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ABSTRACT

Expanding users’ query is a well-known way to improve the per-
formance of document retrieval systems. Several approaches have
been proposed in the literature, and some of them are considered
as yielding state-of-the-art results in Information Retrieval. In this
paper, we explore the use of text generation to automatically ex-
pand the queries. We rely on a well-known neural generative model,
OpenAI’s GPT-2, that comes with pre-trained models for English
but can also be fine-tuned on specific corpora. Through different
experiments and several datasets, we show that text generation is
a very effective way to improve the performance of an IR system,
with a large margin (+10%MAP gains), and that it outperforms
strong baselines also relying on query expansion (RM3). This con-
ceptually simple approach can easily be implemented on any IR
system thanks to the availability of GPT code and models.
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1 INTRODUCTION

In the Information Retrieval (IR) traditional setting, a user expresses
his information needs with the help of a query. Yet, it is sometimes
difficult to match the query with the documents, for instance be-
cause of the query vocabulary may differ from the documents.
Especially when the query is short, the performance of the system
is usually poor, as it is difficult to detect the precise focus of the
information need, and the relative importance of the query terms.

Query expansion aims at tackling these problems by transform-
ing the short query into a larger text (or set of words) that makes it
easier to match documents from the collection. The main difficulty
of query expansion is obviously to add only relevant terms to the
initial query. Several techniques have been proposed in the litera-
ture, based on linguistic resources (e.g. synonym lists) or based on
the documents themselves (e.g. pseudo-relevance feedback).

In this paper, we explore the use of recent text generation models
to expand queries. We experimentally demonstrate that the recent
advances in neural generation can dramatically improve ad-hoc re-
trieval, evenwhen dealing with specialized domains. More precisely,
through different experiments, we show that:

(1) texts artificially generated from the query can be used for
query expansion;

(2) this approach does not only provide new terms to the query,
but also a better estimate of their relative weights;

(3) in addition, it also provides a better estimate of the impor-
tance (i.e. weight) of original query words;

(4) this approach can also be used on specialized domains.

The paper is structured as follows. After a presentation of the
related work (Sect. 2), Section 3 details the different components of
our approach. Several experiments are then detailed in Section 4.
Last, some concluding remarks are given in Section 5.

2 RELATEDWORK

Query expansion is a well-established technique to try to improve
the performance of an IR system. Adding new terms to the query
is expected to specifically improve recall, yet, since the query is,
hopefully, better formulated, it may also improve the top rank
results and be beneficial to precision. Onemight classify the existing
automatic approaches based on the resources used to expand the
query.

2.1 Expansion with external resources.

One obvious way to expand a query is to add semantically related
terms to it (synonyms or sharing other semantic relations like hy-
ponyms, quasi-synonyms, meronyms...). Existing lexical resources
can be used to add, for each query term, a list of semantically re-
lated terms; yet, one has to deal with different problems: existence
of lexical resources for the collection language, or for the specific
domain of the collection, choice of the appropriateness of certain
relations, need of sense disambiguation for polysemous words...
WordNet [20] is among the best-known resources for English (gen-
eral domain language) and have been used with mitigated results
at first [36], but later shown to be effective [6, inter alia].

2.2 Expansion with pseudo-relevance feedback

Another category of studies considers only a small set of documents
to help to expand or reformulate the query. To be automatic, they
replace the user feedback by the hypothesis that the best ranked
documents retrieved with the original query are relevant and may
contain useful semantic information [30]. It is interesting to note
that in this case, not only semantically relevant terms are extracted,
but also distributional/statistical information on them and on the
original query terms. In this category, Rocchio, developed in the
60’s for vector space model was among the first one popularized
[17]. One of the current best known approach is RM3, which was
developed in the framework of language model based IR systems [1].
It is often reported to yield the best results in ad-hoc retrieval tasks,
even compared with recent neural models [15]. Neural approaches
have also been proposed to integrate pseudo-relevance feedback
information [14], yet, as it is reported by the authors, the results
are still lower than traditional models with query expansion.
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2.3 Expansion with collection-based resources.

Distributional thesauri have also been exploited to enrich queries.
Since they can be built from the document collection (or from a large
corpus with similar characteristics), they are suited to the domain,
the vocabulary... Traditional techniques to build these thesauri have
obtained good results for query expansion [6]. Neural approaches,
that is, word embedding approaches are now widely used to build
such semantic resources. In the recent years, static embeddings
(word2vec [19], Glove [26] or FastText [3] to name a few) were
also used in IR, in particular to enrich the query. Indeed, these
trainable dense representations make it easy to find new words that
are semantically close to query words.

Even more recently, dynamic word representations obtained
with transformer-based architectures, such as BERT [8] or GPT
[27], have been proposed. They build a representation for each
word according to its context, and this ability have been exploited
to obtain competitive results in IR tasks [7, 12, inter alia]. BERT has
been also used for query expansion in the framework of a neural IR
system [21, 39], for instance based on reranking [24]. While these
studies show promising results, it is worth noting that the RM3
method for pseudo-relevance feedback, while simpler, still competes
with or even outperforms most of these neural-based models (both
Glove-based or equivalent and BERT-based and equivalent), as
noted in [21].

2.4 Text generation

In this paper, we propose to use constrained text generation to
expand queries. In this approach, the original query is used as a
seed (or prompt) for a generative model which will output texts
that are, hopefully, related to the query. While text generation with
language model is not new, the performance of neural models based
on transformers [34] makes this task realistic.

In this paper, we use the Generative Pre-Trained Transformers
(GPT) models. These neural models are learned by auto-regression,
which means that they are unsupervisedly trained to predict the
next token (word) given the previous ones. They are built from
stacked transformers (precisely, decoders) that are trained on a large
corpus. The second version, GPT-2 [27], contains between twelve
layers (smallest model) up to 60 layers (largest model) of transform-
ers with twelve self-attention heads of 64 dimensions. Given that,
GPT-2 has 1.5 billion parameters for its largest pre-trained model,
released in Nov. 2019. It has been trained on a specially crafted
corpus named WebText which contains more than 8M documents
from Reddit (i.e. mostly English and general domain language such
as discussion on press articles).

A newer version, GPT-3, has been released in July 2020; it is much
more larger (175 billion parameters) and outperforms GPT-2 on any
tested task. Yet, the access given to this model (through a restricted
API), the size of this model (which makes fine-tuning impossible)
and the problems arising on how to engineer the prompt to perform
the expected generation task, made GPT-2 preferable for this piece
of work.

To the best of our knowledge, using generative models to expand
queries has not been explored before. Yet, using GPT for data aug-
mentation in other NLP tasks has recently received lots of attention.
For instance, generation is exploited in relation extraction tasks

[25], or text classification tasks like sentiment classification [13],
re-admission prediction and phenotypic classification [2] or fake
news detection [5].

3 GENERATED QUERY EXPANSION

In this section, a complete overview of the proposed expansion
approach is first given. Additional details about the generative
models and their adaptation are given in Section 3.2. The IR systems
used in our experiments are presented in Section 3.3.

3.1 Overview of our approach

As it was previously explained, our approach is very simple as it
relies on existing tools and techniques. From a query, multiple texts
are generated by a GPT-2 model using the query as the seed. Note
that the generation process is not deterministic (if some param-
eters such as top_k and temperature are correctly set; see next
sub-section), and thus, even with the same seed, the generated texts
are different. The generation of a large number of texts allows to
have a large coverage of the vocabulary related to the query and a
good estimation of the relative importance of words by their fre-
quency in the generated texts. In the experiments reported below,
100 texts of 512 words (more precisely, tokens) per query are gen-
erated, unless specified otherwise (see Section 4.6). These texts are
concatenated and considered as the expansion for the query. In
our experiments, this new, very large, query is then fed to a simple
BM25+ IR system (which are still state-of-the-art models, even com-
pared with pure neural IR systems [33]), but it could obviously be
used in any other IR system. Figure 1 presents the whole process;
details for each part are given in the following sub-sections. Note
that the only task done on-line (at query time) is the generation,
which corresponds to the inference step of the neural language
models to generate texts. The training or fine-tuning of the model
itself is done off-line.

An example of a text generated from a query (query 701 from the
GOV2 collection) is presented in Fig. 2. As one can see, the generated
text, while completely invented (note the barrel prices), is relevant
for the query. It contains many terms, absent from the original
query, that are more or less closely related to the information need.
More specifically, this generated text provides:

• synonyms and orthographic variants (United States for the
query term U.S.),

• meronyms-metonyms (barrel for oil),
• hypernyms (energy for oil),
• more generally any paradigmatic relations (consumer, pro-
ducer for industry),

• and syntagmatic relations (production for oil).

It is worth noting that such texts also give a valuable information
about the relative frequency of each terms (contrary to thesauri or
embeddings); this frequency information is an interesting cue to
value the importance of a term.
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Figure 1: Overview of the proposed query expansion approach based on artificially generated texts.

U.S. oil production has been declining steadily for decades and it is not expected to reverse. In fact, some
argue that it may even get worse. The long-term trend is for oil production to decline at a rate of about 1
percent per year. With production of about 8 million barrels per day now, there is no way the United States
can replace its current output.
The U.S. oil boom was a result of an energy revolution in the 1970s that led to increased oil production, and
a significant change in the global oil market. The U.S. now produces about 2.3 million barrels of oil per day,
the highest it has been in over 30 years.
The United States is now the world’s largest oil producer and the fourth largest oil exporter.
What happened?
When oil prices peaked in the 1970s, the United States was the world’s largest oil producer. But over the
next several decades, the United States’ oil production began to decline. The decline was most pronounced in
the 1980s, when the United States began to fall behind other oil producing countries.
The oil price decline in the 1970s was not entirely voluntary. The United States was producing less oil and
exporting more oil than it was consuming. The Federal Reserve controlled the amount of dollars in the Federal
Reserve’s reserves, so the United States was not exporting as much oil as it was producing. The decline in
U.S. oil production was a result of the declining price of oil.
The price of oil had declined from $8 per barrel in 1973 to $2.50 per barrel in 1977. In 1979, the price of
oil reached a high of $15.75 per barrel. By 1983, the price of oil had fallen to $4.65 per barrel. By 1986,
the price of oil had fallen to $1.86 per barrel. By the end of the 1980s, the price of oil had fallen to $1.24
per barrel.
The decline in oil prices was a direct result of the energy revolution in the 1970s. The United States was
the world’s largest oil producer, but the United States was also the world’s largest consumer of oil. When
oil prices fell, so did the cost of producing oil.

Figure 2: Example of a document generated with the pre-trained GPT-2 large model from the text seed "U.S. oil industry

history" (query 701 from the GOV2 collection)

3.2 Pre-trained models, fine-tuning and

parameters

GPT-2 comes with several pre-trained models, having different
size in terms of parameters (from 124M to 1.5B). As it was previ-
ously said, their training data was news-oriented general domain
language. The largest model was used for two of the tested collec-
tions (see below). While these all-purpose models are fine for IR

collections whose documents are also general domain language,
it may not be appropriate for domain-specific IR collections. In
the experiment reported in the next section, we use the ohsumed
collection, consisting of medical documents. For this collection,
we have fine-tuned the GPT-2 355M model on the documents of
the collection in order to adapt the language model to the specific
medical syntax and vocabulary. We use Transformers library of

https://huggingface.co/transformers/model_doc/gpt2.html
https://huggingface.co/transformers/model_doc/gpt2.html
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IR model weighting
BM25+𝑤𝑑 (𝑡)

(
(𝑘1+1)𝑐 (𝑡,𝑑)

𝑘1(1−𝑏+𝑏 ·𝑑𝑙 (𝑑)/𝑎𝑣𝑑𝑙)+𝑐 (𝑡,𝑑) + 𝛿

)
· log 𝑁+1

𝑑𝑓 (𝑡 )+0.5
BM25+𝑤𝑞 (𝑡) (𝑘3+1)𝑐 (𝑡,𝑞)

𝑘3+𝑐 (𝑡,𝑞)
with 𝑘1, 𝑘3, 𝑏 and 𝛿 fixed parameters

LM𝑤𝑑 (𝑡) log
(

𝜇

𝑑𝑙 (𝑑)+𝜇 + 𝑐 (𝑡,𝑑)
(𝑑𝑙 (𝑑)+𝜇)𝑝 (𝑡 |𝐶)

)
LM𝑤𝑞 (𝑡) 𝑐 (𝑡, 𝑞)

𝜇 > 0 a smoothing parameter

Table 1: IR models (weighting functions of terms in the

query and the document) for BM25+ [16, 29] and Language

modeling with Dirichlet smoothing LM [38]; 𝑐 (𝑡, 𝑑) is the

number of occurrences of term 𝑡 in document 𝑑 , 𝑑 𝑓 (𝑡) is the
document frequency of 𝑡 , 𝑑𝑙 (𝑑) is the length of document 𝑑 ,

𝑎𝑣𝑑𝑙 is the average document length,𝐶 is the collection, 𝑁 is

the number of documents in the collection

HuggingFace. The fine-tuning was stopped after reaching a plateau
in terms of perplexity of the model (in practice it corresponds to
250,000 samples processed). Other parameters (batch size, optimizer,
learning rate...) were set to their defaults. Although a larger set of
medical documents could be used (from Pubmed® for instance), this
small fine-tuned model is expected to be more suited to generate
useful documents to enrich the query.

Concerning the generation of texts, for reproducibity purposes,
here are the main GPT-2 parameters used (please refer to Hug-
gingFace Transformers1 and GPT-2 documentations2): length=512,
temperature=0.5, top_p=0.95, top_k = 40.

3.3 IR Systems

In the experiments reported in the next section, we use two IR
models. The first one is BM25+ [16], a variant of BM25 [29]. The
parameters 𝑘1, 𝑘3, 𝑏 and 𝛿 were kept at their default value (resp.
1.2, 1000, 0.75, 1). It is implemented as a custom modification of the
gensim toolkit [28]. The second IR model is Language modeling
with Dirichlet smoothing [38] as implemented in Indri3 [18, 32].
The smoothing parameter 𝜇 is set to 2 500 (a usual default value).
Both models are regarded as yielding state-of-the-art performance
for bag-of-words representation [15]. Their RSV function can be
written:

𝑅𝑆𝑉 (𝑞, 𝑑) =
∑
𝑡 ∈𝑞

𝑤𝑞 (𝑡) ·𝑤𝑑 (𝑡)

with𝑤𝑞 (𝑡) the weight of term 𝑡 in query 𝑞 and𝑤𝑑 (𝑡) the weight in
document 𝑑 , as illustrated in Tab. 1 (from [16]). For RM3 expansion,
we also rely on the Indri implementation; the results reported in the
next section corresponds to the best performing parameters tested
for each collection (number of documents considered for pseudo-
relevance feedback, number of terms kept, mixing parameter 𝜆).

1https://huggingface.co/transformers
2https://github.com/openai/gpt-2
3https://www.lemurproject.org/indri/

4 EXPERIMENTS

This section is dedicated to the experimental validation of the pro-
posed query expansion approach. After a presentation of our experi-
mental settings, we show the results on several collections (Sect. 4.2
and 4.3). We also present additional experiments about the interest
of the frequency given by the generated text (Sect. 4.5) and about
the influence of the number of generated texts (Sect. 4.6).

4.1 Experimental settings

Four IR collections are used in our experiments: Tipster [10] , Robust
[35], GOV2 [4] and ohsumed [11]. Some basic statistics are given
in Tab. 2.

Tipster Robust GOV2 ohsumed
nb of documents 170,000 528,000 25M 350,000
nb of queries 50 250 150 106
avg size of queries 6.74 2.76 3.15 7.24
language En En En En
avg nb of relevant
doc per query 849 65.5 179 21

Table 2: Statistics on the IR collections used

Tipster was used in TREC-2. The documents are articles from
newspaper, patents and specialized press (computer related) in
English. The queries are composed of several parts, including the
query itself and a narrative detailing the relevance criteria; in the
experiments reported below, only the actual query part is used.

The Robust collection consists of 528,000 news articles from
Tipster disks 4 and 5; there 250 topics (301-450, 601-700). As for the
published work, we use the titles as queries.

GOV2 is a large collection of Web pages crawled from the .gov
domain and used in several TREC tracks. In the experiments re-
ported below, 150 queries from TREC 2004-2006 ad-hoc retrieval
tasks are used; as for Tipster, only the actual query part is used (i.e.
description and narrative fields are not included in the query).

Ohsumed contains bibliographical notices from Medline and
queries from the TREC-9 filtering task. Its interest for our experi-
ments is that it deals with a specialized domain, hence it contains a
specific vocabulary.

Performance are assessed with standard scores: Precision at
different thresholds (P@x), R-precision (R-prec), Mean Average Pre-
cision (MAP) on 1,000 first retrieved documents. When needed, a
paired t-test with 𝑝 = 0.05 is performed to assess the statistical
significance of the difference between systems.

4.2 General domain language

Tables 3 and 4 respectively present the results for the general-
language collections Tipster and GOV2. For comparison purposes,
we indicate the results of BM25+ with and without RM3 expan-
sion, Indri’s Language Model (LM) with and without RM3 expan-
sion. Note that the RM3 expansion are strong baselines, as they
achieve state-of-the-art performance, even compared with neural
techniques (incl. static embedding or contextualized embedding-
based expansion) [21, 37]. Moreover, the results reported here are

https://huggingface.co/transformers/model_doc/gpt2.html
https://huggingface.co/transformers
https://github.com/openai/gpt-2
https://www.lemurproject.org/indri/
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for the best-performing RM3 parameters: for BM25+, this is 100
terms from the top 30 documents on Tipster and 80 terms on the
top 10 documents on GOV2 ; for LM on Tipster, this is 100 terms
from the top 20 documents, and 100 terms for the top 10 documents
GOV2. The statistical significance is computed by comparing with
the BM25+ + RM3 (noted with †) and LM+RM3 baselines (noted
with a ∗).

On both collections, and on every performance measure, expand-
ing the queries with the generated texts brings important gains
compared with the system without expansion. Also, our approach
outperforms RM3 expansion in almost every situation, and with
a large margin on MAP, R-prec and precision on the top-ranked
documents (P@5, P@10).

4.3 Specialized language

The same setting is used on the ohsumed collection. For these
medical-oriented IR dataset, we report two versions of our approach:
one is using the pre-trained model as before, and one relies on a
model fine-tuned on the documents of the collection. The best
performing setting for RM3 is 100 terms for the top 15 documents
for BM25+ and 80 terms for the top 10 documents for LM. The
results are reported in Tab. 5.

Here again, the GPT-based expansion significantly improves
the results of the IR system and outperforms RM3 expansion. Yet,
the gains are lower than for the two previous collections. This
difference can be explained by the following factors:

(1) the queries are longer more complex and more specific (as
can be seen in Tab. 2, few documents are relevant);

(2) the generation model is not sufficiently suited to the docu-
ments.

Concerning this latter reason, we can indeed see the interest of fine-
tuning the generation model, but better results may be obtained
by using a larger set of medical documents, or adopting different
fine-tuning parameters (in particular the number of epoch/samples
processed, see Sect. 3.2). Unfortunately, defining a priori the best
parameters for our IR task is not possible and the cost of the fine-
tuning process makes it impossible to test a wide range of possible
values.

4.4 Comparison with other expansion

approaches

In this section, we position our approach with respect to other
expansion approaches that have been proposed in the literature.
For this experiment, we use the Robust dataset to make our results
comparable with published results; we also re-employ the same
evaluation performance scores as in [21]. For this experiment, we
use the Pyserini framework4 which comes with the pre-indexed Ro-
bust collection, we thus rely on its BM25 and RM3 implementations.
Our GPT2-based expansions have been generated as before with the
pre-trained (non fine-tuned) large model. In Table 6 we report the
performance of our approach, the results of CEQE and its variants
[21], as well as the various baselines proposed in [21], including
an expansion based on Glove embeddings (static-embed) [9] and a
variant that has its vocabulary limited to terms appearing in the

4https://github.com/castorini/pyserini/

Figure 3: MAP (%) according to size of the expansion (num-

ber of terms), terms with fixed weight or weight depending

on their frequency in the generated documents; Tipster col-

lection

pseudo-relevance feedback documents (static-embed-PRF); see [21]
for details. The BM25 parameters are 0.9 and 0.4 as recommended
by Pyserini for Robust; in our experiments, the best performing
RM3 parameters are 70 terms from the top 10 documents.

There are some slight differences between our baselines (BM25,
BM25+RM3) and those of [21], maybe due to differences in the tok-
enizing and stemming processes of the IR frameworks. Nonetheless,
the GPT-based expansion yields the best results, with significant im-
provement over the BM25+RM3 baseline and several points above
the best CEQE configuration.

4.5 Leveraging the term importance in the

generated texts

One of the interest of having complete texts that are generated
is that we can collect information on the relative importance of
words, to the contrary of expanding queries with a thesaurus. To
observe the impact of the number of occurrences in the gener-
ated texts, we evaluate the effect of keeping the 𝑘 most frequent
terms of the generated texts and either weighting them by their
frequency (as done usually by BM25) or by giving a fixed weight
(1/𝑘). The results for different values of 𝑘 are presented in Fig. 3.
One can observe that adding terms to the query with a fixed weight
slightly improves the MAP, but most of the gain is indeed brought
by a proper weighting based on the frequency of the term in the
generated documents. This is a big advantage of having proper
texts, generated and tailored for the query, instead of related terms
taken from a thesaurus or computed from an embedding. It also
worth noting that the maximum MAP is reached with about 100
terms; this is interesting for a fair comparison with RM3 since this
is also the typical numbers of terms yielding the best results in our
experiments.

In the next experiment, we also examine how the generated
texts can help to re-weight the initial query terms. The idea is
that queries are often too short to get relevant information about
the relative importance of each query term (often, each of them
occurs only once, that is 𝑐 (𝑡, 𝑞) = 1). In this experiment, there is no

https://github.com/castorini/pyserini/
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MAP R-Prec P@5 P@10 P@20 P@100
BM25+ 25.06 32.16 95.60 92.60 89.70 73.64
BM25+ + RM3 32.28 36.94 96.20 94.20 90.90 82.96
LM 24.48 31.48 92.40 89.00 85.40 70.70
LM + RM3 31.01 36.38 94.40 93.20 90.60 81.22
BM25+ and expansion 35.22

∗†
39.87

∗†
99.60

∗†
98.40

∗†
98.20

∗†
87.84

∗

Table 3: Performance (%) on the Tipster collectionwith query expansion; best results in bold, statistical significance over BM25+

+ RM3 and LM+RM3 resp. noted
†
and

∗

MAP R-Prec P@5 P@10 P@20 P@100
BM25+ 25.66 31.25 52.92 49.97 46.52 34.63
BM25+ with RM3 28.16 32.57 54.86 54.13 49.34 39.65
LM 27.96 33.01 56.08 55.20 51.59 37.32
LM with RM3 30.22 34.20 55.00 56.08 53.67 45.86

BM25+ and expansion 34.54
∗†

37.76
†

67.91
∗†

63.88
∗†

57.94
† 44.30†

Table 4: Performance (%) on the GOV2 collection with query expansion; best results in bold, statistical significance over BM25+

+ RM3 and LM+RM3 resp. noted
†
and

∗

MAP R-Prec P@5 P@10 P@20 P@100
BM25+ 18.27 19.94 31.88 26.04 20.50 9.48
BM25+ + RM3 21.44 22.72 32.67 28.70 23.73 10.82
LM 17.61 20.35 29.31 24.06 19.21 9.28
LM + RM3 20.80 22.54 30.89 26.83 22.18 10.51
BM25+ and expansion (no fine-tuning) 21.60 23.75 33.47∗ 27.62 22.92 11.16
BM25+ and expansion (fine-tuning) 23.07

∗†
24.65

∗†
34.65

∗†
29.41

∗
24.31 11.42

Table 5: Performance (%) on the ohsumed collection with query expansion; best results in bold, statistical significance over

BM25+ + RM3 and LM+RM3 resp. noted
†
and

∗

Model P@20 nDCG@20 MAP Recall@100 Recall@1000
BM25 36.57 41.93 25.74 41.65 69.33
BM25 + RM3 39.98 45.17 30.69 46.10‡ 75.88‡
Static-Embed 36.75 42.85 26.15 42.17 71.25
Static-Embed-PRF 37.81 44.00 27.03 43.24 72.31
CEQE-Centroid 39.22 44.62 30.19‡ 45.93‡ 76.53†‡
CEQE-MulPool 38.47 43.60 28.45‡ 45.17‡ 74.35‡
CEQE-MaxPool 40.40‡ 45.87 30.86‡ 46.51‡ 76.89†‡
CEQE-MaxPool(fine-tuned) 39.86‡ 45.28 30.71‡ 46.47‡ 76.26‡
BM25 35.88 41.93 25.15 40.80 69.26
BM25 + RM3 39.52 44.89 29.85 45.97 76.97
BM25 + GPT 41.71

∗
48.32

∗
30.96

∗
47.48

∗
79.85

∗

Table 6: Performance (%) on Robust; first rows are results from [21] († and ‡ indicate statistical significance over BM25 + RM3

and Static-Embed-PRF, respectively), last rows are our results with the Pyserini framework (
∗
indicates statistical significance

over BM25 + RM3)

query expansion, since only the initial query terms are kept, but we
use their frequency in the generated texts to compute the BM25+
weight𝑤𝑞 . The results are reported in Tab. 7 and compared with
the usual weighting (i.e. BM25 weight with the frequency from the

original query). It appears that there is indeed a small improvement
of the MAP (+2% absolute gain), that is more noticeable at high
document-cutoff values. These two experiments demonstrate the
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MAP R-Prec P@5 P@10 P@20 P@100
BM25+ 25.06 32.16 95.60 92.60 89.70 73.64
BM25+ with re-weighting 27.12 33.22 96.80 94.20 92.70 77.12
Table 7: Performance (%) on Tipster with re-weighting query words

Figure 4: MAP (%) vs. number of generated texts (average

over 5 runs; max length of texts = 512 tokens); Tipster col-

lection

usefulness of dealing with full texts and not only word-to-word
similarity since the texts provide relevant frequency information.

4.6 Number of generated texts

Text generation with large neural models has a non negligible
computing cost: with our settings, for one query, about 40 texts
(of 512 tokens) are simultaneously generated in about 5 seconds
on one Tesla V100 GPU card. Thus, it is interesting to see how
many generated texts are necessary and more generally what is the
influence of the size of the expansion on the IR performance. Of
course, the size of the generated texts (can be set as a parameter of
the generation process) is also to be considered.

In Figure 4, the MAP obtained for up to 100 generated texts per
query is presented. For each number𝑛 of texts, 5 runs are performed
(ie. 5 sets of 𝑛 texts are generated for each query, and the 5 MAP
are averaged). One can observe that a plateau is rapidly reached
at around 20 texts per query; it represents about 10,000 words. It
means that good performance can be yielded with a limited time
and computing cost.

5 CONCLUSIVE REMARKS AND FORESEEN

WORK

Neural approaches are increasingly used in IR, with mitigated re-
sults, especially when compared with "traditional" bag-of-word
approaches [15, 33, 37]. Here, the neural part is successfully used
outside of a "traditional" IR system (but note that it could be used

with any IR systems, since it simply enriches the query). The ex-
pansion approach presented in this paper is simple and easy to
implement (thanks to the availability of the GPT models and code)
while offering impressive gains. The same approach could be used
with other IR systems (neural or not), other approaches to enrich the
query, and more sophisticated post-processing (such as re-ranking
techniques).

Lot of parameters could be further optimized, especially on the
GPT model side (to influence the "creativity" of the text generation),
and the fine-tuning capabilities should also be explored more thor-
oughly (influence of bigger specialized corpus if available, precise
mix between pre-trained and fine-tuning, etc.). The recent avail-
ability of GPT-35 makes it possible to even get greater gains thanks
to the alleged high quality of its outputs, but necessitates to change
the fine-tuning paradigm (used for OHSUMED here) to a prompt
engineering paradigm. Last, let us note that the generation time
of the artificial texts and the necessary GPU power may appear
as a problem for some industrial contexts. Yet, these costs are not
untractable (see Sect. 4.6) and can be dealt with one GPU card and
a few seconds of additional processing time. Moreover, model re-
duction techniques, such as distillation [31], or TPUs could further
reduce this generation time and its computational cost.

This whole approach also offers many research avenues: in this
work, we have used text generation as a way to perform data aug-
mentation on the query side, but it could also be used to augment
the representation of the documents (even if in practice, the cost is
still prohibitive on large collection, as seen with the doc2query and
docTTTTTquery models [22, 23]). All machine-learning (neural
or not) approaches based on pseudo-relevance feedback to train
their model could instead use similar text generation with the ad-
vantage that they would not be limited by the number of potential
relevant documents in the shortlist. And of course, similar data-
augmentation strategy could be used for other tasks than document
retrieval.

More fundamentally, the recent improvements of text generation
also question the relevance of the document retrieval task. Indeed,
it is possible to envision systems that will be able to generate one
unique document answering the user’s information need, similarly
to question-answering. If the generative model is trained on the
document collection, the generated document will serve as a sum-
mary (which is one of the popular applications of GPT-x models)
of the relevant documents. Yet, the current limitations of the mod-
els tested in this paper make them far from being suited for this
ultimate task: the generated documents do deal with the subject of
the query, and thus use a relevant vocabulary, but do not provide
accurate, factual information (as seen in the Example in Fig. 2 about
the price of oil barrels).

5https://github.com/openai/gpt-3

https://github.com/openai/gpt-3
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