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GEOMETRIC, SPECTRAL AND ASYMPTOTIC
PROPERTIES OF AVERAGED PRODUCTS OF

PROJECTIONS IN BANACH SPACES

CATALIN BADEA AND YURI I. LYUBICH

Abstract. According to the von Neumann-Halperin and Lapidus the-
orems, in a Hilbert space the iterates of products or, respectively, of
convex combinations of orthoprojections are strongly convergent. We
extend these results to the iterates of convex combinations of products
of some projections in a complex Banach space. The latter is assumed
uniformly convex or uniformly smooth for the orthoprojections, or re-
flexive for more special projections, in particular, for the hermitian ones.
In all cases the proof of convergence is based on a known criterion in
terms of the boundary spectrum.

1. Introduction and background

1.1. What this paper is about. Let H be a Hilbert space, and let

M1, . . . ,MN be closed subspaces of H. Denote by Pk the orthoprojection

onto Mk, and let T = P1P2 · · ·PN . It was proved by von Neumann [29] for

N = 2 and by Halperin [16] for any N that T n with n → ∞ converges

strongly to the orthoprojection onto M1 ∩M2 ∩ · · · ∩MN . The same was

proved by Lapidus [21] for T =
∑N

k=1 αkPk with αk > 0, 1 ≤ k ≤ N , and∑N
k=1 αk = 1. Some different proofs of these results were recently given in

[20]. The von Neumann-Halperin and Lapidus theorems were generalized

to uniformly convex Banach spaces by Bruck and Reich [7] and Reich [30],

respectively. For a survey see [10, Chapter 9].

In the present paper we consider the situation when T is a convex

combination of products of some projections in a complex Banach space.

With some concordance between its geometry (uniform convexity or uniform

smoothness, or reflexivity) and a class of projections (orthoprojections, her-

mitian projections, etc.) we establish a spectral property of T which implies

the strong convergence of T n as n→∞. The necessary background is pre-

sented below.
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1.2. Spaces and operators. From now on we denote by X a complex

Banach space and by B(X) the Banach algebra of linear bounded operators

on X. The identity operator will be denoted by I.

Recall that a space X is said to be uniformly convex if for every ε ∈ (0, 1)

there exists δ ∈ (0, 1) such that for any two vectors x and y with ‖x‖ ≤ 1 and

‖y‖ ≤ 1 the inequality ‖x+ y‖/2 > 1− δ implies ‖x− y‖ < ε. Accordingly,

the nondecreasing function

δX(ε) = inf

{
1− ‖x+ y‖

2
: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
is called the modulus of convexity of the space X. This classical definition,

due to Clarkson [8], can be formally applied to all Banach spaces, so the

uniformly convex spaces are just those which satisfy δX(ε) > 0 for all ε.

Every Hilbert space H is uniformly convex, its modulus of convexity is

δH(ε) = 1−
√

1− ε2

4
.

For more information on the modulus of convexity see e.g. [5], [15] and the

references therein.

A space X is called uniformly smooth if for every ε > 0 there exists

δ > 0 such that the inequality ‖x + y‖ + ‖x − y‖ < 2 + ε‖y‖ holds for

any two vectors x and y with ‖x‖ = 1 and ‖y‖ ≤ δ. A relevant modulus

of smoothness was introduced by Day [9]. However, for the purposes of this

paper we only need to know that all uniformly convex and all uniformly

smooth spaces are reflexive and a space X is uniformly smooth if and only

if its dual X∗ is uniformly convex, see e.g. [23].

Let H be a Hilbert space. An operator T ∈ B(H) is hermitian (≡ self-

adjoint) if and only if ‖ exp(itT )‖ = 1 for all real t. In any Banach space

X the latter property is a definition of a hermitian operator. (In [26] such

operators were called conservative. This is just the case when T and −T are

dissipative, i.e. generate semigroups of contractions [25]).

Note that every real combination of pairwise commuting hermitian op-

erators is hermitian as well. In particular, the operator T −αI is hermitian

for any hermitian T and any real α.

For any operator T ∈ B(X) its spectrum is usually denoted by σ(T ).

If T is hermitian then σ(T ) ⊂ R. If T is a contraction, i.e. ‖T‖ ≤ 1,

then σ(T ) ⊂ D, where D is the open unit disk in the complex plane. The

intersection of σ(T ) with the unit circle ∂D is called the boundary spectrum

of the contraction T . Every point λ ∈ σ(T )∩ ∂D of the boundary spectrum

is an approximate eigenvalue, i.e. there is a sequence of vectors xk of norm
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1 such that Txk − λxk → 0. The boundary spectrum may be empty. This

happens if and only if there is n ≥ 1 such that T n is a strict contraction

(i.e. ‖T n‖ < 1) or, equivalently, ‖T n‖ → 0 as n→∞.

1.3. Classes of contractions. A contraction is called primitive if its

boundary spectrum is at most the singleton {1}. If the space X is reflexive

then the iterates T n of any primitive contraction T ∈ B(X) are strongly

convergent. This fact is the key to all convergence problems studied in the

present paper. Actually, it is a purely logical combination of two known

general results:

1) If the space X is reflexive then every contraction T with at most

countable boundary spectrum is almost periodic, i.e. all orbits (T nx)n≥0 are

precompact [32].

2) In any Banach space the iterates of any primitive almost periodic

contraction are strongly convergent [18]. (See also [27] for a general theory

of almost periodic operator semigroups.)

An alternative proof (see Section 4 of the present paper) uses the

Katznelson-Tzafriri theorem [19]: in any Banach space

lim
n→∞

‖T n − T n+1‖ = 0

for every primitive contraction T .

Note that all the results stated above for contractions are automatically

true for any power bounded operator T ∈ B(X) since T is a contraction in

an equivalent norm on X. On the other hand, even the weak convergence

of T n implies the power boundedness of T .

The following geometric condition was introduced by Halperin in [16]:

(H)

there is K ≥ 0 such that ‖x− Tx‖2 ≤ K
(
‖x‖2 − ‖Tx‖2

)
(x ∈ X).

Under this condition (the same as (K) in [13]), T is a contraction, and all

strict contractions satisfy (H). We denote by K(T ) the smallest value of K.

In particular, K(I) = 0.

Halperin proved that in a Hilbert space the iterates of every (H)-

contraction are strongly convergent. In fact, this is true in any reflexive

Banach space. Indeed, from (H) it follows that

(S) ‖xk‖ ≤ 1, ‖Txk‖ → 1⇒ xk − Txk → 0 strongly.

However, every (S)-contraction is primitive. Indeed, let ‖Txk − λxk‖ → 0

for a λ ∈ ∂D and a sequence of normalized vectors xk. Then ‖Txk‖ → 1,

hence ‖Txk − xk‖ → 0 by condition (S). Therefore, λ = 1. As a result, the
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iterates of every (S)-contraction in a reflexive Banach space are strongly

convergent.

In Hilbert space this was proved in [3], where the condition (S) appears

together with its weak version

(W) ‖xk‖ ≤ 1, ‖Txk‖ → 1⇒ xk − Txk → 0 weakly,

and the correspondig convergence result. The latter was extended to the

reflexive Banach space in [12].

Obviosly, the condition (W) implies

(W’) ‖Tx‖ = ‖x‖ ⇒ Tx = x.

Conversely, (W’) implies (W) if the space is Hilbert (see [3]) or, more gener-

ally, if it is a reflexive Banach space with a weakly sequentially continuous

duality map (see [12]).

Note that for the strict contractions the conditions (S) and (W) are

formally fulfilled but empty in content.

In [11] Dye proved that in a Hilbert space the condition (H) is equivalent

to

(D) there is r ∈ (0, 1) : ‖T − rI‖ ≤ 1− r.

Obviously, under the condition (D) the operator T is a contraction. Hence,

‖T − rI‖ ≥ 1− r, so, finally, ‖T − rI‖ = 1− r.
Every (D)-contraction is primitive. Indeed, if λ ∈ σ(T ), then λ − r ∈

σ(T − rI), so |λ − r| ≤ ‖T − rI‖ ≤ 1 − r, whence λ = 1 for |λ| = 1.

Thus, the iterates of every (D)-contraction in a reflexive Banach space are

strongly convergent.

1.4. Projections. Recall that a linear operator P ∈ B(X) is called a pro-

jection if P 2 = P or equivalently, Ker(P ) = Ran(I−P ). Obviosly, ‖P‖ ≥ 1

if P 6= 0. A projection P is called an orthoprojection if it is a contraction,

i.e. ‖P‖ = 1 or P = 0. In Hilbert space this definition is equivalent to the

standard one: the subspaces Ker(P ) and Ran(P ) are mutually orhogonal.

Equivalently, this means that P is hermitian. In any Banach space every

hermitian projection is an orthoprojection. Indeed, for any projection P we

have

(1.1) exp(itP ) = (I − P ) + eitP.

Hence,

P =
1

2τ

∫ τ

−τ
exp(itP )e−itdt
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that yields ‖P‖ ≤ 1 if P is hermitian. However, if P is a hermitian pro-

jection then so is I − P , while for the orthoprojections this is not true,

in general. Another specific feature of the non-Hilbert situation is that for

some subspaces the orthoprojections do not exist. We refer the reader to [2]

and [6] for more details and references.

For our purposes it is important to note that all (D)-projections are

orthoprojections. Also note that every hermitian projection P satisfies (D)

with r = 1/2, i.e. it is au-projection in the sense of [14]. This immediately

follows from (1.1) by taking t = π. Obviously, if P is a u-projection then so

is I − P and both are orthoprojections.

Main Theorem. Let P1, · · · , PN be some orthoprojections in a complex

Banach space X, and let S = S(P1, · · · , PN) be the convex multiplicative

semigroup generated by P1, · · · , PN , i.e. the convex hull of the semigroup

consisting of all products with factors from {P1, · · · , PN}. Assume that one

of the following conditions is satisfied:

(i) the space X is uniformly convex;

(ii) the space X is uniformly smooth;

(iii) the space X is reflexive and all Pk are of class (D).

Then for every operator T ∈ S(P1, · · · , PN) the iterates T n converge strongly

to an orthoprojection T∞. In addition, if Pk are of class (W’) then

(1.2) Ran(T∞) = ∩k∈FT
Ran(Pk)

where FT is the set of all indices k occurring in the decomposition of T

as a member of S(P1, ..., PN). The formula (1.2) is true in the class of all

orthoprojections if the space X is uniformly convex or uniformly smooth and

strictly convex.

Recall that a Banach space is called strictly convex if all points of its

unit sphere are extreme.

In the case (i) the strong convergence of T n, where T is a product or

convex combination of orthoprojections, was proved in [7] and in [30], respec-

tively. The space X in these papers is real, but the results are automatically

true for the complex unifomly convex spaces by realification. On the other

hand, there is an example of divergence in l∞4,R, i.e in R4 endowed with the

max-norm ([7], p.464). Another related example is in [28]. In fact, there is

an example even in l∞2,R, a fortiori, in l∞2,C. Namely, let

P1 =

(
1 0
−1 0

)
and P2 =

(
0 1
0 1

)
.
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Then

(P1P2)
n =

(
0 (−1)n+1

0 (−1)n

)
,

so the iterates (P1P2)
n are divergent.

The space in our example is not strictly convex. An open question is

about existence of an example of divergence in a strictly convex space. For

the affirmative answer the space must be infinite-dimensional since every

finite-dimensional strictly convex space is uniformly convex.

For any Banach space X and its closed subspace M , we denote by PM(x),

x ∈ X, the set of points in M whose distance to x is minimal. IfX is reflexive

then the set PM(x) is not empty for every x. If, in addition, X is strictly

convex, then PM(x) is a singleton. In this situation PM(x) can be considered

as a point in X and PM as a mapping X → X, a nearest point projection

onto M . In general, this ’projection’ is nonlinear. However, in a Hilbert

space PM coincides with the orthoprojection onto M .

For a strictly convex reflexive space X with dimX > 2 Stiles proved

in [31] that if (PMPN)n converges strongly to PM∩N for every pair (M,N)

of closed subspaces of X, then X is a Hilbert space. Thus, the von Neu-

mann theorem cannot be extended to the nearest point projections in a

non-Hilbert space. See however [30, Lemma 3.1] for a relation between lin-

ear nearest point projections and orthoprojections. This makes it possible

to obtain a counterpart of the Main Theorem for linear nearest point pro-

jections. This observation was kindly communicated to us by S. Reich.

Note that the weak convergence of the iterates of a product or a convex

combination of orthoprojections in a uniformly smooth space follows from

[7] and [30] by duality.

1.5. Organization of the paper. The next section contains some infor-

mation on the Apostol modulus ϕT (ε) and its modification ϕ̃T (ε) for a

contraction T in a Banach space. In Section 3 we apply it to prove that the

classes (H), (S) and (D) are multiplicative semigroups, furthermore, (S) and

(D) are convex . This is an important ingredient of the proof of the Main

Theorem. The latter is given in Section 4 after a proof of the convergence of

the iterates of a primitive contraction in a reflexive Banach space. We con-

clude with an Appendix (Section 5) where we study some relations between

the Apostol moduli and a geometric characteristic of the boundary spec-

trum. This yields a new look at a generalization of the Katznelson-Tzafriri

theorem obtained by Allan and Ransford [1].
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2. The Apostol modulus

2.1. Definitions and basic facts. For a contraction T ∈ B(X) we consider

the Apostol modulus

ϕT (ε) = sup{‖x− Tx‖ : ‖x‖ ≤ 1, ‖x‖ − ‖Tx‖ ≤ ε}, 0 < ε ≤ 1.

This function was introduced and studied by Apostol [4] in the case of

Hilbert space. For our purposes the following modification is convenient:

ϕ̃T (ε) = sup{‖x− Tx‖ : ‖x‖ ≤ 1, 1− ‖Tx‖ ≤ ε}.

This definition is correct if and only if ‖T‖ = 1 since this is the only case

when the set {x : ‖x‖ ≤ 1, 1 − ‖Tx‖ ≤ ε} is nonempty for all ε. Thus, we

will assume ‖T‖ = 1 anytime when dealing with ϕ̃T (ε). On the other hand,

in all further applications the case ‖T‖ < 1 is trivial.

Obviously, both functions ϕT (ε) and ϕ̃T (ε) are nondecreasing and

(2.1) 0 ≤ ϕ̃T (ε) ≤ ϕT (ε) ≤ ‖I − T‖ ≤ 2.

Actually, the most interesting information relates to their behavior as ε→ 0.

Accordingly, we consider

ϕ0
T = lim

ε→0
ϕT (ε) = inf

ε>0
ϕT (ε) ≥ 0

and

ϕ̃0
T = lim

ε→0
ϕ̃T (ε) = inf

ε>0
ϕ̃T (ε) ≥ 0.

It turns out that these limit values coincide. In this sense the difference

between the two versions of the Apostol modulus is not essential.

2.2. Lemma. If T a contraction of norm 1 and T 6= I then ϕT (ε) > 0 for

all ε and

0 ≤ ϕT (ε) ≤ ϕ̃T

(
‖I − T‖ε
ϕT (ε)

+ 0

)
.

Proof. Assuming ϕT (ε) = 0 for an ε, we obtain ‖x− Tx‖ = 0 for all x with

‖x‖ ≤ ε, so T = I. Now let T 6= I. Take q ∈ (0, 1) and find a vector x such

that

‖x‖ ≤ 1, ‖x‖ − ‖Tx‖ ≤ ε, ‖x− Tx‖ = qθ

where θ = ϕT (ε) > 0. Then for the normalized vector z = x/‖x‖ we have

1− ‖Tz‖ ≤ ε

‖x‖
, ‖z − Tz‖ =

qθ

‖x‖
≥ qθ,
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whence

ϕ̃T

(
ε)

‖x‖

)
≥ qθ.

On the other hand,

ϕ̃T

(
ε

‖x‖

)
≤ ϕ̃T

(
‖I − T‖ε

qθ

)
since ‖x‖ ≥ qθ/‖I − T‖. Thus,

qθ ≤ ϕ̃T

(
‖I − T‖ε

qθ

)
.

It remains to subsitute θ by ϕT (ε) and pass to the limit as q → 1 . �

2.3. Corollary. ϕ̃0
T = ϕ0

T for all contractions T of norm 1.

Proof. Since ϕ̃0
I = ϕ0

I = 0, one can assume T 6= I and apply Lemma 2.2. As

ε→ 0 we get ϕ0
T ≤ ϕ̃0

T . The opposite inequality is trival. �

From now on we denote by ωT the common value of ϕ0
T and ϕ̃0

T . For

instance, ωI = 0. Accordingly, (2.1) can be extended to

(2.2) 0 ≤ ωT ≤ ϕ̃T (ε) ≤ ϕT (ε) ≤ ‖I − T‖ ≤ 2.

2.4. Theorem. ωT = 0 if and only if T is of class (S).

Proof. ”If”. There is a sequence of vectors xk such that ‖xk‖ ≤ 1, 1 −
‖Txk‖ ≤ 1/k and ϕ̃T (1/k) < 2‖xk − Txk‖. The latter norm tends to zero if

T satisfies conditon (S).

”Only if”. Let ‖xk‖ ≤ 1 and ‖Txk‖ → 1. Without loss of generality one

can assume ‖Txk‖ < 1, otherwise, we change xk to qkxk where all qk ∈ (0, 1)

and qk → 1 as k →∞. Since ωT = 0 we have ϕ̃T (1− ‖Txk‖) → 0, whence

‖xk − Txk‖ → 0 by the the obvious inequality

‖x‖ − ‖Tx‖ ≤ ϕ̃T (1− ‖Tx‖) (‖x‖ ≤ 1, ‖Tx‖ < 1).

�

2.5. Remark. Theorem 2.4 remains in force for ‖T‖ < 1 if we set ωT = 0

in this case. The latter definition is natural. Indeed, if ‖T‖ < 1 then

ϕT (ε) ≤ ‖I − T‖ε
1− ‖T‖

,

whence ϕ0
T = 0. (Recall that ϕ̃0

T is not defined for ‖T‖ < 1.)

2.6. Remark. Let T be an isometry. Then ϕT (ε) = ‖I −T‖ for all ε, hence

ωT = ‖I − T‖, therefore, ωT > 0 if T 6= I.
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2.7. The Apostol modulus for orthoprojections. If P is an orthopro-

jection, so that ‖P‖ ≤ 1, then

(2.3) ‖Px‖ =
1

2
‖P (x+ Px)‖ ≤ 1

2
‖x+ Px‖ ≤ ‖x‖

Now let ‖x‖ ≤ 1, and let 1− ‖Px‖ ≤ ε. Then ‖Px‖ ≤ 1 and 1
2
‖x+ Px‖ ≥

1− ε. Hence, ‖x− Px‖ ≤ βX(ε) where

βX(ε) = sup{‖x− y‖ : ‖x‖ ≤ 1, ‖y‖ ≤ 1,
‖x+ y‖

2
≥ 1− ε}.

This results in the inequality

(2.4) ϕ̃P (ε) ≤ βX(ε).

The function βX was introduced and investigated in [5]. It is closely

related to the modulus of convexity. In particular, limε→0 βX(ε) = 0 if the

space X is uniformly convex, otherwise, this limit is the supremum of those

ε for which δX(ε) = 0. The latter quantity (or 0 if X is uniformly convex)

is called the characteristic of convexity of the space X, see [15].

2.8. Proposition. If P is an orthoprojection in a uniformly convex space

then ωP = 0.

Proof. This follows from the inequality (2.4) by passing to the limit as

ε→ 0. �

2.9. Corollary. Every orthoprojection in a uniformly convex space is of

class (S).

2.10. Remark. This corollary can be obtained directly from (2.3). In this

way Proposition 2.8 follows from Theorem 2.4.

The uniform convexity of X is not necessary for the existence of (S)-

orthoprojections. For instance, if a projection P in X is such that ‖x‖ =

‖Px‖ + ‖x − Px‖ for all x ∈ X (an L-projection [17]) then P is an ortho-

projection and ωP = 0. Indeed, either P = I or ϕP (ε) = ε for all ε. In this

situation X may not be uniformly convex. An example is X = `1 where any

coordinate projection is an L-projection.

2.11. Remark. From (2.3) it follows that every orthoprojection in a strictly

convex space is of class (W’).

3. Structure properties of classes (H), (S) and (D)

In this section we prove the following theorem.
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3.1. Theorem. In any Banach space the sets of contractions of classes (H),

(S) and (D) are multiplicative semigroups. In addition, they are convex in

the cases (S) and (D).

This theorem is an immediate consequence of the lemmas proven below.

3.2. Lemma. Let A and B be two contractions satisfying condition (H).

Then the product AB also satisfies (H) and

K(AB) ≤ 2 max(K(A), K(B)).

Proof. We have

‖x−ABx‖2 ≤ (‖x−Bx‖+‖Bx−ABx‖)2 ≤ 2(‖x−Bx‖2 +‖Bx−ABx‖2),

whence

‖x− ABx‖2 ≤ 2K(B)(‖x‖2 − ‖Bx‖2) + 2K(A)(‖Bx‖2 − ‖ABx‖2)

≤ 2 max(K(A), K(B))(‖x‖2 − ‖ABx‖2).

�

Thus, the set of (H)-contractions is a multiplicative semigroup.

3.3. Remark. If T is an (H)-contraction then

ϕT (ε) ≤
√

2K(T )ε.

Indeed, if ‖x‖ ≤ 1 and ‖x‖ − ‖Tx‖ ≤ ε, then

‖x− Tx‖2 ≤ K(T )
(
‖x‖2 − ‖Tx‖2

)
≤ 2K(T )(‖x‖ − ‖Tx‖) ≤ 2K(T )ε.

In particular, if P is an orthoprojection in a Hilbert space H then

‖x− Px‖2 = ‖x‖2 − ‖Px‖2.

Thus, P satisfies (H) with constant K(P ) = 1. Hence, ϕP (ε) ≤
√

2ε.

3.4. Lemma. (i) Let A and B be some contractions of norm 1. Then

either ‖AB‖ < 1 or

ϕ̃AB(ε) ≤ ϕ̃A(ϕ̃B(ε) + ε) + ϕ̃B(ε).

(ii) Let

T =
N∑
k=1

αkAk

be a convex combination of contractions Ak of norm 1, and let all

αk > 0. Then either ‖T‖ < 1 or

ϕ̃T (ε) ≤
N∑
k=1

αkϕ̃Ak
(α−1k ε).
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Proof. (i). Let ‖AB‖ = 1. Then ‖A‖ = ‖B‖ = 1, so the functions ϕ̃A, ϕ̃B

are well defined along with ϕ̃AB. Take any vector x such that ‖x‖ ≤ 1 and

1− ‖ABx‖ ≤ ε. Then

‖x− ABx‖ ≤ ‖x− Ax‖+ ‖Ax− ABx‖ ≤ ‖x− Ax‖+ ‖x−Bx‖.

Thus,

‖x− ABx‖ ≤ ϕ̃A(1− ‖Ax‖) + ϕ̃B(1− ‖Bx‖).
Let us estimate 1− ‖Ax‖ and 1− ‖Bx‖. We have

1− ‖Bx‖ ≤ 1− ‖ABx‖ ≤ ε

and then

1− ‖Ax‖ ≤ 1 + ‖A(x−Bx)‖ − ‖ABx‖ ≤ ‖x−Bx‖+ (1− ‖ABx‖).

Thus,

1− ‖Ax‖ ≤ ϕ̃B(ε) + ε.

As a result,

‖x− ABx‖ ≤ ϕ̃A(ϕ̃B(ε) + ε) + ϕ̃B(ε).

(ii). Let ‖T‖ = 1. Then all ‖Ak‖ = 1, so the functions ϕ̃Ak
are well

defined along with ϕ̃T . Take x such that ‖x‖ ≤ 1, 1− ‖Tx‖ ≤ ε, i.e.

1− ‖
N∑
k=1

αkAkx‖ ≤ ε.

A fortiori,
N∑
k=1

αk(1− ‖Akx‖) ≤ ε,

whence 1− ‖Akx‖ ≤ α−1k ε for every k. Hence,

‖x− Tx‖ ≤
N∑
k=1

αk‖x− Akx‖ ≤
∑
k

αkϕ̃(α−1k ε).

�

As a consequence, if ωA = ωB = 0 then ωAB = 0, and if all ωAk
=

0 then ωT = 0. By Theorem 2.4 the set of (S)-contractions is a convex

multiplicative semigroup.

Now for a contraction T we consider the set

R(T ) = {r ∈ (0, 1) : ‖T − rI‖ ≤ 1− r}.

By definition, T is a (D)-contraction if and only if R(T ) 6= ∅.

3.5. Lemma. For any contractions A and B if r ∈ R(A) and s ∈ R(B) then

rs ∈ R(AB) and αr+ βs ∈ R(αA+ βB) with α > 0, β > 0 and α+ β = 1.
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Proof. First, we have

‖AB − rsI‖ = ‖A(B − sI) + s(A− rI)‖

≤ ‖B − sI‖+ s‖A− rI‖ ≤ 1− rs.

Secondly,

‖(αA+ βB)− (αr + βs)I‖ ≤ α‖A− rI‖+ β‖B − sI‖

≤ α(1− r) + β(1− s) = 1− (αr + βs).

�

Thus, the set of (D)-contractions is a convex multiplicative semigroup.

The proof of Theorem 3.1 is complete.

4. Proof of the Main Theorem

The following general result is a key lemma in the proof of our Main

Theorem.

4.1. Theorem. If X is a reflexive space and T is a primitive contraction in

X then the iterates T n converge strongly. The limit operator T∞ coincides

with the orthoprojection ET onto the subspace L = Ker(I − T ) along the

closure M = Ran(I − T ). The convergence is uniform if and only if Ran(I−
T ) is closed.

Proof. According to the classical ergodic theorem [24], the Cesàro means of

(T n)n≥0 converge strongly to the projection ET onto L along M . A part of

this statement is that X is the direct sum L ⊕M . Let x = u + v where

u ∈ L, i.e. Tu = u, and v ∈ M , i.e. v = limk→∞(zk − Tzk) for a sequence

(zk)k≥0. Given ε > 0, we take and fix k such that ‖v − (zk − Tzk)‖ < ε.

Then ‖T nv − (T n − T n+1)zk‖ < ε for all n. Hence, ‖T nv‖ < ε + ‖T n −
T n+1‖‖zk‖ < 2ε for large n by the Katznelson-Tzafriri theorem [19]. Thus,

limn→∞ T
nv = 0. As a result, limn→∞ T

nx = u = ETx, i.e. T∞ = ET . The

latter is an orthoprojection since T is a contraction.

Now suppose that Ran(I − T ) is closed, i.e. M = Ran(I − T ). The

operator I − T acts bijectively on the invariant subspace M. Since M is

closed, the inverse operator S = ((I−T )|M)−1 is bounded. Since (T |M)n =

(T n−T n+1)S, we obtain ‖(T |M)n‖ → 0 by the Katznelson-Tzafriri theorem

again. Conversely, if T n converges uniformly then the same is true for the

Cesàro means, and then Ran(I − T ) is closed ([22]). �

An alternative proof is merely a logical combination of two results proved

in [32] and [18] as we indicated in the Introduction.
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4.2. Proof of the Main Theorem. Let T ∈ S(P1, · · · , PN) where P1, · · · , PN
are some orthoprojections in a Banach space X. Obviously, T is a contrac-

tion. By Theorem 4.1 it suffices to show that T is primitive in all cases

(i)-(iii). Recall that all contractions of classes (S) and (D) are primitive.

(See Section 1.)

(i). The space X is uniformly convex. Then by Corollary 2.9 all Pk are

of class (S). By Theorem 3.1 so is T . Therefore, T is primitive.

(ii). The space X is uniformly smooth. Then X∗ is uniformly convex and

T ∗ ∈ S(P ∗1 , · · · , P ∗N). All P ∗k are orthoprojections since ‖A∗‖ = ‖A‖ for any

operator A. Therefore, T ∗ is primitive like T in (i). Then T is also primitive

since σ(A) = σ(A∗) for any operator A and T = T ∗∗ by reflexivity of X.

(iii). The space X is reflexive. Since all Pk are of class (D), such is also

T by Theorem 3.1. Thus, T is primitive again.

To complete the proof of the Main Theorem we note that the subspace

Ran(T∞) coincides with the subspace Ker(I − T ) of fixed points of the

operator T . Thus, it suffices to refer to the following lemma and Remark

2.11. �

4.3. Lemma. (i) Let A and B be some (W’)-contractions. Then

Ker(I − AB) = Ker(I − A) ∩Ker(I −B).

(ii) Let T be a convex combination of N (W’)-contractions: T =
∑N

k=1 αkAk

with all αk > 0. Then

Ker(I − T ) = ∩k Ker(I − Ak).

Proof. In both cases the inclusion of the right-hand side into the left-hand

side is trivial. The proofs of the converse inclusions are as follows.

(i) For x ∈ Ker(I − AB) we have

‖x‖ = ‖ABx‖ ≤ ‖Bx‖ ≤ ‖x‖.

Therefore, ‖Bx‖ = ‖x‖, whence Bx = x and then Ax = x by condition

(W’).

(ii) For x ∈ Ker(I − T ) we have

‖x‖ ≤
N∑
k=1

αk‖Akx‖ ≤
N∑
k=1

αk‖x‖ = ‖x‖.

Thus, ‖Akx‖ = ‖x‖, hence Akx = x for every k. �

4.4. Remark. The same argument shows that the contractions of class (W’)

constitute a convex multiplicative semigroup.
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5. Appendix: the amplitude of the boundary spectrum

Let T be a contraction in a Banach space X, and let the boundary

spectrum of T be nonempty. We call the quantity

aT = max{|λ− 1| : λ ∈ σ(T ), |λ| = 1}

the amplitude of the boundary spectrum of T . Obviously, 0 ≤ aT ≤ 2, and

aT = 0 if and only if the contraction T is primitive. In view of Theorem 2.4,

the fact of the primitivity of the (S)-contractions is a particular case of the

following inequality.

5.1. Proposition. aT ≤ ωT .

Proof. Let λ ∈ σ(T ), |λ| = 1. Then for every ε > 0 there exists a vector x

of norm 1 such that ‖Tx− λx‖ ≤ ε. Hence, 1− ‖Tx‖ ≤ ε and

|λ− 1| ≤ ‖x− Tx‖+ ‖Tx− λx‖ ≤ ϕ̃T (ε) + ε.

The result follows as ε→ 0. �

5.2. Corollary. If aT = 2 then ωT = 2 and ϕ̃T (ε) = ϕT (ε) = 2 for all ε.

Also, ‖I − T‖ = 2 in this case.

Proof. We have ωT ≥ 2. Now everything follows from (2.2). �

Obviously, aT = 2 if and only if −1 ∈ σ(T ). Therefore, if −1 ∈ σ(T )

then ωT = 2.

5.3. Proposition. If the space X is uniformly convex and ωT = 2 then

aT = 2.

Proof. We have ϕ̃T (ε) = 2 for every ε ∈ (0, 1). By definition, there is a vector

x = x(ε) of norm 1 such that ‖x− Tx‖ ≥ 2− 2ε. Hence, ‖x+ Tx‖ ≤ βX(ε)

where βX is the function defined in Section 2. Since the space X is uniformly

convex, we have limε→0 βX(ε) = 0. A fortiori, limε→0 ‖x(ε) + Tx(ε)‖ = 0.

This means that −1 ∈ σ(T ). �

The amplitude aT is the maximal deviation of the boundary spectrum

of T from the point 1 in the metric of the complex plane. Alternatively, one

can use the metric of the unit circle. This ”intrinsic” amplitude is

τT = 2 arcsin
(aT

2

)
.

In [1] Allan and Ransford obtained the following quantitative version of the

Katznelson-Tzafriri theorem:

lim sup
n→∞

‖T n − T n+1‖ ≤ 2 tan
(τT

2

)
, τT < π.
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In terms of the amplitude aT this means that

lim sup
n→∞

‖T n − T n+1‖ ≤ 2aT√
4− a2T

, aT < 2.

Combining this result with Proposition 5.1 we obtain

5.4. Theorem. Let T be a contraction acting on the complex Banach space

X. If ωT < 2 then

lim sup
n→∞

‖T n − T n+1‖ ≤ 2ωT√
4− ω2

T

.
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