

Webinaire « Comment insérer de l'azote dans les systèmes de culture » 27 septembre 2021

Quelle valeur fertilisante azotée des produits organiques ?

Florent Levavasseur, Sabine Houot INRAE UMR ECOSYS florent.levavasseur@inrae.fr

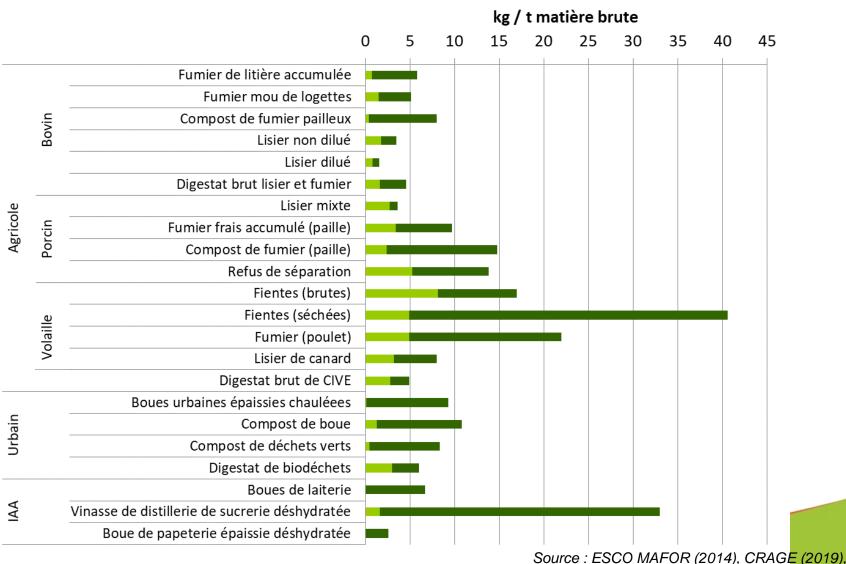
1

Les produis résiduaires organiques (PRO)

- Origine diverse des Produits Résiduaires Organiques (PRO) :
 - Agricole : effluents d'élevage (fumier, lisier, fientes...), biomasse végétale (hors résidus de récolte)
 - Urbaine : déchets verts, déchets alimentaires, boue STEP...
 - Industrielle : vinasse de sucrerie, boues de papeterie, etc.
- Diversité des traitements possibles : simple stockage, séchage, séparation de phase, compostage, méthanisation...
- Effluents d'élevage = plus gros gisement à l'échelle nationale, mais importance locale des autres gisements
- Caractéristique commune : souvent peu concentrés en éléments nutritifs et une partie de l'azote sous forme organique qui devra être minéralisée avant d'être absorbée par la plante

Azote disponible des PRO

 Azote disponible = azote minéral (N-NH₄) + azote organique rapidement minéralisable

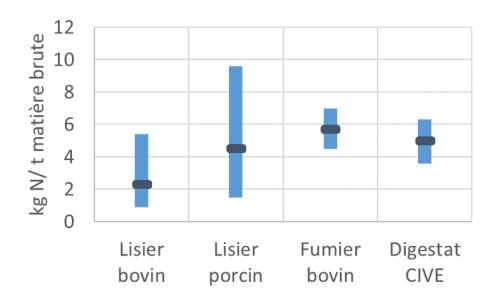

- Minéralisation de l'azote organique par les micro-organismes du sol
 - Dépend des conditions de température et d'humidité (qui ↗)
 - Des caractéristiques du PRO (stabilité de la MO et rapport C_{org}/N_{org})

	MO facilement dégradable	MO difficilement dégradable	
C _{org} /N _{org} bas	+ minéralisation N (fourniture de N)	Faible	
C _{org} /N _{org} élevé	+ immobilisation N (prélèvement N minéral du sol par les microorganismes)	minéralisation ou immobilisation	

- Mesure de la minéralisation du N organique :
 - Mesurable au champ (long, coûteux, dépendant des conditions pédoclimatiques et de systèmes de culture...)
 - Approche du potentiel de minéralisation au laboratoire en conditions contrôlées (standardisation)
- Forte variabilité de l'azote disponible des PRO (diapos suivantes)

Forte variabilité des teneurs en N minéral et N organique entre types de PRO

■ N-NH4

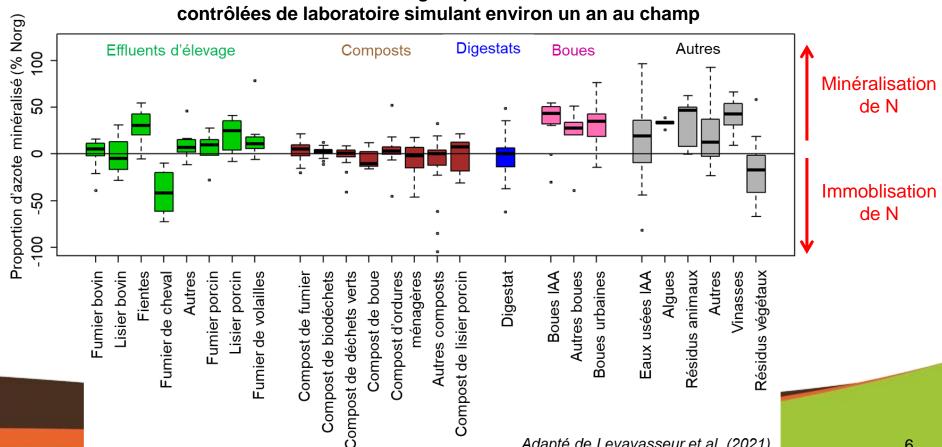

■ N organique

données internes INRAE

Forte variabilité des teneurs en N minéral et N organique au sein de chaque type de PRO

 Pour un même type PRO, variabilité des teneurs en N et de sa forme en fonction des conduites d'élevage, des intrants (compostage, méthanisation), des modalités de stockage / traitement, etc.

Exemple de variabilité de la teneur en N total de quelques PRO


Source : ESCO MAFOR (2014), données internes INRAE

→ Importance de connaître la teneur en N et les formes du N du PRO pour piloter correctement la fertilisation !

Forte variabilité de la minéralisation de l'azote organique des PRO

- Entre PRO: forte immobilisation avec fumier de cheval (-42% N minéralisé) / forte minéralisation de N avec fientes (30% N minéralisé)
- Pour un même PRO (- 50% à + 50% pour digestat)

Minéralisation de l'azote organique des PRO en conditions

Adapté de Levavasseur et al. (2021)

Quelques exemples d'apport à dose agronomique classique

 Apport N disponible dépend des doses, des teneurs en N minéral et organique, de la minéralisation du N organique

PRO	Dose classique (t/ha)		N-NH4 (kg/ha)		Minéralisation Norg (%)	N disponible (kg/ha)
Compost de déchets verts	20	167	9	157	-1	8
Fumier de litière accumulée	30	174	22	152	3	26
Boues urbaines épaissies chauléees	10	93	1	92	32	31
Lisier non dilué	40	140	70	70	-1	69
Engrais organique	1	120	0	120	60	72
Fientes (séchées)	5	203	25	178	30	78
Lisier porcin mixte	40	144	108	36	20	115
Digestat brut de CIVE	40	196	112	84	9	120

Effet des traitements

Traitement	Quantité totale de N	Concentration dans le PRO	Forme du N
Compostage	Perte de N (et d'eau, de C)	+ concentré que le produit initial malgré les pertes au compostage (car aussi moins d'eau, de C)	Organique et moins dégradable que dans le produit d'origine
Méthanisation	≈ conservatif	≈ identique au produit initial	Une partie du N minéralisé
Séparation de phase (lisier, digestat)	≈ conservatif	+ N minéral dans le liquide + N organique dans le solide	

⁺ effet du stockage variable (durée, couverture...)

Optimiser l'insertion dans les systèmes pour minimiser les pertes et maximiser leur efficacité

- GO F Froteins
- Azote ammoniacal très sensible à la volatilisation → pollution de l'air et monte de valeur fertilisante :
 - Préférer l'enfouissement, a minima l'épandage au pendillard
 - Eviter les apports avec météo défavorables (température, vent…)
 - Produit liquide moins sensible (infiltration), mais souvent plus concentré en N ammoniacal (ex : digestat, lisier)
 - Phénomènes beaucoup plus importants en sols calcaires

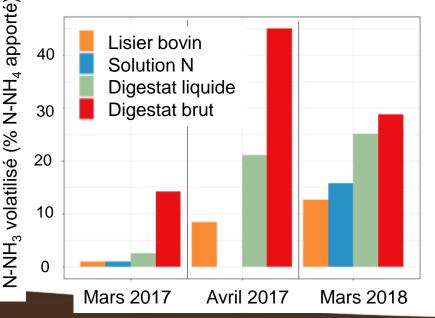


Illustration des pertes N par volat Apport 20 m³/ha de digestat sur orge hiver AB

Buse palette rendement : 35 qx/ha

Pendillard Rendement 43 qx/ha

Optimiser l'insertion dans les systèmes pour minimiser les pertes et maximiser leur efficacité

- Azote ammoniacal (d'origine ou minéralisé) rapidement nitrifié dans le sol
- Nitrates sensibles à la lixiviation : pollution des eaux et perte d'efficacité
- Importance de bien choisir la date d'apport pour les produits apportant beaucoup de N minéral ou à minéralisation rapide
- Besoin du matériel adapté pour épandre au bon moment (ex : sans tonne)

Pertes de N-NO₃ par lixiviation selon la date d'application de lisier bovin (à 170 kg N/ha) sur prairie (Italie)

Adapté de Codruta Maris et al. (2021)

 Perte d'efficacité pour les apports d'automne reflétée dans les KEQ du GREN

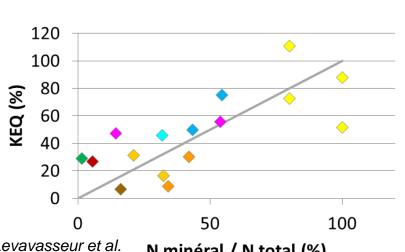
Cultures d'automne : céréales, colza...

Taltaroo a datolililo i oorodioo, oolaalii						
Exemples de types PRO	Typo	Périodes d'apport				
Exemples de types PNO	Туре	Apports automne	Apports printemps			
Fumiers de porcs, fumiers de volailles, lisier de bovins	В	0,20	0,30			
Lisier de porcs et de volailles	С	0,20	0,40			

Abaque GREN Bourgogne

Coefficient d'équivalence engrais

- Coefficient d'équivalence engrais (KEQ) : autre façon d'approcher l'efficacité des PRO en intégrant les conditions d'apports et les pertes associées
- KEQ = dose d'engrais minéral équivalente à un kg de N du PRO en termes d'effet sur le rendement d'une culture
- KEQ obtenu avec des essais au champ en comparant des apports de PRO à différentes doses d'engrais minéral


Essai KEQ

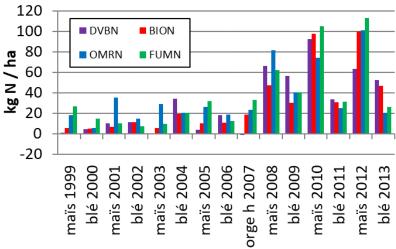
- Abaque existantes (cf. GREN régionaux) à utiliser pour l'établissement des plans de fertilisation
- Forte relation du KEQ avec la proportion de N sous forme minérale dans le PRO

Exemple de KEQ (blé, colza) obtenus pour différents PRO et relation avec la proportion de N du PRO sous forme minérale

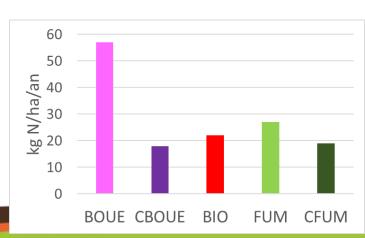
- Lisier bovin automne
- Lisier bovin printemps
- Fumier bovin
- Fumier cheval

- Compost lisier porc
- **Boue STEP**
- Digestat brut élevage
- Digestat brut biodéchets
 - Urine

Apports répétés et effets de long terme


Apports répétés de PRO amendants → augmentation de la matière organique du sol → augmentation de la minéralisation d'azote du sol →

réduction des besoins en engrais N


 QualiAgro: épandage de 3 composts urbains (biodéchets, boue, OMR) et d'un fumier bovin tous les 2 ans (4 t C/ha, soit 20 t/ha à 35 t/ha)

 Colmar: 170 kg N/ha tous les deux ans: boue STEP, compost boue, compost biodéchets (≈ 15 t/ha), fumier bovin, compost fumier (≈ 30 t/ha)

Economie moyenne d'engrais N (2001-2018) à Colmar par rapport au témoin N minéral à rendement identique (adapté de Chen et al., 2021)

Surplus de fourniture N à QualiAgro par rapport au témoin N minéral

Conclusion

- Valeur fertilisante azotée des PRO très variable entre type de PRO et pour un type de PRO donné, dépendante premièrement des teneurs en N minéral, et de la minéralisation du N organique
- Importance de connaître la composition du PRO pour piloter la fertilisation
- Une insertion dans les systèmes à réfléchir pour maximiser leur efficacité (\(\sigma\) volatilisation et lixiviation)
- Autres pertes N (N₂O, NO…) avec un fort impact environnemental mais peu d'effet sur valeur fertilisante
- Une

 ¬ fourniture de N à long terme avec des apports répétés de certains PRO amendants (composts, fumiers...)
- Gisements peuvent être (souvent) limitants si on recherche l'autonomie N
 → d'autres leviers à actionner (légumineuses...)
- D'autres effets à considérer dans le choix d'un PRO (valeur amendante, autres nutriments, contaminants...)

2019-2021

Capitaliser et innover en réseau avec les agriculteurs et leurs partenaires vers un pôle de compétences « protéines » en Bourgogne - Franche-Comté

avec le Fonds européen agricole pour le développement rural (FEADER) L'Europe investit dans les zones rurales.