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RITT OPERATORS AND CONVERGENCE IN THE

METHOD OF ALTERNATING PROJECTIONS

CATALIN BADEA AND DAVID SEIFERT

Abstract. Given N ≥ 2 closed subspaces M1, . . . ,MN of a Hilbert
space X, let Pk denote the orthogonal projection onto Mk, 1 ≤ k ≤ N .
It is known that the sequence (xn), defined recursively by x0 = x and
xn+1 = PN · · ·P1xn for n ≥ 0, converges in norm to PMx as n → ∞
for all x ∈ X, where PM denotes the orthogonal projection onto M =
M1∩ . . .∩MN . Moreover, the rate of convergence is either exponentially
fast for all x ∈ X or as slow as one likes for appropriately chosen initial
vectors x ∈ X. We give a new estimate in terms of natural geometric
quantities on the rate of convergence in the case when it is known to be
exponentially fast. More importantly, we then show that even when the
rate of convergence is arbitrarily slow there exists, for each real number
α > 0, a dense subset Xα of X such that ‖xn − PMx‖ = o(n−α) as
n → ∞ for all x ∈ Xα. Furthermore, there exists another dense subset
X∞ of X such that, if x ∈ X∞, then ‖xn−PMx‖ = o(n−α) as n→∞ for
all α > 0. These latter results are obtained as consequences of general
properties of Ritt operators. As a by-product, we also strengthen the
unquantified convergence result by showing that PMx is in fact the limit
of a series which converges unconditionally.

1. Introduction

The von Neumann-Halperin method of cyclic alternating projections is
a general iterative method for finding the best approximation to any given
point in a Hilbert space from the intersection of a finite number of closed
subspaces. This method and its extensions and variants have been applied
in a variety of fields, including solving linear equations, linear prediction
theory, image restoration, computed tomography; see [20] for a survey.

The convergence of the algorithm given by the method of cyclic alter-
nating projections in the case of several subspaces in a Hilbert space is
based upon the following result. Given N ≥ 2 closed subspaces M1, . . . ,MN

of a Hilbert space X, let Pk denote the orthogonal projection onto Mk,
1 ≤ k ≤ N , and let PM denote the orthogonal projection onto M =
M1∩. . .∩MN . Consider the sequence (xn) defined recursively by x0 = x ∈ X
and xn+1 = PN · · ·P1xn for n ≥ 0. We thus alternately project onto one
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subspace, then onto the next one, in cyclic order. It is known that

(1.1) lim
n→∞

‖xn − PMx‖ = 0

for all initial points x ∈ X. This was first shown for N = 2 by J. von
Neumann in 1933 and published in [50] and then for the general case in [30];
see also [43] for a simpler proof.

A question which arises naturally is whether anything can be said about
the rate of convergence in (1.1). We say that the convergence is exponentially
fast if there exist r ∈ [0, 1) and, for each x ∈ X, a constant Cx > 0 such
that

‖xn − PMx‖ ≤ Cxrn, n ≥ 0,

and we say that the convergence is arbitrarily slow if, given any sequence
(rn) of positive real numbers satisfying rn → 0 as n→∞, there exists x ∈ X
such that

‖xn − PMx‖ ≥ rn, n ≥ 0.

By the uniform boundedness principle, exponentially fast convergence is
equivalent to the existence of constants C > 0 and r ∈ [0, 1) such that ‖Tn−
PM‖ ≤ Crn for all n ≥ 0, where T = PN · · ·P1. In what follows, we shall
also use the notions of exponentially fast and arbitrarily slow convergence
more generally in cases such as the above, where the powers of an operator
converge strongly to a limit.

It was shown in [7, Theorem 1.4] for the case N = 2 and in [22, Theo-
rem 6.4] for the general case that the convergence in (1.1) is exponentially
fast if and only if the subspace M⊥1 + · · · + M⊥N is closed in X, and that
otherwise the convergence is arbitrarily slow. This dichotomy result, ob-
tained independently in [3, 4], was extended in a number of directions in [4],
for instance by giving characterisations of exponentially fast convergence
in terms of the geometric relationship between the subspaces M1, . . .MN .
Other relevant sources include [6, 22, 23, 24, 52] and [21, Chapter 9].

Suppose that M⊥1 +· · ·+M⊥N is not closed in X (for reasons which will be-
come clear later on, we shall say in this case that the subspaces M1, · · · ,MN

are aligned). Therefore the convergence of (xn) can be slow for some initial
points x ∈ X. For applications in approximation theory for instance it is
vital to have some estimate on the rate of convergence in (1.1) for particular
initial vectors x ∈ X; see for instance the discussion in [46, Section 4]. It is
also natural to ask, in the case when the subspaces are aligned, where the
initial points lie for which the convergence is arbitrarily slow. It was conjec-
tured in [22, Remark 6.5(2)] that in general they must lie in the complement
of M ⊕ (M⊥1 + · · · + M⊥N ), which is a dense subspace of X. The principal
purpose of this paper is to prove that even when the convergence in (1.1) is
arbitrarily slow there exists, for each α > 0, a dense subspace Xα of X such
that

(1.2) ‖xn − PMx‖ = o(n−α), n→∞,

for all x ∈ Xα. We also show that there exists a further dense subspace X∞
of X such that for all initial vectors x ∈ X∞ the statement in (1.2) holds for
all α > 0. Although we give a fairly explicit description of these subspaces,
the question raised in [22, Remark 6.5(2)] remains open.
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Our results, presented in Theorem 4.3, are obtained by combining ideas
contained in [4] with general results in operator theory arising from works
such as [14, 31, 37], including in particular a characterisation of so-called
unconditional Ritt operators in terms of the numerical range (field of values);
see Theorem 2.2. As a by-product, we also strengthen the unquantified
statement (1.1) itself by showing that the limit is in fact the limit of a series
which converges unconditionally.

Organisation of the paper. In Section 2 we present some results on
(unconditional) Ritt operators, together with a review of Ritt operators.
Then in Section 3 we introduce a variant of a geometric quantity, called the
inner `2-inclination, which is related to the Friedrichs number from [3, 4].
We use this geometric quantity to estimate the rate of convergence in the
method of alternating projections. This implies an inequality for ‖T −PM‖
in terms of some geometric quantities which, along with known results on
Ritt operators, will be used in Section 4 to prove the main results of the
paper.

Notation. The notation used is standard throughout. In particular, we
write X∗ for the dual space of a complex Banach space X and B(X) for the
algebra of bounded linear operators on X. In what follows, all Banach spaces
will implicitly be assumed to be complex. An operator T ∈ B(X) will be
said to be power-bounded if supn≥0 ‖Tn‖ <∞. Further, we write Ran(T ) for
the range of T , Ker(T ) for its kernel and we let Fix(T ) = Ker(I−T ) denote
the set of fixed points of T . If X is a Hilbert space with inner product 〈·, ·〉
the adjoint operator of T ∈ B(X) will be denoted by T ∗. We write σ(T ) for
the spectrum of T , r(T ) for its spectral radius and, given λ ∈ C\σ(T ), we let
R(λ, T ) denote the resolvent operator (λ−T )−1. Given two sequences (xn),
(yn) of non-negative real numbers, we write xn = O(yn) as n → ∞ if there
exists a constant C > 0 such that xn ≤ Cyn for all sufficiently large n ≥ 0.
If yn > 0 for all sufficiently large n ≥ 0, we write xn = o(yn) as n → ∞ if
xn/yn → 0 as n→∞. We write T for the unit circle {λ ∈ C : |λ| = 1}.

2. Ritt operators and unconditional Ritt operators

The aim of this section, partly expository, is to introduce the notions of
Ritt operators and unconditional Ritt operators and to present some results
about them. These results, some of which may be known to specialists in
operator theory, will be crucial in dealing with products of projections in
Section 4.

An operator T is said to be a Ritt operator if r(T ) ≤ 1 and there exists a
constant C > 0 such that

(2.1) ‖R(λ, T )‖ ≤ C

|λ− 1|
, |λ| > 1.

This resolvent estimate, stronger than the Kreiss condition, took its name
from [47]. It can be proved that any Ritt operator T is power-bounded and
satisfies ‖Tn(I − T )‖ = O(n−1) as n → ∞, and the converse is also true;
see for instance [42] and [39]. This estimate shows that Ritt operators are,
in a certain sense, discrete analogues of analytic semigroups; see [12] where
operators satisfying ‖Tn(I−T )‖ = O(n−1) as n→∞ are studied and called
analytic operators. Moreover, (2.1) implies that σ(T ) ∩ T ⊂ {1}, and it is
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clear that if T is a Ritt operator then so is any operator which is similar
to T , that is to say any operator of the form Q−1TQ for some invertible
operator Q ∈ B(X). Recall also that for any power-bounded operator T ,
the operator I − T is sectorial of angle (of most) π/2, so that the fractional
powers (I − T )α are well-defined for all α ≥ 0, either as a contour integral

(I − T )α =
1

2πi

∮
Γ
λαR(λ, I − T ) dλ,

where Γ is any sufficiently smooth contour that contains the origin and
otherwise encloses σ(I − T ) without touching it, or alternatively as the
absolutely convergent series

(I − T )α =
∞∑
n=0

(−1)n
(
α

n

)
Tn.

See for instance [29] for details on sectorial operators and fractional powers.
An operator T on a Banach space X is said to be mean ergodic if the

averages 1
n+1

∑n
k=0 T

kx, n ≥ 0, converge in norm to a limit as n → ∞
for each x ∈ X. Details on mean ergodic operators may be found in [35,
Section 2.1]. The next result characterises Ritt operators among all power-
bounded mean ergodic operators on a Banach space in terms of decay of
orbits; see [48, Remark 3.12] for a related result.

Theorem 2.1. Let X be a Banach space and suppose that T ∈ B(X) is
power-bounded and mean-ergodic. Then T is a Ritt operator if and only if,
for each α > 0, ‖Tnx‖ = o(n−α) as n→∞ for all x ∈ Ran(I − T )α.

Proof. By the uniform boundedness principle, the condition for α = 1 im-
plies that ‖Tn(I − T )‖ = O(n−1) as n → ∞. Since T is assumed to be
power-bounded, it follows that T is a Ritt operator. The converse is proved
in [11, Corollary 6.2] and [12, Proposition 2]. �

Following [31], an operator T on a Banach space X is said to satisfy the
unconditional Ritt condition, or to be an unconditional Ritt operator, if there
exists a constant C > 0 such that, for any n ≥ 0 and any a0, . . . , an ∈ C,

(2.2)

∥∥∥∥ n∑
k=0

akT
k(I − T )

∥∥∥∥ ≤ C max
0≤k≤n

|ak|.

Note that if T satisfies the unconditional Ritt condition then so does any
operator which is similar to T . Furthermore, it is straightforward to show
that (2.2) is equivalent to having

(2.3)
∞∑
n=0

|φ(Tn(I − T )x)| ≤ C‖x‖‖φ‖

for all x ∈ X, φ ∈ X∗, and it is shown in [31, Proposition 4.3] that if T sat-
isfies the unconditional Ritt condition (2.2), then (2.1) holds, so T is a Ritt
operator. Theorem 2.2 below provides a characterisation of unconditional
Ritt operators acting on a Hilbert space. Recall that the numerical range
(or field of values) W (T ) of a bounded linear operator T on a Hilbert space
X is defined as W (T ) = {〈Tx, x〉 : x ∈ X with ‖x‖ = 1}. Furthermore,
given θ ∈ [0, π/2), we write Sθ for the Stolz domain with half-angle θ at 1,
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that is to say the convex hull of the set {λ ∈ C : |λ| ≤ sin θ}∪{1}. Note that
some authors reserve the term ‘Stolz domain’ for slightly different regions.

Theorem 2.2. Let X be a Hilbert space and let T ∈ B(X). Then T satisfies
the unconditional Ritt condition if and only if T is similar to an operator
whose numerical range is contained in a Stolz domain.

Proof. Suppose first that there exists an invertible operator Q ∈ B(X) such
that the operator S = Q−1TQ satisfies W (S) ⊂ Sθ for some θ ∈ [0, π/2).
Let n ≥ 0 and a1, . . . , an ∈ C be given, and consider the polynomial pn
defined by

pn(λ) =
n∑
k=0

akλ
k(1− λ), λ ∈ C.

Then pn(1) = 0 and, for |λ| < 1,

|pn(λ)| ≤ max
0≤k≤n

|ak|
∑
m≥0

|λ|m|1− λ| = |1− λ|
1− |λ|

max
0≤k≤n

|ak|.

Since W (S) ⊂ Sθ, a simple estimate shows that

sup
λ∈W (S)

|pn(λ)| ≤ C max
0≤k≤n

|ak|

for some C > 0 which is independent of n ≥ 0 and a1, . . . , an ∈ C. Hence

‖pn(S)‖ ≤ 12C max
0≤k≤n

|ak|,

by [13, Theorem 2], so S satisfies (2.2). Since T is similar to S, T itself
satisfies the unconditional Ritt condition.

Now suppose conversely that T satisfies the unconditional Ritt condi-
tion. Since the notions of ‘boundedness’ and ‘R-boundedness’ for families
of operators coincide in the Hilbert space setting (see for instance [36, Sec-
tion 1.9]), it follows from [37, Theorem 4.2] that T admits a bounded H∞

functional calculus on Sθ for some θ ∈ [0, π/2), which implies that there
exists a constant K ≥ 1 such that

‖q(T )‖ ≤ K sup
λ∈Sθ
|q(λ)|

for all rational functions q with poles outside Sθ. Hence Sθ is a K-spectral
set for T ; see for instance [2] for details on (complete) K-spectral sets. Let
θ′ ∈ (θ, π/2). By [26, Theorem 6.1] the set Sθ′ is a complete K-spectral
set for T , and it follows from [44] that there exists an invertible operator
Q ∈ B(X) such that Sθ′ is a complete 1-spectral set for Q−1TQ. Since Stolz
domains are convex, Sθ′ coincides with the intersection of all half-planes
which are 1-spectral for Q−1TQ. It follows easily from [51, Section 5.3]
that any such half-plane contains the numerical range of Q−1TQ, and hence
W (Q−1TQ) ⊂ Sθ′ . �

Remark 2.3. (a) The idea used in the first part of the above proof goes
back to [14, Lemma 5.2], [17] and [37, Lemma 4.1]. Furthermore, noting
that any operator on a Hilbert space admitting a 1-spectral set contained
in the closed unit disc is a contraction, the above proof yields further
equivalent conditions in Theorem 2.2, namely that T is similar to a
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contraction admitting a Stolz domain as a complete 1-spectral set, that
T admits a Stolz domain as a (complete) K-spectral set for some K ≥
1, and that T admits a bounded H∞ functional calculus on a Stolz
domain. From the latter it then follows by [40, Theorem 8.1] that these
conditions are also equivalent to T being similar to a contractive Ritt
operator, and to T being power-bounded and satisfying certain square-
function estimates; see also [11, 31]. In particular, a contraction on a
Hilbert space is a Ritt operator if and only if it is an unconditional
Ritt operator. Several extensions to more general Banach spaces can
be found for instance in [40]. We choose not to list these equivalent
conditions in Theorem 2.2 since they will not be used in what follows.

(b) An alternative way to conclude the proof of Theorem 2.2, having estab-
lished that Sθ′ is a complete 1-spectral set for Q−1TQ, is as follows. By
[1, Section 1.2] there exists a normal operator S on a Hilbert space con-
taining X such that σ(S) is contained in the boundary ∂Sθ′ of the Stolz
domain; see also [45, Chapter 4]. Moreover, the closure of W (Q−1TQ) is
contained in the closure of W (S). Since for a normal operator the closure
of the numerical range coincides with the convex hull of the spectrum
(see for instance [27, Theorem 1.4-4]), it follows that W (Q−1TQ) ⊂ Sθ′ .
This gives the additional equivalent statement that T is similar to a
contraction admitting a normal dilation whose spectrum is contained in
the boundary of a Stolz domain. A direct construction of the normal
dilation has been given in [15]. For further related results see also [16].

We now come to the main result of this section, Theorem 2.4 below. This
requires a little preparation. Let c0 denote the space of sequences (an) of
complex numbers such that |an| → 0 as n→∞, endowed with the supremum
norm. We say that a Banach space X contains a copy of c0 if there exists
a closed subspace of X which is isomorphic to c0. Recall also that, given a
sequence (xn) in X and given x ∈ X, the formal series

∑
n≥0 xn is said to

be weakly unconditionally Cauchy if, for every φ ∈ X∗,
∑

n≥0 |φ(xn)| < ∞.
Furthermore, the series

∑
n≥0 xn is said to converge unconditionally to x if

the series
∑

n≥0 xπ(n) converges to x in the usual sense for all permutations

π of Z+. The series
∑

n≥0 xn is said to be unconditionally convergent if it
converges unconditionally to some x ∈ X. The following theorem, then, is a
general dichotomy result, which will be applied in the form of Corollary 2.6
to iterated projections in Section 4. Given a sequence (rn) of non-negative
numbers such that rn → 0 as n→∞, we say that the convergence is super-
polynomially fast if rn = o(n−α) as n→∞ for all α > 0.

Theorem 2.4. Let X be a Banach space which does not contain a copy of
c0, and suppose that T ∈ B(X) satisfies the unconditional Ritt condition.
Then the space X splits as X = Fix(T ) ⊕ Z, where Z is the closure of
Ran(I − T ), and the series

∑
n≥0 T

n(I − T )x converges unconditionally to

x− Px for all x ∈ X, where P is the bounded projection onto Fix(T ) along
Z. In particular,

(2.4) lim
n→∞

‖Tnx− Px‖ = 0
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for all x ∈ X. Moreover, if Ran(I − T ) is closed then the convergence is
exponentially fast for all x ∈ X, while if Ran(I − T ) is not closed the con-
vergence is arbitrarily slow but for each α > 0 there exists a dense subspace
Xα of X such that

(2.5) ‖Tnx− Px‖ = o(n−α), n→∞,

for all x ∈ Xα. Furthermore, there exists a dense subspace X∞ of X such
that for all x ∈ X∞ the convergence in (2.4) is super-polynomially fast.

Proof. Since T is an unconditional Ritt operator, (2.3) holds for all x ∈ X
and all φ ∈ X∗. Thus the series

∑
n≥0 T

n(I−T )x is weakly unconditionally
Cauchy for each x ∈ X. Since X contains no copy of c0, it follows from
the Bessaga-Pe lczyński theorem [8, Theorem 5] that the series converges
unconditionally to some z ∈ Z. Noting that the partial sums of the series
form a telescoping sum, it follows immediately that ‖Tnx − x + z‖ → 0 as
n → ∞. Next we identify z ∈ Z. Since the powers of T converge strongly
to a limit, T is mean ergodic. It follows from power-boundedness of T and
[35, Chapter 2, Theorem 1.3] that X = Fix(T ) ⊕ Z. By virtue of T being
a Ritt operator we have that ‖Tn(I − T )‖ → 0 as n → ∞. In particular,
‖Tnx‖ → 0 as n → ∞ for all x ∈ Y , and by the power-boundedness of T
this result extends to all x ∈ Z. It follows that (2.4) holds and hence that
z = x− Px, as required.

It remains to prove the quantified statements. Let Y = Ran(I − T ),
so that Z is the closure of Y , and let S denote the restriction of T to Z.
Then σ(S) ⊂ σ(T ) and the operator I − S maps Z bijectively onto Y . It
follows from the Inverse Mapping Theorem that 1 ∈ σ(S) if and only if
Y 6= Z. Using the fact that σ(T ) is contained in the closed unit disc with
σ(T ) ∩ T ⊂ {1}, we obtain the equivalent statement that r(S) < 1 if and
only if Y is closed. But ‖Tn−P‖ = ‖Sn‖ for all n ≥ 0, so if Y is closed then
the convergence in (2.4) is exponentially fast. On the other hand, if Y is not
closed and consequently r(S) = 1, then it follows from [41, Theorem 1] that,
given any sequence (rn) of positive terms satisfying rn → 0 as n→∞, there
exists x ∈ Z such that ‖Snx‖ ≥ rn for all n ≥ 0. Since Snx = Tnx − PMx
for all n ≥ 0, the convergence in (2.4) is arbitrarily slow. Given α > 0,
let Xα = Fix(T ) ⊕ Ran(I − T )α. Since Ran(I − T )α is dense in Z and
X = Fix(T ) ⊕ Z, Xα is dense in X. For x ∈ Xα, let y = x − Px. Then
y ∈ Ran(I−T )α and Tnx−Px = Tny for all n ≥ 0. Since T is mean ergodic,
(2.5) follows from Theorem 2.1. For the final claim, let X∞ =

⋂∞
n=1Xn. It

follows from the Esterle-Mittag-Leffler theorem [25, Theorem 2.1] that X∞
is dense in X, and it is clear that for initial vectors x ∈ X∞ the convergence
in (2.4) is super-polynomially fast. This completes the proof. �

Remark 2.5. (a) As the above proof shows, the dense subspaces Xα for
α > 0 are given by Xα = Fix(T ) ⊕ Ran(I − T )α. Thus it is possible
at least in principle to verify whether a given initial vector leads to
convergence of a particular polynomial rate. For characterisations of the
spaces Ran(I −T )α for 0 < α ≤ 1, see [18, Section 2], [29, Theorem 6.1]
and [38]. In particular, if X is reflexive then x ∈ Ran(I − T )α if and
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only if

sup
n≥1

∥∥∥∥ n∑
k=1

k−(1−α)T kx

∥∥∥∥ <∞.
Note also that by [18, Theorem 2.23] we have that

⋃
0<α<1 Ran(I −T )α

is strictly contained in the closure of Ran(I − T ) whenever the latter is
not closed.

(b) In showing that the convergence in (2.4) is arbitrarily slow when Ran(I−
T ) is not closed, [41, Theorem 1] in fact yields the stronger statement
that, given any ε > 0, the vector x ∈ Z in the above proof can be chosen
so as to satisfy ‖x‖ < (1 + ε) supn≥0 rn. See [4] for various other notions
of arbitrarily slow convergence which could equally have been used.

(c) The rate n−α in (2.5) is optimal in the sense that if the convergence
were any faster for all x ∈ Xα, with Xα as in the above proof, then
the convergence in (4.2) would necessarily be exponentially fast. This
follows from [48, Theorem 2.1] combined with the uniform boundedness
principle and the moment inequality; see for instance [28, Corollary 7.2].
It follows in particular that the spaces Xα are distinct for distinct values
of α > 0 when Ran(I − T ) is not closed; see also [18, Proposition 2.2].

Note that any reflexive space, and particular any Hilbert space, cannot
contain a copy of c0. Hence combining Theorem 2.4 with Theorem 2.2
immediately leads to the following.

Corollary 2.6. Let X be a Hilbert space and suppose that T ∈ B(X) is
similar to an operator whose numerical range is contained in a Stolz domain.
Then the conclusions of Theorem 2.4 hold.

3. Inner inclinations and rates of convergence

The aim in this section is to introduce various quantities describing the
geometric relationship between subspaces of a Hilbert space and to under-
stand the connections between these quantities. These quantities will then
be used to study the rate of convergence in the method of alternating projec-
tions. Throughout this section, we let X be a Hilbert space and we consider
a collection of N ≥ 2 closed subspaces M1, . . . ,MN of X. In order to avoid
having to distinguish cases, we exclude the uninteresting situation in which
all of the subspaces coincide with X. Furthermore, we let M = M1∩. . .∩MN

and, for 1 ≤ k ≤ N , we write Pk for the orthogonal projection onto Mk. We
also write PM for the orthogonal projection onto M and we let T ∈ B(X)
be the operator T = PN · · ·P1.

The first quantity we consider, which was introduced in [3, 4], is the
Friedrichs number c(M1, . . . ,MN ),

c(M1, . . . ,MN ) = sup

{
1

N − 1

∑
j 6=k
〈mj ,mk〉 : mk ∈Mk ∩M⊥ for

1 ≤ k ≤ N, ‖m1‖2 + · · ·+ ‖mN‖2 = 1

}
.

The Friedrichs number can be interpreted as the cosine of the ‘angle’ between
the subspaces M1, . . . ,MN . It is well-known from [20, 33] that when N = 2
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the norm ‖Tn − PM‖ can be nicely expressed in terms of the Friedrichs
number as

‖Tn − PM‖ = c(M1,M2)2n−1, n ≥ 1.

In the case of more than two subspaces, it is possible to write down certain
expressions for ‖Tn − PM‖, n ≥ 0, as for instance in [52, Theorem 4.5],
but no exact formula in terms of the Friedrichs number is known. However,
it is possible to obtain bounds on these norms in terms of closely related
geometric quantities, which can then be used to obtain estimates in terms
of the Friedrichs number.

Following [46], we define the inner inclination of the subspacesM1, . . . ,MN

as

ι(M1, . . . ,MN ) = min
1≤n≤N

inf
x∈Mn\M

max
1≤k≤N

dist(x,Mk)

dist(x,M)
.

The inner inclination is closely related to the inclination

`(M1, . . . ,MN ) = inf
x 6∈M

max
1≤k≤N

dist(x,Mk)

dist(x,M)

of the subspaces M1, . . . ,MN which is studied in [4]. Indeed, it was proved
in [4, Proposition 3.9] that

`(M1, . . . ,MN ) ≤ (N − 1)1/2
(
1− c(M1, . . . ,MN )

)1/2
and that

(3.1) `(M1, . . . ,MN ) ≥ (N − 1)

2N

(
1− c(M1, . . . ,MN )

)
.

It also follows from the definitions that

(3.2) ι(M1, . . . ,MN ) ≥ `(M1, . . . ,MN ),

and it follows from [4] and [46] that ι(M1, . . . ,MN ) = 0 if and only if
`(M1, . . . ,MN ) = 0, which in turn is equivalent to c(M1, . . . ,MN ) = 1
(the ‘angle’ is zero) and to M⊥1 + · · · + M⊥N not being closed in X. When
these equivalent conditions are satisfied, we shall say that the subspaces
M1, . . . ,MN are aligned.

Consider the quantity

`2(M1, . . . ,MN ) =

(
inf
x/∈M

∑N
k=1 dist(x,Mk)

2

dist(x,M)2

)1/2

,

which was considered in [32] and which we shall call the `2-inclination of
the subspaces M1, . . . ,MN . Thus `2(M1, . . . ,MN ) is the smallest constant
C ≥ 0 such that the inequality

N∑
k=1

dist(x,Mk)
2 ≥ C2 dist(x,M)2

holds for all vectors x ∈ X. It follows from [32, Remark 3.25] that we have

(3.3) `2(M1, . . . ,MN ) = (N − 1)1/2
(
1− c(M1, . . . ,MN )

)1/2
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In particular, `2(M1, . . . ,MN ) = 0 if and only if the subspaces M1, . . . ,MN

are aligned. We define the inner `2-inclination of the subspaces M1, . . . ,MN

by

ι2(M1, . . . ,MN ) =

(
min

1≤n≤N
inf

x∈Mn\M

∑N
k=1 dist(x,Mk)

2

dist(x,M)2

)1/2

.

Thus ι2 is the smallest constant C ≥ 0 such that the inequality

N∑
k=1

dist(x,Mk)
2 ≥ C2 dist(x,M)2

holds for all vectors x ∈M1 ∪ . . . ∪MN . It follows that

(3.4) ι2(M1, . . . ,MN ) ≥ `2(M1, . . . ,MN ).

Remark 3.1. Note that it would be possible to develop the notion of an
(inner) `p-inclination for any p with 1 ≤ p ≤ ∞. The usual (inner) incli-
nation would then correspond to taking p = ∞. We restrict ourselves here
to the choice p = 2 since this seems the most natural in the Hilbert space
setting and since the the `2-inclination can be expressed exactly in terms of
the Friedrichs number by means of (3.3); see also Remark 3.5 below.

We now establish an estimate for the error ‖Tnx−PMx‖, where x ∈ X and
n ≥ 0, first in terms of the inner `2-inclination and then, in Corollary 3.4,
in terms of the Friedrichs number of the subspaces M1, . . .MN . We begin
by recalling a result proved in [4, Lemma 4.2.].

Lemma 3.2. Given N ≥ 2 closed subspaces M1, . . . ,MN of a Hilbert space
X, let Pk denote the orthogonal projection onto Mk, 1 ≤ k ≤ N . Further-
more, let PM denote the orthogonal projection onto M = M1∩ . . .∩MN and
let T = PN · · ·P1. Fix x ∈ X, and set u0 = x − PMx and, for 1 ≤ k ≤ N ,
uk = Pk · · ·P1x− PMx. Then

‖uk−1 − uk‖2 ≤ ‖x− PMx‖2 − ‖Tx− PMx‖2, 1 ≤ k ≤ N.

The proof of the next theorem is similar to a part of [4, Theorem 4.1]
using an improvement of [46, Theorem 2.4].

Theorem 3.3. Consider the setting of Lemma 3.2. Then, given x ∈ X,

‖Tnx− PMx‖ ≤
(

1− 3ι22
N3

)n/2
‖x− PMx‖ , n ≥ 0,

where ι2 = ι2(M1, . . . ,MN ).

Proof. We begin by establishing an estimate for ‖Tx− PMx‖. Let x ∈M1.
Then dist(x,M1) = 0. For 2 ≤ k ≤ N , keeping in mind that x = P1x and
using the notation of Lemma 3.2, we have that

dist(x,Mk) = ‖x− Pkx‖ ≤ ‖P1x− PkPk−1 · · ·P1x‖ = ‖u1 − uk‖

and hence

dist(x,Mk) ≤
k∑
j=2

‖uj−1 − uj‖.
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Using Lemma 3.2 and the Cauchy-Schwarz inequality we obtain

dist(x,Mk)
2 ≤ (k − 1)2

(
‖x− PMx‖2 − ‖Tx− PMx‖2

)
,

and therefore

N∑
k=1

dist(x,Mk)
2 ≤ N3

3

(
‖x− PMx‖2 − ‖Tx− PMx‖2

)
.

Since by definition of the inner `2-inclination

N∑
k=1

dist(x,Mk)
2 ≥ ι22‖x− PMx‖2

for all x ∈M1, we obtain

ι22‖x− PMx‖2 ≤
N3

3

(
‖x− PMx‖2 − ‖Tx− PMx‖2

)
,

and hence

(3.5) ‖Tx− PMx‖ ≤
(

1− 3ι22
N3

)1/2

‖x− PMx‖

for all x ∈M1. Now let x be an arbitrary element of X. We apply (3.5) with
x replaced by y = P1x, which is an element of M1. We have P1y = y = P1x
and PMy = PMP1x = PMx. Hence

‖Tx− PMx‖ = ‖PN · · ·P1y − PMy‖ ≤
(

1− 3ι22
N3

)1/2

‖y − PMy‖ .

Now observe that

‖y − PMy‖ = ‖P1x− P1PMx‖ ≤ ‖x− PMx‖

and thus the desired inequality, with n = 1, holds for arbitrary x ∈ X. For
n ≥ 2, notice that TPMx = PMTx = PMx. Thus we can write Tnx−PMx =
T (Tn−1x)− PM (Tn−1x). By iteration, we obtain

‖Tnx− PMx‖ ≤
(

1− 3ι22
N3

)n/2
‖x− PMx‖

for n ≥ 2 and hence for all n ≥ 0, as required. �

Theorem 3.3 shows that the convergence in (1.1) is exponentially fast
whenever ι2(M1, . . . ,MN ) > 0. By [4, Theorem 4.1] exponentially fast
convergence is equivalent to having c(M1, . . . ,MN ) < 1, and hence (3.3)
and (3.4) together show that ι2(M1, . . . ,MN ) = 0 if and only if the spaces
M1, . . . ,MN are aligned. The following corollary is also another simple con-
sequence of Theorem 3.3 and the statements in (3.3) and (3.4).

Corollary 3.4. Consider the setting of Lemma 3.2. Then, given x ∈ X,

(3.6) ‖Tnx− PMx‖ ≤
(

1− 3(N − 1)

N3
(1− c)

)n/2
‖x− PMx‖ , n ≥ 0,

where c = c(M1, . . . ,MN ).
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Remark 3.5. It follows from [46, Theorem 2.4] that, for all x ∈ X,

‖Tnx− PMx‖ ≤
(

1− ι2

(N − 1)2

)n/2
‖x− PMx‖ , n ≥ 0,

where ι = ι(M1, . . . ,MN ). Using (3.1) and (3.2) it is possible to deduce a
bound involving only the Friedrichs number. However, resulting estimate is
always worse than (3.6).

4. Convergence in the method of alternating projections

Suppose as in Section 3 that M1, . . . ,MN are N ≥ 2 closed subspaces of a
Hilbert space X and, for 1 ≤ k ≤ N , write Pk for the orthogonal projection
onto Mk. It is shown in [14, Lemma 5.1] that the numerical range W (T ) of
the product T = PN · · ·P1 satisfies W (T ) ⊂ ΩN , where

(4.1) ΩN =
{
λ ∈ C : |λ− 2−N | ≤ 1− 2−N and | arg(1− λ)| ≤ θN

}
and the angle θN ∈ (0, π/2) is defined recursively by θ1 = 0 and

θn+1 = tan−1

(
2 tan θn
1 + 2−n

+

(
1− 2−n

1 + 2−n

)1/2
)
, 1 ≤ n < N.

Proposition 4.1 below shows that W (T ) is also contained in a certain Stolz
domain whose opening angle is determined by the geometric relationship
between the subspaces M1, . . . ,MN .

Proposition 4.1. Given N ≥ 2 closed subspaces M1, . . . ,MN of a Hilbert
space X with M1∩. . .∩MN 6= X, let Pk denote the orthogonal projection onto
Mk, 1 ≤ k ≤ N . Furthermore let T = PN · · ·P1. Then W (T ) ⊂ ΩN ∩ Sθ0,
where ΩN is defined by (4.1) and

sin θ0 =

(
1− 3(N − 1)

N3
(1− c)

)1/2

with c = c(M1, . . . ,MN ). In particular, W (T ) ⊂ Sθ for all sufficiently large
θ ∈ [0, π/2).

Proof. Let Z denote the closure of Ran(I − T ). Then Z⊥ = Fix(T ∗). Since
T ∗ = P1 · · ·PN , a simple argument shows that Fix(T ∗) = Fix(T ) = M ,
where M = M1∩ . . .∩MN . Hence X = M ⊕Z. Let S denote the restriction
of T to Z. Then W (T ) is the convex hull of W (S) ∪ {1}. Now using the
estimate for ‖S‖ = ‖T − PM‖ implied by Corollary 3.4 we obtain W (S) ⊂
{λ ∈ C : |λ| ≤ sin θ0}. Hence W (T ) ⊂ ΩN ∩ Sθ0 , as required. The final
claim follows from the fact that ΩN ∩ Sθ0 ⊂ Sθ for all sufficiently large
θ ∈ [0, π/2). �

Remark 4.2. (a) The result shows that W (T ) is contained in a Stolz do-
main whose half-angle is determined by the Friedrichs number. For
N = 2, [34, Proposition 1.5] shows that

W (T ) ⊂
{
λ ∈ C : | arg(1− λ)| ≤ tan−1(c(4− c2)−1/2)

}
,

where c = c(M1,M2). This gives a slightly sharper estimate on the
angle of the Stolz domain than Proposition 4.1. Note also that by using
Theorem 3.3 instead of Corollary 3.4 in the above proof, it is possible
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to obtain a slightly sharper bound on the angle θ0 involving the inner
`2-inclination rather than the Friedrichs number.

(b) Combining Proposition 4.1 with Theorem 2.2 shows that the operator
T = PN · · ·P1 satisfies the unconditional Ritt condition and in particular
is a Ritt operator. The latter assertion was first proved in [10, Proposi-
tion 2.2] for conditional expectations; see also [11, Proposition 2.3]. A
more direct way of showing that T is a Ritt operator is to note that by
[49, Theorem 4.20] we have

‖R(λ, T )‖ ≤ 1

dist(λ,W (T ))

for all λ ∈ C outside the closure of W (T ). Since W (T ) is contained in
a Stolz domain, a simple estimate establishes (2.1). Note in particular
that better knowledge of the location of W (T ) leads to sharper estimates
on the constant C appearing in (2.1). See [9] for various related results.

(c) Note that if T is a convex combination of operators whose numerical
ranges lie in Stolz domains then W (T ) also lies in a Stolz domain. Thus
the last part of Proposition 4.1 extends straightforwardly to operators
T which are convex combinations of finite products of orthogonal pro-
jections on a Hilbert space, operators which were studied in [5]. In
particular, such operators satisfy the unconditional Ritt condition by
Theorem 2.2.

We now come to the main result of this paper, which is a restatement
of parts of the dichotomy result [4, Theorem 4.1] but with two important
additions. Specifically, the result gives an improved estimate in terms of
the Friedrichs number on the actual rate of convergence in (1.1) in the case
where it is known to be exponentially fast, and it also shows that, even when
the convergence in (1.1) is arbitrarily slow, there exists, for each α > 0, a rich
supply of initial vectors for which the error decays like o(n−α) as n → ∞.
By showing that the initial vectors leading to very slow decay in (1.1) must
therefore come from the complement of a certain dense subspace of X, the
result provides a partial answer to a question raised in [22, Remark 6.5(2)],
where it is conjectured that such initial vectors in general must be chosen
from outside M ⊕ (M⊥1 + · · · + M⊥N ), which itself is a dense subspace of
X. The result moreover shows that there exists a further dense subset X∞
of X such that for x ∈ X∞ the decay is super-polynomially fast in the
sense of Section 3. Finally, the result also strengthens the unquantified
statement (1.1) by relating it to the convergence of a certain series which is
unconditionally convergent.

Theorem 4.3. Given N ≥ 2 closed subspaces M1, . . . ,MN of a Hilbert
space X, let Pk denote the orthogonal projection onto Mk, 1 ≤ k ≤ N .
Furthermore, let PM denote the orthogonal projection onto M = M1 ∩ . . . ∩
MN , and assume that M 6= X. If the sequence (xn) is defined recursively by
x0 = x and xn+1 = PN · · ·P1xn for n ≥ 0, then the series

∑
n≥0(xn−xn+1)

converges unconditionally to x− PMx for all x ∈ X. In particular,

(4.2) lim
n→∞

‖xn − PMx‖ = 0
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for all x ∈ X. If the subspaces M1, . . . ,MN are not aligned, then the con-
vergence is exponentially fast and in fact

(4.3) ‖xn − PMx‖ ≤
(

1− 3(N − 1)

N3
(1− c)

)n/2
‖x− PMx‖, n ≥ 0,

for all x ∈ X, where c = c(M1, . . . ,MN ). On the other hand, if the subspaces
M1, . . . ,MN are aligned, then the convergence is arbitrarily slow but for each
α > 0 there exists a dense subspace Xα of X such that

‖xn − PMx‖ = o(n−α), n→∞,
for all x ∈ Xα. Furthermore, there exists a dense subspace X∞ of X such
that for all x ∈ X∞ the convergence in (4.2) is super-polynomially fast.

Proof. Let T ∈ B(X) be given by T = PN · · ·P1, so that xn = Tnx for all
n ≥ 0. By Proposition 4.1, W (T ) lies in a Stolz domain, and the proof
of that result shows that Fix(T ) = M . Since Ran(I − T ) is closed if and
only if the subspaces are not aligned by [4, Theorem 4.1], the result follows
immediately from Corollaries 2.6 and 3.4. �

Remark 4.4. (a) The estimate in (4.3) can be sharpened slightly to an
estimate involving the inner `2-inclination rather than the Friedrichs
number by replacing the application of Corollary 3.4 in the above proof
with an application of Theorem 3.3; see also Remark 4.2(a).

(b) As was noted in the introduction, exponentially fast convergence in (4.2)
is equivalent to the subspace M⊥1 + · · · + M⊥N being closed in X; see
[22, Theorem 6.4] and also [4, Theorem 4.1] for a number of further
equivalent conditions. Thus both M⊥1 + · · · + M⊥N and Ran(I − T ) are
closed if and only if c(M1, . . . ,MN ) < 1. In fact, the identity

(4.4) I − T =
N∑
k=1

(I − Pk)
k−1∏
j=1

Pj

implies that Ran(I − T ) ⊂ M⊥1 + · · · + M⊥N , and in particular both

spaces are dense in M⊥. However, the inclusion is in general strict when
c(M1, . . . ,MN ) = 1. Indeed, suppose that N = 2 and that M1 ∩M2 =
M⊥1 ∩M⊥2 = {0}. Then the assumption that (I−P2)(M⊥1 ) ⊂ Ran(I−T )
would already imply, by (4.4), that for each x ∈ X there exists y ∈ X
such that

(I − P2)
(
(I − P1)x− P1y)

)
= (I − P1)y.

But then both sides must lie in M⊥1 ∩M⊥2 = {0}, and therefore (I −
P1)x−P1y ∈M2. It follows that M⊥1 ⊂M1 +M2, and hence M1 +M2 =
X. In particular, M1 + M2 is closed, and it follows from [19] that
c(M1,M2) < 1. We do not know whether c(M1, . . . ,MN ) = 1 implies
that M⊥1 +· · ·+M⊥N ⊂ Ran(I−T )α for some α ∈ (0, 1) or more generally

that M⊥1 + · · · + M⊥N ⊂
⋃
α>0 Ran(I − T )α; see also Remark 2.5(a). A

positive answer to either of the above would imply a positive answer to
the conjecture made in [22, Remark 6.5(2)].

Corollary 4.5. Given N ≥ 2 closed subspaces M1, . . . ,MN of a Hilbert
space X, let Pk denote the orthogonal projection onto Mk, 1 ≤ k ≤ N .
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Furthermore, let PM denote the orthogonal projection onto M = M1 ∩ . . . ∩
MN . If the sequence (xn) is defined recursively by x0 = x and xn+1 =
PN · · ·P1xn for n ≥ 0, then

(4.5) lim
n→∞

‖xn − PMx‖ = 0

for all x ∈ X, and there exists a dense subspace X∞ of X such that for all
x ∈ X∞ the convergence in (4.5) is super-polynomially fast.
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leneuve d’Ascq, France

Email address: badea@math.univ-lille1.fr

St John’s College, St Giles, Oxford OX1 3JP, United Kingdom
Email address: david.seifert@sjc.ox.ac.uk


	1. Introduction
	2. Ritt operators and unconditional Ritt operators
	3. Inner inclinations and rates of convergence
	4. Convergence in the method of alternating projections
	References

