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Abstract—This paper focuses on the design of two analog 

nonlinear transformations dedicated to analog signal processing 

such as energy detection: the square function and the Teager 

Energy Operator (TEO). Both requiring an analog multiplier, 

this paper firstly analyses the design equations of a MOS Gilbert 

cell in order to operate around the mid supply voltage. 

Considering this, an analog multiplier, having a differential 

input range of +/-400 mV, has been designed using an AMS 

0.35 µm technology and a voltage supply (VDD) of 3.3 V. It has 

a core area of 620 µm2 and offers power-gating capability, which 

enables a power consumption of 2.28 µW when a duty cycle of 

0.25% is considered. Next, an analog square function and an 

analog TEO, have been implemented and manufactured using 

the designed Gilbert cell. The analog square function has a core 

area of 0.9 mm² and measurement results show that it is able to 

compute the square value of its differential input voltage with a 

mean precision of 2.92% in 5 µs assuming a differential input 

voltage of +/-400 mV with a common voltage of VDD/2. 

Moreover, it generates 700 mV spikes when 200 mV pulses are 

applied on its input. Finally, the designed analog TEO has been 

implemented using its discrete time equation instead of its 

continuous time equation since it does not require derivatives 

computing. It has a core area of 2.2 mm², an active power 

consumption of 6.21 mW and a standby power consumption of 

1.43 nW. Measurement results shows that it generates until 

250 mV spikes when 200 mV pulses are applied on its input. 

Keywords—analog multiplier, energy detection, Gilbert cell, 

power-gating, square function, Teager energy operator 

I. INTRODUCTION 

Among the different cardiovascular diseases which cause 
as many deaths as cancer in Europe, cardiac arrhythmia is one 
of the most common one. Fortunately, several types of cardiac 
arrhythmia can be detected using only heart rate variability 
[1]. To achieve it, the instantaneous heart rate can be estimated 
in real-time from pulsed physiological signals synchronized 
with heartbeats such as electrocardiogram [2], phono-
cardiogram [3], arterial pressure [4] or photoplethysmogram 
[5]. It is also necessary to be able to detect each pulse 
associated to a heartbeat in one of these signals, which has led 
to the development of lots of heartbeat detection methods [6].  

Most of instantaneous heart rate detection methods are 
based on a digital signal processing [7][8][9] in addition to an 
analog conditioning chain for the pre-processing of the sensed 
signal. They also require at least an Analog-to-Digital 
Converter (ADC) and a computing unit such as a 
microcontroller, both having a certain cost in terms of power, 
size, and price. However, the time during which cardiac 
arrhythmia is detectable can be very brief. Its detection also 
requires a full-time monitoring which can be more 
comfortably achieved from the patient point of view with a 
compact battery-powered device.  

Unfortunately, advanced digital processing and full-time 
monitoring can be done by compact battery-powered devices 
at the cost of regular battery recharges. To reduce power 
consumption, size, and cost, it has been proposed in [2] a 
processing based on an analog energy detector to detect 
heartbeat-synchronized pulses in electrocardiograms, which 
has been inspired by low-power and low-cost non-coherent 
receivers used in Ultra-WideBand Impulse Radio (IR-UWB) 
[10][11]. The main processing step of this non-coherent 
detection is the nonlinear transformation which computes the 
square value of the sensed signal. This can be done in the 
analog domain with an analog multiplier [12] which 
potentially has a smaller cost in terms of power consumption 
(especially when it can be periodically turned-off), size, and 
price compared to a digital processing.  

Nevertheless, another approach is to replace the square 
function by another energy operator such as the Teager-Kaiser 
Energy Operator (TEO). The TEO has been initially 
developed by Herbert M. Teager and Shushan M. Teager [13] 
for “Vocal Tract” applications, and largely investigated by J. 
F. Kaiser [14][15][16]. It acts as a squarer and a high-pass 
filter at the same time [17]. The TEO has been used for energy 
detection in various applications [18][19][20][21] such as 
amplitude and frequency demodulation [16] or the detection 
of heartbeat-synchronized pulses in electrocardiograms [22]. 
Unfortunately, conversely to the square function, an 
implementation of the TEO based on its continuous time 
equation requires derivatives computing in addition to 
multipliers. For this reason, it is mainly computed in the 
digital domain with a microprocessor using its discrete time 
equation [20][21][22] even if some analog implementations 
using the continuous time equation can be founded for spike 
detection in neural recording systems [18][19]. However, the 
TEO discrete time equation requires only one subtractor, two 
multipliers and three sample & hold circuits which can be 
implemented easier than derivatives operators in the analog 
domain. For this reason, a new analog implementation of the 
TEO based on its discrete time equation is proposed here and 
this implementation also requires two multipliers. 

However, whatever the used analog energy operator, it is 
important to underline that it must have a voltage response 
with a high magnitude to make easier spike detection when a 
comparison with a voltage threshold is used [10]. To increase 
the response magnitude of an analog energy operator based on 
multipliers such as an analog TEO implementation, 
multipliers with wide output dynamic range must be used. 
Moreover, in the context of biological signals such as 
electrocardiogram which can know high variations around its 
baseline (if the patient moves for example), it is necessary for 
multipliers to operate on a wide input voltage range too. For 
this reason, inputs and output must be biased to the mid-supply 
voltage which is VDD/2 when a single supply of VDD is used. 
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Thus, the main design challenge for the analog energy 
operator is to work on the widest voltage range around 
VDD/2, which means it must be able to process large input 
signals.  

Many analog multiplier architectures have been proposed 
in literature and especially the well-known Gilbert cell. 
However, they are usually able to work as a multiplier on a 
limited input voltage range. Indeed, a true multiplication can 
be obtained with bipolar Gilbert cells when input voltages are 
small in front of the twice of the thermal voltage, or with MOS 
Gilbert cells when one of the both input voltages is small and 
the other one is large. Although this is enough for mixing stage 
in wireless emitters and receivers, this becomes an issue when 
the square value of sensed physiological signals has to be 
computed since they can have a high dynamic range according 
to the measurement conditions. 

For these reasons, the design of the MOS Gilbert cell is 
analyzed in section II in order to optimize the voltage input 
range, and the also the associated voltage output range, for 
which a true multiplication can be obtained. In section III, 
post-layout simulation results of the designed multiplier are 
provided and analyzed in terms of computing precision of the 
multiplication. Next, section IV deals with the implementation 
of an analog square function built around the designed 
multiplier and shows measurements results which are 
compared to an ideal squarer. In section V, the TEO is 
presented and especially the effect of the sampling frequency 
on its output magnitude. Finally, section VI proposes a new 
analog implementation of the TEO using its discrete time 
equation. Measurement results are provided and compared to 
the ones obtained with the analog square function. 

II. DESIGN OF THE ANALOG MULTIPLIER 

The designed analog multiplier is based on a Gilbert cell 
which has the advantages to use a limited number of 
transistors in addition to have high input impedances. Its 
transistor level schematic is shown on Fig. 1.a. This structure 
also consists of three differential pairs (M1-M2, M3-M4, and 
M5-M6), two active loads (MA and MB), and a current source 
M0 controlled here by a PDB signal, PDB being a logic signal 
which enables the multiplier to be switched-on or switched-
off. Finally, for reasons of symmetry, it should be noted that 
the transistors M1 and M2 must have the same dimensions, as 
well as the transistors MA and MB and the transistors M3, 
M4, M5, and M6.  

However, it should be noted that although VD1 and VD2 
are differential inputs voltage, VOP is here a single output 
voltage thanks to the connection between the gate and the 
drain of the MA transistor. Thus, this analog multiplier and 
also, the processing chain where it could be used, does not 
require an additional differential to single voltage converter. 
Nevertheless, a differential output can be obtained by 
removing this connection but then requires an appropriate 
biasing of MA and MB gates.  

In the following subsections, the designed analog 
multiplier is analyzed in order to demonstrate with the help of 
design equations that it can operate as a true multiplier over a 
large range of VD1 and VD2. 

A. Biasing and Kirchhoff’s Laws 

To allow a four-quadrant multiplication on the widest 
dynamic range, the circuit must be biased as follows: 

  when 
2 2

VDD VDD
VOP V1P V1N V2P V2N= = = = =  () 

Indeed, from an ideal point of view, the use of the mid supply 
voltage as input and output common mode voltages will 
potentially authorize the use of the overall voltage range 
delimited by the negative voltage supply (here GND) and the 
positive supply voltage (here VDD). 

In this case, if capacitive effects are neglected, the output 
voltage VOP can be written for low working frequencies 
according to Fig. 1.a as follows:  

 
2

OUT D

VDD
VOP R I= +   () 

where ROUT is the output resistance of the analog multiplier 
and ID is the differential current in the active loads defined as 
follows:  

 
D A BI I I= −  () 

with: 

 
0 A BI I I= +  () 

To demonstrate that the proposed circuit works as an 
analog multiplier, it is necessary to write ID as a function of 
VD1 and VD2. To do this, IA and IB can be written as follows: 

 
A 3 5I I I= +  () 

 
B 4 6I I I= +  () 

which allows ID to be computed as follows: 

 
D D1 D2I I I= −  () 

with: 

 
D1 3 4I I I= −  () 

 
D2 6 5I I I= −  () 

where ID1 (resp. ID2) is the differential current of the 
differential pair M3-M4 (resp. M5-M6), and IX is the drain-
source current of the MX transistor. Thus, it is now necessary 
to compute ID1 and ID2 using the well-known long channel 
MOS model introduced by Shockley [23] since every MOS 
length L has been set to 1µm according to Fig. 1.a.  

 

 

(a) (b) 

Fig. 1. Transistor level implemetation (a) of the designed analog multiplier 

and its layout implementation (b). 



B. Study of the Differential Pairs M3-M4 and M5-M6 

In this subsection, the differential pair M3-M4 is firstly 
considered. Then, using the Kirchhoff’s current law, I1 can be 
written as follows: 

 
1 3 4I I I= +  () 

However, considering (1), M3 (resp. M4) must be in the 
saturation region of the Shockley’s model since the drain-
source voltage of M3 (resp. M4) is higher than its gate-source 
voltage minus the threshold voltage of NMOS transistors. 
This leads to: 

 ( )
2

2

3-6
3 GS3 THNI V V


= −  () 

 ( )
2

2

3-6
4 GS4 THNI V V


= −  () 

with: 

 
3 6

3 6 3 6

3-6 3-6
3-6 N

W W

L L
  −

− −

=  () 

where W3-6 (resp. L3-6) is the width (resp. the length) of 
transistors from M3 to M6, α3-6 and also αN depends on the 
charge mobility and the oxide capacitance, VGSX is the gate-
source voltage of MX, and VTH is the threshold voltage of 
NMOS transistors. For the considered 0.35 µm technology 
and for a MOS length of 1 µm, αN (resp. αP) is about 70 µA/V2 
(resp. 28 µA/V2) and VTHN (resp. VTHP) is about 0.52 V (resp. 
0.77 V) considering threshold voltage extraction methods 
proposed in [24]. 

By solving the equation system constituted by (8) and (10), 
it is possible to write with the help of (11) and (12): 

 ( )
2

1 D1 3-6 GS3 THNI I V V+ = −  () 

 ( )
2

1 D1 3-6 GS4 THNI I V V− = −  () 

which enables to write VGS3 and VGS4 as follows: 

 ( )GS3 1 D1 3-6 THNV I I V= + +  () 

 ( )GS4 1 D1 3-6 THNV I I V= − +  () 

However, since V1P and V1N can be expressed as follows: 

 2 2 GS3 DS1 DS0V1P VDD VD1 V V V= + = + +  () 

 2 2 GS4 DS1 DS0V1N VDD VD1 V V V= − = + +  () 

with VDSX is the drain-source voltage of MX transistor, the 
differential input voltage VD1 can be written as follows: 

 ( )1GS3 GS4 1 D1 D1 3-6VD1 V V I I I I = − = + − −  () 

By supposing: 

 
D1 1I I  () 

which is true thanks to (18) and (19) while: 

 ( )2 DS1 DS0 THNVD1 VDD V V V− + +  () 

since as detailed in the subsection A appendix, (21) leads to: 

 ( )

( )

2

1

2

3 1

0 2  if 0

0 2  if 0

GS4 THN D

GS THN D

V V V

V V V

 − 


− 

 () 

and also to: 

 1

3 1

 if 0

 if 0

THN GS4 D

THN GS D

V V V

V V V






 () 

 (20) becomes: 

 
3 6D1 1VD1 I I −=  () 

which allows the differential current ID1 of the differential pair 
M3-M4 to be written as follows: 

 
3 6D1 1I VD1 I −=  () 

By following the same reasoning from (10) to (25) for the 
differential current ID2 of the differential pair M5-M6, ID2 can 
be written as follows: 

 
D2 3-6 2I VD1 I=  () 

which is true while: 

 ( )2 DS2 DS0 THNVD1 VDD V V V− + +  () 

Thus, (7) becomes: 

 ( )D 3-6 1 2I VD1 I I= −  () 

while (22) and (28) are true and it is also necessary to study 
the differential pair M1-M2 to link ID to VD2.  

C. Study of the Differential Pair M1-M2 

In literature, M1 and M2 transistors are usually considered 
in saturation region which leads to: 

 2
2

3-6 1-2
DI VD1 VD

 
=    () 

since: 

 ( )
2

2

1-2
1 GS1 THNI V V


= −  () 

 ( )
2

2

1-2
2 GS2 THNI V V


= −  () 

with: 

 1-2 1-2
1-2 1-2 N

1-2 1-2

W W

L L
  =   () 

where W1-2 (resp. L1-2) is the width (resp. the length) of M1 
and M2 transistors, and α1-2 depends on the charge mobility 
and the oxide capacitance. 

However, in practical, it is not possible to bias M1 and M2 
in saturation region due the stacking of 4 MOS lines between 
the ground and the voltage supply when the Gilbert multiplier 
is biased according to (1). Indeed, this biasing requires that: 

 
DSX DSXsat GSX THNV V V V = −  () 

where X has to be replaced by 1 or 2 according to the 
considered transistor is M1 or M2. When applied to M1 and 
M2, (34) leads, as detailed in the subsection B of the appendix, 
to the following impossible conditions: 



 2 1VD VD−  () 

 2 1VD VD  () 

since (22) and (28) combined to (34) can be written as follows: 

 ( )2 2DS1sat DS0 THNV VDD VD1 V V− − +            () 

 ( )2 2DS2sat DS0 THNV VDD VD1 V V− − +  () 

where VGSX and also VDSXsat can be computed with the help of: 

 2 2 GS1 DS0V2P VDD VD2 V V= + = +  () 

 2 2 GS2 DS0V2N VDD VD2 V V= − = +  () 

M1 and M2 can also never been in the saturation region in the 
same time. 

For this reason, it is now considered in this paper that M1 
and M2 operate in linear region which leads according to the 
Shockley model to: 

 ( )21 1-2 GS1 THN DS1 DS1I V V V V= − −  () 

 ( )22 1-2 GS2 THN DS2 DS2I V V V V= − −  () 

Thus, by supposing that: 

 2GS1 THN DS1V V V−  () 

 2GS2 THN DS2V V V−  () 

(41) and (42) can be written as follows: 

 ( )1 1-2 GS1 THN DS1I V V V= −  () 

 ( )2 1-2 GS2 THN DS2I V V V= −  () 

According to the Fig. 1.a, I1 and I2 can be equally written 
as a function of the bias current I0 and of the differential 
current ID0 of the differential pair M1-M2: 

 ( ) 21 0 D0I I I= +  () 

 ( )2 20 D0I I I= −  () 

since: 

 
0 1 2I I I= +  () 

 
D0 1 2I I I= −  () 

which allows (29) to be rewritten as follows: 

 ( )2D 3-6 0 D0 0 D0I VD1 I I I I=   + − −  () 

and simplified to: 

 ( )2D 3-6 0 D0I I VD1 I=    () 

when: 

 
D0 0I I  () 

which is true by replacing I1, and I2 in (49) and (50) with their 
expression given (45) and (46) when: 

 ( )2 2 DS0 THNVD VDD V V− +  () 

as detailed in the subsection C of the appendix. 

Considering the assumptions made on VDS1 and VDS2 
indicated in (43) and (44), it is also possible to assume that 
VDS1 and VDS2 have small variations compared to their average 
values and therefore that: 

 ( ) 2DS1 DS2 DS1 DS2V V V V+  () 

By injecting now (45) and (46) in (50) taking into account 
(39) and (40), this gives: 

 ( ) 2D0 1-2 DS1 DS2I VD2 V V=   +  () 

since: 

 
GS1 GS2VD2 V V= −  () 

Using (52) and (56), the differential current ID of the analog 
multiplier can also be written as follows: 

 
2 2

3-6 DS1 DS2
D 1-2

0

V V
I VD1 VD2

I




+
=      () 

which demonstrates that the proposed Gilbert cell works as a 
voltage multiplier while (28) and (54) are true when M3 to M6 
operate in saturation region and M1 and M2 in linear region. 
It can be noted that the drain-source voltage of M0, M1, and 
M2 should be as low as possible to optimize the input voltage 
range of the multiplier. 

Finally, it is possible to write (58) using only the 
technology parameters, the biasing current I0 and VDS0. For 
this, by now injecting (45) and (46) in (49) and taking into 
account (39), (40), and (55), I0 can be written as follows: 

  ( )
V V

2
2

DS1 DS2
0 1-2 DS0 THNI VDD V V

+
= −  +  () 

which leads using (58) and (59) to: 

 

 
1

2 2

3-6 0
D

DS0 THN

I
I VD1 VD2

VDD V V


=   

−  +

 () 

Thus, the output voltage of the proposed analog multiplier can 
be written as follows: 

 
OFFSETVOP VOP K VD1 VD2= +    () 

where K is the gain of the analog multiplier which is equal to: 

 

 2 2

3-6 0 OUT

DS0 THN

I R
K

VDD V V


= 

−  +

 () 

and VOPOFFSET is the output offset voltage which is equal to: 

 
2

OFFSET

VDD
VOP =  () 

III. POST-LAYOUT SIMULATIONS OF THE DESIGNED 

ANALOG MULTIPLIER 

The proposed analog multiplier has been implemented 
using an AMS 0.35 µm CMOS technology with a supply 
voltage of 3.3 V. Its layout is shown in Fig. 1.b and has a core 
area of 620 µm2. The size and the post-layout simulated 
operating point of each MOS transistor, which have been 
initially chosen to obtain a multiplier with an output dynamic 
of VDD/2 (1.65 V) for the VD1 and VD2 range [-400 mV; 
+400 mV] (K=5.16), are shown in Tab. I when V1P, V1N, 
V2P, and V2N are set to VDD/2 and when PDB is equal to 



VDD (3.3 V). These values lead to an output voltage VOP of 
1.75 V instead of VDD/2 as initially desired in (1). However, 
this is not an issue since it is just an offset which can be taken 
into account by increasing the threshold used in the analog 
processing chain [10]. Finally, operating regions of each 
transistor are in accordance with the theoretical analysis. The 
equations and the procedure used to size the MOS transistors 
of the analog multiplier are respectively detailed in the 
subsections D and E of the appendix. 

To analyze multiplier performances in terms of computing 
precision, the distribution of its gain K defined in (61) has been 
studied using post-layout simulations for given ranges of VD1 
and VD2. Indeed, K being extracted as a gain relative to the 
true multiplication, the less the distribution of K over an input 
range is wide, the more the multiplier is accurate. Thus, the 
figure of merit used here is the relative standard deviation 
(also known as coefficient of variation) of K in percent noted 
cV-K which is defined, with the help of the average value of K 
noted µK and the standard deviation of K noted σK, as follows:  

 100K
V K

K

c



− =   () 

TABLE I.  SIZE AND BIASING OF MOS TRANSISTORS USED IN THE 

DEISGNED MULTIPLIER  

MOS 
W 

(µm) 

L 

(µm) 

|IDS| 

(µA) 

|VGS| 

(V) 

|VDS| 

(V) 
Region 

M0 10 1 275 3.3 0.1 Linear 

M1-M2 5 1 138 1.55 0.25 Linear 

M3-M6 2.5 1 68.8 1.3 1.4 Saturation 

MA-MB 10 1 138 1.55 1.55 Saturation 
 

The output voltage VOP obtained for the range of VD1 and 
VD2 defined over the interval [-400 mV; 400 mV] is shown in 
Fig. 2 when VD1 is independent of VD2. From this curves 
network, the distribution of K for different ranges of VD1 and 
VD2, which are [-100 mV; 100 mV], [-200 mV; 200 mV] and 
[-400 mV; 400 mV], has been extracted and results are shown 
in Tab. II. It also appears that µK is relatively stable over the 
ranges since it is between 4.51 and 4.60. Moreover, σK and cV-

K, decreases as the ranges of VD1 and VD2 are reduced. This 
was expected since the more the ranges of VD1 and VD2 are 
small, the more the conditions seen during the theoretical 
study on VD1 and VD2 are true. Furthermore, for the range [-
400 mV; 400 mV] corresponding to the worst case, cV-K which 
represents the mean computing precision of the multiplier is 
5.72%. Finally, the theoretical conditions on the voltage 
ranges of VD1 and VD2 allowing multiplier operation of the 
proposed circuit are verified since VD1 (resp. VD2) is small in 
front 1.5V (resp. 2V) according to (28) (resp. (54)). 

Since the proposed analog multiplier has to be used in an 

energy detector, the distribution of the gain K has been 

equally studied when it works as a squaring stage, or in other 

words, when VD1 is equal to VD2. The output voltage VOP 

obtained for the VD1 range (and also VD2 range) [-500 mV; 

500 mV] is shown in Fig. 3. To verify that the circuits 

operates as a true square function, the curve of an ideal 

squarer having a gain of 4.5 has been plotted on the same 

figure. It appears that the curves are very close to each other 

as confirmed by the analysis of the distribution of K indicated 

in Tab. III. Indeed, it appears that for the interval [-400 mV; 

400 mV], µK value is 4.50 and cV-K (mean computing 

precision of the squarer) is only 1.14% which is better than 

the 5.72% obtained in multiplier mode.  
Finally, the multiplier output has a slew rate of 0.56 V/µs 

on a capacitive load of 10 pF for a simultaneous step of VD1 
and VD2 from 0 V to 0.4 V. According to Tab. I, the current 
consumed by the multiplier is 275 µA (i.e. a power 
consumption of 0.91 mW) when it is turned-on (PDB = VDD), 
but it is only 5 pA (i.e. a power consumption of 16.5pW) when 
it is turned off (PDB = 0 V). Thanks to its output slew rate and 
its very low power consumption when it is turned-off, it is 
therefore possible to use a power management scheme which 
consists in turning-off the circuits as soon as they have 
accomplished their task [25][26] using a PDB signal 
considered here external. Thus, assuming that it is possible to 
compute the multiplication using the proposed circuit and to 
store the result in a capacitor in less than 10 μs, the multiplier 
would be turned-on with a duty cycle of only 250/100 000 
(0.25%) since 250 Hz is a sufficient sampling frequency to 
detect pulses centred around 10 Hz which are synchronized 
with heart beats in electrocardiograms [27]. In this case, the 
average power consumption of the proposed analog multiplier 
would be only 2.28 µW without considering the additional 
power consumption required by the PDB generation circuit. 
Tab. IV compares the designed multiplier with other works. 

 

 

 

Fig. 2. DC transfer characteristics of the proposed analog multiplier for a 

high impedance output load when VD1 and VD2 are independent. 

TABLE II.  SIMULATED DISTRIBUTION OF K FOR A HIGH IMPEDANCE 

OUTPUT LOAD.WHEN VD1 AND VD2 ARE INDEPENDENT 

VD1 and VD2 range µK σK 
cV-K 

(%) 

[-100 mV;+100 mV] 
4.51 0.12 2.59 

[-200 mV;+200 mV] 4.54 0.18 3.86 

[-400 mV;+400 mV] 4.60 0.26 5.72 

 

 

Fig. 3. DC transfer characteristic of the proposed analog multiplier for a 

high impedance output load when VD1 is equal to VD2. 

 



TABLE III.  SIMULATED DISTRIBUTION OF K FOR A HIGH IMPEDANCE 

OUTPUT LOAD WHEN VD1 IS EQUAL TO VD2. 

VD1 and VD2 range µK σK 
cV-K 

(%) 

[-100 mV;+100 mV] 
4.49 6.48e-3 0.14 

[-200 mV;+200 mV] 4.50 18.9e-3 0.42 

[-400 mV;+400 mV] 4.50 51.2e-3 1.14 

 

IV. ANALOG IMPLEMENTATION OF THE SQUARE 

FUNCTION 

As indicated in the introduction, the usual nonlinear 
transformation used in an energy detector is the square 
function. In this section, the designed multiplier is also used 
to implement the square function by an analog manner. 
However, the designed multiplier has a single output but two 
differential inputs. To use it as an analog square function 
which has a single input, op-amp based subtractors with 
R=100 kΩ have been implemented on chip before the 
multiplier as shown on Fig. 4. They also allow the single input 
having an offset of VDD/2 (1.65 V) to be transformed to a 
symmetrical input around VDD/2. Furthermore, V1P and V2P 
as well as V1N and V2N have been connected together to have 
VD1 equal to VD2 and thus, to use the multiplier as a square 
function. Finally, op-amp based followers have been 
implemented to isolate the square function from input source 
and output load. It can be noted that all used op-amps are 
standard IPs of the 0.35 µm AMS design kit, which have led 
to a core area of 0.9 mm² for the full squarer. The obtained 
square function is also not optimal in terms of space and power 
consumption since its goal is just to highlight the multiplier 
performances in terms of input voltage range and precision. 

The DC transfer characteristic of the implemented square 
function has been measured and compared to the ideal 
response of a square function having a gain of 3.5 in Fig. 5. It 
appears that the curves are close to each other for VD1 range 
[-400 mV;400 mV]. However, compared to the post-layout 
simulations of the stand-alone multiplier, the gain has 
decreased from 4.5 to 3.5 due to process variations and the 
additional load introduced by the op-amp based functions. 
About the distribution of K, it appears that the measured 
relative standard deviation cV-K of the gain K has increased 
from 1.14% to 2.93% for the VD1 range [-400 mV;400 mV] 
according to Tab. V. Moreover, unlike post-layout simulations 
of the stand-alone multiplier, cV-K increases for as the VD1 
range decreases. These both phenomena are due to the 
observed output noise when VD1 is near to 0 V since the 
square of a near zero value is lower than this near zero value. 
Finally, transient response of the squarer for a 1 kHz triangular 
voltage input is shown in Fig. 6 and follows well the DC 
characteristic. In addition, the impulse response of the squarer 
is given in Fig. 7 and shows an overshoot of 66% and a 
response time defined at 5% around the final output step 
equals to 5 µs. Unfortunately, the power consumption of the 
multiplier alone has not been verified since other circuits are 
connected on the same VDD pin. Nevertheless, the measured 
active (resp. stand-by) power consumption of the square 
function shown in Fig. 4 is 5.31 mW (resp. 1.00 nW).  

 

 

 

TABLE IV.  MULTIPLIER COMPARISON WITH OTHER WORKS 

Ref 
Tech. 

(nm) 

VDD 

(V) 

Input 

range 
Bandwidth 

Power 

cons. 

[12] 90 1.2  60 mV 
331 kHz @ 

5 k//10 pF 
6.92 W 

[28] 250 1  0.75 V 
16 MHz @ 

1 k//10 pF 
0.326 mW 

[29] 350 2  40 nA Neural range 7.2 W 

This 
work 

350 3.3  400 mV 
100 kHz @ 

10 k//10 pFa 

908 µWb 
16.5 pWc 

a. 1dB bandwidth 

b. Active power consumption 

c. Stand-by power consumption     

 
(a) 

 

(b) 

Fig. 4. Implemented square function based on the designed multiplier: 

schematic (a) ; layout implementation, chip photography and package 

photography (b). 

 

 

Fig. 5. DC transfer characteristic of the designed analog square function 

based on the proposed multiplier for a high impedance output load. 

TABLE V.  MEASURED DISTRIBUTION OF K FOR A HIGH IMPEDANCE 

OUTPUT LOAD WHEN VD1 IS EQUAL TO VD2  

VD1 and VD2 range µK σK 
cV-K 

(%) 

[-100 mV;+100 mV] 
3.59 210e-3 5.86 

[-200 mV;+200 mV] 3.56 136-3 3.83 

[-400 mV;+400 mV] 3.52 103-3 2.93 

 



 

Fig. 6. Transient response of the analog square function for a 1 kHz 

triangular voltage input (0.4 Vpp around VDD/2=1.65 V) on a high 

impedance output load. 

 

Fig. 7. Impulse response of the analog square function for a 1kHz square 

voltage input (VLOW = VDD/2 = 1.65 V, VHIGH = VDD/2 + 0.2 = 1.85 V) 

on a high impedance output load. 

V. THE TEAGER ENERGY OPERATOR 

Considering the context of energy detection, the square 

function can be replaced by other nonlinear transformations. 

One of them is the TEO which is defined considering 

continuous time as follows: 

 ( ) ( ) ( ) ( )
2

' "x t x t x t x t    = −    
 () 

where ψ[x(t)] represents the energy of x(t), x’(t) and x”(t) 

being respectively the first and second derivatives of x(t).  

A. TEO discrete time definition 

 

Eq. 65 is generally defined in discrete time for digital 

computing such as in [17] as follows:  

( ) ( ) ( ) ( )
2

1 1x n x n x n x n   = − +  − 
               () 

which leads to a non-causal system. Although this is common 

in digital systems, this is not the case for analog ones where 

causal systems are preferred. Moreover, this formulation 

implicitly uses frequencies normalized by the sampling 

frequency which hides effects of the sampling frequency on 

the TEO response magnitude such as in [14]. 

To define it in discrete time using a causal equation, and 

especially without using normalized frequencies, it is firstly 

necessary to discretize the time by replacing t by n·TS where 

n is the sample number and TS the sampling period. Eq. (65) 

can also be written as follows: 

 ( ) ( ) ( ) ( )
2

' "S S S Sx n T x n T x n T x n T     =  −      
 () 

Next, since the first derivative of x(n·TS) can be written: 

( )
( )  ( )1

'
S S

S

S

x n T x n T
x n T

T

 − − 
 =                 () 

the second derivative of x(nTS) which is equal to: 

( )
( )  ( )' ' 1

"
S S

S

S

x n T x n T
x n T

T

 − − 
 =               () 

can be expressed as follows: 

( )
( )  ( )  ( )

2

2 1 2
"

S S S

S

S

x n T x n T x n T
x n T

T

 −  −  + − 
 =    () 

Then, by injecting now (68) and (70) in (67), the TEO can be 

defined in discrete time as follows: 

( )
 ( ) ( )  ( )

2

2

1 2S S S

S

S

x n T x n T x n T
x n T

T


 −  −   −    = 
 () 

and also depends on the sampling period TS. 

B. Effect of the sampling frequency on the TEO response 

magnitude 

To show the effect of the sampling frequency on the TEO 

response magnitude, it is possible to consider a sinusoidal 

input signal which can be defined as follows: 

 ( ) ( )cos 2S Sx n T A f n T =    () 

where A and f are respectively its magnitude and its 

frequency. By injecting (72) in (71), the output of the TEO 

can be written considering discrete time as follows: 

 ( ) ( )
2

sin 2S S

S

A
x n T f T

T
 

 
  =   

 

 () 

It can be noticed that the result is independent of n and 

therefore the TEOs output signal is constant whatever the 

considered discretized time. In addition, it provides a 

continuous signal whose amplitude is directly proportional to 

the amplitude of the squared input sinusoid, which is 

proportional to its energy.  The output of the TEO as 

expressed in (73) is shown in Fig. 8 as a function of the 

sampling frequency FS for A equal to 1 and a fixed frequency 

f equal to 10 Hz (this value corresponds approximately to the 

central frequency of heartbeat-synchronized pulses in 

electrocardiograms [27]). 

However, this is not its only particularity. Indeed, it can 

be seen in Fig. 8 that TEO response magnitude depends on 

the sampling frequency and that it reaches respectively 90% 

(resp. 95%) of the maximum possible amplitude for a 

sampling frequencies of 8·f (resp. 11·f). Thus, the TEO 

requires at least a sampling frequency about 10·f to keep a 

high dynamic on its output. In the context of compact battery-

powered devices, a good compromise can also be done 

between TEO response magnitude and power consumption if 

the frequency of the input signal is known since the less the 

sampling frequency is, the less the power consumption is. 

Finally, to be more familiar with the meaning of the TEO 

continuous time equation (65) which seems not obvious at 

first sight, the limit computation of (73) when the sampling 

period TS tends to zero can be done and is equal to: 

 ( )  
2

0
lim 2
S

S
T

x n T A f 
→

  =  
 () 



Therefore, if a high sampling frequency is used, the TEO will 

amplify the energy of the high-frequency components 

proportionately to their squared frequency. Thus, the TEO 

highlights the energy of the high-frequency components and 

also acts as a high-pass filter behavior. It is also possible to 

say that the TEO harmonic response is the same than an 

amplifier having a gain proportional to its input frequency, 

followed by a squarer function and an envelope detector. 

 

VI. ANALOG IMPLEMENTATION OF THE TEAGER ENERGY 

OPERATOR IN DISCRETE TIME  

In this section, the designed multiplier is also used here to 

implement the TEO by an analog manner. However, 

conversely of previous works [18][19], its discrete time 

formulation given in (66), which is proportional to (71) for a 

constant sampling frequency, is implemented instead of its 

continuous time formulation given in (65). Indeed, 

derivatives introduced by (65) are more difficult to 

implement than shifted samples of the input signal introduced 

by (66). Thus, the new analog approach followed here is to 

generate the required shifted samples, and to send them into 

two analog multipliers and one analog subtractor. The used 

technology is still the CMOS 0.35 µm from AMS with a 

voltage supply of 3.3 V and the used operational amplifiers 

have been taken from AMS IP library as for the square 

function. 

A. Differential Shifted Samples Generator Design 

As the designed multiplier requires symmetrical voltages 

with respect to VDD/2 on its inputs, a single to differential 

shifted samples generator shown in Fig. 9 has been designed. 

Its first stage is a voltage follower which provides a copy of 

VIN to the subtractors where VIN can be defined as follows: 

 2 2VIN VDD VD= +  () 

with VD the voltage to process using the TEO. Next, 
subtractors generate VINP which is a copy of the VIN node 
voltage, and VINN which is its symmetrical with respect to 
VDD/2. Thus, they are respectively equal to: 

 2 2VINP VDD VD= +  () 

 2 2VINN VDD VD= −  () 

To make a compromise between input impedance of the 

subtractors, power consumption of the voltage follower, and 

silicon area of the ASIC, R has been fixed to 100 kΩ. Finally, 

the VINP and VINN signals goes separately into three sample 

and hold circuits in series. This allows the three samples 

required by the discrete time TEO equation (70) to be 

generated (three for VINP and three for VINN). These 

samples are called VP(n), VP(n-1), VP(n-2), VN(n), VN(n-1), 

and VN(n-2) which enables identification with (70). 

B. TEO Implementation 

According to (71), the TEO has been implemented using 

two instances of designed multiplier, and one subtractor as 

shown in Fig. 10. To isolate multipliers from the subtractor, 

voltage followers which provides a copy of their input have 

been inserted. To keep low silicon area and power 

consumption, R has been equally fixed to 100 kΩ. Finally, to 

allow all electronic functions to be turned-off and also reduce 

power consumption, a sample & hold circuit has been added 

on the subtractors output to memorize VOUT when the 

different parts of the circuit are turned-off. 

C. Design and Synchronisation of Sample & Hold Circuits 

The sample & hold circuits, used in Fig. 9 and Fig. 10, are 

the same and shown in Fig. 11. The sample function is 

realized on a CMOS transmission gate where PMOS and 

NMOS have the same size. The hold function is obtained with 

a capacitor of 10 pF. A CMOS inverter has been added to 

generate CLK\ from the clock CLK, both being required by 

the transmission gate. Finally, a voltage follower is placed on 

the output in order to minimize capacitor current leakage. To 

synchronize properly the different sample & hold circuits, it 

is necessary to control them as shown in Fig. 12. Thus, the 

first sample & hold circuit which must be enabled is the one 

driven by CLK4 as shown in Fig. 10. Obviously, this 

supposes that the different VX(y) have properly been 

initialized one time at least where X can be P, or N and y can 

be n, n-1, or n-2. To do this, the sample & hold circuits shown 

in Fig. 9 have to be activated from the outputs to the inputs 

using CLK3 to CLK1. 

 

 

Fig. 8. Representation of the TEO’s output according to the sampling 
frequency FS, for a sine input signal having a magnitude equal to 1 and 

a frequency equal to 10 Hz. 

 

Fig. 9. Design of the single to differential shifted samples generator. 

 

 

Fig. 10. Design of the Teager Energy Operator.  



 

Fig. 11. Design of the sample and hold circuit. 

 

Fig. 12. Clocks synchronization chronogram 

D. Post-layout Simulations and Measurement Results 

The proposed TEO implementation has been post-layout 

simulated and manufactured using the 0.35 µm CMOS design 

kit from AMS as indicated earlier. Its layout is shown in Fig. 

13 and has a core area of 2.2 mm². From post-layout 

simulations, its power consumption is about 6.21 mW (resp. 

1.43 nW) when it is turned-on (resp. turned-off). However, 

this turned-on power consumption has not been optimized 

since lots of cells come from AMS IP libraries. Fortunately, 

similarly to the designed multiplier, the global power 

consumption can be reduced by using a power gating strategy 

which consists to turned-off circuits as much as possible. 

To validate TEO operation before manufacturing, a clean 

electrocardiogram has been applied on VIN. Results obtained 

with a sampling frequency of 250 Hz using post-layout 

simulations are shown in Fig. 14. It shows that the differential 

shifted samples generator works as well as our expectations 

and that a peak of 50 mV is obtained on VOUT when a typical 

pulse synchronized with heartbeats in electrocardiogram, 

having a peak voltage of 100 mV from its baseline, occurs on 

VIN.  

In Fig. 15, the TEO output VOUT has been measured 

when an electrocardiogram from MIT-BIH database [30] 

available on Physionet [31] is applied on VIN. It appears that 

the TEO generates one peak voltage for each pulse 

synchronized with heartbeats in the electrocardiogram as 

expected. Thus, it generates until 250 mV spikes when 

200 mV pulses are applied on its input. 

E. Comparison with the analog square function  

In Fig. 16, the analog square function has been measured 

using the same electrocardiogram used for Fig. 15. It appears 

 

 

Fig. 13. Layout implementation, chip photography and package photography 

of the implemented TEO. 

 

Fig. 14. Post-layout simulations results of the implemented TEO when a 

pulse synchronized with heartbeats in electrocardiogram occurs on VIN. 

that the analog square function also generates one peak 

voltage for each pulse synchronized with heartbeats in the 

tested electrocardiogram. Moreover, Fig. 16 shows that it 

generates until 700 mV spikes when 200 mV pulses are 

applied on its input. Thus, compared to the TEO, the squarer 

output dynamic is higher for an input pulse having a fixed 

magnitude. However, the square function response is the 

same for all frequencies whereas the TEO is not sensitive to 

low and slow pulses which can be seen before each high and 

fast pulses. Finally, the designed analog TEO based on the 

discrete time equation is compared in Tab. VI to other analog 

TEOs based on the continuous time equation. Even if the 

proposed TEO has a higher active power consumption, it can 

be shutdown most of the time where it consumes only 

1.43 nW, thanks to the use of the discrete time equation and 

the multiplier ability to be easily shutdown. 

 

 

Fig. 15. Measurement results of the TEO ouput VOUT (channel 1 in red) 
when pulses synchronized with heartbeats in electrocardiogram occur on VIN 

(channel 2 in yellow).  Y-axis scale is equal to 100 mV/div for both channels 

and x-axis scale is equal to 1 s/div. 

 

Fig. 16. Measurement results of the analog square function ouput (channel 1 

in red; Y-axis scale = 200mV/div) when pulses synchronized with heartbeats 
in electrocardiogram occur on VIN (channel 2 in yellow; Y-axis scale = 

100mV/div).  X-axis scale is equal to 1s/div. 



TABLE VI.  TEO COMPARISON WITH OTHER WORKS 

Ref. 
Tech. 

(nm) 

VDD 

(V) 

Input 

range 
Bandwidth 

Power 

cons. 

[18] 350 
 

1.65  
 0.9 V 

10 Hz – 
10.5 kHz 

2.72 W 

[19] 130 0.5 2 mV 12 kHz 0.26 µW 

[32] 130 1  1.166 V 
100 Hz – 

5 kHz 
0.96 W 

[33] 90 - 
20 − 350 

mVpp 
1 GHz 2.6 mW 

This 

work 
350 3.3  400 mV 100 kHz 

6.21 mWd; 

1.43 nWe 

d. Active power consumption 

e. Stand-by power consumption 

VII. CONLUSION 

This paper has focused on the design of two analog 
nonlinear transformations dedicated to energy detection: the 
square function and the Teager Energy Operator (TEO). Both 
requiring an analog multiplier, the design equations of a MOS 
Gilbert cell have been determined in order to operate around 
the mid supply voltage. Considering this, an analog multiplier, 
having a differential input range of +/-400 mV, has been 
designed using an AMS 0.35 µm technology and a voltage 
supply (VDD) of 3.3 V. It has a core area of 620 µm2 and 
offers power-gating capability, which allows a power 
consumption of 2.28 µW when a duty cycle of 0.25% is 
considered. Next, an analog square function and an analog 
TEO, have been implemented using the designed Gilbert cell. 
The analog square function has a core area of 0.9 mm² and 
measurement results have shown that it is able to compute the 
square value of its differential input voltage with a mean 
precision of 2.92% in 5 µs assuming a differential input 
voltage of +/-400 mV with a common voltage of VDD/2. 
Moreover, it is able to generate 700 mV spikes when 200 mV 
pulses are applied on its input. Finally, the designed analog 
TEO has been implemented using its discrete time equation 
instead of its continuous time equation since it does not 
require derivatives computing. It has a core area of 2.2 mm², 
an active power consumption of 6.21 mW and a standby 
power consumption of 1.43 nW. Measurement results have 
shown that it is able to generate only 250 mV spikes when 
200 mV pulses are applied on its input but it is less sensitive 
to low frequency signals. 

APPENDIX 

In this appendix, the computation which allows equations 

(22), (35), (36), and (54) to be obtained are detailed. 

A. Detailed calculation to obtain (22) 

As reminder, (21) is: 

 
D1 1I I  () 

and can equally be written as follows: 

 2 2D1 1I I   () 

Thus, using (14) and (15) which are: 

 ( )
2

1 D1 3-6 GS3 THNI I V V+ = −  () 

 ( )
2

1 D1 3-6 GS4 THNI I V V− = −  () 

(78) becomes: 

( ) ( ) ( ) ( )
2 2 2 2

4 4GS3 THN GS THN GS3 THN GS THNV V V V V V V V− − − − + −
 () 

Now, if it is assumed that: 

                         ( ) ( )
2 2

4GS3 THN GS THNV V V V−  −  () 

and also according to (20) that: 

                         
3 41 0GS GSVD V V= −                           () 

(79) becomes: 

( ) ( ) ( ) ( )
2 2 2 2

4 4GS3 THN GS THN GS3 THN GS THNV V V V V V V V− − − − + −  () 

This allows to write (23) as follows: 

 ( )
2

0 2 GS4 THNV V−  () 

and also (24) which is: 

 
THN GS4V V  () 

Next, using (19) which is: 

 2 2 GS4 DS1 DS0V1N VDD VD1 V V V= − = + +  () 

VGS4 can be written as follows: 

 2 2GS4 DS1 DS0V VDD VD1 V V= − − −  () 

Thus, if VGS4 is replaced in (24) by its equation given in (83), 
it is possible to write: 

 2 2THN DS1 DS0V VDD VD1 V V− − −  () 

which leads to: 

 ( )2 DS1 DS0 THNVD1 VDD V V V− + +  () 

Now, if it is assumed that: 

                         ( ) ( )
2 2

4GS3 THN GS THNV V V V−  −  () 

and also according to (20) that: 

                         
3 41 0GS GSVD V V= −                       () 

(79) becomes: 

( ) ( ) ( ) ( )
2 2 2 2

4 4GS3 THN GS THN GS3 THN GS THNV V V V V V V V− − + − − + −  () 

This allows to write: 

 ( )
2

30 2 GS THNV V−  () 

and also: 

 
3THN GSV V  () 

Next, using (18) which is: 

 
32 2 GS DS1 DS0V1P VDD VD1 V V V= + = + +  () 

VGS3 can be written as follows: 

 
3 2 2GS DS1 DS0V VDD VD1 V V= + − −  () 

Thus, if VGS3 is replaced in (90) by its equation given in (91), 
it is possible to write: 

 2 2THN DS1 DS0V VDD VD1 V V+ − −  () 

which leads to: 



 ( )2 DS1 DS0 THNVD1 VDD V V V− − + +  () 

Finally, if (85) and (93) are associated, it is possible to 
write (22) as follows: 

 ( )2 DS1 DS0 THNVD1 VDD V V V− + +  () 

B. Detailed calculation to obtain (35) and (36) 

As reminder, (22) and (28) are: 

 ( )2 DS1 DS0 THNVD1 VDD V V V− + +  () 

 ( )2 DS2 DS0 THNVD1 VDD V V V− + +  () 

and can be rewritten as follows:  

( )2 2DS1 DS0 THNV VDD VD1 V V− − +            () 

 ( )2 2DS2 DS0 THNV VDD VD1 V V− − +  () 

Next, since (34) is: 

 
DSX DSXsat GSX THNV V V V = −  () 

where X has to be replaced by 1 or 2 according to the 
considered transistor is M1 or M2, it is possible to write:   

 
1 1 1DS DS sat GS THNV V V V = −  () 

 
2 2 2DS DS sat GS THNV V V V = −  () 

which leads to (37) and (38): 

 ( )2 2DS1sat DS0 THNV VDD VD1 V V− − +  () 

 ( )2 2DS2sat DS0 THNV VDD VD1 V V− − +  () 

Using (96) and (97), (37) and (38) can be written as follows: 

 ( ) ( )12 2GS THN DS0 THNV V VDD VD1 V V− − − +  () 

 ( ) ( )22 2GS THN DS0 THNV V VDD VD1 V V− − − +  () 

Now, thanks to (39) and (40) which are: 

 2 2 GS1 DS0V2P VDD VD2 V V= + = +  () 

 2 2 GS2 DS0V2N VDD VD2 V V= − = +  () 

it is possible to formulate VGS1 and VGS2 as follows: 

 2 2GS1 DS0V VDD VD2 V= + −  () 

 
2 2 2GS DS0V VDD VD2 V= − −  () 

Finally, using (100) and (101), (98) and (99) becomes: 

 2 1VD VD−  () 

 2VD VD1− −  () 

which lead to (35) and (36): 

 2 1VD VD−  () 

 2VD VD1  () 

Thus, if (81) is assumed which implies that: 

                         
3 41 0GS GSVD V V= −                       () 

 (35) and (36) can be written as follows: 

 2VD VD1−  () 

 2VD VD1  () 

which cannot simultaneously be true. Now, if (87) is assumed 
which implies that: 

                         
3 41 0GS GSVD V V= −                       () 

 (35) and (36) can be written as follows: 

 2VD VD1  () 

 2VD VD1−  () 

which cannot simultaneously be true too. 

C. Detailed calculation to obtain (54) 

As reminder, (53) is: 

 
0 0DI I  () 

Using (49) and (50) which are: 

 
0 1 2I I I= +  () 

 
D0 1 2I I I= −  () 

it is possible to write (53) as follows: 

 
2 21 1I I I I− +  () 

Thus, using (45) and (46) which are: 

 ( )1 1-2 GS1 THN DS1I V V V= −  () 

 ( )2 1-2 GS2 THN DS2I V V V= −  () 

(108) becomes: 

                       
( ) ( )

( ) ( )

1 1 2 2

1 1 2 2

GS THN DS GS THN DS

GS THN DS GS THN DS

V V V V V V

V V V V V V

− − −

− + −

 () 

Now, if it is assumed that: 

                      ( ) ( )1 1 2 2GS THN DS GS THN DSV V V V V V−  −  () 

and also according to (57) that: 

                         
1 22 0GS GSVD V V= −                     () 

(109) becomes: 

                    
( ) ( )

( ) ( )

1 1 2 2

1 1 2 2

GS THN DS GS THN DS

GS THN DS GS THN DS

V V V V V V

V V V V V V

− − −

− + −

       () 

and allows to write: 

 ( )2 20 2 GS THN DSV V V−  () 

However, since (44) is: 

 2GS2 THN DS2V V V−  () 

(113) can be written as follows: 

 ( )20 2 GS THNV V−  () 

and becomes using (101): 



 ( )2 2 DS0 THNVD VDD V V− +  () 

Now, if it is assumed that: 

                         ( ) ( )1 1 2 2GS THN DS GS THN DSV V V V V V−  −  () 

and also according to (57) that: 

                         
1 22 0GS GSVD V V= −                     () 

(109) becomes: 

                          
( ) ( )

( ) ( )

1 1 2 2

1 1 2 2

GS THN DS GS THN DS

GS THN DS GS THN DS

V V V V V V

V V V V V V

− − + −

− + −

 () 

and allows to write: 

 ( )1 10 2 GS THN DSV V V−  () 

However, since (43) is: 

 
1 1 2GS THN DSV V V−  () 

(119) can be written as follows: 

 ( )10 2 GS THNV V−  () 

and becomes using (100): 

 ( )2 2 DS0 THNVD VDD V V− − +  () 

Finally, if (115) and (121) are associated, it is possible to 
write (54) as follows: 

 ( )2 2 DS0 THNVD VDD V V− +  () 

D. Design equations of the multiplier 

As reminder, the circuit is biased as follows:  

  when 
2 2

VDD VDD
VOP V1P V1N V2P V2N= = = = =  () 

In this case, transistors MA, MB, M3, M4, M5, and M6 must 
be in saturation region whereas M0, M1, and M2 must be in 
linear region. As the multiplier is switched-on when the M0 
gate source voltage PDB is equal to VDD, the active current 
I0 using the Shockley model is given by:  

 0
0 0 0

2

DS
THN DS

V
I VDD V V

 
= − − 

 

 () 

with: 

 X
X X

X

W

L
 =  () 

where WX (resp. LX) is the width (resp. length) of the transistor 
MX, αX depends on the charge mobility and the oxide 
capacitance, and VTHN is the threshold voltage of NMOS 
transistors.  

However, since the current I0 is equally shared between 
MA and MB, their source-drain current using the Shockley 
model is equal to:  

   ( )
2

0 1
2 2 2

A B
A B THP A B DSA B

I VDD
I V V


−

− − −

 
= = − +  

 

 () 

with λA-B is the channel-length modulation parameter of MA 
and MB transistors, VTHP is the threshold voltage of PMOS 

transistors, and VDSA-B is equal to VDD/2. The current I0 is also 
equally shared between M3, M4, M5, and M6 which leads 
using the Shockley model to:  

      ( ) ( )
2

1
4 2

0 3-6
3 6 GS3-6 THN 3-6 DS3-6

I
I V V V


− = = − +   () 

with λ3-6 (resp. VGS3-6 and VDS3-6) is the channel-length 
modulation parameter (resp. the gate-source and the drain-
source voltage) of M3, M4, M5, and M6 where: 

               
2

GS3-6 DS3-6 DS1-2 DS0

VDD
V V V V= = − −  () 

with VDS0 (resp. VDS1-2) is the drain-source voltage of the 
transistor M0 (resp. M1 and M2). Considering the used 
technology, λ is approximatively equal to 0.021 V-1 (resp. 
0.072 V-1) for a NMOS (resp. PMOS) transistor having a 
length of 1µm and biased using VGS  ≈ VDS ≈ VDD/2 (resp. -
VGS  ≈ -VDS ≈ VDD/2). Finally, the current I0 is also equally 
shared between M1, and M2 which allows using the Shockley 
model to write:  

  
1 2

2 2 2

0 DS1-2
1 2 DS0 THN DS1-2

I VVDD
I V V V− −

 
= = − − − 

 

 () 

Considering the following assumptions:  

 0

2

DS
THN

V
VDD V−  () 

 1 A B DSA BV − −  () 

 1 3-6 DS3-6V   () 

 
2 2

DS1-2
DS0 THN

VVDD
V V− −  () 

(122), (124), (125), and (127) can be simplified as follows: 

                     ( )0 0 0THN DSI VDD V V= −         () 

          
2

0

2 2 2

A B
A B THP

I VDD
I V

 −
−

 
= = − 

 

 () 

          ( )
2

4 2

0 3-6
3 6 GS3-6 THN

I
I V V


− = = −  () 

          
1 2

2 2

0
1 2 DS0 THN DS1-2

I VDD
I V V V− −

 
= = − − 

 

 () 

As reminder, the gain of the analog multiplier is equal to: 

 

 2 2

3-6 0 OUT

DS0 THN

I R
K

VDD V V


= 

−  +

 () 

with ROUT the multiplier output resistance whose the reciprocal 
is equal to: 

( )
21 1

2

DS0 DS1-2 DS3-6
DSA B

OUT DS0 DS1-2 DS3-6 DS1-2 DS3-6 L

g g g
g

R g g g g g R
−

  
= + +

+ +  

 () 

where gDS0 is the drain-source conductance of the transistor 
M0, gDSX-Y is the drain-source conductance of the transistors 
from MX to MY, and RL is the resistive load connected to the 
multiplier output. Since M0, M1, and M2 are biased in the 
linear region and M3, M4, M5, M6, MA, and MB are biased 
in the saturation region, gDS3-6 and gDSA-B can be considered 
small compared to gDS0 and gDS1-2, which allows to simplify 
(136) as follows: 



                     1 1
2DSA B DS3-6

OUT L

g g
R R

−= +  +  () 

Moreover, if the resistive load RL is an open circuit as in this 
paper, (137) becomes: 

                       1
2DSA B DS3-6

OUT

g g
R

−= +   () 

From (124) and (125), gDS3-6 and gDSA-B can be written as 
follows: 

    
2

2 2

A B A B
DSA B THP A B

DSA B

I VDD
g V

V

 



− −

− −

−

 
= = − 

 

 () 

       ( )
2

2

3-6 3-6
DS3-6 GS3-6 THN 3-6

DS3-6

I
g V V

V

 



= = −  () 

Assuming (129) and (130), (139) and (140) becomes:   

 
2

0
DSA B A B

I
g − −=  () 

 
4

0
DS3-6 3-6

I
g =  () 

which allows (138) to be written as follows:   

 ( )
1

2

0
A B 3-6

OUT

I

R
 −= +  () 

Using (143) and (62), the multiplier gain can be written as 
follows: 

          

 
2 1 1

2

3-6

0 DS0 THN A B 3-6

K
I VDD V V



 −

=  
−  + +

 () 

which leads using (134) to: 

     

 
1 1 1

2GS3-6 THN DS0 THN A B 3-6

K
V V VDD V V  −

=  
− −  + +

 () 

Finally, since higher VDS0 and VDS1-2 are, lower the gain K is, 

the minimum gain K%IN of the multiplier can be expressed as 

follows: 

        1 1 1

2

2

MIN

THN A B 3-6
THN

K
VDD VDD V

V
 −

=  
−  +

−

 () 

Thus, if the multiplier is biased according to (1), it can be 

noted that the minimum gain of the multiplier depends only 

on the supply voltage, the threshold voltage of NMOS 

transistors, and the channel-length modulation parameter of 

NMOS and PMOS transistors when they are biased with 

|VGS|=|VDS|=VDD/2. 

E. Design procedure of the multiplier 

To size the MOS transistors of the proposed multiplier 
biased according to (1), a preliminary work consists to extract, 
in addition to the threshold voltage of NMOS transistors, the 
channel-length modulation parameter λX of NMOS and PMOS 
transistors when they are biased with |VGS|=|VDS|=VDD/2 for 
several lengths LX. Indeed, this parameter highly depends on 
the MOS length and so the used MOS length will highly 
impact the multiplier gain. 

The next step is to choose the targeted gain. However, it 
must be noted that for a fixed output dynamic range, the more 
the multiplier gain is, the less the input dynamic range is. 

Indeed, in this context, the input voltage range for which a 
multiplier works truly as a multiplier is inversely proportional 
to its gain since high input voltages lead to multiplier 
saturation. For this work, since ECG front-ends can typically 
provide +/-100mV single voltage, the targeted gain has been 
fixed to 5 in order to have: 

       when 2 2 100 mVVD1 K VD1 VD2 VD1 VD=   = =   () 

Thus, the multiplier gain is voluntary low in order to have a 
sufficient input voltage range but avoids equally the saturation 
of the proposed energy detectors based on this multiplier. For 
the used technology and a length of 1 µm, λ is approximatively 
equal to 0.021 V-1 (resp. 0.072 V-1) for a NMOS (resp. PMOS) 
transistor if VGS  ≈ VDS ≈ VDD/2 (resp. -VGS  ≈ -VDS ≈ VDD/2). 
Since the NMOS threshold voltage is about 0.52 V, the 
minimum gain KMIN can be estimated using (146) to 4.21. To 
simplify the design procedure, a length of 1 µm has been 
equally set for M0, M1, and M2. 

To size the width of the MOS transistors, a way consists 
to solve the mathematical optimization problem based on the 
following equations introduced in the subsection D of the 
appendix:  

           ( )0 0 THN DS0I VDD V V= −         () 

          
2

0

2 2 2

A B
THP

I VDD
V

 −  
= − 

 

 () 

          
2

4 2 2

0 3-6
DS1 DS0 THN

I VDD
V V V

  
= − − − 

 

 () 

          
2 2

0
1-2 DS0 THN DS1-2

I VDD
V V V

 
= − − 

 

 () 

The goal is also to find the values of W0, W1-2, W3-6 and WA-B 
which verify:  

        

( )

( )

0 1

 from (133)

1 2

 from (136) and (133)

3 6

 from (135)

2

2 2

DS0

DS1

DS DS

0

0 THN

V

0

0
THN

0 THN

V

0
THN

V V

I

VDD V

I

I
VDD V

VDD V

IVDD
V








−

−

+

+
−

=
 

− −  − 

− −

        () 

and which allow to minimize I0 (to minimize the power 
consumption) in addition to VDS0 and VDS1 while keeping I0, 
VDS0, and VDS1-2 strictly positive. Obviously, the values of W0, 
W1-2, W3-6, WA-B must be compatible with the used technology. 

To quickly find a solution without complex programming, 
it is proposed here to arbitrary set a low value for VDS0 and 
VDS1 and to determine the associated width ratios WA-B/W3-6, 
W0/W3-6, and W1-2/W3-6. It is also possible to determine which 
width is the smallest width and a first simulation can be done 
by setting the smallest width equals to a large width with an 
appropriate number of fingers (for example 25 µm). Then, the 
other widths must be set using the ratios computed previously. 
Next, the widths ratios can be tuned around their initial values 
to reach the targeted performances. All the widths can also be 



decreased by multiplying each one by the same factor lower 
than 1 until the smallest width is equal to the minimum width 
allowed by the used technology. This will decrease the power 
consumption but will modify other parameters such as the 
output slew rate or the multiplication precision. It is also 
necessary to stop the procedure when the targeted gain or 
other parameters decrease under the targeted performances. 
The same procedure can be repeated using different values of 
VDS0 and VDS1-2 and the final design must be selected from the 
different obtained ones according to the targeted 
specifications.  

To illustrate the procedure, the following assumptions on 
VDS0, and VDS1-2 are done: 

                                 
DS0 DS1-2V V VDD+ =          () 

                                 
DS0V VDD=           () 

Using (133) and (134), it is possible to determine the WA-B/W3-

6 ratio as follows: 

                        

2

2

1

2

1

2

THN
N

A-B

3-6 THP

P

V

W VDD

W V

VDD

 



 
− − 

 =
 

− 
 

 () 

It can be noted that this ratio only depends on the sum of VDS0 
and VDS1-2. Next, using (132) and (134), it is possible to 
determine the W0/W3-6 ratio as follows: 

                          

2
2

1 2

2 1

THN

0

THN3-6

V

W VDD

VW

VDD





 
− − 

 =
 

− 
 

 () 

Finally, using (134) and (135), it is possible to determine the 
W1+2/W3-6 ratio as follows: 

                     

( )

2
2

1 2

2
2 1 2

THN

1-2

THN3-6

V

W VDD

VW

VDD



  

 
− − 

 =
 

− − − 
 

 () 

Considering the following values for the used technology: 

                                     

3.3

0.52

0.77

70 6

28 6

THN

THP

N

P

VDD

V

V

e

e





=

=

=

= −

= −

           () 

and the following parameters for VDSX voltages: 

                                     1/10

/ 3



 

=

=
           () 

the obtained width ratios are: 

                                     

4.13 4

4.19 4

2.85

A-B

3-6

0

3-6

1-2

3-6

W

W

W

W

W

W

= 

= 

=

           () 

Thus, it can be deduced that the smallest width is W3-6 and a 
starting set of width values is: 

                                 4

4

2.85

3-6

A B

0

1-2

W W

W W

W W

W W

−

=

= 

= 

= 

           () 

where the initial value of W must be set to a large value as 
indicated previously (here 25 µm with 10 fingers). Next, for 
the proposed design, the width ratio W1-2/W3-6 have been tuned 
to 2 to adjust VDS0, VDS1-2 and also the gain of the proposed 
multiplier. Finally, W, and also every MOS width, has been 
proportionally decreased according to the selected width 
ratios until getting the minimum bias current I0 which allows 
to obtain a multiplier with the targeted performances (gain, 
precision, slew rate, etc.). For this multiplier, the procedure 
has been stopped to W = 2.5µm which allows to minimize the 
derivative of K with respect to W. However, it can be noted 
that it exists a value of W from which the gain begins to highly 
decrease. This particular value of W can be selected if the 
power consumption must be optimized for a particular gain. 
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