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Abstract

A design is a collection of distinct points in a given set X , which is assumed to be a
compact subset of Rd , and the mesh-ratio of a design is the ratio of its fill distance to
its separation radius. The uniformity constant of a sequence of nested designs is the
smallest upper bound for the mesh-ratios of the designs. We derive a lower bound on
this uniformity constant and show that a simple greedy construction achieves this lower
bound. We then extend this scheme to allow more flexibility in the design construction.

Keywords: separation radius, packing radius, fill distance, mesh norm, covering
radius, mesh-ratio, quasi-uniform design, greedy algorithm

1. Introduction

Let X be a compact subset of Rd , for some d ≥ 1, with vol(X )> 0.
Let ‖·‖ denote a norm, not necessarily the Euclidean norm ‖·‖2, onRd . The ball of

radius r and center x is B(x,r) = {x′ ∈Rd : ‖x′−x‖ ≤ r}. The volume of the unit ball
B(0,1) is denoted by Vd . If the norm ‖ · ‖ is Euclidean, then Vd = πd/2/Γ(d/2+1).

A collection Xn = {x1, . . . ,xn} of n distinct points in X will be called an n-point
design (in the modern literature on approximation theory, designs are often called “data
sets”, see e.g. [18, 23]). We start with several definitions of well-known characteristics
of designs.

FD, the fill distance (also known as mesh norm, covering radius, dispersion, or
minimax-distance criterion), of the n-point design Xn for X is

h(Xn) = hX (Xn) = sup
x∈X

min
xi∈Xn

‖x−xi‖ , n≥ 1 .

A design X∗n,FD will be called FD-optimal if h∗n = h(X∗n,FD) = minXn∈X h(Xn) . SR, the
separation radius (also called packing radius or maximin-distance criterion), of Xn is

q(Xn) =
1
2

min
xi 6=x j∈Xn

‖xi−x j‖ , n≥ 2 .
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A design X∗n,SR will be called SR-optimal if q∗n = q(X∗n,SR) = maxXn∈X q(Xn) . The
mesh-ratio of Xn for X is

MR(Xn) =MRX (Xn) =
hX (Xn)

q(Xn)
, n≥ 2 .

The mesh-ratio provides a measure of how uniformly points in Xn are distributed
in X , see e.g. [18, p. 573] and [6, p. 129]; it is sometimes called the uniformity
constant of Xn, see [4]. The mesh-ratio is commonly used to assess the stability of
approximations constructed on the base of observations at xi ∈ Xn, see e.g. [18] and
[23, Chapter 12]. According to Guideline 7.10 in [18, p. 579], the best approximation
error with the most stable system is achieved by using quasi-uniform designs (data
sets) with the smallest mesh-ratio. The mesh-ratio is fundamental in estimation of
stability of approximations through the approach involving the Lebesgue constant, see
[4, Th. 1] and [9, Sect. 8.5]. Moreover, the mesh-ratio plays an important role in the
derivation of upper bounds on the quality of kernel approximations in the so-called
‘escape theorems’, when the approximated function is less smooth than the kernel, see
[11, 12] as well as [6, Th. 1, p. 129] and [18, Th. 7.8].

Let X∞ = {x1,x2, . . .} ⊂ X be a sequence of points in X . There is a one-to-
one correspondence between such point sequence X∞ and the sequence {Xn}∞

n=1 of
nested designs Xn = {x1, . . . ,xn}. A sequence {Xn}∞

n=1 of nested designs Xn in a
compact set X ⊂ Rd is called quasi-uniform if there exists a constant b < ∞ such
that MR(Xn) ≤ b for all n. The smallest such b = MR(X∞) is called the uniformity
constant of the corresponding sequence of nested designs {Xn}∞

n=1. Quasi-uniform
sequences of designs with small uniformity constants are the main sources of designs
(point sets) in the meshless (or “mesh-free”) methods of computational mathematics;
see e.g. [6, 18, 23]

A sequence X∗∞ = {x∗1,x∗2, . . .} will be called MR-optimal if its uniformity constant
is minimal:

MR(X∗∞) = min
X∞⊂X

MR(X∞) . (1.1)

It is well known that when X is connected, MR(Xn) ≥ 1 for any n-point design
Xn in X (as the n-balls B(xi,CR(Xn)) must cover X ). One of the main results of
the paper is Theorem 1.1 below, which states that in fact limsupn→∞ MR(Xn) ≥ 2 for
any compact X with positive volume. The proof is rather elementary but the result
does not seem to be known. It implies in particular that the classical greedy packing
algorithm is MR-optimal.

Theorem 1.1. For any sequence of nested designs Xn in a compact set X ⊂Rd with
vol(X )> 0, we have

limsup
n→∞

MR(Xn)≥ 2 .

In particular, MR(X∞)≥ 2 for any X∞ ⊂X .

2



Theorem 1.1 is proved in Section 2. The greedy-packing (or coffee-house) al-
gorithm is presented in Section 3.1; it constructs a sequence X∞ with MR(Xn) ≤ 2
for all n ≥ 2 and hence MR(X∞) = 2. In Section 3.2, we generalize the greedy-
packing algorithm to the construction of other quasi-uniform sequences with bounded
MR(X∞). In Section 3.3 we use the results of Section 3.2 to establish properties of an
implementable version of the greedy-packing algorithm where, at every iteration, the
next design point xn+1 is chosen among a finite set of candidates XN ⊂ X rather
than within the whole X . In Section 3.4 we consider a boundary-phobic version
of greedy packing, which provides designs with worse (larger) mesh-ratio but better
(smaller) fill distance. A connection with two greedy kernel-based constructions (en-
ergy minimization and the P-greedy algorithm) is presented in Section 3.5. Section 4
briefly concludes. The Matlab scripts used to produce Figures 1 and 2 are available at
https://sdb3.i3s.unice.fr/anrindex/fr/node/5.

2. Proof of Theorem 1.1

Before providing a proof of Theorem 1.1, we prove two simple lemmas, both of
them presenting independent interest.

Lemma 2.1. For any design Xn in a compact set X ⊂Rd , we have

[vol(X )/Vd ]
1/d n−1/d ≤ h(Xn) , n≥ 1 .

Moreover, for any m such that n≥ m≥ 2, we have

q(Xn)≤ [vol(X0)/Vd ]
1/d n−1/d ,

where X0 = X ⊕B(0,q(Xm)), Xm is a sub-design of Xn consisting of m points and
⊕ denotes the Minkowski sum.

Proof. The n balls B(xi,h(Xn)) cover X ; this yields the first inequality. The second
inequality follows from q(Xn) ≤ q(Xm), which implies that all the balls B(xi,q(Xn))
are fully inside X0 (i = 1, . . . ,n). �

Lemma 2.1 has the following consequence concerning the rate of decrease of the
fill distance and separation radius of quasi-uniform sequences of nested designs.

Corollary 2.1. For any quasi-uniform sequence of nested designs Xn with uniformity
constant b in a compact set X ⊂Rd , we have

c1 n−1/d ≤ h(Xn)≤ bq(Xn)≤ c2 n−1/d , ∀n≥ 2 , (2.1)

where c1 and c2 are some positive constants.

In the case of Euclidean norm, the statement of Corollary 2.1 is proved in [23]; see
Proposition 14.1 and the discussion just after it.
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Lemma 2.2. Let, for any given n ∈N, Xn = {x1, . . . ,xn} and X′n+1 = {x′1, . . . ,x′n+1}
be arbitrary n-point and (n+1)-point designs in X . Then

q(X′n+1)≤ h(Xn) .

Proof. Since the n balls B(xi,h(Xn)) cover X , the pigeon-hole principle implies that
at least one of them must contain at least two points x′i and x′j from X′n+1. Therefore,
‖x′i−x′j‖ ≤ 2h(Xn), implying q(X′n+1)≤ h(Xn). �

Proof of Theorem 1.1. Assume that limsupn→∞MR(Xn) < 2. This would yield that
there exists r < 2 and n0 such that MR(Xn)≤ r for all n≥ n0.

Consider all such n≥ n0. The definition of h(Xn) and MR(Xn) imply the existence
of x j ∈ Xn such that

‖xn+1−x j‖ ≤ h(Xn)≤ r q(Xn) .

Therefore,

q(Xn+1)≤ (1/2) min
xi∈Xn

‖xn+1−xi‖ ≤ (r/2)q(Xn) .

This implies the exponential decrease of q(Xn) to zero (as n→ ∞), which contradicts
(2.1). �

3. Construction of sequences of quasi-uniform designs

3.1. Greedy packing

Let us first describe the greedy-packing algorithm (called “geometric greedy method”
in [5]), which achieves the lower bound of Theorem 1.1 and hence constructs an MR-
optimal sequence of points X∞ and nested designs {Xn}∞

n=1. This algorithm is some-
times called the “coffee-house” algorithm, due to the analogy with the behavior of
customers in large coffee shops, where new clients tend to seat as far as possible from
occupied tables [10].

Algorithm 1 (Greedy packing)
Require: X compact subset ofRd , x1 ∈X .

1: set n = 1, X1 = {x1};
2: for n = 1,2, . . . do the following:
3: find xn+1 ∈ Argmaxx∈X minxi∈Xn ‖x−xi‖,
4: set Xn+1 = Xn∪{xn+1}.

For arbitrary x1 ∈X and any choice of xn+1 ∈ Argmaxx∈X minxi∈Xn ‖x− xi‖ at
step 3, the sequence of designs Xn constructed by Algorithm 1 satisfies the following
property.

Lemma 3.1. For all n ≥ 2, the designs Xn generated by Algorithm 1 satisfy q(Xn) =
h(Xn−1)/2.
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Proof. The inequality q(Xn)≥ h(Xn−1)/2 is proved in [5, Lemma 5.1] by induction on
n; the equality is obtained by the same arguments as shown below.

By the definition of x2, we have q(X2)= h(X1)/2. Assume that q(Xn)= h(Xn−1)/2
and consider q(Xn+1):

q(Xn+1) = min
{

q(Xn),(1/2) min
xi∈Xn

‖xn+1−xi‖
}

= min{q(Xn),h(Xn)/2}
= min{h(Xn−1)/2,h(Xn)/2}= h(Xn)/2 .

�

Theorem 3.2. For all n≥ 2, the designs Xn generated by Algorithm 1 satisfy

h(Xn)≤ 2h∗n , q(Xn)≥
1
2

q∗n , MR(Xn)≤ 2 .

Proof. By Lemma 2.2 applied to the designs Xn+1 and X∗n,FD, we obtain q(Xn+1)≤ h∗n.
Using Lemma 3.1, this gives h(Xn) ≤ 2h∗n. From Lemma 2.2 applied to the de-
signs X∗n+1,SR and Xn and Lemma 3.1, we obtain q∗n+1 ≤ h(Xn) = 2q(Xn+1). Finally,
MR(Xn+1) = h(Xn+1)/q(Xn+1)≤ h(Xn)/q(Xn+1) = 2 . �

Theorem 3.2 may be deduced from Theorem 2.2 in [7], where Algorithm 1 is used
to minimize the maximum intercluster distance; see also [8, Theorem 4.3]. Theo-
rem 3.2 also follows from Theorem 3.6 below. However, we think that the proof pro-
vided above is interesting in itself, as the important role of Lemma 3.1 uncovers the
key property of Algorithm 1.

Note that in Theorem 3.2 the choice of the norm in X is irrelevant. Moreover, X
does not have to be a subset of Rd ; in particular, X can be a discrete set as in the
clustering problems considered in [7].

While the calculation of q(Xn) is straightforward, h(Xn) is difficult to compute
when X is a continuous set. Methods of computational geometry can sometimes be
used [15], but are restricted to low-dimensional spaces. The substitution of a finite set
XN for X , with the N points of XN suitably well spread over X , is often used in
practice; see Section 3.3 for the analysis of this version of Algorithm 1.

For d = 1 and X = [0,1], Algorithm 1 initialized at x1 = 1/2 is equivalent to the
celebrated van der Corput sequence in base 2 in terms of the behaviour of h(Xn), q(Xn)
and MR(Xn); see [13, p. 25]. The regular pattern of MR(Xn) observed in dimension
1 extends to dimension 2 with X = [0,1]2 when ‖ · ‖ = ‖ · ‖2 and the algorithm is
initialized at the center (1/2,1/2). This is illustrated on the left panel of Figure 1:
MR(Xn) takes two values only, 2 and

√
2. The detailed behaviour of the algorithm is

as follows.

Theorem 3.3. For any n ≥ 5, define m = m(n) = blog2(
√

n/2−1/4− 1/2)c. Then
the packing and covering performance of Algorithm 1 with ‖ · ‖ = ‖ · ‖2, initialized at
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the center (1/2,1/2) of X = [0,1]2, is as follows:

q(Xn) = γm
√

2/4 , h(Xn) = γm/2 , MR(Xn) =
√

2 , for n = nm ,
q(Xn) = γm/4 , h(Xn) = γm/2 , MR(Xn) = 2 , for n = nm +1, . . . ,km−1 ,
q(Xn) = γm/4 , h(Xn) = γm

√
2/4 , MR(Xn) =

√
2 , for n = km ,

q(Xn) = γm
√

2/8 , h(Xn) = γm
√

2/4 , MR(Xn) = 2 , for n = km +1, . . . ,nm+1−1 ,

where γm = 2−m, nm = (2m +1)2 +4m and km = (2m+1 +1)2.

For the sake of brevity, we only give a sketch of the full proof. It is based on
the self-replicating pattern of the construction. The first five points in X = [0,1]2

correspond to the corners and the center of the square. This gives the initialization for
the beginning of the initial cycle, indexed by m = 0, with m denoting the cycle number.
Define the initialization of cycle m as the replication of the initial design of cycle 0 into
4m squares of side length γm = 2−m, which form a regular partition of [0,1]2. The initial
design for cycle m has thus nm = (2m +1)2 +4m = 22m+1 +2m+1 +1 points: (2m +1)2

of them form a regular grid of width γm (i.e., a (2m + 1)2 full factorial design); the
other 4m points are the centers of the small squares. When moving to the next cycle,
the algorithm first (i) adds the midpoints of the sides of all small squares (in arbitrary
order), then (ii) adds the 4m+1 centers of the smaller squares created at previous phase.
The number of points added during phase (i) equals `m = (2m+1 + 1)2− [(2m + 1)2 +
4m] = 2m+1(2m + 1). For any n ≥ 5, the associated cycle number m = m(n) is the
unique integer satisfying nm ≤ n < nm+1. As nm = 2(2m + 1/2)2 + 1/2, this gives
m(n) = blog2(

√
n/2−1/4−1/2)c.

Example 3.4. We take X = [0,1]2, ‖ · ‖ = ‖ · ‖2 and x1 = (1/2,1/2). Algorithm 1
progressively imbeds regular grids in X . The left panel of Figure 1 shows the evolution
of MR(Xn) as a function of n = 2, . . . ,85; the right panel shows Xn for n = 80 = k2−1.

Figure 1: Designs generated by Algorithm 1 in X = [0,1]2 with ‖·‖= ‖·‖2 and x1 = (1/2,1/2).
Left: MR(Xn) for n = 2, . . . ,85. Right: X80; the circles have radii h(X80) = γ2/2 = 0.125.

The regular pattern observed on [0,1]d for d = 1,2 is maintained for d = 4, and
Algorithm 1 has the following behaviour in [0,1]4.
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Theorem 3.5. For any n≥ 17, define m = m(n) as the unique integer satisfying nm ≤
n < nm+1, with nm = (2m + 1)4 + 24m. Then the packing and covering performance
of Algorithm 1 with ‖ · ‖= ‖ · ‖2, initialized at the center (1/2,1/2,1/2,1/2) of X =
[0,1]4, is as follows:

q(Xn) = γm/2 , h(Xn) = γm
√

2/2 ,MR(Xn) =
√

2 , for n = nm ,

q(Xn) = γm/(2
√

2) ,h(Xn) = γm
√

2/2 ,MR(Xn) = 2 , for n = nm +1, . . . ,nm + `m−1 ,
q(Xn) = γm/(2

√
2) ,h(Xn) = γm/2 , MR(Xn) =

√
2 , for n = nm + `m ,

q(Xn) = γm/4 , h(Xn) = γm/2 , MR(Xn) = 2 , for n = nm + `m +1, . . . ,nm+1−1 ,

where γm = 2−m and `m = 6×22m (2m +1)2.

The proof is omitted. Similarly to the 2-dimensional case treated in Theorem 3.3,
the construction follows a self-replicating pattern. The first 17 points in X = [0,1]4 are
the 16 vertices and the center of X . This gives the initialization for the beginning of
the cycle m = 0, which consists of the following two stages: (i) the algorithm chooses
(in arbitrary order) all points with two coordinates equal to 1/2 and the other two co-
ordinates in {0,1}; there are 22×

(4
2

)
= 24 such points; (ii) the algorithm chooses (in

arbitrary order) points with one coordinate 1/2 and the other three in {0,1} (there are
23×

(4
1

)
= 32 such points), points with three coordinates 1/2 and one in {0,1} (there

are 2×
(4

3

)
= 8 such points) and points with coordinates in {1/4,3/4} (there are 16

such points).
The initialization of cycle m is defined as the replication of the initial design of

cycle 0 into 24m hypercubes of side length γm = 2−m, which form a regular partition of
[0,1]4. The initial design for cycle m has thus nm = (2m +1)4 +24m points: (2m +1)4

of them form a regular grid of width γm; the other 24m points are the centers of the
small hypercubes. We thus have 24m replications of the initial 17-point initial design,
but in smaller hypercubes. In each of them, the selections made by the algorithm are
similar to those of the cycle m = 0.

From the description above, we can observe that the design Xnm re-scaled by a fac-
tor 2m gives the integer lattice Z4 truncated to (i1, i2, i3, i4) ∈ {0, . . . ,2m}4. Moreover,
when n = nm + `m, the design Xn re-scaled by 2m+1 gives the so-called checkerboard
lattice D4 (the subset of the integer lattice Z4 consisting of quadruples whose sum is
even), truncated to (i1, i2, i3, i4) ∈ {0, . . . ,2m+1}4; note that D4 is the densest packing
lattice in the 4-dimensional space [3, p. 9].

The regular behaviour of Algorithm 1 observed for d = 1, and d = 2 and 4 where
the properly re-scaled design Xn oscillates between the integer point lattice and the
checkerboard lattice, does not hold for other dimensions d.

3.2. Relaxed greedy packing

We consider now a generalization of Algorithm 1, where the next point at a given
iteration is not necessarily the furthest away from current design points, but is guaran-
teed to be far enough from them. The bounds obtained in Theorem 3.6 are worse than
those in Theorem 3.2; however, it can be shown that the relaxation introduced may
improve the covering properties of the design sequence generated; see Section 3.4.
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Algorithm 2 (Relaxed greedy packing)
Require: X compact subset ofRd , x1 ∈X , a ∈ (0,1], α1,α2, . . . ∈ [a,1];

1: set n = 1, X1 = {x1};
2: for n = 1,2, . . . do the following:
3: take any x′ such that minxi∈Xn ‖x′−xi‖ ≥ αn h(Xn) and set xn+1 = x′;
4: set Xn+1 = Xn∪{xn+1}.

At step 3, the choice of xn+1 is arbitrary provided it satisfies the condition in-
dicated. Due to this flexibility, several existing algorithms form particular cases of
Algorithm 2, which in fact defines a whole family of algorithms. In particular, one
may first select x∗ ∈ Argmaxx∈X minxi∈Xn ‖x− xi‖ and then take any point xn+1 ∈
B(x∗,(1−αn)h(Xn)). Random designs with guaranteed covering and packing perfor-
mance can easily be generated in this way: for instance, take xn+1 = (1−αn)x∗n+αnx∗
with αn a random variable (e.g., uniform) in [a,1], a > 0.

Theorem 3.6. For all n ≥ 2, the designs Xn generated by any version of Algorithm 2
satisfy

h(Xn)≤
2
a

h∗n , q(Xn)≥
a
2

q∗n , MR(Xn)≤
2
a
.

Proof. We first prove by induction that for all n≥ 2, q(Xn)≥ (a/2)h(Xn−1).
For n = 2, by construction we have q(X2)≥ (α1/2)h(X1)≥ (a/2)h(X1).
Assume that q(Xn)≥ (a/2)h(Xn−1) and consider q(Xn+1). The induction assump-

tion gives

q(Xn+1) = min
{

q(Xn),(1/2) min
xi∈Xn

‖xn+1−xi‖
}

≥ min{q(Xn),(αn/2)h(Xn)}
≥ min{(a/2)h(Xn−1),(a/2)h(Xn)}= (a/2)h(Xn) .

The inequality proved by induction implies

MR(Xn) = h(Xn)/q(Xn)≤ h(Xn−1)/q(Xn)≤ 2/a .

Next, by Lemma 2.2, h(Xn−1)≥ q∗n, and therefore q(Xn)≥ (a/2)h(Xn−1)≥ (a/2)q∗n.
The same lemma implies h∗n−1 ≥ q(Xn)≥ (a/2)h(Xn−1). �

Theorem 3.2 follows from Theorem 3.6 by taking a = 1. As in Theorem 3.2, the
choice of the norm in X is irrelevant and X does not have to be a subset of Rd .

The following property is an extension of Theorem 3.6 to the situation where
liminfn→∞ αn = a ∈ (0,1] in Algorithm 2 (i.e., not all αi are bounded from below by
a).

Theorem 3.7. Suppose that in Algorithm 2 the choice of xn+1 at Step 3 is such that the
scalars

αn = min
xi∈Xn

‖xn+1−xi‖/h(Xn)
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satisfy αn ≥α > 0 for all n and liminfn→∞ αn = a∈ [α,1]. Then, the designs Xn satisfy

limsup
n→∞

h(Xn)

h∗n
≤ 2

a
, liminf

n→∞

q(Xn)

q∗n
≥ a

2
, limsup

n→∞

MR(Xn)≤
2
a
.

Proof. As liminfn→∞ αn = a ∈ (0,1], for all ε > 0, there exists n0 such that αn > a− ε

for all n ≥ n0. We first prove that there exists an n1 ≥ n0 such that q(Xn1) > [(a−
ε)/2]h(Xn1). Suppose that this is wrong; that is, q(Xn) ≤ [(a− ε)/2]h(Xn) for all
n≥ n0. We get

q(Xn+1) = min
{

q(Xn), (1/2) min
xi∈Xn

‖xn+1−xi‖
}

= min{q(Xn), (αn/2)h(Xn)}
≥ min{q(Xn), [(a− ε)/2]h(Xn)}= q(Xn) ,

and thus q(Xn+1)= q(Xn) for all n≥ n0. As q(Xn0)≥ (α/2)q∗n0
> 0 from Theorem 3.2,

this is in contradiction with Lemma 2.1 which states that q(Xn) ≤ Cn−1/d for some
C > 0.

Take now n = n1 such that q(Xn1)> [(a− ε)/2]h(Xn1). We have

q(Xn1+1) ≥ min{q(Xn1), [(a− ε)/2]h(Xn1)}
= [(a− ε)/2]h(Xn1)≥ [(a− ε)/2]h(Xn1+1) ,

and therefore by induction

q(Xn+1) ≥ [(a− ε)/2]h(Xn)≥ [(a− ε)/2]h(Xn+1)

for all n≥ n1. Similarly to the proof of Theorem 3.6, h(Xn−1)≥ q∗n and h∗n−1 ≥ q(Xn)
respectively imply that h∗n/h(Xn)≥ (a− ε)/2 and q(Xn)/q∗n ≥ (a− ε)/2, with, more-
over, MR(Xn)≤ 2/(a− ε), for all n > n1. As ε is arbitrary, the result follows. �

In the next section, Theorem 3.6 is used for assessing properties of an easily imple-
mentable version of Algorithm 1, where xn+1 at step 3 is chosen from a finite set.

3.3. Greedy packing for a finite candidate set

Consider a version of Algorithm 1 where xn+1 is chosen among a finite set of candi-
dates XN ⊂X rather than from the whole X . This assumption makes the implemen-
tation of Algorithm 1 much simpler but naturally deteriorates its performance. Such
implementation of Algorithm 1 can be considered as a special case of Algorithm 2,
and hence, as we show below in Theorem 3.9, its performance over entire X can be
assessed. Note that the total number of iterations must be smaller than N, the num-
ber of candidate points: indeed, for n≥ N, the algorithm degenerates as several points
necessarily coincide in XN+ j, j ≥ 1.

Lemma 3.8. For any n-point design Xn and any N-point set XN ⊂X we have

hXN (Xn)≤ hX (Xn)≤ hXN (Xn)+hX (XN) .
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Proof. The inequality hXN (Xn) ≤ hX (Xn) follows from XN ⊂X . Next, denoting
XN = {x(1), . . . ,x(N)}, we have

hX (Xn) ≤ sup
x∈X

min
xi∈Xn

min
x( j)∈XN

(
‖x−x( j)‖+‖x( j)−xi‖

)
= sup

x∈X

[
min

x( j)∈XN

(
‖x−x( j)‖+ min

xi∈Xn
‖x( j)−xi‖

)]

≤ sup
x∈X

[
min

x( j)∈XN

‖x−x( j)‖+ max
x( j)∈XN

min
xi∈Xn

‖x( j)−xi‖

]

= sup
x∈X

[
min

x( j)∈XN

‖x−x( j)‖+hXN (Xn)

]
= hX (XN)+hXN (Xn) .

�

Theorem 3.9. When Algorithm 1 uses a finite set of candidates XN ⊂X and n < N,
its performance satisfies

hX (Xn) ≤ (2/αn)h∗n , ∀n≥ 1 ,
q(Xn) ≥ (αn/2)q∗n , ∀n≥ 2 ,
MRX (Xn) ≤ 2/αn , ∀n≥ 2 ,

(3.1)

with αn = 1−hX (XN)/hX (Xn).

Proof. Denote ε = hX (XN), so that Lemma 3.8 gives hXN (Xn)≤ hX (Xn)≤ hXN (Xn)+
ε . At step 3 of Algorithm 1, we have

min
xi∈Xn

‖xn+1−xi‖= hXN (Xn)≥ hX (Xn)− ε = αn hX (Xn) ,

with αn = 1−ε/hX (Xn). Since hX (Xn) is non-increasing with n, αn is non-increasing
too (it reaches zero when Xn has exhausted XN , that is, when k = N). Theorem 3.6
with αn substituted for a implies (3.1). �

As we do not know hX (Xn) and thus αn, we can use the inequality hX (Xn) ≥
hXN (Xn), which gives αn ≥ an = 1−hX (XN)/hXN (Xn). The inequalities (3.1) then
remain true with an substituted for αn, as long as an > 0.

A result similar to Theorem 3.1 holds when the performance of Algorithm 1 is
evaluated on a finite set XN′ ⊃XN instead of X : we simply substitute XN′ for X
and αn = 1−hX ′

N
(XN)/hX ′

N
(Xn) is evaluated easily.

3.4. Boundary-phobic greedy packing
Versions of the greedy packing algorithm that enforce boundary avoidance have

been proposed in [14, 19]. There, at iteration n ≥ 2, the next point xn+1 is chosen in
Argmaxx∈X Dβ (x,Xn,X ), where

Dβ (x,Xn,X ) = min
{

min
xi∈Xn

‖x−xi‖, β d(x,∂X )

}
, β ∈ (0,∞) , (3.2)
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with d(x,∂X ) the distance from X to the boundary of X . Note that this quantity
is easily determined if X has a simple shape, like a hypercube or a ball, but may be
difficult to evaluate otherwise. For β =∞, we define D∞(x,Xn,X )=minxi∈Xn ‖x−xi‖
by continuity; the algorithm then coincides with Algorithm 1. For β = 1, xn+1 is the
center of (one of) the largest ball included in X and not intersecting Xn. For β = 2, the
algorithm corresponds to a greedy method for the solution of the traditional packing
problem, for which the n balls do not intersect and are constrained to be fully inside X .
For β > 2, the larger β is, the more the balls are allowed to overshoot X , with their
centers remaining inside X . When X = [0,1]d and ‖·‖= ‖·‖2, the value β = 2

√
2d is

recommended in [19], while [14] recommends to let β depend on the targeted number
nmax of design points and suggests taking

β = β (nmax,d) =
d

2(nmaxVd)−1/d −
√

d ,

with Vd = πd/2/Γ(d/2+ 1). Both references illustrate the interest of using β < ∞

instead of Algorithm 1 (where β = ∞) in terms of fill distance h(Xn). As shown below,
for X = [0,1]d the boundary-phobic version of greedy packing becomes a particular
case of Algorithm 2.

Theorem 3.10. For X = [0,1]d and ‖ ·‖= ‖ ·‖2, the boundary-phobic algorithm that
chooses xn+1 in Argmaxx∈X Dβ (x,Xn,X ) at iteration n, with Dβ (x,Xn,X ) defined
by (3.2) and β ∈ (0,∞), forms a particular instance of Algorithm 2 with αn = a =
1/(1+

√
d/β ).

Proof. Let X = [0,1]d and β ∈ (0,∞), rn =Dβ (xn+1,Xn,X )=maxx∈X Dβ (x,Xn,X ).
Any x ∈X satisfies at least one of the two inequalities

min
xi∈Xn

‖x−xi‖ ≤ rn , d(x,∂X )≤ rn/β .

This implies that X \ {x ∈ Rd : d(x,∂X ) ≤ rn/β} ⊂ ∪k
i=1B(xi,rn). The inequal-

ities rn ≤ β d(xn+1,∂X ) ≤ β/2 imply that 2rn/β ≤ 1, and the set X \ {x ∈ Rd :
d(x,∂X ) ≤ rn/β} is a hypercube Cn with side length 1− 2rn/β . This hypercube is
covered by the n balls B(xi,rn), implying that

hX (Xn) = sup
x∈X

min
xi∈Xn

‖x−xi‖

≤ sup
x∈X

[
inf

x′∈Cn

(
‖x−x′‖+ min

xi∈Xn
‖x′−xi‖

)]
≤ sup

x∈X
inf

x′∈Cn
‖x−x′‖+ rn ≤

√
d (rn/β )+ rn .

Since, by definition, rn ≤minxi∈Xn ‖xn+1−xi‖, we have

min
xi∈Xn

‖xn+1−xi‖ ≥
hX (Xn)

1+
√

d/β
,
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and the algorithm is a particular instance of Algorithm 2 with αn = a = 1/(1+
√

d/β ).
�

Theorem 3.10 implies that the performance of this algorithm satisfies the bounds
indicated in Theorem 3.6.

Example 3.11. We take X = [0,1]2, ‖ · ‖ = ‖ · ‖2 and β = 4. The left panel of Fig-
ure 2 shows the evolution of MR(Xn) as a function of n = 2, . . . ,80 when Xn is gen-
erated by xn+1 ∈ Argmaxx∈X Dβ (x,Xn,X ) with x1 = (1/2,1/2); the upper bound
2(1+

√
d/β ) on MR(Xn) is indicated by a horizontal line. The right panel presents

X80: comparison with the right panel of Figure 1 shows that boundary avoidance has
significantly reduced h(Xn). This reduction is obtained at the detriment of MR(Xn)
for some Xn, as illustrated by the left panels of the two figures (note, however, that
MR(X80)< 2 on Figure 2).

Figure 2: Designs generated by xn+1 ∈ Argmaxx∈X D4(x,Xn,X ) in X = [0,1]2 with ‖ · ‖ =
‖ · ‖2 and x1 = (1/2,1/2). Left: MR(Xn) for n = 2, . . . ,80; the horizontal line indicates the
upper bound 2(1+

√
d/β ) on MR(Xn). Right: X80; the circles have radii h(Xn) = 0.0913.

3.5. Connection with kernel-based methods
3.5.1. Energy minimization

Consider the Riesz kernel Ks(x,x′) = 1/‖x−x′‖s, s > 0, and the discrete energy

EKs(Xn) =
2

n(n−1) ∑
1≤i< j≤n

Ks(xi,x j)

associated with an n-point design Xn = {X1, . . . ,xn}. A design X∗n⊂X that minimizes
EKs(Xn) is called a set of s-Fekete points (the original denomination is for X being
the sphere S2); see, e.g., [2, Chap. 2] for a thorough exposition of the discrete energy
problem and [2, Chap. 4] for the connection with the continuous energy problem. In
particular, [2, Prop. 2.1.1] shows that EKs(X∗n) is non decreasing in n; its limit is called
the transfinite diameter of X and coincides with the Wiener constant, i.e., the mini-
mum value of the continuous energy on X [2, Th. 4.2.2]. Next theorem shows the
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strong connection that exists between greedy energy minimization for the Riesz kernel
and greedy packing.

Theorem 3.12. The designs Xn obtained by greedy minimization of the energy EKs ,
i.e., such that xk+1 ∈ Argminx∈X EKs(Xk ∪{x}) for all k ≥ 1, satisfy

h(Xn)≤
2

n−1/s h∗n , q(Xn)≥
n−1/s

2
q∗n , MR(Xn)≤

2
n−1/s , n≥ 2 . (3.3)

By letting s = sn vary at each iteration in Ks in such a way that sn/ logn→∞ as n→∞,
we get

limsup
n→∞

h(Xn)

h∗n
≤ 2 , liminf

n→∞

q(Xn)

q∗n
≥ 1

2
, limsup

n→∞

MR(Xn)≤ 2 . (3.4)

Proof. Direct calculation gives xk+1 ∈ Argminx∈X (1/n)∑
n
i=1 Ks(x,xi). Since, for x 6∈

Xn,

1
n

n

∑
i=1

1
‖x−xi‖s ≤max

i

1
‖x−xi‖s ≤

n

∑
i=1

1
‖x−xi‖s ,

we have[
n

∑
i=1

1
‖x−xi‖s

]−1/s

≤
[

max
i

1
‖x−xi‖s

]−1/s

= min
i
‖x−xi‖ ≤ n1/s

[
n

∑
i=1

1
‖x−xi‖s

]−1/s

and therefore, for x∗ ∈ Argmaxx∈X mini ‖x−xi‖,

min
i
‖xn+1−xi‖ ≥

[
n

∑
i=1

1
‖xn+1−xi‖s

]−1/s

≥

[
n

∑
i=1

1
‖x∗−xi‖s

]−1/s

≥ n−1/s min
i
‖x∗−xi‖= h(Xn) .

Greedy energy minimization (with the Riesz kernel Ks) thus corresponds to a particular
version of relaxed greedy packing (Algorithm 2), where αn = n−1/s decreases with n,
and Theorem 3.6 implies (3.3).

The covering and packing efficiencies of Xn may degrade as n increases, but if we
let s = sn vary at each iteration in Ks in such a way that n1/sn → 1 (or equivalently,
sn/ logn→ ∞) as n→ ∞, then Theorem 3.7 implies (3.4). �

Similar developments with the isotropic Matérn 1/2 kernel with correlation length `,
K1/2,`(x,x′) = exp(−‖x− x′‖/`), show that mini ‖xn+1 − xi‖ ≥ h(Xn)− ` logn for
greedy energy minimization. Since h(Xn)≥Cn−1/d for some C > 0 from Lemma 2.1,
by letting `= `n decrease with n in such a way that n1/d`n logn→ 0 as n→∞, we also
get (3.4) from Theorem 3.7.

An advantage of this type of construction over Algorithm 1 is that the choice of
xn+1 accounts for the location of all previous xi, i≤ n, and hence is generally uniquely
defined, whereas there are often several equivalent choices at step 3 of Algorithm 1
(see for example the regular patterns explained in Theorems 3.3 and 3.5).
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3.5.2. Greedy maximum-entropy sampling and the P-greedy algorithm
Consider the kriging framework [22], where an unknown function f on X is con-

sidered as a realization of a Gaussian random field Zx with zero mean and covariance
E{ZxZx′} = K(x,x′), with K a strictly positive definite kernel defining a reproducing
kernel Hilbert space HK . Let f be evaluated at an n-point design Xn = {X1, . . . ,xn}
and consider a linear predictor ηn(x0) = w>n yn of f (x0), with yn = [ f (x1), . . . , f (xn)]

>

and wn ∈ Rn. Its Mean-Squared Error (MSE) is E{|Zx0 −w>n yn|2} = ρ2
n (x0,wn) =

K(x0,x0)− 2w>n kn(x0) + w>n Knwn, where the ith component of the vector kn(x0)
equals K(x0,xi) and the matrix Kn has i, j element K(xi,x j), i, j = 1, . . . ,n. The best
linear predictor is η∗n (x0) = k>n (x0)K−1

n yn, obtained for wn = K−1
n kn(x0); its MSE

equals ρ2
n (x0) =K(x0,x0)−k>n (x0)K−1

n kn(x0). Maximum-entropy sampling [20] con-
structs an n-point design Xn by maximizing detKn. Since detKn+1 = ρ2

n (xn+1)detKn,
a greedy version chooses x1 ∈Argmaxx∈X K(x,x) and then xn+1 ∈Argmaxx∈X ρ2

n (x),
n≥ 1.

The interpolation of a function f ∈HK involves the same quantities η∗n and ρn:
η∗n (·) is the orthogonal projection of f onto span{K(·,xi), i = 1, . . . ,n} and Pn(·) =
ρn(·) is called the power function, with

Pn(x) = sup
‖ f‖HK =1

| f (x)−η
∗
n (x)| .

In this context, the algorithm for greedy maximum-entropy sampling is called the P-
greedy algorithm [17].

When d = 1, K(x,x′) = exp(−|x− x′|/`) and X is a closed interval [a,b], the
Markov property of the Ornstein-Uhlenbeck process implies that the matrix Kn is
tridiagonal, and for any design point xi ∈ Xn and x,x′ ∈ [a,b] such that x < xi < x′,
the random variables Zx and Zx′ are conditionally independent: indeed, they satisfy
E{ZxZx′ |(x1,Zx1), . . . ,(xn,Zxn)} = K(x,x′)− k>n (x)K−1

n kn(x′) = 0. Denote by zi, i =
1, . . . ,n, the reordered design points at iteration n, so that a ≤ z1 < z2 < · · · < zn ≤ b.
Let δ j = z j+1− z j, i = 1, . . . ,n−1, and Jn = Argmax j=1,...,n−1 δ j be the set of indices
of the most distant neighboring pairs; denote δ ∗n = δ j, j ∈ Jn. As K(x,x) = 1 for all x,
the choice of x1 is arbitrary. When x1 = c = (a+b)/2, the P-greedy algorithm chooses
x2 = a and x3 = b (or x2 = b and x3 = a), and then, for every n≥ 4, xn+1 = (z j+z j+1)/2
for an arbitrary j ∈ Jn. It thus coincides with the greedy packing algorithm. When
x1 < c, the P-greedy algorithm chooses x2 = b and then, for each n, either (i) xn+1 =
(z j + z j+1)/2 for an arbitrary j ∈ Jn, or (ii) xn+1 = a. Direct calculation shows that
case (ii) occurs when x1− a ≥ ∆∗n = δ ∗n /2− (`/2) log2+(`/2) log[1+ exp(−δ ∗n /`)]
(with ∆∗n < δ ∗n /2), which necessarily holds after a finite number of iterations. For all
subsequent iterations, the P-greedy algorithm coincides with greedy packing. The case
x1 > c is treated in a similar way.

The connection with greedy packing is more subtle in other situations (d > 1 and/or
for other kernels K). Take K isotropic with a small correlation length `. Although it is
intuitively clear that the behaviour of the P-greedy algorithm will mimic that of greedy
packing as long as ` is negligible relative to q(Xn) (so that Kn is close to the identity
matrix), a precise analysis appears difficult. Theorem 15 of [24] indicates that, when
K is translation invariant and has finite smoothness τ , the designs Xn generated by the
P-greedy algorithm satisfy h(Xn) < cn−1/d for some c > 0 (note that the rate n−1/d is
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optimal from Lemma 2.1). The same theorem shows that any relaxation of the P-greedy
algorithm that selects an arbitrary xn+1 in the set {x ∈X : Pn(x) ≥ γ maxx∈X Pn(x)}
(γ ∈ (0,1]) also achieves the rate of decrease n−1/d for h(Xn), and Theorem 19 in the
same paper shows that q(Xn)> c′n−1/d for some c′ > 0 (so that the rate of decrease of
q(Xn) is optimal too) when τ > d/2+1 and X satisfies an interior cone condition and
has a Lipschitz boundary. As for energy minimization (Section 3.5.1), an advantage of
this type of construction over Algorithm 1 is that the choice of xn+1 accounts for the
location of all previous xi.

4. Conclusion

By introducing a relaxation in the classical greedy-packing algorithm, we have
proposed a general class of simple greedy algorithms that generate quasi-uniform se-
quences of nested designs with guaranteed packing and covering performance. We
have shown that the value 2 of the uniformity constant of the greedy-packing algorithm
is optimal, and that it can be attained by a relaxed algorithm whose relaxation vanishes
asymptotically. A connection with two kernel-based greedy constructions has been
evidenced.
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