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Abstract

There is a growing interest in the use of reduced-precision arithmetic, exacerbated
by the recent interest in artificial intelligence, especially with deep learning. Most archi-
tectures already provide reduced-precision capabilities (e.g., 8-bit integer, 16-bit floating
point). In the context of FPGAs, any number format and bit-width can even be con-
sidered. In computer arithmetic, the representation of real numbers is a major issue.
Fixed-point (FxP) and floating-point (FlP) are the main options to represent reals, both
with their advantages and drawbacks. This chapter presents both FxP and FlP num-
ber representations, and draws a fair a comparison between their cost, performance and
energy, as well as their impact on accuracy during computations. It is shown that the
choice between FxP and FlP is not obvious and strongly depends on the application con-
sidered. In some cases, low-precision floating-point arithmetic can be the most effective
and provides some benefits over the classical fixed-point choice for energy-constrained
applications.
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1 Introduction

There is a growing interest in the use of reduced-precision arithmetic, exacerbated by the
recent interest in artificial intelligence, especially with deep learning. CPU, GPU and
TPU architectures already provide interesting, but limited, reduced-precision capabili-
ties. 8-bit integer, 16-bit floating point (e.g., float16, bfloat16) are typical examples
of low-precision computations included in the architectures. Through the use of hard-
ware acceleration on FPGA architectures, and thanks to their reconfiguration features,
arithmetic customisation can be further extended and almost any number format and
word-length can be leveraged in the accelerator. All these examples illustrate the growing
interest in the use of custom arithmetic.

In computer arithmetic, the representation of real numbers is a major issue. Indeed,
most algorithms are using mathematical functions, and their accuracy and stability is
directly related to the accuracy of the number representation they use. To represent
real numbers, there exist two main formats: fixed-point and floating-point. Fixed-point
(FxP) representation encodes real numbers as an integer value scaled by a fixed factor,
thus leading to a format comprising an integer part and a fractional part, the point of
the real number being at a fixed position. In the floating-point (FlP) representation, the
scaling factor is encoded in the format, which comprises a mantissa (or significand) and
an exponent, the point being floating along with the computations.

Fixed-point arithmetic is sometimes favoured due to its high efficiency in terms of
energy consumption, cost, and performance, with a reputed clear advantage compared to
floating-point. This comes at the cost of the pain of the programmer, who needs to manage
all scaling operations to respect the rules imposed by FxP arithmetic. Floating-point
representation can be considered as the main representation for real numbers, especially
in high-performance computing. In contrast to FxP, FlP provides a high dynamic range,
is able to represent with high accuracy both small and large numbers, and is very easy
from a programmer point of view, since all scaling and rounding operations are totally
managed by the hardware. However, this ease of use comes with relatively important
area, delay and energy penalties when compared to FxP.

This chapter presents both number representations, and tries to draw a fair a com-
parison between customized fixed-point and floating-point arithmetic. One conclusion
is that the choice between FxP and FlP is not obvious and depends on the application
considered. It is shown that, in some cases, low-precision floating-point arithmetic can
be the most effective and provides some benefits over the classical fixed-point choice for
energy-constrained applications. Indeed, combining the ease of use of floating-point rep-
resentation associated to low-energy benefits of small bit-width, make reduced-precision
floating-point arithmetic very promising, but not always useful.

Section 2 presents in detail the fixed-point representation, the rules governing the
propagation of the fixed-point formats through operations, the quantization error process
associated with computations relying on reduced-precision fixed-point arithmetic, and
how overflow should also be considered. Overflow is critical in FxP since the dynamic
range to represent real values is very limited in this format.
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As already mentioned, a fixed-point number is composed of an integer and a fractional
part. The aim of the fixed-point conversion process is to determine for each data the
binary-point position and more specifically the number of bits for the integer part and
the fractional part. This process is explained in Section 3, more details can also be found
in Chapter 9.

Section 4 details the floating-point representation, the principle of FlP addition and
multiplication, and provides some fair comparisons of their cost and performance with
regard to FxP. Section 4 also presents some opportunities to reduce the cost of FlP
operators as well as some libraries that can be used to simulate and perform hardware
synthesis of customized, low-precision floating-point computations.

Finally, Section 5 gives some comparison results in terms of area, delay, and energy
between the two number representations FxP and FlP, first at the operator level, and then
in the context of their use in applications, thus considering the errors due to low-precision
computations.

2 Fixed-point arithmetic

2.1 Fixed-point representation

Fixed-point (FxP) representation is a way to encode real numbers with a virtual binary-
point (BP) located between two bit locations as shown in Figure 1. A fixed-point number
is made-up of an integer part (left to the BP) and a fractional part (right to BP). The
term m designates the integer part word-length (IWL) and corresponds to the number
of bits for the integer part when this term is positive. This IWL includes the sign bit
for signed numbers. The term n designates the fractional part word-length (FWL) and
corresponds to the number of bits for the fractional part when this term is positive. The
fixed-point value xfxpt is computed from the following relation

xfxpt = −2m−1.S +

m−2∑
i=−n

bi2
i (1)

Numbers in the dynamic range [−2m−1, 2m−1−2−n] can be represented in this fixed-point
format with a precision of q = 2−n. The term q corresponds to the quantisation step and
is equal to the weight of the least significant bit b−n. The Q-format notation can be
used to specify fixed-point numbers. For a fixed-point number having an IWL and FWL
equal to m and n, respectively, the notation Qm.n is used for signed numbers and uQm.n

for unsigned numbers. The total number of bits w is equal to m + n. In fixed-point
arithmetic, m and n are fixed and lead to an implicit scaling factor equal to 2−n which
does not change during the processing. The fixed-point value xfxpt of the data x can be
computed from the integer value xint of the data x such as xfxpt = xint.2

−n

Integer	part Fractional	part	

20 2�1 2�n�2m�1

bm�2 bm�3S

2�2

b�nb0b1 b�1 b�2

2m�2

m n

21

Figure 1: Fixed-point specification
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2.2 Format propagation

In this section the rules governing the propagation of the fixed-point formats through
operations are described for the different arithmetic operations. Let us consider an oper-
ation � having x and y as input operands and z as output operand. Let Qmx.nx , Qmy.ny

and Qmz.nz be the Q-format of the operand x, y and z, respectively.

Addition - subtraction The addition or the subtraction of two fixed-point numbers
x and y can lead to an overflow if the operation result is not in the dynamic range of
x and y. In this case one more bit must be used to represent the integer part. Thus,
dynamic range of the output result must be taken into account. A common IWL, mc,
must be defined to represent the input and the output

mc = max(mx,my,mz) (2)

where mz is computed from the dynamic range of the variable z. This IWL allows
aligning the binary-point of the two input operands before computing the addition or the
subtraction. The fixed-point format of the operation output is as follow{

mz = mc

nz = max(nx, ny)
(3)

Multiplication In contrast to the addition or the subtraction, there is no risk of
overflow for the multiplication if the format of the output respects the following conditions.
Thus, the fixed-point format of the output z = x× y is obtained from the input x and y
fixed-point format with the following expression{

mz = mx +my

nz = nx + ny
(4)

The multiplication leads to an increase of the number of bits to represent the operation
output. The total number of bits wz is equal to wx + wy = mx + nx +my + ny.

Division For the division operation z = x/y, the value 0, must be excluded of the
divisor y interval [y, y] leading to the interval [y,−2−ny ] ∪ [2−ny , y] if we consider the
case that y is strictly negative and y is strictly positive. The IWL of the division output
must be able to represent the largest value of the division result. This one is obtained
by dividing the largest dividend by the smallest divisor. The largest possible dividend is
−2mx−1 while the smallest divisor is 2−ny .

The FWL of the division output must be able to represent the smallest absolute value
of the division result. This one is obtained by dividing the smallest dividend by the largest
divisor. The smallest dividend is 2−nx while the largest divisor is −2my−1.

Thus, the fixed-point format of the output z = x/y is obtained from the input x and
y fixed-point format with the following expression{

mz = mx + ny
nz = nx +my

. (5)

Like for the multiplication, the total number of bits wz is equal to wx +wy = mx + nx +
my + ny.

4



2.3 Quantisation process and rounding modes

In DSP applications, a sequence of arithmetic operations leads to an increase of data
word-length when multiplication and division operations are involved. To maintain data
word-lengths in reasonable range, the number of bits must be reduced. In fixed-point
arithmetic, the least significant bits are discarded. Let x′, be a fixed-point variable with
a word-length of wx′ bits. The quantisation process Q() leads to the variable x, depicted
in Figure 1, and having a word-length w = wx′ − d. Let Sx be the set containing all the
values which can be represented in the format after quantisation.

Truncation In the case of truncation, the data x is always rounded towards the lower
value available in the set Sx:

x = bx · q−1c · q = kq ∀x ∈ [k · q; (k + 1)q[ (6)

with b·c, the floor function defined as bxc = max (n ∈ Z|n ≤ x) and q = 2−n the quanti-
sation step. The value x after quantisation is always lower or equal to the value x before
quantisation. Thus, the truncation adds a bias on the quantised signal and the output
quantisation error will have a non zero mean. Truncation rounding is widely used because
of its cheapest implementation. The d LSB of x′ are discarded and no supplementary op-
eration is required.

Conventional rounding To improve the precision after the quantisation, the round-
ing quantisation mode can be used. The latter significantly decreases the bias associated
with the truncation. This quantisation mode rounds the value x to the nearest value
available in the set Sx:

x =

⌊(
x+

1

2
q

)
· q−1

⌋
· q =

{
kq ∀x ∈ [k · q; (k + 1

2 )q[
(k + 1)q ∀x ∈ [(k + 1

2 )q; (k + 1)q]
(7)

The midpoint q1/2 = (k+ 1
2 )q between kq and (k+ 1)q is always rounded up to the higher

value (k+ 1)q. Thus, the distribution of the quantisation error is not exactly symmetrical
and a small bias is still present.

The conventional rounding can be directly implemented from (7). The value 2−n−1 is
added to x′ and then the result is truncated on w bits. In the technique presented in [1],
the conventional rounding is obtained by the addition of x′ and the value b−n−1.2−n and
then the result is truncated on w bits. This implementation requires an adder of w bits.

Convergent rounding To reduce the small bias associated with the conventional
rounding, the convergent rounding can be used. To obtain a symmetrical quantisation
error, the specific value q1/2 must be rounded-up to (k + 1)q and rounded-down to kq
with the same probability. The probabilities that a particular bit is 0 or 1 are assumed
to be identical and thus the rounding direction can depend on the bit b−n value.

x =


kq ∀ x ∈ [k.q; (k + 1

2 )q[
(k + 1)q ∀ x ∈](k + 1

2 )q; (k + 1)q]
kq ∀ x = q1/2 and b−n = 0
(k + 1)q ∀ x = q1/2 and b−n = 1

(8)

The specific value q1/2 has to be detected to modify the computation in this case. For
this specific value, the addition of the data x with the value 2−n−1 has to be done only if
the bit b−n is equal to one.

The alternative to this conditional addition is to add the value b−n−1.2−n in every
case. Then, for the specific value q1/2, the least significant bit b−n of the data x is forced
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to 0 to obtain an even value. This last operation does not modify the result when b−n is
equal to 1 and discard the previous addition operation if b−n is equal to 0. The convergent
rounding requires a supplementary addition operation and an operation (DTC) to detect
the value 2−n−1 and then to force bit b−n to zero.

2.4 Overflow modes

In DSP applications, numerous processing kernels involve summations requiring to ac-
cumulate intermediate results. Consequently, the dynamic range of the accumulation
variable grows and can exceed the bounds of the values that can be represented leading
to overflows. When an overflow occur, if no supplementary hardware is used, the wrap-
around overflow mode is considered. For the wrap-around overflow mode, the value xwa

of variable x coded with m bits for the IWL is equal to

xwa =
(
(x+ 2m−1) mod 2m

)
− 2m−1 (9)

with mod the modulo operation. To avoid overflow, the fixed-point conversion process
described in the rest of this chapter must be followed conscientiously. Especially, the
dynamic range of the different variables must be carefully evaluated for sizing the IWL.
For variables having a long tail for its probability density function, the IWL can be large
and thus leading to an over-estimation for numerous values. In this case, saturation
arithmetic can be used to reduce the IWL. Let consider a variable x coded with m bits for
the IWL. In saturation arithmetic, when the value x is lower than −2m−1 the value x is
set to −2m−1. When the value x is higher than −2m−1 the value x is set to −2m−1−2−n.

3 Fixed-point conversion process

As described in Section 2, a fixed-point number is made-up of an integer part and a
fractional part. The aim of the fixed-point conversion process is to determine for each
data the binary-point position and more specifically the number of bits for the integer
part and the fractional part.

The total number of bits wi = mi + ni to encode a data influence the implementation
cost C. The implementation cost reduction imply to minimize the integer and fractional
part word-lengths. The reduction of the number of bit leads to unavoidable error between
the finite precision values and the infinite precision ones and thus degrades the quality
of the application output. Consequently, the implementation cost minimization through
word-length optimization is achieved with the constraint that the output quality degrada-
tion ∆λ is limited and below a maximal value λmax. This fixed-point conversion process
can be modeled by the following optimization process

min
w

(C(w)) subject to ∆λ(w) ≤ λmax (10)

where w is a N -length vector containing the word-lengths of the N data inside the appli-
cation, C(·) is an implementation cost function that models the cost such as area or energy
consumption according to the data word-lengths. ∆λ(·) computes the quality degradation
due to the tested word-length configuration w [2, 3, 4], and λmax represents the maximal
quality degradation tolerable by the application.

Reducing the number of bits for the integer part or for the fractional part leads to
different effects. The integer part word-length m, defines the range of values that can
be represented. When m is too low, overflows occur, leading to non-linearity in the
processing and a significant amplitude for the error compared to infinite precision. As
long as m is higher than mmin, the minimal value ensuring no overflow, modifying m will
not have effect on the output quality. When m is lower than mmin, overflow occurs and
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quickly the output quality is highly degraded. To determine the integer word-length, the
data dynamic range is evaluated and the minimal value of m ensuring no overflow or a
sufficiently low overflow probability is selected.

The fractional part word-length n defines the accuracy. The larger n is, the smaller
the error between finite and infinite precision is and the higher the accuracy is improved.
Unlike for the integer part, reducing the number of bit the fractional part will progressively
reduce the accuracy and increase the output quality degradation. Thus, the determination
of the fractional part word-length is a trade-off between the implementation cost and the
quality degradation. This trade-off is explored through the solving of the optimization
process described in Equation 10. The word-length of each data is optimized through
the minimization of the implementation cost under quality degradation constraint. This
optimization process requires three elements, an optimization algorithm, a cost function
C(·) and a quality degradation function ∆λ(·). The quality degradation function depends
on the fractional part word-length of each data. The cost function C(·) requires the
knowledge of the total word-length of each data. Thus, for this optimization process, the
integer part word-length has to be known.

Consequently, the fixed-point conversion process is split into two parts. Firstly, the
integer part word-length is determined from the results of the data dynamic range eval-
uation.Secondly, the fractional part word-length is optimized by solving the optimization
process described in Equation 10.

3.1 Integer-Part Word-Length Determination

The first stage of the fixed-point conversion process aims at determining the number of bits
for the integer part of each data in the considered application. The goal is to minimise
the number of bits while protecting against overflows which degrade significantly the
application quality. Firstly, the dynamic range of each signal is evaluated. The different
types of techniques available to estimate the dynamic range are presented in Section
3.1.1. Secondly, the IWL is determined from the dynamic range and the fixed-point
format propagation rules. Scaling operations are inserted to adapt fixed-point formats.
This process is described in Section 3.1.2.

3.1.1 Dynamic range evaluation

The determination of the number of bits for the integer part requires to evaluate the signal
dynamic range. existing techniques to evaluate the dynamic range can be classified ac-
cording to the targeted applications. Critical systems do not tolerate high computational
errors. Any overflow occurrence may lead to a system failure or a serious quality degrada-
tion. For example, in 1996, the first launch of the Ariane 5 rocket ended in explosion due
to software failure. This failure was caused by the overflow of the variable representing
the rocket acceleration. Thus, for critical systems, the integer part word-length has to
cover the entire range of possible values. In this case, the bounds should be determined
by techniques that guarantee the absence of overflow occurrence and allowing to certify
the data dynamic range. Techniques based on interval arithmetic or affine arithmetic
satisfy these constraints, but at the expense of an overestimation of the bounds. Statis-
tical approaches that determine bounds from a set of simulation results can reduce the
overestimation, but can not ensure the absence of overflow occurrence.

Overflows occur when the number of bits of the integer part is not sufficient. Overflow
occurrence degrades the result quality at the system output. However, the hardware
implementation cost is unnecessarily increased if the number of bits exceeds the needs.
Many systems are tolerant to overflows if the probability of overflow occurrence is low
enough. In this case, determining the number of bits of the integer part is a trade-off
between the implementation cost and the output system quality degradation. This is
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translated into an optimisation problem where the integer word-length of each variable of
the system is reduced while maintaining an overflow probability lower than the accepted
probability [5]. The challenge is to estimate the probability density function (PDF) of
the data in order to be able to compute the overflow probability. Stochastic approaches,
which model the variable PDF by propagating data PDF model from the inputs to the
system output, can be considered.

3.1.2 IWL determination and insertion of scaling operations

The IWL is determined by propagating the IWL thought the operations from the inputs
to the outputs with the help of the dynamic range evaluation results. This propagation
process uses the format propagation rules provided in Section 2.2.

To illustrate this stage, let us consider the sequence of operations depicted in Figure 2.
The data d is the output of the operation Oj and the input of operation Ok. Let ms, md

and mi be respectively the IWL for the operation Oj output, the data d and the operation
Ok input.

d
o i OkOj

Figure 2: Example of a sequence of operations: data d is the output of the operation Oj and
the input of operation Ok.

The IWL of the signed data d is computed from its dynamic range [x, x] with the
following expression

mx = max (blog2(| x |)c+ 2, dlog2(| x |)e+ 1) . (11)

The IWL mo is computed from the propagation of the IWL of the operation Oj inputs
with the help of the rules provided in Section 2.2. A scaling operation is inserted at the
operation Oj output if so = md −moj is strictly negative. In this case, a left shift of so
bits is required to modify the IWL. It means that the IWL of the operation Oj was too
important compared to the data dynamic range of d and the so most significant bits of x
are a copy of the sign bit and can be discarded.

For multiplication and division, the IWL mi is equal to md and no scaling operation
is required at the operation Oj input. For addition and subtraction, a common IWL mc

for the input and the output must be determined and mi = mc. A scaling operation is
inserted at the operation Ok input if si = moi−md is strictly positive. In this case, a right
shift of si bits is required to modify the IWL of the data d. It means that supplementary
bits are required for the addition or subtraction Oj to avoid overflow.

3.2 Fractional-Part Word-Length Determination

The fractional part word-length is optimized by solving the optimization process described
in Equation 10. The search space for this combinatorial optimization problem is huge and
numerous algorithm have been proposed to find an optimized solution in a reasonable
execution time. In Chapter 9 (Word-Length Optimization of Fixed-Point Algorithms),
a survey of the different optimization algorithms is proposed. These optimization algo-
rithms are iterative process, testing different combinations of word-length and moving
in the search space. Consequently, the cost function C(·) and the quality degradation
function ∆λ(·) are evaluated numerous time. The challenge is to develop techniques able
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to evaluate efficiently and accurately the quality degradation. In Chapter 9, a survey of
the different existing techniques to evaluate the quality degradation is proposed.

4 Floating-Point Arithmetic

Floating-point (FlP) representation is today the main representation for real numbers
in computing, thanks to a potentially high dynamic range and to its ease-of-use since
all scaling and rounding operations are totally managed by the hardware, contrary to
fixed-point arithmetic. However, this ease of use comes with relatively important area,
delay and energy penalties. The floating-point representation is presented in Section 4.1.
Section 4.2 details the principle of FlP addition and multiplication and provides some
fair comparisons of their cost and performance with regard to FxP. Then, Section 4.3
presents some opportunities to reduce the cost of FlP operators, without jeopardizing
the accuracy of the computations too much. Finally, Section 4.4 describes some libraries
that can be used to simulate and perform hardware synthesis of customized, low-precision
floating-point computations.

4.1 Floating-Point Representation for Real Numbers

In computer arithmetic, the representation of real numbers is a major issue. Indeed, most
algorithms are using mathematical functions, and their accuracy and stability is directly
related to the accuracy of the number representation they use. The floating-point (FlP)
representation is a way to encode real numbers with a scaling factor encoded in the data.
Given an unsigned M -bit mantissa m, a signed integer exponent of value e coded on E
bits, often represented in biased representation, and a sign bit s, the radix-2 floating-point
value xflpt is represented as

xflpt = (−1)
s × 1.m× 2e. (12)

Contrary to fixed-point representation, the point in the FlP representation of the number
is ”floating” and scaled by the exponent, similarly to the scientific representation in
decimal arithmetic that we use in our daily life. The mantissa m – or the significand of the
representation – is used to generate a normalized number with an implicit ”1” conforming
the integer part belonging to [1, 2[. This ”1” being implicit, it is not represented in the
format, freeing space for one more digit. This number is then scaled by means of the
exponent e, and the sign is controlled by the value of the sign bit s. e being a signed
number, the exponent is usually represented in the number format as biased by a constant
value b. With this representation, any number under this format can be represented using
M + E + 1 bits as shown in Figure 3.

Figure 3: Floating-point representation

Nevertheless, automatically keeping the floating point at the right position along com-
putations requires an important hardware overhead, as discussed in Section 4.2. Managing
subnormal numbers (numbers between 0 and the smallest positive possible representable
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value) and the values 0 and infinity also represents an overhead. Despite this additional
cost, FlP representation is today established as the defacto standard for real number
representation. Indeed, besides its high accuracy and high dynamic range, it has the
huge advantage of leaving the whole management of the representation to the hardware
instead of leaving it to the software designer, significantly diminishing developing and test-
ing time. This domination is sustained by IEEE 754 standard, lastly revised in 2008 [6],
which sets the conventions for floating-point number possible representation, subnormal
numbers management and the different cases to be handled, ensuring a high portability
of programs. Table 1 gives the representations of the FlP numbers following the IEEE
754-2008 standard. Mantissa width M is without the implicit 1. The bias b is equivalent
to the maximum exponent value emax. However, such a strict normalization implies:

• an important overhead for throwing flags for the many special cases, and even more
for the management of these special cases,

• and a low flexibility in the widths of the mantissa and exponent, which have to
respect the rules of Table 1 for 16, 32, 64 and 128-bit precisions.

Precision
Mantissa Exponent Minimum exponent Exponent bias (b)

width (M) width (E) value (emin) (also emax)

Half precision (16 bits) 10 5 −14 15

Single precision (32 bits) 23 8 −126 127

Double precision (64 bits) 52 11 −1022 1023

Quadruple precision (128 bits) 112 15 −16382 16383

Table 1: IEEE 754 normalized floating-point representation

4.2 Floating-Point Operators

Integer addition (or subtraction) is the simplest arithmetic operator. However, in floating-
point arithmetic, addition suffers from a high control overhead, which requires several
steps to be performed:

• First, the difference of the exponents is computed.

• Depending on the difference of the exponents, one among two computing paths may
be selected [7]: The close path is for situations where a massive cancellation (more
than 1 bit) may occur, or effective subtractions of inputs with exponents that differ
by at most 1. The far path is for distant exponents, where their difference is at least
2 bits. The following computations may slightly vary depending on the choosen
path.

• The addition of the mantissas is performed.

• Then, rounding is performed on the mantissa, depending on the dropped bits and
the rounding mode (to zero, to nearest, etc.) selected.

• Special cases are then handled (zero, infinity, subnormal results), and the output
sign.

• Then, mantissa is shifted so it represents a value in [1, 2[.

• And the exponent is modified depending on the number of shifts.

More control can be needed, depending on the implementation of the FlP adder and the
specificities of the FlP representation. For instance, management of the implicit 1 implies
to add 1s to the mantissas before addition, and an important overhead can be dedicated
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to exception handling. For a figure illustrating the FlP addition principle and more details
on its hardware implementation, the reader can refer to Figure 8.13 of [7] and the related
chapter of the book.

For cost, delay, and power comparison, Table 2 shows the performance of 32-bit and
64-bit FlP addition compared with 32-bit and 64-bit integer addition, synthesized using
Synopsys Design Compiler targeting 28nm FDSOI with a 200 MHz clock. Power is esti-
mated using 10, 000 uniform input samples. FlP addition power was estimated activating
in an equivalent way the close and far paths 50% of the time. These results clearly show

Area Total Critical Power-Delay
(µm2) power (mW) path (ns) Product (fJ)

32-bit
653 4.39E−4 2.42 1.06E−3

float

64-bit
1453 1.12E−3 4.02 4.50E−3

float

32-bit
189 3.66E−5 1.06 3.88E−5

int

64-bit
373 7.14E−5 2.10 1.50E−4

int

Table 2: Cost, delay, and power of FlP addition vs. integer addition

the overhead of floating-point addition. For 32-bit, the FlP addition is 3.5× larger, 2.3×
slower and consumes 27× more energy than integer addition. For 64-bit, the FlP addition
is 3.9× larger, 1.9× slower and consumes 30× more energy. The overhead seems to be
roughly linear with the size of the operator, and the impact of numbers representation is
highly impacting performance. However, it is showed later in this chapter that this high
difference reduces with the bitwidth of the operands.

FlP multiplication is less complicated than addition as only a low control overhead
is necessary to perform the operation. Input mantissas are multiplied using a classical
integer multiplier, while exponents are simply added. At worse, a final +1 on the exponent
can be needed, depending on the result of the mantissas multiplication and the related
rounding and normalization required. For a figure illustrating the basic architecture of a
FlP multiplier, the reader can refer to Figure 8.14 of [7] and the related chapter of the
book.

Obviously, all classical hardware overheads needed by FlP representation are again nec-
essary (rounding logic, normalization, management of particular cases), but the overhead
is less than for addition. Table 3 shows the difference between 32-bit and 64-bit floating-
point multiplication and 32-bit and 64-bit fixed-width integer multiplication, with the
same experimental setup than discussed before for the addition.

A first observation on the area shows that the integer multiplier is 48% larger than
the FlP version for 32 bits, and 37% larger for 64 bits. This difference is due to the
smaller size of the integer multiplier in the FlP multiplier, since it is limited to the
size of the mantissa (24 bits for 32-bit version and 53 bits for 64-bit version). Despite
the management of the exponent, the overhead is not large enough to produce a larger
operator. However, the 32-bit FlP multiplication energy is 11× higher than for the integer
version, while 64-bit version consumes even 37× more energy. This can be justified by the
higher activity of the logic in the FlP operator due the management of the exponent and
special cases. It is interesting to note that the difference of energy consumption between
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Area Total Critical Power-Delay
(µm2) power (mW) path (ns) Product (fJ)

32-bit
1543 8.94E−4 2.09 1.87E−3

float

64-bit
6464 6.56E−3 4.70 3.08E−2

float

32-bit
2289 6.53E−5 2.38 1.55E−4

int

64-bit
8841 1.84E−4 4.52 8.31E−4

int

Table 3: Cost, delay, and power of floating-point multiplication vs. integer multiplication

addition and multiplication is much more important for integer operators than for FlP.
As an example, for 32-bit, integer multiplication consumes 4.7× more energy than integer
addition, while this factor is only 1.4× for 32-bit FlP multiplier compared to 32-bit FlP
adder. Therefore, using multiplication in FlP computing is relatively less penalizing than
for integer multiplication, typically used in fixed-point arithmetic.

4.3 Low-Precision Floating-Point Arithmetic

There is a growing interest in the use of reduced-precision arithmetic, exacerbated by the
recent interest in artificial intelligence, especially with deep learning. CPU, GPU and
TPU architectures already provide interesting, but limited, reduced-precision capabili-
ties. 8-bit integer, 16-bit floating point (e.g., float16, bfloat16) are typical examples
of low-precision computations included in the architectures. Through the use of hard-
ware acceleration on FPGA architectures, and thanks to their reconfiguration features,
arithmetic customisation can be further extended and almost any number format and
word-length can be leveraged in the accelerator. All these examples illustrate the in-
terest of customizable floating-point architectures. Indeed, combining the ease of use of
floating-point representation associated to low-energy benefits of small bit-width, make
reduced-precision floating-point arithmetic very promising.

There are several possible opportunities to relax accuracy in floating-point arithmetic
to increase performance and save power and hardware cost. Of course, the main technique
is to reduce the size of the mantissa and exponent (i.e., smaller operand bit-width or word-
length). With a mantissa normalized in [1, 2[, reducing the word-length corresponds to
pruning the LSBs, which comes with no overhead, except if faithful rounding is performed.
For the exponent, the transformation can be more complicated if it is represented with
a bias. Indeed, if E is the exponent width, an implicit bias of 2E − 1 applies to the
exponent in classical exponent representation. Therefore, reducing the exponent to a
width E′ means that a new bias must be applied. The original exponent must be added
2E

′ − 2E (< 0) before pruning the MSBs, implying hardware overhead at conversion.

The original exponent must represent a value in
[
−2E

′−1 + 1, 2E
′−1
]

to avoid overflow.

In practice, it is better to keep a constant exponent width to avoid useless overhead and
conversion overflows, which would have a huge impact on the quality of the computations.

A second way to improve computation at reduced precision is to play with the implicit
bias of the exponent. Indeed, increasing the exponent width increases the dynamic towards
infinity, but also the accuracy towards zero. Thus, if the absolute maximum values to
be represented are known, the bias can be chosen so it is just large enough to represent
these values. This way, the exponent gives more accuracy to very small values, increasing
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accuracy. However, using a custom bias means that the arithmetical operators (addition
and multiplication) must consider this bias in the computation of resulting exponent, and
the optimal bias along computation may diverge to −∞. To avoid this, if the original
2E − 1 exponent bias is kept, exponent bias can be simulated by biasing the exponents
of the inputs of each or some computations using shifting. For the addition, biasing both
inputs adding 2Ein to the exponent implies that the output will also be represented biased
by 2Ein . For the multiplication, the output will be biased by 2Ein+1. Keeping an implicit
track of the bias along computations allows to know any algorithm output bias, and to
perform a final rescaling of the outputs.

Finally, accuracy can be relaxed in the integer operators composing the considered
FlP operators, e.g., the integer adder adding the mantissas in FlP addition or the integer
multiplier in the FlP multiplication. Indeed, they can be replaced by approximate adders
and multipliers as described in other chapters of this book, to improve performance while
relaxing accuracy. However, as most of the cost relies in control hardware, the impact
on accuracy would be strong for a very small cost or performance benefit. The same ap-
proximation can be applied on the exponent management, but the impact of approximate
arithmetic would be too high on the accuracy and this is therefore strongly unadvised.

4.4 Reduced-Precision Floating-Point Libraries

The past years have hosted the creation of several customizable floating-point libraries.
As part of the synthesizable C++ libraries AC Datatypes [8], Mentor Graphics proposes
the custom floating-point class ac float. Based on the fixed-point library ac fixed,
ac float allows for light floating-point computation, thanks to simple operators. The
mantissa in the representation is not normalized and has no implicit 1. This allows for easy
management of subnormals, but induces a potential loss of accuracy in computations. The
mantissa is represented in signed two’s complement, so the sign information is contained
in the mantissa instead of using an extra sign bit. However, there is no benefit to this
choice since two’s complement represents a loss of 1 bit of precision compared to unsigned
representation. The choice of two’s complement representation on the mantissa also turns
comparison operator more complex. Moreover, many cases are not handled such as zero
or infinity. ac float also supports custom exponent bias, but managing the exponent
bias comes with an overhead.

FloPoCo (for Floating-Point Cores, but not only) is a generator of arithmetic cores [9].
Also based on C++, it has its own synthesis engine and directly returns VHDL. More
than simple arithmetic operators, it is able to generate optimized floating-point comput-
ing cores performing complex arithmetic expressions. In this Section, we will only get
interested in FloPoCo’s custom floating-point addition and multiplication. The main
difference of FloPoCo’s floating-point representation is the extra 2-bit exception field
transported in data. Like for ct float subnormals are not handled by FloPoCo. Un-
like ac float both ct float and FloPoCo do not support custom exponent bias.

Other alternatives such as VFLOAT [10, 11] or OptiFEX [12] do exist but are not
taken into account in the study led in this chapter. VFLOATproposes IEEE 754-2008
compliant customizable computing cores for existing FPGA. OptiFEX generates floating-
point computing cores targeting FPGA like FloPoCo.

ct float [13]1 offers a balance between computational safety and simplicity. Inspired
by ac float, it is provided as C++ template for High-Level Synthesis (HLS), compatible
with Mentor Graphics CatapultHLS and Xilinx Vivado HLS. As ct float will be used
for comparison with fixed-point representation in the rest of this chapter, we provide
below more details on the library.

1https://gitlab.inria.fr/sentieys/ctfloat
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The declaration of an instance of ct float requires three template parameters: the
exponent width E, the mantissa width M , and the rounding mode. The mantissa also
includes a sign bit and is represented as sign plus absolute value, as in standard FlP. The
total number of bits in memory is therefore equal to E + M . Currently, two rounding
modes are supported: CT RN rounding to nearest with halfway-to-even tie-breaking rule,
and CT RZ rounding towards 0, or truncation. ct float representation and arithmetic
operators were created to remain simple and energy efficient, thanks to the combination
of several implementation choices. ct float mantissa is represented in [1, 2[ with an
implicit 1. However, subnormal numbers are not handled, which implies that a certain
range of numbers are not representable around 0. The exponent is represented in a biased
representation. The bias is set at the center of the exponent range, similar to the IEEE
754 representation. Using biased representation instead of two’s-complement results in
simpler exponent value comparisons, which are omnipresent in arithmetic operators. In
variants of the ct float library, the bias can also be customized.

The library provides a rich set of synthesizable operator overloading: unary operators
(unary −, !, ++, −−), relational operators (<, >, <=, >=, ==, ! =), binary operators
(+, + =, − − =, ∗, ∗=, <<, <<=, >>, >>=), and assignment operator from/to another
instance of ct float. It also provides non-synthesizable operator overloading features,
such as conversion from/to C++ native datatypes (float, double), and output operator <<
for easy display and writing in files. Other built-in functions allow easy manipulation of
floating-point values, such as functions to get information about the extreme representable
values for a given floating-point representation, to test if a given value is representable,
etc.

An example (not including all statements and declarations) of the use of ct float is
given below.

ct_float<7, 9, CT_RN> h = 1.046978e-3;

ct_float<7, 9, CT_RN> x, y;

x = -0.02266398;

y = x * y + 0.55;

cout << y << endl;

This example can be simulated and synthesized to hardware using HLS. In the example, all
variables have the same representation (i.e., E = 7 and M = 9, rounding mode is CT RN).
It is also possible to deal with various representations. If the inputs are on (E1,M1) and
(E2,M2) representation, the output representation (Eo,Mo) is given by:

Eo = max (E1, E2)

Mo = max (M1,M2) . (13)

Moreover, as subnormals are not representable by ct float, the output is always satu-
rated to the smallest absolute possible representable value with the same sign. Towards
infinity, the operators do not under/overflow. Saturation to the highest absolute repre-
sentable value of the same sign is returned.

Table 4 recapitulates the different known properties of ac float, ct float and
FloPoCo floating-point representation. In this table, the number of additional bits in
the representation is taking for reference a representation with implicit 1 in the mantissa
and with one bit of sign in the representation. For an equal general accuracy, ac float
needs one more bit on the mantissa than ct float and FloPoCo. However, with its
2-bit exception field, FloPoCo has the representation requiring the largest width, but
also the highest computing reliability.

Then, the hardware performance comparison process for ac float, ct float and
FloPoCo is as follows. All operators are characterized for a 28nm FDSOI @ 1.0V, 25°C
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ac float ct float FloPoCo

Custom exp.
yes no(yes) no

bias

Mantissa
no yes yes

Implicit 1

Zero and inf.
no no yes

exception flags

Zero and inf.
no yes no

internal handling

Subnormal
no no yes

exception flag

Subnormal
yes no no

internal handling

Additional bits
+1 +0 +2

in representation

Table 4: Main properties of the custom floating-point libraries ac float, ct float and
FloPoCo

ASIC library. All designs are synthesized and estimated with a clock of 200 MHz. For
power analysis, the random inputs generated for adder/subtracter characterization are
ensuring an activation of the close path for at least 50% of the computations. However,
the benchmark generated by FloPoCo does not insure any proportion of activation of
the close path, so the dynamic power could be underestimated. Moreover, FloPoCo’s
benchmark does not consider any input and output data registers, whereas ac float and
ct float, synthesized with HLS, do. This may represent about 5 to 10% underestima-
tion in the total power for FloPoCo operators, which has to be kept in mind for the
analysis of results. All operators are generated so they execute in 1 cycle. It may not be
the most efficient implementation because of possible glitches, but it is a good starting
point for a fair comparison.

For this comparative study, half-precision (E = 5, M = 11) and single-precision
(E = 8, M = 24) floating-point representations are considered. Results for 16-bit (resp.
32-bit) addition/subtraction (resp. multiplication) are given in Tables 5, 7, 6 and 8. The
two last lines of the tables refer to the relative performance of ct float vs. ac float
(resp. FloPoCo) (e.g., ct float area is 2.15% higher than ac float).

The main conclusion is that the three custom floating-point libraries provide results
in the same order of magnitude. For 16-bit addition/subtraction, ct float consumes
15% more energy than both ac float and FloPoCo, despite an area being equivalent
to ac float and 12% smaller than FloPoCo. The fastest 16-bit adder/subtracter is
ac float, followed by ct float, which is 19% slower but 27% faster than FloPoCo.
All metrics are slightly in favour of ac float for 16-bit addition/subtraction. For 16-bit
multiplication, FloPoCo’s multiplier is the smallest and with the lowest energy con-
sumption. However, ct float is 25% faster but consumes 32% more energy.

32-bit addition/subtraction gives similar energy for ac float, ct float and FloPoCo.
FloPoCo is the slowest operator, ct float being 27% faster. The energy of 32-bit multi-
plication is strongly in favour of ct float, saving more than 45% more energy than both
ac float and FloPoCo. ct float is 13% smaller than ac float and 49% smaller
than FloPoCo. However, ac float is 5% faster.
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Area (µm2)
Critical Total Energy per

path (ns) power (mW) operation (pJ)

ac float 312 1.44 1.84E−1 9.07E−1

ct float 318 1.72 2.13E−1 1.05

FloPoCo 361 2.36 1.84E−1 9.06E−1

ct float/ac float +2.15% +19.4% +15.4% +15.7%

ct float/FloPoCo -11.8% -27.0% +15.7% +15.8%

Table 5: Comparative results for 16-bit FlP addition/subtraction with Fclk = 200MHz

Area (µm2)
Critical Total Energy per

path (ns) power (mW) operation (pJ)

ac float 488 1.18 2.15E−1 1.05

ct float 389 1.13 1.76E−1 8.59E−1

FloPoCo 361 1.52 1.34E−1 6.50E−1

ct float/ac float -20.4% -4.24% -18.2% -18.2%

ct float/FloPoCo +7.68% -25.6% +31.7% +32.1%

Table 6: Comparative results for 16-bit FlP multiplication with Fclk = 200MHz

As a conclusion, ac float, ct float and FloPoCo addition/subtraction and mul-
tiplication provide similar results. Though they all have different features (implicit 1 or
not, particular cases management, etc.), they all are quite close in terms of performance.
In the following section, ct float alone is then used as a reference for the comparison
with fixed-point arithmetic.

5 Comparison between fixed-point and custom floating-
point

This section draws a comparison between customized fixed-point and floating-point arith-
metic. Section 5.1 compares FxP and FlP in terms of area, delay, and energy at the
operator level. Then, Section 5.2 compares the two number representations in the context
of their use in applications, thus considering the errors due to low-precision computations.
One conclusion is that the choice between FxP and FlP is not obvious and depends on
the application considered. It is shown that, in some cases, low-precision floating-point
arithmetic can be the most effective, providing some benefits over the classical fixed-point
choice for energy-constrained applications.

5.1 Operator-level comparison

This section compares FxP and FlP operators in terms of area, delay, and energy, and
does not consider computing errors at the operator level. Indeed, floating-point error mag-
nitude is related to data values. Low-amplitude data have low error magnitude, whereas
high amplitude data have much higher error magnitude. Oppositely, fixed-point has a
very homogeneous error magnitude, uniformly distributed between fixed bounds. There-
fore, its relative error depends on the amplitude of the represented data. It is low for high
amplitude data and high for low amplitude data. This duality makes these two paradigms
impossible to be atomically compared using the same error metric. The only interesting
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Area (µm2)
Critical Total Energy per

path (ns) power (mW) operation (pJ)

ac float 678 2.49 4.46E−1 2.21

ct float 720 2.84 4.86E−1 2.41

FloPoCo 772 4.10 5.05E−1 2.51

ct float/ac float +6.06% +14.1% +8.92% +9.12%

ct float/FloPoCo -6.85% -30.8% -3.69% -4.15%

Table 7: Comparative results for 32-bit FlP addition/subtraction with Fclk = 200MHz

Area (µm2)
Critical Total Energy per

path (ns) power (mW) operation (pJ)

ac float 1, 689 2.19 1.02 5.03

ct float 1, 469 2.30 5.84E−1 2.70

FloPoCo 2, 890 3.20 1.03 5.07

ct float/ac float -13.0% +5.02% -42.8% -46.3%

ct float/FloPoCo -49.2% -28.2% -43.3% -46.8%

Table 8: Comparative results for 32-bit FlP multiplication with Fclk = 200MHz

error comparison which can be performed is to compare the error behaviour inside the
same application, which is reported in Section 5.2 on FFT and K-means clustering.

The study in Section 5 uses the ct float library for custom floating-point and
ac fixed datatypes. A 100 MHz clock is set for synthesis and power estimation. All
the other parameters are the same as for the previous section.

In this section, 8-, 10-, 12-, 14- and 16-bit operators are compared. For each of these
bit-widths, several versions of the floating-point operators are estimated with different
exponent widths and compared with fixed-point. 25.103 uniformly distributed inputs
are used for each operator characterization. For the floating-point adder, inputs are
distributed such that the close path, which has the highest energy by nature, is activated
25% of the time. Adders and multipliers are all tested in their fixed-width version, meaning
their number of input and output bits are the same. The output is truncated.

Figure 4 (resp. Figure 5) shows the area, delay and energy of adders (resp. multipliers)
for different bit-widths, relative to the corresponding fixed-point operator. FlPN (E) rep-
resents N -bit floating-point with E bits for exponent. As discussed before in this chapter,
the floating-point adder shows an important overhead compared to fixed-point. For any
configuration, area and delay are around 3× higher for floating-point. As a consequence,
the higher complexity of the floating-point adder leads to 5× to 12× more energy per
operation.

Results for the multipliers are very different. Floating-point multipliers are 2-3×
smaller than fixed-point. The control part of floating-point multiplier being less complex
than for adder and, as multiplication is performed only on the mantissa, the area gets
smaller. Timing is also slightly better for floating-point, but still constrained by operand
shifts during computations. These shifts also significantly impact energy per operation,
especially for large mantissas, which results in an overhead of 2× to 10× on the energy
per operation for floating-point multiplication.

However, it must be kept in mind that, when using fixed-point numbers in an applica-
tion, shifting is often needed at many steps during execution to align the number formats.
The cost of shifting in the case of FxP is not considered in the results presented here,
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Figure 4: Relative area, delay and energy-per-operation between fixed-point and floating-
point of adders for different bit-widths
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Figure 5: Relative area, delay and energy-per-operation between fixed-point and floating-
point of multipliers for different bit-widths

whereas it is already present in the case of floating-point. Thus, the advantage of fixed-
point highlighted by Figures 4 and 5 is expected to be tempered when full applications
ae considered. This is the main objective of the next section.

5.2 Application-level comparison

In this section, floating-point and fixed-point operators are compared in the context of
their use in applications. Indeed, as stated below, they have very different error nature
and thus their error can not be fairly compared when considering only a single operation.
Both number representations are compared first using the K-Means clustering algorithm
(also in [13]) and then on the Fast Fourier Transform (FFT).

5.2.1 Results on K-Means clustering

This section first describes the K-means clustering algorithm before to provide compara-
tive results between FxP and FlP.

K-Means clustering principle, algorithm and experimental setup K-
means clustering is a well-known method for vector quantization, which is mainly used
in data mining, image classification or voice identification. It consists in organizing a
multidimensional space into a given number of clusters, each being totally defined by its
centroid. A given vector in the space belongs to the cluster in which it is nearest from
the centroid. The clustering is optimal when the sum of the distances of all points to the
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centroids of the cluster they belong to, is minimal, which corresponds to finding the set
of clusters S = {Si}i∈[0,k−1] satisfying

argmin
S

k∑
i=1

∑
x∈Si
‖x− µi‖2 , (14)

where µi is the centroid of cluster Si. Finding the optimal centroids position of a vector set
is NP-hard. However, some iterative algorithms find good approximations of the optimal
centroids by an estimation-maximization process, with a linear complexity (linear with
the number of clusters, number of data to process, number of dimensions, and number
of iterations). Lloyd’s iterative algorithm [14] is used in our case study. It is applied
to bidimensional sets of vectors to ease display and interpretation of the results. From
now, we only refer to Lloyd’s algorithm in two dimensions. Figure 6 shows results of
K-Means on a random set of input vectors, obtained using double-precision floating-point
computations with a very restrictive stopping condition; these values are then considered
as the reference golden outputs.
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Figure 6: 2-D K-Means clustering golden output example, obtained using double-precision
(64-bit) floating-point

The algorithm consists of three main steps:

1. Initialization of the centroids.

2. Data labelling.

3. Centroid position update.

Steps 2 and 3 are iterated until a stopping condition is met. In our case, the main stopping
condition is when the difference of the sums of all distances from data points to their
cluster’s centroid between two iterations is less than a given threshold. A second stopping
condition is the maximum number of iterations, required to avoid the algorithm getting
stuck when the computations are too approximated to converge. The detailed algorithm
for one dimension is given by Algorithm 1. Inputs are represented by the vector data of
size Ndata, output centroids by the vector c of size k. The accuracy target for stopping
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condition is defined by acc target and the maximum allowed number of iterations by
max iter. In our study, we use several values for acc target, and max iter is set to 150,

Algorithm 1 K-Means Clustering algorithm in one dimension

Require: k ≤ Ndata

err ← +∞
cpt← 0
c← init centroids(data)
do . Main loop

old err ← err
err ← 0
c tmp[0 : k − 1]← 0
min distance← +∞
for d ∈ {0 : Ndata − 1} do

min distance← +∞
for i ∈ {0 : k − 1} do . Data labelling

distance← distance comp(data[d], c[i])
if distance < min distance then

min distance← distance
labels[d]← i

end if
end for
c tmp[labels[d]]← c tmp[labels[d]] + data[d]
counts[labels[d]]← counts[labels[d]] + 1
err ← err +min distance

end for
for i ∈ {0 : k − 1} do . Centroids position update

if counts[i] 6= 0 then
c[i]← c tmp[i]/counts[i]

else
c[i]← c tmp[i]

end if
end for
cpt← cpt+ 1

while (|err − old err| > acc target) ∨ (cpt < max iter)

which is never reached in practice.
The impact of fixed-point and floating-point arithmetic on performance and accuracy

is evaluated considering the distance computation function distance comp, defined by

d← (x− y)× (x− y). (15)

In the 2D case, the distance computation becomes

d← (x0 − y0)× (x0 − y0) + (x1 − y1)× (x1 − y1), (16)

which is equivalent to 1 addition, 2 subtractions, and 2 multiplications. However, as dis-
tance computation is cumulative on each dimension, the hardware implementation relies
only on 1 adder (accumulation), 1 subtracter, and 1 multiplier.
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The experimental setup is divided into two parts: accuracy evaluation and cost/per-
formance/energy estimation. Accuracy estimation is performed on 20 data sets composed
of 15.103 bidimensional data samples, all generated in a square delimited by {±

√
2,±
√

2},
using Gaussian distributions with random covariance matrices around 15 random mean
(centroid) points. Several accuracy targets are used to set the stopping condition: 10−2,
10−3, 10−4. As stated, the reference for accuracy estimation is IEEE-754 double-precision
floating-point (Fig. 6). The error metrics for the accuracy estimation are: (i) the Mean
Square Error of the resulting cluster Centroids (CMSE), and (ii) the classification Error
Rate (ER), which is defined as the proportion of points not being tagged by the right
cluster identifier. The lower the CMSE, the better the estimated position of centroids
compared to golden output. Energy estimation is performed using the first of these 20
data sets, limited to 20.103 iterations of distance computation for time and memory pur-
poses. As data sets were generated around 15 points, the number of clusters researched is
also set to 15. Area, latency of execution and energy are estimated using the same library
and tools as in the previous section. Iterative distance computation is specified in C++
and HLS is used to generate the hardware under evaluation.

Experimental results on K-Means clustering Section 5.1 showed that FxP
additions and multiplications consume less energy than their FlP counterparts for the
same bit-width. However, these results do not yet consider the impact of the number
formats on accuracy. This section details the impact of accuracy on the 2D K-means
clustering algorithm.

A first qualitative study on the K-Means clustering showed that, to get correct re-
sults (no artefacts), FlP data must have a minimal exponent width of 5 bits in distance
computation (smaller exponents are too inaccurate in low distance computations) and
fixed-point data a minimal number of 3 bits for its integer part. Thus, all the following
results use these two configurations and vary the mantissa and fractional part for FlP and
FxP, respectively. The total energy is defined as

EK-means = Edc × (Nit +Ncycles − 1)×Ndata, (17)

where Edc is the energy per distance computation estimated as in the previous section, Nit

the average number of iterations necessary to reach K-means stopping condition, Ncycles

the number of pipeline stages in the distance computation core, as determined by HLS,
and Ndata the number of processed data per iteration.

Results for 8-bit and 16-bit FlP and FxP arithmetic operators are detailed in Table 9,
with a stopping condition set to 10−4. For the 8-bit version of the algorithm, several

ct float8(5) ct float16(5) ac fixed8(3) ac fixed16(3)

Area (µm2) 392.3 1148 180.7 575.1

Ncycles 3 3 2 2

Edc (nJ) 1.23E−4 5.99E−4 5.03E−5 3.25E−4

Nit 8.35 59.3 14.9 65.1

EK-means (nJ) 38.24 1100 23.90 644.34

CMSE 1.75E−3 3.03E−7 1.85E−2 3.28E−7

Error Rate 35.1 % 2.94 % 62.3 % 0.643 %

Table 9: 8- and 16-bit area, energy and accuracy for K-Means clustering experiment

interesting results can be highlighted. First, the custom FlP version is 2× larger than FxP
version, and FlP distance computation consumes 2.44× more energy than FxP. However,
the FlP version of K-means converges in 8.35 cycles on average, against 14.9 cycles for
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FxP. This results in making the floating-point version for the whole K-means algorithm
consuming only 1.6× more energy than fixed-point. Moreover, the FlP version provides a
huge advantage in terms of accuracy of results. Indeed, CMSE is 10× better for FlP and
ER is 1.8× better. Figures 7a and 7b show the output for floating-point and fixed-point
8-bit computations, applied on the same inputs as the golden output of Fig. 6. A very
neat stair-effect on data labelling is clearly visible, which is due to the high quantization
levels of the 8-bit representation. However, in the floating-point version, the positions of
clusters’ centroid is very similar to the reference, which is not the case for fixed-point.

For the 16-bit version, all results are in favor of fixed-point, floating-point being twice
bigger and consuming 1.7× more energy. FxP also provides slightly better error results
(2.9% for ER vs. 0.6%). Figures 7c and 7d show output results for 16-bit floating-point
and fixed-point. Both are very similar and nearly equivalent to the reference, which
reflects the high success rate of clustering.
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Figure 7: K-Means clustering outputs for 8- and 16-bit floating-point and fixed-point, with
accuracy target of 10−4

The competitiveness of FlP over FxP on small bit-widths, and the higher efficiency
of FxP on larger bit-widths, are confirmed by Fig. 8 depicting energy vs. classification
error rate. Indeed, for different accuracy targets (10−{2,3,4}), only 8-bit FlP provides
higher accuracy for a comparable energy cost, whereas 10- to 16-bit FxP versions reach
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an accuracy equivalent to FlP with much less energy. The stopping condition does not
seem to have a major impact on the relative performance.
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Figure 8: Energy vs. classification error rate for K-Means clustering with stopping conditions
of 10−4 (top), 10−3 (center) and 10−2 (bottom)

5.2.2 Results on Fast Fourier Transform

In the previous section, a comparative study between custom FxP and FlP was performed
on K-means, showing that, contrary to what could be expected, floating-point can be very
competitive for small bit-widths. In this section, a similar study is performed on the Fast
Fourier Transform (FFT).

The implementation of the FFT is Radix-2 Decimation-in-Time (DIT), which is the
most common form of the Cooley-Tukey algorithm [15]. For the hardware estimation,
only the kernel computations of the FFT are considered, i.e.,

Xk = Ek + e−
2πi
N kOk,

Xk+N
2

= Ek − e−
2πi
N kOk, (18)

equivalent to 6 additions/subtractions and 4 multiplications. For each version of the
FFT, all constants and variables are represented with the same parameters (same bit-
width, same integer part width for FxP, same exponent width for FlP). The absence of
over/underflow for the FxP version is ensured. For the FlP version, the repartition of the
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exponent and mantissa widths is chosen for giving the smallest error after an exhaustive
search. For hardware performance estimation, only FFT-16 (FFT on N = 16 samples)
was characterized. The error metric is the Mean Square Error (MSE) at the output
compared to double-precision floating-point.
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Figure 9: Fixed-point and floating-point energy per operation (pJ) vs MSE for FFT-16 for
different bit-widths

Energy per operation (pJ) related to error (MSE in dB) for FFT-16 is depicted in
Fig. 9. The error-energy trade-off is better when reaching the bottom-left corner. For
each curve, each point going from the top left to the bottom right represents an increase
of two digits in the bit-width.

For this application, the advantage is clearly in favour of fixed-point. Indeed, for any
identical bit-width, FxP outperforms FlP in both energy and accuracy. As already showed
in Section 5.1, FlP operations, and additions in particular, are much more expensive than
FxP. However, FFT output quality is not as dependent on accuracy on a dynamic as
large as for K-means clustering. This makes FlP even less accurate than FxP at equal
bit-width, because of a smaller significant part, mantissa for floating-point, all bits for
fixed-point. Indeed, in the experiment, the exponent takes 7 bits of the total width, which
are not assigned to more accuracy on the significant part. Another interesting point is
the data points presenting an energy peak, which are occurring for 12-, 18- and 28-bit
floating-point and 22-bit fixed-point. These peaks are most probably due to differences of
implementation in the HLS process. E.g, larger adder or multiplier structures may have
been selected by the tool to meet constraints of delays, leading to energy overhead.

6 Conclusion

Computing with low-precision arithmetic is an efficient way to maximize performance-per-
Watt [16]. Customization is then ruled by finding a trade-off between reducing precision
to improve energy efficiency and respecting constraints on application output quality.
This chapter mainly focused on floating-point and fixed-point number representations,
presented their principle and some opportunities for arithmetic customization on both
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formats, and provided a comparison between their cost, performance and energy, as well
as their impact on accuracy during computations.

Comparing floating-point and fixed-point arithmetic at the operator level gives a clear
advantage in area, delay and energy efficiency for fixed-point. However, when considering
real applications, e.g., the study on K-means clustering algorithm in this chapter, custom
floating-point arithmetic can provide interesting features, and tends to show a better
energy/accuracy trade-off for very small bit-widths (8 bits in this study). However, the
advantage come back to fixed-point when the considered application is an FFT (same
is true for digital filters or most classical signal and image processing algorithms). One
explanation is that applications requiring both large dynamic range and high accuracy,
are more tolerant to low precision when the floating-point representation is used. An
interesting follow-up of this study would be to consider larger FFT, which would lead to
larger dynamic range, and to see how the MSE vs. energy-per-operation would scale for
both representations.

Another important aspect of the study is from a hardware-design point of view.
Floating-point is very complex compared to fixed-point arithmetic for large bit-widths,
but the overhead is shrinking when lowering precision. Moreover, the cost of multiplica-
tion can be considered at the advantage of floats. Also, the overhead of scaling instructions
required to be added to deal with fixed-point data types is often not studied. It is an
interesting perspective to include this overhead in the choice of the right representation.

Hence, in the aim of designing general-purpose low-energy processors, low-precision
floating-point arithmetic can provide major advantages compared to classical integer op-
erators embedded in microcontrollers, with a better compromise between ease of program-
ming, energy efficiency and computing accuracy. In the context of inference and training
of deep neural networks, custom float is also a serious competitor. This is one of the
objectives of Chapter 15 presenting opportunities for Approximations in Deep Learning.
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