SH16].

5.2 Architectures for accelerating training

Accelerating DNN algorithms on hardware targets such as FPGAs faces many challenges, including
limited on-chip memory, external memory bandwidth, and computational resources. Compared
to the design of inference accelerators, on-chip training is a less studied topic, but it is feasi-
ble [TMSC20].

An example is [FFB*19], which targets training acceleration for embedded Xilinx Zynq All
Programmable System on Chip (APSoC) devices. It essentially implements a version of the method
introduced in [YZK*19] with predominantly 8-bit integer arithmetic. The Arm-based processor
on the device is used for 32-bit floating-point weight updates, whereas the FPGA logic evaluates
all the 8-bit integer matrix multiplications needed during the backpropagation computation path.
The overall hardware platform is configured using a software-based High-Level Synthesis (HLS)
flow with Xilinx tools. On the Intel side of things, [VMY*19] has proposed a Register-Transfer
Level (RTL) compiler that performs SGD-based training on Intel FPGAs for various CNNs with
16-bit fixed-point arithmetic.

6 Perspectives

Due to the rapid evolution of the field of deep learning, it is difficult to give an accurate prediction
of how to approximate computing techniques that will impact DL acceleration in the future. This
section presents an overview of three different research directions that figure to grow in importance
in the years to come.

6.1 Approximation for attention-based architectures

While the focus of the previous sections is mostly directed at CNN-based models, in recent years
alternative structures such as Transformer attention architectures [VSP*17] have led to state-of-
the-art accuracy results in NLP-based tasks (e.g., language modeling). Subsequent models, like
BERT [DCLT18], RoBERTa [LOG"19] and GPT [BMR*20], although impressive, have a large
memory footprint, increased latency, and power consumption that are prohibitive for efficient
deployment on embedded edge devices and even on data centers. Due to their expressive power,
Transformer-based models are also beginning to be adapted for other tasks, such as computer
vision applications [CMS*20, SGLS21].

Their increasing usage is driving interest for efficient approximation methods that specifically
target Transformer models. While work in this direction is still in its early stages, there are already
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some approaches based on quantization [ZEAM?20, KGY*21], knowledge distillation [SDCW 19,
JLW*21] and pruning [MYL*21, WZH21].

6.2 Edge Al

One area where training acceleration with reduced precision and increased energy efficiency is be-
coming important is incremental/lifelong learning scenarios on edge devices (e.g., in autonomous
driving, IoT, and robotics). Compared to a cloud-based scenario, training locally avoids transfer-
ring data back and forth between data centers and IoT devices, helping reduce communication and
latency and improve privacy.

Such on-chip training is feasible [TMSC20], but extremely challenging. The training accel-
eration methods described in Section 4 usually cannot be applied directly to this context and
alternatives need to be considered.

A training framework specifically designed for such scenarios is E*>-Train [WJC*19], which
proposes three complementary strategies: (a) stochastic mini-batch dropping to eliminate what can
be considered “unnecessary costs”, (b) input-dependent selective layer update where a different
subset of CNN layers are updated for every minibatch, and (c) predictive sign gradient descent,
a variation of an extremely low precision SGD algorithm, signSGD [BWAAI18]. Besides this
approach, other algorithmic & arithmetic-level methods have started to appear [FYZ*20, FGL*21].
It is expected that this area of research will grow in importance in the years to come, with on-site
learning becoming paramount in certain application domains.

6.3 Analog in-memory computing

The recent explosive growth in highly data-centric applications related to DL has motivated the
appearance of analog in-memory computing solutions [SNM*16, CLX*16, AHC*19, SBD*19,
Dem18] as alternatives to traditional von Neumann computing systems. Hereby important com-
putational tasks, such as vector-matrix multiplications, are performed in place in the memory
itself by exploiting the physical attributes of the memory devices (e.g., Kirchhoff’s current sum-
mation law). Besides alleviating the costs in latency and energy associated with data movement,
in-memory computing also has the potential to significantly improve the computational time com-
plexity by using large crossbar memory arrays [SLGKAE20]. However, this comes at the expense
of imprecision in the mixed-signal computations and becomes a form of approximate computing.
For instance, the mapping of synaptic weights onto some of those memory devices suffers from
non-ideal analog storage in the form of stochastic distribution of conductance values and temporal
drifting. Accordingly, Joshi et al. [JLGH*20] have proposed a custom noise-injection training
method to increase the robustness of the resulting network to such non-idealities and achieve a
software equivalent accuracy. Given the game-changing advantages in computing efficiency of
analog in-memory computing, more work is expected on this nascent field in the future.

7 Conclusion

In this chapter, a comprehensive survey of approximation techniques applied to Deep Learning is
provided. These techniques target various improvements, some geared towards the training of DNN
models, others that focus on DNN inference. Depending on the objective, various methods can be
applied, whether for the improvement (reduction) of memory requirements by using compression
techniques or for the reduction of the computational workload by using acceleration techniques.

Such a wide range of approximation techniques involves various implementation changes,
ideally resulting in a backend adaptation that maximizes the expected performance improvement.
These adaptations can be implemented at the software level using dedicated frameworks and/or at
the hardware level in dedicated accelerators.
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To compare the various methods available, it is desirable to use the same input DNN and
workload, but this is not always feasible. This is mostly due to the large range of DNN topologies
that have appeared over the years: while some methods can be applied almost automatically
to multiple topologies, some require manual tuning as the size of the search space increases
exponentially with the DNN size. There is also a wide range of workloads, from small “toy”
datasets to more recent and challenging large-scale datasets. Some methods cannot perform equally
well in both contexts. The difference in backend compatibility with the various approximation
methods also regularly involves manual tuning steps, which are hard to reproduce and compare to
other backends.

Most of the recent methods give very promising results and pave the way for further research,
by proving that approximations can be applied at various levels, from the topology of the DNN, to
the data value and type, and including the backends-DNN codesign (hardware or software).
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