Antoine Chaffin
email: antoine.chaffin@imatag.com

Vincent Claveau
email: vincent.claveau@irisa.fr

Ewa Kijak
email: ewa.kijak@irisa.fr

PPL-MCTS: Constrained Textual Generation Through Discriminator-Guided Decoding

Large pre-trained language models (LM) based on Transformers allow to generate very plausible long texts. In this paper, we explore how this generation can be further controlled to satisfy certain constraints (eg. being non-toxic, positive or negative, convey certain emotions, etc.) without fine-tuning the LM. Precisely, we formalize constrained generation as a tree exploration process guided by a discriminator that indicates how well the associated sequence respects the constraint. Using a discriminator to guide this generation, rather than fine-tuning the LM, in addition to be easier and cheaper to train, allows to apply the constraint more finely and dynamically. We propose several original methods to search this generation tree, notably the Monte Carlo Tree Search (MCTS) which provides theoretical guarantees on the search efficiency, but also simpler methods based on re-ranking a pool of diverse sequences using the discriminator scores. These methods are evaluated on two types of constraints and languages: review polarity and emotion control in French and English. We show that MCTS achieves state-of-the-art results in constrained generation, without having to tune the language model, in both tasks and languages. We also demonstrate that our other proposed methods based on re-ranking can be really effective when diversity among the generated propositions is encouraged. only be used through access to logits (e.g. GPT-3 API), this makes our approach more plug and play than PPLM.

, which motivated our approach.

Introduction

Generative language models exist for a long time, but with advent of the transformer architecture [START_REF] Vaswani | Attention is all you need[END_REF] and increasing computing capabilities, they are now able to generate well written and long texts. In particular, large models, such as the well known GPT-2 [START_REF] Radford | Language models are unsupervised multitask learners[END_REF] and GPT-3 [START_REF] Tom | Language models are few-shot learners[END_REF], have been used successfully for various applications: assisting writers, summarizing, augmentating data for subsequent NLP tasks, generating fake news [START_REF] Kumar | Data augmentation using pre-trained transformer models[END_REF][START_REF] Papanikolaou | DARE: data augmented relation extraction with GPT-2[END_REF][START_REF] Zellers | Defending against neural fake news[END_REF]]. Yet, beside the prompt used to initiate the generation process, there are few options to have control on the generation process. Being able to add some constraints on the generated texts is useful for various situations. For example, it allows to create texts that follow a certain writing style, convey a certain emotion or polarity. More critically, it can be used to prevent the inherent toxicity of language models trained on the internet, or to not reproduce gender or race stereotypes. So far, most methods necessitate to fine-tune the LM, so that it specifically learns to model this constraint, i.e. the constraint is -hopefully-incorporated in the LM. This fine-tuning approach has several drawbacks. It implies to train multiple specific LMs (one per constraint), which is costly, when even possible given the size of current state-of-the-art LM, and results in several models.

In this paper, we propose new approaches to add such additional constraints on the texts but at generation time. We exploit a discriminator that is trained to determine if a text follows a given constraint or not; its output provides information to guide the generation toward texts that satisfy this expected constraint. In order to make the most of the discriminator information, we propose an original method based on the Monte Carlo Tree Search (MCTS) algorithm [START_REF] Coulom | Efficient selectivity and backup operators in monte-carlo tree search[END_REF], namely Plug and Play Language -Monte Carlo Tree Search (PPL-MCTS). We also propose simpler methods based on re-ranking to fulfil this goal. Both approaches do not require to fine-tune the LM; adding a new constraint can thus simply be done by providing a discriminator verifying if a text comply with what is expected. More precisely, our main contributions are the following ones:

1. we propose to use MCTS to implement constrained generation and we show, on three datasets and two languages, that it yields state-of-the-art results while offering more flexibility;

2. we also explore simpler generation methods based on re-ranking and show that this kind of approach, with low computational costs, can also be competitive if the diversity within propositions to re-rank is encouraged;

3. we provide a fully functional code implementing a batched textual MCTS working with the popular HuggingFace library

Related work

The goal of constrained textual generation is to find the sequence x 1:T which maximises p(x 1:T | c), given a constraint c. Few methods address the constrained textual generation.

Class-conditional language models. Class-conditional language models (CC-LMs), as the Conditional Transformer Language (CTRL) model [START_REF] Shirish Keskar | CTRL: A conditional transformer language model for controllable generation[END_REF], train or fine-tune the weights θ of a single neural model directly for controllable generation, by appending a control code cc in the beginning of a training sequence. cc indicates the constraint to verify, and is generally related to a class c and a corresponding dataset. Trained with different control codes, the model learns

p θ (x 1:T | c) = T t=1 p θ (x t | x 1:t-1 , cc).
The constraint can then be applied during generation by appending the corresponding control code to the prompt. While this method gives some kind of control over the generation, the control codes need to be defined upfront and the LM still needs to be trained specifically for each set of cc. This is a problem since the current trend in text generation is the use of large pre-trained model which can hardly be fine-tuned (for instance, the last version of GPT, GPT-3, cannot be fine-tuned without access to very large hardware resources).

Discriminator-based methods

The general idea of discriminator-guided generation is to combine a disciminator D with a generative LM. The discriminator explicitly models the constraint by calculating the probability p D (c | x 1:T) of the sequence x 1:T to satisfy the constraint c. This probability is directly related to p(x 1:T | c) through Bayes' rule : p(x

1:T | c) ∝ p D (c | x 1:T)p θ (x 1:T).
Discriminator-based methods alleviate the training cost problem, as discriminators are easier to train than a LM. Moreover, any additional constraint can be defined a posteriori without tuning the LM, only by training another discriminator. The discriminators have been used in different ways to explore the search space. In the work of [START_REF] Holtzman | Learning to write with cooperative discriminators[END_REF][START_REF] Scialom | Discriminative adversarial search for abstractive summarization[END_REF], the space is first searched using beam search to generate a pool of proposals with a high likelihood, and then the discriminator is used to re-rank them. However, in addition that this search can miss sequences with high likelihood, it is biased towards the likelihood, while the best sequence might only have an average likelihood, but satisfies the constraint perfectly.

Hence, it might be more suitable to take the discriminator probability into account during decoding rather than after generating a whole sequence. In this case, the discriminator is used at each generation step to get the probability p D (c | x 1:t) for each token of the vocabulary, and merge it to the likelihood p θ (x 1:t) to choose which token to emit. In order to reduce the cost of using a discriminator, GeDi [START_REF] Krause | Gedi: Generative discriminator guided sequence generation[END_REF] proposes to use CC-LMs as generative discriminators. The method relies on the fact that during sequence generation, the CC-LM computes p θ (x t | x 1:t-1 , c) at each time step for all tokens of the vocabulary, so that most of the terms needed to compute p θ (c | x 1:t) are already computed in prior steps during online generation. This approach is thus at the intersection of tuning the LM and using a discriminator: it tunes a small LM (the CC-LM) to guide a bigger one.

In Plug And Play Language Model (PPLM) [START_REF] Dathathri | Plug and play language models: A simple approach to controlled text generation[END_REF], the discriminator is used to shift the hidden states of the pre-trained transformer-based LM towards the desired class at every generation step. PPLM can be used on any LM and with any discriminator. However, PPLM needs to access the LM to modify its hidden states, while the approach we propose only requires the output logits. As some LM can

PPL-MCTS method

The approach that we propose is in line with methods using a discriminator to guide a large LM model, without the need to re-train it. Unlike previous approaches, it is able to have a long term vision on what is generated. Being able to make a short-term decision (choice of the next token x t at time step t) that is promising in the long run is based on the exploration of the search space. We propose here to use the Monte Carlo Tree Search (MCTS) for an efficient exploration of this space.

MCTS is very well suited for this problem for three reasons. First, it allows to get a local score (i.e, a score for the next token to emit) using finished sequences. Hence, this score is more meaningful than scores based only on the next step. Second, it allows to explicitly define the compromise between exploitation of promising sequences (with an high likelihood), and exploration of other potentially promising sequences (to not miss better sequences with a lower likelihood). The fact that regret, i.e the number of simulations done on a sub-optimal sequence, has a theoretical upper bound in MCTS [START_REF] Christopher | Multi-armed bandits with episode context[END_REF] is a nice guarantee that the computation time is not wasted and the search is efficient. Finally, it outputs a solution at each iteration and so can fit our computational budget by allowing to adjust the quality of the solution to calculation spent.

Text generation as tree exploration process. The search space of the text generation corresponds to a tree: its root is the prompt and the child of a node is its father's sequence with one of the |V| possible token appended. In the case of constrained generation, the goal is thus to find the path, and therefore the sequence x, with the highest p(x | c) possible without exploring the whole tree in width and depth. As mentioned previously, this probability can be computed as the product of the likelihood p θ (x) and the probability given by a discriminator p D (c | x). An illustration of such a tree can be found in Fig. 1, where the likelihood of x is forged by multiplying corresponding conditional probabilities along the path, and the classification probability is calculated at the terminal node.

Applying MCTS to text generation. MCTS is a heuristic based iterative algorithm that uses randomness to solve deterministic problems that cannot be solved using traditional approaches, often because the search space is too large to be entirely explored. Each iteration consists in four consecutive steps. In the particular context of applying MCTS to text generation, we made some adaptations:

1. Selection Recursively choose children from the root to a node that has not been expanded yet. To only explore viable sequences, the probability p θ (x i | x 1:t-1) of a given token x i given by the LM is used during the selection phase. To this end, the children chosen are those maximizing the Polynomial Upper Confidence Trees (PUCT) [START_REF] Christopher | Multi-armed bandits with episode context[END_REF] as defined in [START_REF] Silver | Mastering the game of go without human knowledge[END_REF]:

P U CT (i) = s i n i + c puct p θ (x i | x 1:t-1) √ N i 1 + n i (1)
with s i the aggregate score of the node i, n i the number of simulations played after this node, N i the number of simulations played after its parent, and c puct a constant defining the compromise between exploration and exploitation. In the task of constrained generation, we define the score of a sequence as its probability knowing the class p(x | c). 2. Expansion If the selected node is not terminal, use the LM to expand it by creating its children. [START_REF] Caccia | Language gans falling short[END_REF]. Simulation (roll-out) Sample one of these children according to p θ (x i | x 1:t-1), and go to a terminal node through a random walk or another pattern. 4. Backpropagation Aggregate the final score obtained at the terminal node to each parent until root. There are different strategies to aggregate scores, for example, compute the average between the actual score and the one being backpropagated, or take the maximum of the two. We take the aggregated score s i associated to the node i as the averaged probability over all simulations played after this node.

When the number of iterations has reached the allocated budget, the building of the tree stops. The token x i selected for the current decoding step can be selected as the most played node amongst the root's children nodes, or the one with the highest aggregated score. We chose to select the most played one.

These adaptations of MCTS to constrained generation define our proposed approach: Plug and Play Language -Monte Carlo Tree Search (PPL-MCTS), summarized in Fig. 2. MCTS has been used in recent work [START_REF] Leblond | Machine translation decoding beyond beam search[END_REF] for machine translation, where the authors try to optimize the metric used for evaluation in machine translation. Our work mainly differ in the target goal and the way the score is defined. Rather than directly optimizing a target metric, we use MCTS to find the sequence with the highest p(x | c) possible using a discriminator D to score how well the desired constraint is satisfied.

Model improvements. In order to allow a finer control on how the constraint is applied, we introduce a parameter α ∈ [0, 1] to control the compromise between likelihood and constraint strength, modifying Bayes' equation: 1-α . Note that PUCT (1) already considers the likelihood of the sequence, favoring the selection of nodes with high likelihoods. Setting α < 1 thus forces the algorithm to explore solutions even closer to the language model. In our experiments, we set α = 1 to strengthen the classification constraint.

p(x | c) ∝ p D (c | x) α p θ (x)
To avoid expensive roll-outs, one may also assign a value to unfinished sequences at the cost of a less precise evaluation that may be not as meaningful as when doing roll-outs. Indeed, the discriminator can be trained on sequences with variable numbers of tokens, allowing it to be used at each node without the need of simulations. In this setup, the MCTS is used as an efficient compromise between exploration and exploitation, losing part of its long view property but allowing to skew the exploration toward promising solutions.

Finally, during our first experiments, we observed that PPL-MCTS leads to repetitive patterns. This is very similar of what happens with greedy search, where a single sequence with an high likelihood is dominating the search. If such sequences also have a pretty high discriminator scores, they will be repeated often. CTRL [START_REF] Shirish Keskar | CTRL: A conditional transformer language model for controllable generation[END_REF] offers a simple yet very powerful method to avoid noisy repetitions. It applies a scalar factor I(i) to the temperature parameter τ of a given token x i that penalizes this token if it is already in the input sequence. Hence, the probability of a given token becomes:

p θ (x i | x 1:t-1) = exp (z i /(τ • I(i))) v exp (z v /(τ • I(v))) (2)
with the repetition penalty I(i) > 1 if x i is already in the prompt and 1 otherwise, and z 1:|V| are the neural LM predicted logits over the vocabulary V. Thus, probabilities of already emitted tokens are penalized but if the language model gives a really high score to one token (hence, it is very confident that this should be the token to emit), it may still be selected as the output token.

Datasets

Three different datasets are used in the experiments presented hereafter: amazon_polarity [START_REF] Zhang | Character-level convolutional networks for text classification[END_REF], CLS (from the FLUE [START_REF] Le | Flaubert: Unsupervised language model pre-training for french[END_REF] dataset) and emotion [START_REF] Saravia | CARER: contextualized affect representations for emotion recognition[END_REF]. The first two are Amazon reviews which have been labeled as positive or negative, so the intended task is to study the possibility of applying polarity to the generation. As CLS is in French, these two datasets will serve to ensure that the methods have the same behaviour for different languages. Emotion is a collection of tweets classified under eight basic emotions: anger, anticipation, disgust, fear, joy, sadness, surprise and trust. This dataset is supposed to be more challenging since there are more classes and texts are smaller (only composed of one sentence), hence the model needs to precisely generate the target emotion with few tokens. It is worth noting that the 3 datasets have different sizes: 4,000,000 instances in total for amazon_polarity, 20,000 for emotion and 6,000 for CLS. They are available at https://huggingface.co/datasets/.

We adapted prompts used to start the generation for each datasets depending on the data format. Amazon_polarity comes with a "title" column which corresponds to the title the user gave to the review. This field is directly used as prompt. For the two other datasets, the prompts are the very first tokens of the text field. Because texts from emotion and CLS have different lengths, the size of prompts are also different: it is arbitrarily set to 6 tokens for CLS and 4 for emotion.

Methods and baselines

Baselines. Beside PPL-MCTS, we propose several baselines and simple techniques. Most studies create proposals using beam search and then re-rank them using the product of likelihood and discriminator probability. As suggested in [START_REF] Leblond | Machine translation decoding beyond beam search[END_REF], re-ranking is competitive but needs more exploration, notably on the diversity aspect. Thus, we explore re-ranking with different variations, in the way sequences to re-rank are produced, and in the way the final sequence is chosen. Three methods are tested to generate propositions: beam search [START_REF]Speech understanding systems: summary of results of the five-year research effort at carnegie-mellon university[END_REF] (with a beam size of 3), nucleus (top-p) sampling [START_REF] Holtzman | The curious case of neural text degeneration[END_REF] (with p=0.9), as well as beam sampling (as described in [START_REF] Caccia | Language gans falling short[END_REF]). For the final choice, we also propose three different methods : argmax, where the sequence that has the highest p(x|c) is chosen; first true, where propositions are sorted by descending likelihood and the first sequence that belongs to the correct class according to the guiding discriminator is chosen; and sampling, where the distribution of p(x|c) for the propositions is normalized and the chosen sequence is sampled following this distribution. Similarly to PPL-MCTS, the likelihood part of p(x|c) is omitted (i.e, α = 1) since sequences in the pool of propositions already have a relatively high likelihood.

It should be noted that in our setting, a generated sequence corresponds to a document (e.g. a whole review). This choice makes sense for our datasets, but re-ranking at a smaller level (after each sentence, after x tokens...) would also be possible and might produce different results.

Methods from the literature We compare our results with methods from the literature. In particular, we test CC-LMs trained on the target task, similarly as CTRL. We tested this method using greedy search as well as sampling for decoding. We also propose an implementation of CC-LM trained with the classification loss initially proposed for the GeDi method [START_REF] Krause | Gedi: Generative discriminator guided sequence generation[END_REF]. These CC-LMs are further used to implement the state-of-the-art GeDi model. In the experiments reported below, we report results for GeDi models trained with and without the classification loss. Finally, we report results of PPLM. For a fair comparison, the same discriminator and LM are used for our PPL-MCTS approach, the re-ranking approaches (baselines), and PPLM.

Experimental setting

For each method, a number of tokens equals to the average length of sequences of the dataset are generated: 98 tokens for amazon_polarity, 23 for emotion and 137 for CLS. Fixing the number of generated tokens allows fair comparisons between the tested methods since the perplexity of a sequence is directly linked to its length, and its number of n-gram impacts the Self-BLEU metric. An example of generation from amazon_polarity is given in Fig. 3.

To run all of these methods, three different models are needed: one discriminator, a "vanilla" LM used as generator, and the CC-LMs used in the CTRL and GeDi approaches. For the discriminator used to guide the generation, we rely on BERT-base-cased [START_REF] Devlin | BERT: pre-training of deep bidirectional transformers for language understanding[END_REF] for the English datasets and FlauBERT-largecased [START_REF] Le | Flaubert: Unsupervised language model pre-training for french[END_REF] for CLS. As vanilla LM, we use GPT-2 small models, relying on OpenAI's pre-trained model for the English datasets and on belgpt2 for the French one. The implementation and models <|startoftext|> The Revenge of making a good Halloween film.

[SEP]?????? I think this movie is a waste of time. It's not scary, it's just plain stupid. The only good thing about this film is the soundtrack.<|endoftext|> <|startoftext|> The Revenge of making a good Halloween film.

[SEP] ive seen this movie a few times and i love it. the acting is great, the story line is good, and the special effects are awesome. if you like horror movies then go see this one.<|endoftext|> We tested three values for the temperature parameter for each proposed method (1.0, 1.1 and 1.2) and we only report the results for the one yielding the best accuracy score. For PPL-MCTS, we also studied the impact of c puct by testing values 1.0, 3.0, 5.0 and 8.0 along with the different temperature values mentioned. The repetition penalty has been set to 1.2 as defined in CTRL. The number of MCTS iteration per token is set to 50, as well as the number of propositions for re-ranking, except for beam sampling where it is set to 10 because of memory limitations. Given the cost of roll-out for long sequences, we apply roll-out only on the emotion dataset to be able to run extensive experiments. Without roll-out, MCTS loses a part of its long view property but still allows to skew the exploration toward promising solutions. A study of the impact of the roll-out is detailed in a next sub-section. Parameters used for literature models are those provided by the authors. Experiments were conducted on a Quadro RTX 6000 with 80 Go of RAM.

Results

Results on the emotion, CLS and amazon_polarity datasets are reported in Table 1. The statistical significance against GeDi and PPLM is measured applying a t-test with significance level (p-value) of 1%. Results show that PPL-MCTS is competitive against task-specifically trained LMs on the constraint application aspect (high accuracy), while keeping a fair amount of diversity (low Self-BLEU) and staying close to the original distribution (low oracle perplexity). On all three datasets and metrics, it constantly yields top results; the only other method which is high-performing for all metrics and constant across the datasets is GeDi trained with the classification loss.

Another remarkable result is for the Sampling -Argmax method that selects among a pool of propositions generated using sampling, the one with the highest probability to be from the correct class. Thanks to the sampling used for generating propositions, its Self-BLEU is among the lowest of all reported values. Despite the simplicity and low computational cost of this approach, its accuracy is among the best on every dataset. These very good results should however be put into perspective of the very high perplexity of its generated texts. This indicates that the generated samples may be very different than those generated by a standard LM on this dataset. Hence, exploring accuracy/perplexity trade-offs achievable with different values of α is interesting, which is proposed in Appendix A.4.

Human evaluation

Since automatic metrics can be biased and not faithfully represent the human judgement, we conduct a human evaluation to compare with the results obtained through oracles. Because of the annotation cost, we limited tested methods to the two state-of-the-art methods (PPLM and GeDi), PPL-MCTS and the promising Sampling -Argmax. This allows to test if PPL-MCTS is indeed as efficient as GeDi and if both are better than original PPLM. Also, this should confirm that the high perplexity of the Sampling -Argmax method is due to generated texts being very different from the ones generated by other methods. Three annotators (the authors) labeled the same pool of reviews in order to measure the inter-rater agreement. Since annotators are native french speakers, the evaluation has been made on the CLS dataset.

The pool consists of 50 reviews (25 positives and 25 negatives) randomly sampled for each method, which results in 200 reviews in total. Annotators was asked to go through this (randomly shuffled) pool and give two score for each review:

1. Polarity. Rate from 1 to 5 how well the text correspond to the desired label (positive or negative). If the desired label is negative, 5 corresponds to a text which contains only criticisms, 4 to one with some positive aspect and 3 a neutral review (either as many positives as negatives, or not any polarity). A rate of 1 or 2 corresponds to a text containing mainly positive comments. This score corresponds to the accuracy automatic metric. 2. Readability. Rate from 1 to 5 how well the text is written. 5 corresponds to a text without any mistake and which is perfectly understandable. A score of 4 is given if there is some misspelling or if a passage does not make much sense. The more mistakes or problem of meaning, the lower the score. This score corresponds to the perplexity automatic metric.

The diversity within the pool of generated texts being complicated to evaluate using this protocol and the Self-BLEU being fairly accurate as a diversity metric, this property is not studied in the human evaluation.

We report scores averaged over the 3 annotators as well as the standard deviation in Fig. 2. A t-test with significance level (p-value) of 1% against PPLM (GeDi being best on both scores) is applied to test statistical significance. The results seem to be in line with conclusions from automatic metrics. GeDi, when trained with the classification loss, yields similar results as PPL-MCTS, in terms of constraint satisfaction and quality of writing. PPLM, on the other hand, generates samples of lower quality and has more difficulty for applying the constraint. Finally, given its readability score, Sampling -Argmax seems to generate samples with a low quality. Its polarity score, while being higher than PPLM, is lower than expected: given the accuracy reported by the oracle, it should be close to GeDi and PPL-MCTS. It is most likely due to the fact that evaluating the polarity of a badly written text is hard to an human, often resulting in review being scored as neutral.

Effect of the roll-out

Rolling out is costly for very long sequences, and the question of its usefulness necessarily arises.

We study how rolling out for only a fixed number of tokens (instead of until the end of the sequence) influences the performance of PPL-MCTS. For this experiment, we use the CLS dataset and set the roll-out to 0 (original result), 3, 5, 10 and 20 tokens. As one can note in Fig. 4, only 5 tokens allows PPL-MCTS to be on par with GeDi on this dataset. The roll-out size quickly improves accuracy, which then reaches a plateau. It suggests that having an horizon is really helpful but only up to a given point. Conversely, Self-BLEU and oracle perplexity values stay stable, varying respectively from 0.54 to 0.57, and from 4.98 to 5.18 as the roll-out size increases from 0 to 20 (not shown on Fig. 4). Finally, it should be noted that for a -relatively small-fixed number of tokens, the cost of the roll-out is marginal compared to the global cost of PPL-MCTS.

Conclusion

In this paper, we show that it is possible to control generation with the help of a discriminator that implements some expected constraint on the text. This flexible approach is very useful when using very large language models, such as GPT-3, whose fine-tuning computational costs are prohibitive.

In contrast, training a discriminator is easier and cheaper. The methods that we propose to mix the discriminator constraint and the generation yield performance that is equivalent to the best approaches based on LM tuning. On the other hand, such approaches are more expensive during inference, because of the additional cost of the discriminator and a more complex decoding process. PPL-MCTS offers a solution for cases where training is too costly for the downstream application or the language model is not directly accessible. GeDi tackles this extra inference cost by using CC-LM as discriminator. Seeing text generation as a tree exploration process, it lowers the cost of width exploration but the depth exploration is still an issue, since it is now very similar to a standard maximum likelihood search. Monte Carlo Tree Search provides an efficient way to determine the best local choice in the long run, lowering the cost of depth exploration. Thus, these two methods solve different facets of constrained generation, and the combination of the two is a promising perspective. Moreover, MCTS allows to precisely define the best compromise between cost and quality, while ensuring the efficiency of the search theoretically. For reproducibility purposes, our implementation is made available at https://github.com/NohTow/PPL-MCTS.

Several research avenues are opened by this work. For methods yielding high perplexity, exploring the α parameter could help to reach a better compromise between accuracy and perplexity. Similarly, the size (number of tokens considered) of the roll-out in MCTS offers some ways to control the cost/performance compromise.

Having an adaptive roll-out size, as in [START_REF] Cotarelo | Improving monte carlo tree search with artificial neural networks without heuristics[END_REF], would seem particularly suited for texts. Last, it should be noted that fine-tuning a model and controlling the generation with a discriminator can be used jointly. For instance, one can use MCTS on a tuned LM, which will most likely result in even better results because sequences considered during the search will have an overall higher quality for the considered task.

Ethics/Broader impact

The ethical risks of large LMs are well known [START_REF] Bender | On the dangers of stochastic parrots: Can language models be too big?[END_REF]. Especially when they are trained on large quantities of non curated data, it has be shown that they tend to reproduce or amplifies biases on gender, race, etc. and more generally may produce inappropriate content [START_REF] Samuel Gehman | Real-ToxicityPrompts: Evaluating neural toxic degeneration in language models[END_REF]. Constrained generation as we propose is one way to control, a posteriori of the LM training, that the generated texts respect some criteria. The ethical interests are thus important, such as adding constraint about race diversity, gender equality, non toxicity, etc. But of course the same technique could be used for malicious purposes, such as constraining generation so it produces offensive texts, targeted fake news, etc.

A Appendix

We provide in this technical appendix additional information on the experiments. Further experimental results, as well as examples, are given and discussed.

A.1 Data splits

We adapted the way we split the dataset into two parts and train/test/validation sets depending on the original datasets splits. Amazon_polarity is composed of a training set of 3 600 000 examples and a test set of 400 000. We split both in two and kept 20% of each training set for validation. Emotion already comes with train, test and validation set, hence we just split each in two. Finally, CLS is composed of a train and test sets that have a size of 6000. We split the training set in two and split the test set twice so we got two validations and test sets.

The first train and validation sets are used to train and control the training of models used for the generation: the guiding classifier, "vanilla" LM and CC-LM. The test set serves to verify their performance.

The second ones are used to train the LM oracle and the classifier used to measure the accuracy. The test set allows to verify that these models are trustable for accurate evaluation. Once all the models are trained, the controlled generation is evaluated on 900 samples generated from prompts never seen by the discriminator.

A.2 Complementary results

We tested three values for the temperature parameter for each proposed method: 1.0, 1.1 and 1.2.

As the temperature grows, the output distribution of the language model becomes more and more uniform. This means that high temperatures should result in high perplexities because the sampling deviates further from the original distribution.

For PPL-MCTS, we also studied the impact of c puct by testing values 1.0, 3.0, 5.0 and 8.0 along with the different temperature values mentioned. c puct defines the compromise between exploiting nodes that already have great scores and exploring less played but promising ones. A high c puct encourages exploration. We remind that the repetition penalty I in (2) has been set to 1.2 as defined in CTRL.

In Section 'Results', we reported only one set of parameter values for each method and dataset, the one that yields the best accuracy result. We report hereafter results with every tested set of parameters in Tables 3, 4 and 5 for respectively the emotion, CLS and amazon_polarity datasets.

Unsurprisingly, the perplexity of methods which sample on the LM logits explodes when τ grows, without a noticeable gain in accuracy. Since the diversity is already high for low τ values, it seems to be better to keep the temperature low with these approaches. Note that the couple c puct = 3, τ = 1.0 for PPL-MCTS always leads to the best result for this method. Using c puct = 8 seems to yield slightly worse results, especially with a low temperature. However, the different parameters do not greatly affect the results of PPL-MCTS.

A.3 Examples of generation

We provide an example of generation for amazon_polarity and emotion datasets using PPL-MCTS, PPLM, GeDi and Sampling -Argmax methods, respectively in Figures 5 and6. Texts generated using Sampling -Argmax are rather different as suggested by reported high perplexity results. Note that emotion texts are only one sentence while those of amazon_polarity are complete reviews. This difference motivated the choice of these datasets. Also, we preferred amazon_polarity over IMDb used in GeDi and PPLM papers because of its bigger size, suitable format and because a French equivalent is available (CLS).

A.4 Constraint strength through α

As described in the model improvments section, a parameter α can be defined to control the relative importance of the discriminator score and the language model likelihood. Thus, this parameter allows to control the constraint application strength, allowing to define a trade-off between staying close the Sampling -Argmax <|startoftext|> realistic account [SEP] ive seen many of these. they mostly in the 20's, 30's and 40's and the luscious ones i know -men like this -there's an old saying that farts, u makin' u sell it..this movie has a lot of realism to it too! and i was totally impressed on how good the kids and the predator was! will it be hard for them to make more like this? i think it will! i read that war is going to be much<|endoftext|> PPL-MCTS <|startoftext|> i feel that working with a group of people who are so passionate about the same thing is really important<|endoftext|> PPLM <|startoftext|> i feel that working hard and caring for someone i don t care for is a lot less selfish than i would be feeling for someone i<|endoftext|> GeDi <|startoftext|> i feel that working with the ladies of the family is a wonderful thing and i am very fond of the way they look and feel<|endoftext|>

Sampling -Argmax <|startoftext|> i feel that working at imgur for so many years is ill be devoted to it<|endoftext|> original LM and satisfying the constraint. Note that in all of our experiments, this parameter has been set to 1, focusing on the constraint application since the proposed methods already inherently provide legible texts.

As a proof of concept, we tested automatic metrics on a range of values for α, using the Sampling -Argmax method on the amazon_polarity dataset. We chose this method and dataset since it yields top result in term of accuracy, but also exhibits very high perplexity. In this case, it seems interesting to trade a bit of accuracy for better written texts.

Results are roughly constant when α is lower than 0.98, so it has an impact only for values between 0.98 and 1. This is due to the fact that, for a long enough sequence, p θ (x) is often relatively small compared to p D (c | x). This difference of scale annihilates the influence of α. This interval thus corresponds to values of α that rescale p D (c | x) α and p θ (x) 1-α on a same order of magnitude. As shown in Figure 7, within this regime, we can observe a linear dependency between α and the accuracy as well as the perplexity. This illustrate that a trade-off can be obtained by tuning this parameter, allowing to define the strength of the constraint application which also define how far the generation can be from the original LM distribution.

Figure 1 :

 1 Figure 1: Illustration of the constrained generation process as a tree exploration from the prompt The cat. Classification probabilities are only represented on completed sequences.

Figure 2 :

 2 Figure 2: Illustration of MCTS applied to text generation.

Figure 3 :

 3 Figure 3: Example of two constrained generations using PPL-MCTS, one on the negative class, one on the positive class, using the same prompt (in bold) from amazon_polarity.Figure 4: Accuracy (%) according to the roll-out size; CLS dataset

Figure 4 :

 4 Figure 3: Example of two constrained generations using PPL-MCTS, one on the negative class, one on the positive class, using the same prompt (in bold) from amazon_polarity.Figure 4: Accuracy (%) according to the roll-out size; CLS dataset

Figure 5 :

 5 Figure 5: Example of constrained generations using PPL-MCTS, PPLM, GeDi and Sampling -Argmax methods (from top to bottom) on the positive class, using the same prompt (in bold) from amazon_polarity.

Figure 6 :

 6 Figure 6: Example of constrained generations using PPL-MCTS, PPLM, GeDi and Sampling -Argmax methods (from top to bottom) on the 'love' class, using the same prompt (in bold) from emotion.

Figure 7 :Table 4 :Table 5 :

 745 Figure 7: Accuracy (left) and perplexity (right) of the Sampling -Argmax method according to the α parameter; amazon_polarity dataset

Table 1 :

 1 Performance (accuracy, self-BLEU and perplexity) of constrained generation methods; amazon_polarity (left), emotion (middle) and CLS (right) datasets. † (resp. *) indicates statistically significant (p ≤ 1%) improvement against GeDi-classloss (resp. PPLM).

		amazon_polarity		emotion			CLS	
	Generation	Acc.	5 -Self-Oracle Acc.	5 -Self Oracle Acc.	5 -Self Oracle
	method	↑	BLEU ↓ pplty ↓	↑	BLEU ↓ pplty ↓	↑	BLEU ↓ pplty ↓
	CC-LM -Classloss 0.82	0.79	2.56 * , † 0.89 *	0.65 †	3.72 * , † 0.89 *	0.04 * , †	50.6
	CC-LM	0.91	0.71	3.21 †	0.52	0.13 * , †	11.1	0.66	0.06 * , †	31.5
	GeDi -Classloss	0.96 *	0.6 *	5.16	0.88 *	0.68	5.57 *	0.94 *	0.4	7.99 *
	GeDi	0.96 *	0.6 *	5.16	0.54	0.52 †	4.09 * , † 0.83 *	0.31 †	11.9
	PPLM	0.89	0.66	2.84 †	0.67	0.19 †	7.31	0.79	0.23 †	8.3
	Beam									
	w/ Argmax	0.88	0.85	3.14 †	0.72 *	0.49 †	3.7 * , †	0.64	0.82	3.31 * , †
	w/ Sampling	0.86	0.84	3.27 †	0.7	0.46 †	3.69 * , †	0.6	0.82	3.37 * , †
	w/ First true	0.85	0.83	3.27 †	0.65	0.38 †	3.68 * , † 0.62	0.82	3.26 * , †
	Beam sampling									
	w/ Argmax	0.97 *	0.73	3.82 †	0.67	0.48 †	3.88 * , † 0.88 *	0.67	3.91 * , †
	w/ Sampling	0.92	0.76	3.68 †	0.66	0.48 †	3.88 * , † 0.76	0.63	4.07 * , †
	w/ First true	0.9	0.73	3.84 †	0.66	0.49 †	3.85 * , † 0.85 *	0.71	3.8 * , †
	Sampling									
	w/ Argmax	0.99 * , †	0.17 * , †	16.5	0.87 *	0.13 * , †	11.7	0.92 *	0.12 * , †	14.3
	w/ First true	0.89	0.07 * , †	85.9	0.82 *	0.13 * , †	10.4	0.87 *	0.14 * , †	13
	w/ Sampling	0.88	0.17 * , †	16.3	0.81 *	0.13 * , †	10.4	0.81	0.06 * , †	31.8
	PPL-MCTS	0.97 *	0.63 *	5.69	0.84 *	0.37 †	4.82 * , † 0.89 *	0.54	4.98 * , †

Table 2 :

 2 Results of the human evaluation on the CLS dataset (averaged over 3 annotators). * indicates statistically significant (p ≤ 1%) improvement against PPLM.

	Generation method Polarity	Readability
	GeDi -Classloss	4, 46 ± 0, 08 * 4, 19 ± 0, 28 *
	PPL-MCTS	4, 43 ± 0, 12 * 4, 05 ± 0, 23 *
	PPLM	3, 74 ± 0, 08	3, 12 ± 0, 19
	Sampling -Argmax 4, 00 ± 0, 11	2, 83 ± 0, 33

 PPL-MCTS<|startoftext|> realistic account [SEP] ive read this book and i think it is a very good account of the life of a young man. i would recommend to anyone who likes to know about the lives of people in america, or any other country that has been around for centuries.<|endoftext|> PPLM <|startoftext|> realistic account [SEP] I enjoyed this book. It was realistic and I enjoyed the way the author described the people and places. I would recommend this book to anyone who is interested in the history of the United States.<|endoftext|> GeDi <|startoftext|> realistic account [SEP] This is a real book. It's not just about the war, but also about the people who fought it. The author has a very realistic view of what happened in Vietnam and how it affected our country. I would recommend this book to anyone interested in learning more about Vietnam or any other war that took place during time period<|endoftext|>

1st CtrlGen: Controllable Generative Modeling in Language and Vision Workshop at NeurIPS 2021.

Experiments 4.1 Performance assessmentThe goal of constrained generation is to generate samples that 1) belong to a specific class while 2) keeping the language quality of the original LM, and 3) with enough diversity across samples. We chose three different metrics to evaluate each of these aspects: 1) accuracy, which is automatically verified by an external "oracle" discriminator trained on a dataset disjoint from the one used to guide the generation; 2) perplexity, which is computed using an "oracle" LM , i.e an unconstrained LM trained on different data than the one used to train the constrained generator; 3) Self-BLEU score[START_REF] Zhu | Texygen: A benchmarking platform for text generation models[END_REF], which is the BLEU score[START_REF] Papineni | Bleu: a method for automatic evaluation of machine translation[END_REF] of a sample using the other samples as references: a high Self-BLEU score means that there is a lot of overlap between generated samples, and thus that the diversity is low. Such automatic metrics have known limitations[START_REF] Caccia | Language gans falling short[END_REF] but results of human evaluation on the CLS dataset, detailed in Section 4.6, confirm that they provide a good overview of the performance.In practice, the studied dataset (see below) is split into two parts, each part being sub-divided in train/val/test sets. The first part serves to train models used for the generation (LM and discriminator), while the second is used to train oracles which serve to compute the evaluation metrics. The test set of this second part will also be used to forge prompts for the generation. Each metric is evaluated on a pool of 900 generated samples.