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KAZHDAN SETS IN GROUPS AND EQUIDISTRIBUTION
PROPERTIES

by

Catalin Badea & Sophie Grivaux

Abstract. — Using functional and harmonic analysis methods, we study Kazhdan sets in
topological groups which do not necessarily have Property (T). We provide a new criterion for
a generating subset @ of a group G to be a Kazhdan set; it relies on the existence of a positive
number ¢ such that every unitary representation of G with a (Q, e)-invariant vector has a
finite dimensional subrepresentation. Using this result, we give an equidistribution criterion
for a generating subset of G to be a Kazhdan set. In the case where G = Z, this shows that
if (nk)k>1 is a sequence of integers such that (e%’renk )k>1 is uniformly distributed in the unit
circle for all real numbers 6 except at most countably many, then {ns; k = 1} is a Kazhdan
set in Z as soon as it generates Z. This answers a question of Y. Shalom from [B. Bekka,
P. de la Harpe, A. Valette, Kazhdan’s property (T), Cambridge Univ. Press, 2008]. We
also obtain characterizations of Kazhdan sets in second countable locally compact abelian
groups, in the Heisenberg groups and in the group Affy(R). This answers in particular a
question from [B. Bekka, P. de la Harpe, A. Valette, Kazhdan’s property (T), op. cit.].

1. Introduction

A unitary representation of a topological group G on a Hilbert space H is a group
morphism from G into the group % (H) of all unitary operators on H which is strongly
continuous, i.e. such that the map g+— 7(g)x is continuous from G into H for all
vectors x € H. As all the representations we consider in this paper are unitary, we will
often drop the word “unitary” and speak simply of representations of a group G on a
Hilbert space H. In this paper the Hilbert spaces will always be supposed to be complex,
and endowed with an inner product (-, - ) which is linear in the first variable and antilinear
in the second variable.
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Definition 1.1. — Let () be a subset of a topological group G, € a positive real number,
and 7 a unitary representation of G on a Hilbert space H. A vector z € H is said to be
(Q, e)-invariant for w if

sup || (g) — al| < el

geq
A (Q,¢)-invariant vector for 7 is in particular non-zero. A G-invariant vector for m is a
vector x € H such that 7(g)x = z for all g € G.

The notions of Kazhdan sets and Kazhdan pairs will be fundamental in our work.

Definition 1.2. — A subset @ of a topological group G is a Kazhdan set in G if there
exists € > 0 such that the following property holds true: any unitary representation m of
G on a complex Hilbert space H with a (Q, €)-invariant vector has a non-zero G-invariant
vector. In this case, the pair (Q,¢) is Kazhdan pair, and € is a Kazhdan constant for Q.
A group G has Property (T), or is a Kazhdan group, if it admits a compact Kazhdan set.

Property (T) is a rigidity property of topological groups which has been introduced by
Kazhdan in [26] for locally compact groups, and which has spectacular applications to
many fields. For instance, the groups SL,(R) and SL, (Z) have Property (T) if and only
if n > 3. We refer the reader to the monograph [6] by Bekka, de la Harpe, and Valette
for a comprehensive presentation of Kazhdan’s Property (T) and its applications (see also
19)).

The aim of this paper is to identify and study Kazhdan sets in topological groups. For
discrete groups with Property (T) the Kazhdan sets are known. Recall first the following
definition.

Definition 1.3. — If Q) is a subset of a group G, we denote by (@) the smallest subgroup
of G containing @, i.e. the set of all elements of the form glil ...gF!, where n > 1 and
g1,---,9n belong to Q. We say that @ generates G, or is generating in G, if (@) = G.

Locally compact groups with Property (T) are compactly generated. In particular, dis-
crete groups with Property (T) are finitely generated and it is known (see [6, Prop. 1.3.2])
that the Kazhdan subsets of a discrete group with Property (T) are exactly the generating
subsets of the group. More generally [6, Prop. 1.3.2], a generating set of a locally compact
group which has Property (T) is a Kazhdan set and, conversely, a Kazhdan set which has
non-empty interior is necessarily a generating set.

For groups without Property (T) the results about Kazhdan sets and Kazhdan pairs
are very sparse. It is known (see [6, Prop. 1.1.5]) that (G,+/2) is a Kazhdan pair for
every topological group G, so G is always a (“large”) Kazhdan subset of itself. The main

motivations for the present paper are two questions from [6, Sec. 7.12]. The first one is
due to Y. Shalom:

Question 1.4. — [6, Sec. 7.12] “The question of knowing if a subset @ of Z is a Kazhdan
set is possibly related to the equidistribution of the sequence (e*™), . for 6 irrational,
in the sense of Weyl.”

We refer the reader to the classical book [28] by Kuipers and Niederreiter for more
information about equidistributed (sometimes called uniformly distributed) sequences.
Recall that the Weyl Criterion ([28, Th. 2.1]) states that if (x)r>1 is a sequence of real
numbers, (e?7*);~; is equidistributed in T if and only if & Zszl e?mhzik tends to 0 as N
tends to infinity for every non-zero integer h. Hence if (ng)r>1 is a sequence of elements
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of Z, (e*™ %)~ is equidistributed in T for every § € R\Q if and only if + Z;ngﬂ e2imnid
tends to 0 as N tends to infinity for every 6 € R\Q. If yy denotes, for every 6 € R, the
character on Z associated to 6, this means that % Zszl Xo(ng) tends to 0 as N tends to
infinity for every 6 € R\Q.

The first remark about Question 1.4 is that it concerns Kazhdan sets and equidis-
tributed sequences; notice that a rearrangement of the terms of a sequence can destroy
its equidistribution properties. It is known [28, p. 135] that given a sequence of elements
of the unit circle T, there exists a certain rearrangement of the terms which is is equidis-
tributed if and only if the original sequence is dense in T. The second remark is that,
as mentioned before, Kazhdan sets of Z are necessarily generating, while there are non-
generating subsets Q of Z, like Q = pZ with p > 2, for which the sequences (e*™*%), ,
are equidistributed for all irrational 6’s. So Question 1.4 may be rephrased as follows:

Question 1.5. — (a) Let @ be a Kazhdan subset of Z. Does a certain rearrangement
(k)1 of the elements of @ exist such that (e?™%), -, is equidistributed in T for every
9 € R\Q? Equivalently, is the sequence (¢%™),, o dense in T for every 6 € R\Q?

(b) Let @ = {ng; k > 1} be a generating subset of Z. Suppose that the sequence
(e2m0Y, 1 is equidistributed in T for every 6 € R\Q. Is Q a Kazhdan set in Z?

We will prove in this paper that Question 1.5 (a) has a negative answer, a counterex-
ample being provided by the set Q = {2 4+ k; k > 1} (see Example 6.4). On the other
hand, one of the aims of this paper is to show that Question 1.5 (b) has a positive an-
swer. Actually, we will consider Question 1.5 (b) in the more general framework of Moore
groups, and answer it in the affirmative (Theorem 2.1).

The second question of [6, Sec. 7.12] runs as follows:

Question 1.6. — [6, Sec. 7.12] “More generally, what are the Kazhdan subsets of ZF,
R*, the Heisenberg group, or other infinite amenable groups?”

We shall answer Question 1.6 in Section 6 by giving a complete description of Kazhdan
sets in many classic groups which do not have Property (T), including the groups Z* and
R*, k > 1, the Heisenberg groups of all dimensions, and the group Aff; (R) of orientation-
preserving affine homeomorphisms of R.

2. Main results

Let us now describe our main results in more detail.

2.1. Equidistributed sets in Moore groups. — In order to state Question 1.5 (b) for
more general groups, we first need to define equidistributed sequences. There are several
possible ways of doing this. If (gx)r>1 is a sequence of elements in a locally compact
group G, uniform distribution of (gx)xr>1 in any of these senses requires a certain form of
convergence, as N tends to infinity, of the means

1 N
(2.1) N > mlgr)
k=1

to the orthogonal projection P, on the subspace of invariant vectors for m, for a certain
class of unitary representations 7 of G. Veech [37], [38] calls (g)r>1 uniformly distributed
in G if the convergence of the means (2.1) holds in the weak operator topology for all
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unitary representations of G (or, equivalently, for all irreducible unitary representations
of G, provided G is supposed to be second countable). Unitary uniform distribution in
the sense of Losert and Rindler [29], [17] requires the convergence in the strong operator
topology of the means (2.1) for all irreducible unitary representations of the group, while
Hartman uniform distribution only requires convergence in the strong operator topology
for all finite dimensional unitary representations.

In this paper we deal with the following natural extension to general locally compact
groups G of the equidistribution condition of Question 1.5 (b): if (gx)k>1 iS a sequence
of elements of GG, we require the sequence of means (2.1) to converge to 0 in the weak
topology for all finite dimensional irreducible unitary representations of G except those
belonging at most countably many equivalence classes of irreducible representations. In
the case of the group Z, sequences (ny)p>1 of integers such that (e279%), -, is uniformly
distributed in T for all § € R except countably many are said to be of first kind (see for
instance [21]). The class of groups we will consider in relation to Question 1.5 (b) is the
class of second countable Moore groups. Recall that G is said to be a Moore group if all
irreducible representations of G are finite dimensional. Locally compact Moore groups are
completely described in [31]: a Lie group is a Moore group if and only if it has a closed
subgroup H such that H modulo its center is compact, and a locally compact group is a
Moore group if and only if it is a projective limit of Lie groups which are Moore groups. See
also the survey [33] for more information concerning the links between various properties
of topological groups, among them the property of being a Moore group. Of course all
locally compact abelian groups are Moore groups.

Here is the first main result of this paper.

Theorem 2.1. — Let G be a second countable locally compact Moore group. Let (gi)r>1
be a sequence of elements of G. Suppose that (gr)k>1 satisfies the following equidistribution
assumption:

for all (finite dimensional) irreducible unitary representations © of G on a
Hilbert space H, except those belonging to at most countably many equivalence
(2.2) classes,

{(r(gk)x,yy ——0  for every x,y € H.
1 N — +©

=
M=

k

—If Q = {gr; k = 1} generates G (in which case G has to be countable), then Q is a
Kazhdan set in G.

— If Q is not assumed to generate G, Q becomes a Kazhdan set when one adds to it
a suitable “small” perturbation. More precisely, if (Wy)n>1 is an increasing sequence of
subsets of G such that | J,,-, W, = G, there exists n > 1 such that W, U Q is a Kazhdan
set in G.

The equidistribution property (2.2) of the sequence (gx)r>1 takes a more familiar form
when the group G is supposed to be abelian: it is equivalent to requiring that condition
(2.3) below holds true for all characters y of the group except possibly countably many.
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Theorem 2.2. — Let G be a locally compact abelian group, and let (gi)rk=1 be a sequence
of elements of G. Suppose that

1 N
(23 ¥ 2 xlgr) ———0
k=1

N —= 4w

for all characters x on G, except at most countably many. If Q = {gr; k = 1} generates
G, then Q is a Kazhdan set in G. If Q is not assumed to generate G, and if (Wy)p>1 is
an increasing sequence of subsets of G such that | -, Wy = G, then there exists n > 1
such that W, U Q is a Kazhdan set in G.

Theorem 2.2 can thus be seen as a particular case of Theorem 2.1, except for the fact
that there is no need to suppose that the group is second countable when it is known to
be abelian. The case G = Z provides a positive answer to Question 1.5 (b) above.

2.2. Kazhdan sets and finite dimensional subrepresentations. — The proof of
Theorem 2.2 relies on Theorem 2.3 below, which gives a new condition for a “small per-
turbation” of a subset () of a group G to be a Kazhdan set in G. Theorem 2.3 constitutes
the core of the paper, and has, besides the proofs of Theorems 2.1 and 2.2, several inter-
esting applications which we will present in Sections 5 and 6.

Theorem 2.3. — Let G be a topological group, and let (Wy,)n=1 be an increasing sequence
of subsets of G such that W1 is a neighborhood of the unit element e of G and | J,,»; Wy =
G. Let Q be a subset of G satisfying the following assumption:

there exists a positive constant € such that every unitary representation
(*) 7w of G on a Hilbert space H admitting a (Q,€)-invariant vector has a
finite dimensional subrepresentation.

Then there exists an integer n = 1 such that Q, = Wy, u Q is a Kazhdan set in G.

If the group G is locally compact, the same statement holds true for any increasing
sequence (Wy)n>1 of subsets of G such that |, W, = G.

The condition that W7 be a neighborhood of e, which appears in the first part of the
statement of Theorem 2.3, will be used in the proof in order to ensure the strong continuity
of some infinite tensor product representations (see Proposition A.2). When G is locally
compact, this assumption is no longer necessary (see Proposition A.1).

We stress that Theorem 2.3 is valid for all topological groups. We will apply it mainly
to groups which do not have Property (T) and to subsets of such groups which are not
relatively compact, a notable exception being the proof of Theorem 5.1, where we retrieve
a characterization of Property (T) for o-compact locally compact groups due to Bekka
and Valette [5], see also [6, Th. 2.12.9]. The original proof of this result relies on the
Delorme-Guichardet theorem that such a group has Property (T) if and only if it has
property (FH). See Section 5 for more details.

Theorem 2.3 admits a simpler formulation if we build the sequence (W,,),>1 starting
from a set which generates the group:

Corollary 2.4. — Let G be a topological group. Let Qg be a subset of G which generates
G and let Q be a subset of G. Suppose either that Qg has non-empty interior, or that G
is a locally compact group. If Q satisfies assumption (*) of Theorem 2.8, then Qo U @ is
a Kazhdan set in G.
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One of the main consequences of Corollary 2.4 is Theorem 2.5 below, which shows in
particular that property (*) of Theorem 2.3 characterizes Kazhdan sets among generating
sets (and which have non-empty interior — this assumption has to be added if the group
is not supposed to be locally compact).

Theorem 2.5. — Let G be a topological group and let Q be a subset of G which generates
G. Suppose either that QQ has non-empty interior or that G is locally compact. Then the
following assertions are equivalent:

(a) Q is a Kazhdan set in G;

(b) there exists a constant 6 € (0,1) such that every unitary representation © of G on a
Hilbert space H admitting a vector x € H such that infeq [(m(g9)z, z)| > &||z|? has a
finite dimensional subrepresentation;

(c) there exists a constant € > 0 such that every unitary representation © of G on a Hilbert
space H admitting a (Q, €)-invariant vector has a finite dimensional subrepresentation.

The assumption that @) generates G' cannot be dispensed with in Theorem 2.5: Q = 27Z
is a subset of Z which satisfies property (c), but @ is clearly not a Kazhdan set in Z.
Condition (b) in Theorem 2.5 is easily seen to be equivalent to condition (c), which is
nothing else than assumption (*) of Theorem 2.3. Its interest will become clearer in
Section 6 below, where it will be used to obtain a characterization of Kazhdan sets in
second countable locally compact abelian groups (Theorem 6.1). In the case of the group
Z, the characterization we obtain (Theorem 6.3) involves a classic class of sets in harmonic
analysis, called Kaufman sets. We give in Section 6 several examples of “small” Kazhdan
sets in Z, describe Kazhdan sets in the Heisenberg groups Hy,, n = 1 (Theorem 6.11), and
also in the group Aff;(R) (Theorem 6.14). These results provide an answer to Question
1.6.

The paper also contains an appendix which reviews some constructions of infinite tensor
product representations on Hilbert spaces, used in the proof of Theorem 2.3.

3. Mixing properties for unitary representations and an abstract version of
the Wiener theorem

3.1. Ergodic and mixing properties for unitary representations. — We first re-
call in this section some definitions and results concerning the structure of unitary repre-
sentations of a topological group G. They can be found for instance in the book [27], the
notes [34], and the paper [8] by Bergelson and Rosenblatt.

Recall that the class WAP(G) of weakly almost periodic functions on G is defined as
follows: if £*(G) denotes the space of bounded functions on G, f € £*(G) belongs to
WAP(G) if the weak closure in £®(G) of the set {f(s71.); s € G} is weakly compact. For
each s € G, f(s~'.) denotes the function ¢+ f(s~!t) on G. By comparison, recall
that f € £°(G) is an almost periodic function on G, written f € AP(G), if the norm
closure in £*(G) of {f(s~%.); s € G} is compact. If 7 is a unitary representation of G' on
a Hilbert space H, the functions

2

<7T(-)Jl‘,y>, |<7T(-)I‘,y>|, and |<7T(-)LU,y>| ’
where x and y are any vectors of H, belong to WAP(G). For more on weakly almost
periodic functions on a group, see for instance [10] or [16, Ch. 1, Sec. 9]. The interest of
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the class of weakly almost periodic functions on G in our context is that there exists on
WAP(G) a unique G-invariant mean m. It satisfies

m(f(s™h) =m(f(. s71)) = m(f)
for every f € WAP(G) and every s € G. The abstract ergodic theorem then states that
if 7 is a unitary representation of G on H, m({n(.)z,y)) = {(Prz,y) for every vectors
x,y € H, where P, denotes the projection of H onto the space E; = {x € H; n(g9)x =
x for every g € G} of G-invariant vectors for 7. The representation 7 is ergodic (i.e.
admits no non-zero G-invariant vector) if and only if m({rw(.)x,y)) = 0 for every z,y € H.

Following [8], let us now recall that the representation 7 is said to be weakly mizing if
m(|{r(.)z,z)|) = 0 for every z € H, or, equivalently, m(|{(x(.)z, 2)|?) = 0 for every z € H.
Then m([{m (), 9)]) = m([{r (), y)I?) = 0 for every 2,y € H.

We will need the following characterization of weakly mixing representations.

Proposition 3.1. — Let w be a unitary representation of G on a Hilbert space H. The
following assertions are equivalent:

(1) 7 is weakly mizing;

(2) © admits no finite dimensional subrepresentation;

(3) T T has no non-zero G-invariant vector.

Here 7 is the conjugate representation of m. The representation m ® 7 is equivalent to
a representation of G on the space HS(H) of Hilbert-Schmidt operators on H, which is
often more convenient to work with. Recall that HS(H) is a Hilbert space when endowed
with the scalar product defined by the formula (A, B) = tr(B*A) for every A, Be HS(H).
The space H ® H, where H is the conjugate of H, is identified to HS(H) by associating
to each elementary tensor product * @ of H ® H the rank-one operator {(.,y)z on H.
This map © : H® H —— HS(H) extends into a unitary isomorphism, and we have for
every g € G and every T € HS(H)

O ®7(9) 0 H(T) =n(g9)Tn(g™").
We will, when needed, identify 7 @ 7 with this equivalent representation, and use it in

particular in Section 3.3 to obtain a concrete description of the space E gx of G-invariant
vectors for m ® T, which is identified to the subspace of HS(H)

E:={T'e HS(H); n(9) T =T n(g) for every g € G}

3.2. Compact unitary representations. — A companion to the property of weak
mixing for unitary representation is that of compactness: given a unitary representation
mof G on H a vector xz € H is compact for 7 if the norm closure of the set {7(g)z; g € G}
is compact in H. The representation 7 itself is said to be compact if every vector of H
is compact for 7. Compact representations decompose as direct sums of irreducible finite
dimensional representations. The general structural result for unitary representations is
given by the following result.

Proposition 3.2. — A unitary representation © of G on a Hilbert space H decomposes
as a direct sum of a weakly mixing representation and a compact representation:

1
H:Hw®Hcv
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where Hy, and H. are both G-invariant closed subspaces of H, m, = m|p,, is weakly mizing
and T, = w|g, is compact. Hence m decomposes as a direct sum of a weakly mixing
representation and finite dimensional irreducible subrepresentations.

See [34, Ch. 1], [6, Appendix M], [8] or [12] (in the amenable case) for detailed proofs
of these results.

Now let m be a compact representation of G on a Hilbert space H, decomposed as
a direct sum of irreducible finite dimensional representations of G. We sort out these
representations by equivalence classes, and index the distinct equivalence classes by an
index j belonging to a set J, which may be finite or infinite (and which is countable if
H is separable). For every j € J, we index by i € I; all the representations appearing
in the decomposition of 7 which are in the j-th equivalence class. More precisely, we can
decompose H and 7 as

H=©(® H;) and 7= @ (@ m;)
JjeJ iel; jeJ iel;
respectively, where the following holds true:

— for every j € J, the spaces H; j, © € Ij, are equal. We denote by K this common

space, and by d; its dimension (which is finite). We also write
}NIJ' = @ Hi,j, so that H = (—D }NIJ’;
i€l jed
— for every j € J, there exists an irreducible representation 7; of G on Kj such that
m;,j is equivalent to 7; for every i € Ij;

— if 7, j/ belong to J and j # j', m; and 7 are not equivalent.

Without loss of generality, we will suppose that m; ; = 7; for every ¢ € I;. However, we
will keep the notation H; ; for the various orthogonal copies of the space K; which appear
in the decomposition of H, as discarding this notation may be misleading in some of the
proofs presented below.

Let A e #(H). We write A in block-matrix form with respect to the decompositions
H=@ (® H;;) and H= @ H;
jeJ i€l; jeJ
as

A= (AWU) and A= (gkl) respectively-
For every j € J and every u, v € I, we denote by 175] 2) the identity operator from H, ; into

H,,.

k,le Jyuelg,vel; k,led

3.3. A formula for the projection P, of HS(H) on E;. — We now give an explicit
formula for the projection P, A of a Hilbert-Schmidt operator A € HS(H) on the following
closed subspace of HS(H):

E.={T'e HS(H); n(9)T =T n(g) for every g € G}.
We also compute the norm of P, A.

Proposition 3.3. — Let m be a compact representation of G on H, written in the form

T= @ ( @ Trj) as discussed in Section 3.2 above. For every operator A € HS(H), we
jeJ i€l
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have

P.A= Z >otr(4,,)id),  and ||PLA|? = Z > (4, )

jed Juve] jed juve[
The proof of Proposition 3.3 relies on the following straightforward lemma:

Lemma 3.4. — The space E consists of the operators T € HS(H) such that

— for every k,l € J with k # 1, Tk,l =0;
— for every k € J and every u,v € I, there exists a complex number A, , such that

Tu,v = Au,v ZQS{ﬁl)J Thus fk,k = (Au v Z’Lskl)l

)u7v€]k'

Proof of Lemma 3.4. — Let T' € E,. For every k,l € J, u € I}, and v € I}, m(g) Ty, »

Ty, v m(g) for every g € G. Thus the operator Ty, , intertwines the two representations
and m. If Ty , is non-zero, it follows from Schur’s Lemma that T, , is an isomorphism.
The representations 7, and m; are thus isomorphically (and hence unitarily) equivalent.
Since 7, and 7 are not equivalent for k # [, it follows that T}, , = 0 in this case. If now
k =1, Schur’'s Lemma again implies that T}, , = Ay o zqski), for some scalar A, ,. Thus any
operator 1" € E satisfies the two conditions of the lemma. The converse is obvious. ]

The proof of Proposition 3.3 is now easy.

Proof of Proposition 3.3. — Consider, for every j € J and u,v € I;, the one-dimensional

(J)

subspace Elsjz, of HS(H) spanned by the operator i, These subspaces are pairwise

orthogonal in HS(H ), and by Lemma 3.4 we have
- @ ( @ El).

j€J u,vel;
Hence, for every A€ HS(H),
- (9)

Pa= 3, % (4t G -5 3 B )il

s eers3 ||zuv||H [ ey

which gives the two formulas we were looking for. O

Corollary 3.5. — Letm = @ ( (@) 7rj) be a compact representation of G on H. Let
jeJ i€l;

z= @ ( 6—) 3:”) and y = @ ( ® ym) be two vectors of H, and let A € HS(H) be the
jedJ iel;

]GJ 1€l
rank-one operator {.,yyx. Then

PA Z Z <U]7yv]>u'u

jedJ ]uvef

Proof. — For every j € J and w,v € Ij, Ayy = (s, Y, j) Ty, j, s0 that tr(Auﬂ,) =
{@u, j,Yv,j)- The result then follows from Proposition 3.3. O
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3.4. An abstract version of the Wiener Theorem. — As recalled in Section 3.1,
E, is the space of G-invariant vectors for the representation 7 ® T on HS(H ), where for
every x,y € H, x®7 is identified with the rank-one operator (., y)z. For every pair (z,y)
of vectors of H, denote by b, , the element of K ® K, with K = @ K}, defined by

jedJ
be,y = Z (E:L’”@y”)

jed i€l

It should be pointed out that for a fixed index j € J the vectors z; ; and y; ; are understood
in the formula above as belonging to the same space K (and not to the various orthogonal
spaces Hi’j). So by, is a vector of K ®K not of H ® H. Thus

Hbz,yuz = Z 2 (T, j, T, J><?Ju jo Yo, j)-

jEJ ’LLUEI

Combining Corollary 3.5 with the formula
m(Kr( Dz, ) = Prgz 2@T,y ®F) = (Pale, )z, (o, 1)y

yields
Corollary 3.6. — Let m = @ ( &) 7Tj) be a compact representation of G on H. For
jeJ iel;
every vectors x = @ ( @ x; ]) andy = @ ( 69 Yi, j) of H, we have
jeJ iel; jeJ iel;

(3.1) m(l(m( )z, pl?) Z Y @ugs o) Yug Yo, = |lba,

jedJ j u, v €l

We thus obtain the following abstract version of the Wiener Theorem for unitary rep-
resentations of a group G:

Theorem 3.7. — Let m = m, @ 7. be a unitary representation of G on a Hilbert space
H = H, ® H., where m, is the weakly mixing part of m and m. its compact part. Writing
=& ( &) 71']) as above, we have for every vectors x = X, ®x. and y = Yy DYy of H

jeJ iel;
(3.2) m([(r( )z, %) = (1D, g >
Proof. — As we have m(|(r(.)z,y)|?) = m(|<7rw(.)a:w,yw>|2) + m(|<7rc(.):cc,yc>|2) and
m(|{Tw( +)Tw, Yuwy|?) = 0, this follows from Corollary 3.6. O

We finally derive an inequality on the quantities m(|<7r( )z, y>|2) for a compact rep-
resentation 7, which is a direct consequence of Corollary 3.6. This inequality will be a
crucial tool for the proof of our main result, to be given in Section 4. Using the same
notation as in the statement of Corollary 3.6, we denote by = = @;c;2; and y = ®jes ¥
the respective decompositions of the vectors z and y of H with respect to the decompo-
sition H = ®jeg H ; of H. Applying the Cauchy-Schwarz inequality twice to (3.1) yields
the following inequalities:

Corollary 3.8. — Let m be a compact representation of G on H. For every vectors x
and y of H, we have

I~ ~ ~ ~
m(|(r( )z y)ff) < ) TP 1317 < 2 1&g 117

jeJ 7 jed
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3.5. Why is (3.2) an abstract version of the Wiener Theorem? — Theorem 3.7
admits a much simpler formulation in the case where GG is an abelian group. If 7 is a
compact representation of G, the formula (3.1) becomes

(|<7T € y>‘ Z Z Loy, §j Ty, j Yy ,iYv,j
j€J u,vel;

where x; ; and y; ;, i € I;, j € J, are simply scalars. Using the notation of Corollary 3.8,
we have

(3.3) () = 2| X v = 2 @50
jeJ uel; jed

For every character x € I' (where I' denotes the dual group of G), we denote by E, the
subspace of H

E, ={xe H; m(g9)x = x(g)x for every g € G}
and by P, the orthogonal projection of H on E,. Each representation w;, j € J, being

in fact a character x; on the group G, we can identify the space H j with E)\ .. Equation
(3.3) then yields the following corollary:

Corollary 3.9. — Let G be an abelian group, and let m be a representation of G on a
Hilbert space H. Then we have for every x,y € H

m([(r(Da,pP) = ) (P, 2, Pe, )| = Y [Pz, Pyl
jeJ xel

In particular, if x =y,

m((r(Dz,)P) = Y [[Peyal|

xel

Specializing Corollary 3.9 to the case where G = Z yields that for any unitary operator
U on H and any vectors =,y € H,
1 N

IN T+ 1 Z |<U"$,y>|2 N = w Z |<Pker(U—A1dH)5U,Pker(U—AIdH)y>|2-
n=—N AeT

In particular, we have
1 N

2 4
IN + 1 Z |<Unx7$>| N — 10 ’ Z ||Pker(U—)\IdH)$|| .
n=—N AeT

(3.4)

If o is a probability measure on the unit circle T, the operator M, of multiplication by
¢ on L?(T, o) is unitary. Applying (3.4) to U = M, and to = 1, the constant function
equal to 1, we obtain Wiener’s Theorem:

1
(3.5) 18P ———= ) o({\})’
2N+1n:—N N +o0 =
We refer the reader to [1, 2, 3, 9, 14] and the references therein for related aspects

and generalizations of Wiener’s theorem.

We now have all the necessary tools for the proof of Theorem 2.3, which we present in
the next section.
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4. Proof of Theorem 2.3

4.1. Notation. — Let (W, ),>1 be an increasing sequence of subsets of G satisfying the
assumptions of Theorem 2.3, and let @) be a subset of G. For each n > 1, we denote by @,
the set @, = W, u@Q. Remark that G is the increasing union of the sets @,, n = 1. We also
denote by ¢ a positive constant such that assumption (*) holds true: any representation
of G admitting a (Q, £o)-invariant vector has a finite dimensional subrepresentation.

In order to prove Theorem 2.3, we argue by contradiction, and suppose that @, is a non-
Kazhdan set in G for every n > 1. We will then construct for every € > 0 a representation
7 of G which admits a (Q, €)-invariant vector, but is weakly mixing (which, by Proposition
3.1, is equivalent to the fact that 7 has no finite dimensional subrepresentation), and this
will contradict (*).

4.2. Construction of a sequence (m,),>1 of finite dimensional representations
of G. — The first step of the proof is to show that assumption (*) combined with the
hypothesis that ), is a non-Kazhdan set for every n > 1 implies the existence of sequences
of finite dimensional representations of G with certain properties.

Lemma 4.1. — Let ¢y be a positive constant such that assumption (*) holds true and
suppose that Q, is a non-Kazhdan set in G for every n = 1. For every sequence (€,)n>1
of positive real numbers decreasing to zero with €1 € (0,e¢], there exist a sequence (Hy)n>1
of finite dimensional Hilbert spaces and a sequence (mn)n>1 of unitary representations of
G such that, for everyn = 1, m, is a representation of G on H, and

— m, has no non-zero G-invariant vector;

— T has a (Qn, en)-invariant unit vector a, € Hy: ||lan|| =1 and
sup || mn(g)an — anl| < en.
ge
Proof. — Let n = 1. Since ), is a not a Kazhdan set in GG, there exists a representation

pn of G on a Hilbert space K, which has no non-zero G-invariant vector, but is such that
there exists a unit vector z,, € K,, with

sup || pn(g)en — @al| <277

9EQn
Since 27" < g¢ for n large enough, assumption (*) implies that, for such integers n, p,
has a ﬁmte dimensional subrepresentation. By Proposition 3.1, p, is not weakly mixing.
This means that if we decompose K,, as K, = K, ,® Ky . and p, as pn = pn,w @ pn, e
where py, ., and p, . are respectively the weakly mixing and compact parts of m,, pp, . is
non-zero. Since p, has no non-zero G-invariant vector, neither have p, ., nor p, ..

Decomposing ,, as Tpn, = T, ® T, ¢, we have 1 = ||z, o||? + ||zn,||?. We claim that
lim,, .|| Zn, || > 0. Indeed, suppose that it is not the case. Then lim,, 4o ||Zn, w|| = 1.

Since ||pn(g)zn — xn||2 = ||pn,w(9)$n,w - xn,w||2 + ||Pn,0(g)xn,c - xn,0||2 for every g € G,
we have

Sup [[ o, (g) ot — | <
mn,w
g€Qn ' Hxn wH %5, wl| Hxn wH
as SOON as Tp, 4 is non-zero. Since lim 1o ||Tn, w|| = 1, this implies that for any § > 0

there exists an integer n such that p,, , has a (Qp, §)-invariant vector of norm 1. Applying
this to § = &g, there exists ng > 1 such that pp,  has a (Qn,,€o)-invariant vector, hence a
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(Q, eo)-invariant vector. But py,, . is weakly mixing, so has no finite dimensional subrepre-

sentation. This contradicts assumption (*). So we deduce that lim,, _,_ . || zn,c|| =y > 0.
The same observation as above, applied to the representation p, ., shows that
Tn,c T, c 2"
sSup ‘ pn,c(g) - H <
gEQn zn el [lzn,cll ||Zn, <]

for every n such that x,, . is non-zero, and thus that

—(n—1)

Pn,c(9)

Tn,c Tp,c H 2
<
|

sup ’ —
znell  llzn

9EQn Y
for infinitely many integers n. For these integers, p,, . is a compact representation for which
Yn = Tn,c/l|Tn,cl| is a (Qn, 2*("*1)/7)—invariant vector of norm 1. It has no non-zero G-
invariant vector. Decomposing p;, . as a direct sum of finite dimensional representations,
straightforward computations show that there exists for each such integer n a finite di-
mensional representation o, of G with a (Q,, 2~ ("~2) /v)-invariant vector but no non-zero
G-invariant vector. Lemma 4.1 follows immediately by taking a suitable subsequence of

(Un)n21- O

4.3. Construction of weakly mixing representations of G with (Q,¢)-invariant
vectors. — Let € > 0 be an arbitrary positive number. Our aim is to show that there
exists a weakly mixing representation of G with a (Q, £)-invariant vector. We fix a sequence
(en)n=>1 of positive numbers decreasing to zero so fast that the following properties hold:

(i) 0 <&y <egforeveryn>1,and Y, o en <e?/2;
2n

(ii) the sequence (m Djen 5?)7121 tends to 0 as n tends to infinity.

We consider the representation T = ®,>1 m, of G on the infinite tensor product space
H = ®Z>1 H,,, where the spaces H,, the representations m, and the vectors a, are
associated to &, for each n = 1 by Lemma 4.1. We refer to the appendix for undefined
notation concerning infinite tensor products. We first prove the following fact:

Fact 4.2. — Under the assumptions above, 7 is a strongly continuous representation of
G on H which has a (Q, ¢)-invariant vector.

Proof of Fact 4.2. — In order to prove that m is well-defined and strongly continuous, it
suffices to check that the assumptions of Proposition A.2 in the appendix hold true. For
every g € G and n > 1, we have |1 — (m,(g)an, an)| < ||mn(g)an — an|| so that

sup |1 — {mp(g)an, an)| < en.

gEQn
By assumption (i), the series }} -, &, is convergent. Since every element g € G belongs to
all the sets @, except finitely many, the series », _; [1 — {mn(g)an, an)| is convergent for
every g € G. Moreover, it is uniformly convergent on )1, and hence on Wj. The function

g Z 11 —<mn(g)an, an)|
n=1
is thus continuous on Wi, which is a neighborhood of e. It follows then from Proposition
A.2 that 7 is strongly continuous on H. If G is locally compact, Proposition A.1 and the
first part of the argument above suffice to show that 7 is strongly continuous, even when
W1 is not a neighborhood of e.
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Next, it is easy to check that the elementary vector @ = ®,>1a, of ®n>1 H,, satisfies
lal| = 1 and sup,c( |[m(g)a — al| < e. Indeed |[a|| = [],,~; ||ax|| = 1, and for every g € Q
we have (using the fact that Q < @), for every n > 1)

lIm(g)a — a|? = 2(1 — Re(n(g)a, ad) < (1 — T al9)an, any

n=1
<2 )1 = {mn(g)an, an)| <2 ) en.
n=1 n=1

Assumption (i) on the sequence (g,)n>1 implies that sup, g |[7(g9)a — a||* < €%, and a is
thus a (Q, ¢)-invariant vector for . O

Using the notation of Section 3.2, we now decompose 7, and H,, as

S @< @ w]-,n) and H, = @( S Hjn)

JjE€JIn N i€l; jeJn N i€l; p
respectively. Since H,, is finite dimensional, all the sets J, and I; ,, j € J,, are finite,
and we assume that they are subsets of N. For every j € J,, H; j, = Kj,. We also
decompose a, € H, as ap, = @ ( &) ai,j,n), and write a; , = @iel;, , Wi, j,n for every

jeJn i€l p
j € Jy. We have

1
2 3
@) @l ={ 2 laigal? and [[a,|| = (Z Haj,nHz) =1,

’iEijn jedn
so that ||@; || <1 for every j € J,. Also,
(142 ra@an—aalP = 3 Y Imin(@)asin — aigal® for every g€ G,

J€JIn 1€l n

so that

172 .
(4.3) sup ( D0 mn(9) @i jn — ai gl ) <en forevery je Jy.
g€Qn 1€l pn

There are now two cases to consider.

e Case 1. We have lim,,_,  , maxjes, ||@;j | = 0.
Using Corollary 3.8 and the fact that >, || djnll? = ||lan||* = 1, we obtain that
m([(mn()an, an)l?) < 3 11 @all* < maXHaJ,nHQ 2 Nagall® < gﬂaXH%,nH
j€Jn Jj€Jn

It follows from our assumption that lim,_,,  m(|[(my(s)an, an)|*) = 0. So m is weakly
mixing by Proposition A.3. We have thus proved in this case the existence of a weakly
mixing representation of G with a (Q, ¢)-invariant vector.

e Case 2. There exists ¢ > 0 such that maxjey, ||@; n|| > 0 for every n > 1.

Let, for every n > 1, j, € J, be such that ||a;, »|| > 0. Set I,, = I}, » SN, 0, = 7, n,
K, = Kj, n and b; , = a; , n for every ¢ € I,. Then o, is a non- trlvial irreducible
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representation of G on the finite dimensional space K,,, and by (4.1) and (4.3) the finite
family (b; p)ier, of vectors of K, satisfies

(4.4) 1><Z|ybi,nu2)l/2>5 and  sup (3 [lou(o) m—bi,nw)mqn.

icly 9€Qn e,

If we write

Kn: @© Knp, gn: @ bi,nv and op = @ op,

iel, iely, i€l
this means that
(4.5) 1> |[ba]| >0 and  sup [|5n(9)bn — bul| < en.
9EQn

Now we again have to consider separately two cases.

— Case 2.a. There exists an infinite subset D of N such that whenever k and [ are two
distinct elements of D, oy, and o are not equivalent. Replacing the sequence (0,,)n>1 by
(0n)nep, We can suppose without loss of generality that for every distinct integers m and
n, with m,n > 1, o,,, and o,, are not equivalent.

Consider for every n > 1 the representation
n=0n,® @0y of Gon G = I?n@ : '@I?Qna

~ 1~ ~
and the vector b, = ( an |[bk|[?) "2 (bn @ - - @ bay) of 4, which satisfies ||b,|| = 1. For
every g € (), we have, since @), is contained in Q; for every j > n,

2n 2n 2n
3 -1 ~ ~ > 2 1
[pn(9)br — bn||2 = (k;n ||bk||2) ];l ||Uj(g)bj - bj|| < (52(714‘”];152

by (4.5). By assumption (ii) on the sequence (&,,)n>1, we obtain that there exists an integer
ng = 1 such that sup,c g, |10n(9)0n — bnl| < €, for every n > ng. Let now p = Qnznepn
be the infinite tensor product of the representations p, on the space € = ®n>no F,.
An argument similar to the one given in Fact 4.2 shows that p is a strongly continuous
representation of G on £ which has a (Q, ¢)-invariant vector. It remains to prove that
p is weakly mixing, and for this we will show that m(|[{p,(+)bn,bn)|?) tends to zero as n
tends to infinity. Recall that for every n = 1, the representations o, ..., 02, are mutually
non-equivalent, so that, by Corollary 3.8, we have for every n > 1

(<l Yo b)) QZnH Z\lbk\i )| <5 +122”b I'< 5T

by (4.5). So m(|{pn(+)bn,bn)|?) tends to zero as n tends to infinity. By Proposition A.3,
p is weakly mixing. We have proved again in this case the existence of a weakly mixing
representation of G with a (Q, €)-invariant vector.

The other case we have to consider is when there exists an integer n; > 1 such that for
every n = nj, oy, is equivalent to one of the representations o1,...,0,,. Indeed, if there
is no such integer, we can construct a strictly increasing sequence (ng)g>1 of integers such
that, for every k > 1, oy, is not equivalent to one of the representations o1,...,0p, ;.
The set D = {ng; k = 1} then has the property that whenever m and n are two distinct
elements of D, o, and o, are not equivalent, and we are back to the setting of Case 2.a.
Without loss of generality, we can suppose that o, is equal to o1 for every n > 1.
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— Case 2.b. For every n > 1, oy, is equal to o1. By (4.4), we have

1/2 1/2
12 (X 1binlP) =6 and  sup (3 lloa(@bin —biall?) < e
iely, 9€@n Yier,
where all the vectors b; ,, i € I,,, belong to Hy. For each n > 1, set ¢, = @ b; p, seen
i€l,
as a vector of the infinite direct sum H = @ H; by defining its j** coordinate to be zero
i>1
when j does not belong to I,,. Let also o be the infinite direct sum o0 = @ o1 of o1 on
j>1
H. Then we have, for every n > 1,
13 lleal| >3 and  sup [lo(g)en — enl| < en.
geWn
Let now S be a finite subset of G. There exists an integer ng > 1 such that S € @Q,, for

every n = ng, and hence

sup ||o(g)cn — cnl| < en  for every n = ng.

ges
It follows that o has almost-invariant vectors for finite sets: for every § > 0 and every
finite subset S of G, o has an (S,¢)-invariant vector. This implies that o; itself has
almost-invariant vectors for finite sets (see [34, Lem. 1.5.4] or [27]). Since o is a finite
dimensional representation, it follows that o1 has almost-invariant vectors. If (v,),>1 is a
sequence of unit vectors of Hy such that

sup ||o(g)vn, —vn|| <27 for every n = 1,

geG
then any accumulation point of (v,)p>1 is a non-zero G-invariant vector for ;. This
contradicts our initial assumption on o1, and shows that the hypothesis of Case 2.b cannot
be fulfilled.

Summing up our different cases, we have thus proved that there exists for every ¢ > 0 a
representation of G with a (Q, ¢)-invariant vector but no finite dimensional subrepresen-
tation. This contradicts assumption (*) of Theorem 2.3, and concludes the proof.

5. Some consequences of Theorem 2.3

We begin this section by proving the two characterizations of Kazhdan sets obtained as
consequences of Theorem 2.3.

5.1. Proofs of Corollary 2.4 and Theorem 2.5. — Let us first prove Corollary 2.4.

Proof of Corollary 2.4. — Let Qg be a subset of G which has non-empty interior and
which generates GG. Denote for each n > 1 by Qoi" the set {glil o g g1, g0 € Qo)
Then G = J,>; Qoi". Let go be an element of the interior of QQg. Then go_lQo is a

neighborhood of e. There exists ng = 1 such that go_1 belongs to Qoino, and thus QJL(%H)

is a neighborhood of e. If we set W,, = Qoi(nﬁn) for n > 1, the sequence of sets (W,),>1 is
increasing, W7 is a neighborhood of e, and (W,,),>1 satisfies the assumptions of Theorem
2.3. So if @ is a subset of G for which assumption (*) of Theorem 2.3 holds true, there
exists n = 1 such that Q(;_r(mrno) v Q is a Kazhdan set in G. Let € > 0 be a Kazhdan
constant for this set. Then e/(n + ng) is a Kazhdan constant for Qo u @, and Qo U Q@
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is a Kazhdan set in G. If G is locally compact, the same proof holds true without the
assumption that Qg has non-empty interior. O

Proof of Theorem 2.5. — Let us first show that (a) implies (b). Suppose that @ is a
Kazhdan set, and let 0 < ¢ < v/2 be a Kazhdan constant for Q. Let § = 4/1 —2/2 and
consider a representation m of G on a Hilbert space H for which there is a vector z € H
with ||z|| = 1 such that infgeq [(m(g)x, )| > J. Then the representation 7 ® ™ of G on
H ® H verifies
2Re(r @7 (9)r QT, x ®T) = 2|(m(g)z, x)|? > 2 — &2

for every g € Q. Hence [T ®7(9)x®T —x®Z| < ¢ for every g € Q and m ® T has a non-
zero G-invariant vector. It follows from Proposition 3.1 that « has a finite dimensional

subrepresentation. Thus (b) is true. That (b) implies (c) is straightforward, and that (c)
implies (a) is a consequence of Corollary 2.4. O

5.2. Property (T) in o-compact locally compact groups. — As a consequence of
Theorem 2.3, we retrieve a characterization of Property (T) due to Bekka and Valette [5],
[6, Th. 2.12.9], valid for o-compact locally compact groups, which states the following:

Theorem 5.1 ([5]). — Let G be a o-compact locally compact group. Then G has Property
(T) if and only if every unitary representation of G with almost-invariant vectors has a
non-trivial finite dimensional subrepresentation.

The proof of [5] relies on the equivalence between Property (T) and Property (FH) for
such groups [6, Th. 2.12.4]. As a direct consequence of Theorem 2.3, we will derive a new
proof of Theorem 5.1 which does not involve property (FH).

If @ is a subset of a topological group G, and if 7 is a unitary representation of G on
a Hilbert space H, we say that m has Q-almost-invariant vectors if it has (Q, €)-invariant
vectors for every £ > 0. The same argument as in [6, Prop. 1.2.1] shows that @ is a
Kazhdan set in G if and only if every representation of G with @-almost-invariant vectors
has a non-zero G-invariant vector. As a direct corollary of Theorem 2.5, we obtain the
following characterization of Kazhdan sets which generate the group:

Corollary 5.2. — Let Q be a subset of a locally compact group G which generates G.
Then Q is a Kazhdan set in G if and only if every representation w of G with @Q-almost-
invariant vectors has a non-trivial finite dimensional subrepresentation.

Proof of Corollary 5.2. — The only thing to prove is that if every representation 7 of G
with @-almost-invariant vectors has a non-trivial finite dimensional representation, () is a
Kazhdan set. For this it suffices to show the existence of an € > 0 such that assumption
(*) of Theorem 2.3 holds true. The argument is exactly the same as the one given in [6,
Prop. 1.2.1]: suppose that there is no such ¢, and let, for every £ > 0, 7. be a representation
of G with a (Q,¢)-invariant vector but no finite dimensional subrepresentation. Then
T = @~ 7 has Q-almost-invariant vectors but no finite dimensional subrepresentation
(this follows immediately from [6, Prop. A.1.8]), contradicting our initial assumption. [J

Proof of Theorem 5.1. — 1t is clear that Property (T) implies that every representation
of G with almost-invariant vectors has a non-trivial finite dimensional subrepresentation.
Conversely, suppose that every representation of G with almost-invariant vectors has a
non-trivial finite dimensional subrepresentation. Using the same argument as in the proof
of Corollary 5.2, we see that there exists a compact subset () of G such that assumption
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(*) of Theorem 2.3 holds true. Choosing for (W,,),>1 an increasing sequence of compact
subsets of G such that (J,,-; W, = G, Theorem 2.3 implies that there exists an n > 1 such
that W,, U @ is a Kazhdan set in G. Since W,, U @ is compact, G has Property (T). O

5.3. Equidistribution assumptions: proofs of Theorems 2.2 and 2.1. — Let G
be a second countable locally compact group, and let m be a unitary representation of G on
a separable Hilbert space H. Such a representation can be decomposed as a direct integral
of irreducible unitary representations over a Borel space (see for instance [6, Sec. F.5] or
[15]). More precisely, there exists a finite positive measure p on a standard Borel space Z,
a measurable field z — H, of Hilbert spaces over Z, and a measurable field of irreducible

representations z — m,, where each 7, is a representation of G on H,, such that 7 is
D

D
unitarily equivalent to the direct integral =, = J 7, du(z) on A = J H,du(z). The
7z

Hilbert space 7 is the set of equivalence classes of square integrable vector fields z — x,
with x, € H,, with respect to the measure y; 7, is the representation of G on ¢ defined
by m,(9)x = [ — 7.(g)x.] for every g€ G and z € .

Proof of Theorem 2.1. — Our aim is to show that, under the hypothesis of Theorem 2.1,
assumption (*) of Theorem 2.3 is satisfied. Let 7 be a representation of G on a Hilbert
space H. Since G is second countable, we can suppose that H is separable. Suppose that
7 admits a (@, 1/2)-invariant vector x € H and, using the notation and the result recalled
above, write

® )
7T=J Ty du(z), = =[zr——>=x,], and H:J H,du(z).
z Z

We have for every k > 1

Re(r(gu)e.a) = Re [ (ru(gu)au. o) duz) = 1= 5 lin(gn)o — ol > ¢

so that

N
1
(5.1) Ref — Z (ma(gr) Tz, T5) du(z) > ! for every N > 1.
z N P! 8

Now, assumption (2.2) of Theorem 2.1 states that there exists a countable set Cy of equiva-
lence classes of irreducible representations such that

N
(5.2) e Z (r(gk)z,zy — 0 as N — +0o0
Ni=
for every irreducible representation m whose equivalence class 7] does not belong to Cy
and every vector x in the underlying Hilbert space. It follows from (5.2) that the set
Zy = {z € Z;|r.] € Co} satisfies u(Zp) > 0, and there exists [m9] € Cy such that
u({z e Z ; m, and m are equivalent}) > 0. Hence 7y is a subrepresentation of 7. Since all
irreducible representations of G are supposed to be finite dimensional, 7 has a finite dimen-
sional subrepresentation. So assumption (*) of Theorem 2.3 is satisfied. As @) generates
G, it now follows from Theorem 2.5 that () is a Kazhdan set in G. O

Proof of Theorem 2.2. — The proof of Theorem 2.2 is exactly the same as that of Theorem
2.1, using the fact that if G is a locally compact abelian group (not necessarily second
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countable), any unitary representation of G is equivalent to a direct integral of irreducible
representations (see for instance [15, Th. 7.36]). O

6. Examples and applications

We present in this section some examples of Kazhdan sets in different kinds of groups,
some statements being obtained as consequences of Theorems 2.3 or 2.5. We do not try to
be exhaustive, and our aim here is rather to highlight some interesting phenomena which
appear when looking for Kazhdan sets, as well as the connections of these phenomena
with some remarkable properties of the group. We begin with the simplest case, that of
locally compact abelian (LCA) groups.

6.1. Kazhdan sets in locally compact abelian groups. — Let GG be a second count-
able LCA group, the dual group of which we denote by I'. If ¢ is a finite Borel measure
on I', recall that its Fourier-Stieljes transform is defined by

a(g) = L’y(g) do(vy) for every g€ G.

It is an easy consequence of the spectral theorem for unitary representations that if @) is
a subset of a second countable LCA group G, @ is a Kazhdan set in G if and only if there
exists € > 0 such that any probability measure o on I' with supgq [0(g) — 1| < € satisfies
o({1}) > 0, where 1 denotes the trivial character on G. Using Theorem 2.5 combined with
the spectral theorem for unitary representations again, we obtain the following stronger
characterization of Kazhdan sets which generate the group in any second countable LCA
group.

Theorem 6.1. — Let G be a second countable LCA group, and let Q a subset of G which
generates G. The following assertions are equivalent:

(1) Q is a Kazhdan set in G;

(2) there exists 6 € (0,1) such that any probability measure o on I with infeq |6(g)| > 6
has a discrete part;

(8) there exists € > 0 such that any probability measure o on I' with supgeq [0(g9) —1| < ¢
has a discrete part.

Theorem 6.1 becomes particularly meaningful in the case of the group Z, as it yields a
characterization of Kazhdan subsets of Z involving some classic sets in harmonic analysis,
introduced by Kaufman in [24]. They are called w-sets by Kaufman [25], and Kaufman
sets (Ka sets) by other authors, such as Hartman [20], [21].

Definition 6.2. — Let @Q be a subset of Z, and let § € (0,1).

e We say that @) belongs to the class Ka if there exists a finite complex-valued con-
tinuous Borel measure p on T such that inf,cq |f(n)| > 0, and to the class -Ka if there
exists a finite complex-valued continuous Borel measure p on T with p(T) = 1 such that
infreq |f(n)| > 4.

e We say that @ belongs to the class Ka™ if there exists a continuous probability
measure o on T such that inf,cq|o(n)] > 0, and to the class 6-Ka* if there exists a
continuous probability measure o on T such that inf,cq |6(n)| > 0.

Our characterization of Kazhdan subsets of Z is given by Theorem 6.3 below:
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Theorem 6.3. — Let Q a subset of Z which generates 7Z. Then Q is a Kazhdan set in
Z if and only if there exists a § € (0,1) such that Q does not belong to 5-Ka*.

It is interesting to remark [21] that a set @ belongs to Ka if and only if it belongs to
d-Ka for every ¢ € (0,1). There is no similar statement for the class Ka*: any sufficiently
lacunary subset of Z, such as Q = {3 + k ; k > 1}, is easily seen to belong to Ka™ (it
suffices to consider an associated Riesz product — see for instance [22] for details); but the
same reasoning as in Example 6.4 below shows that this set ) is a Kazhdan subset of Z.
Thus there exists by Theorem 6.3 a § € (0,1) such that @ does not belong to é-Ka'.

We present now some typical examples of Kazhdan sets in Z or R obtained using the
above characterizations. The first one provides a negative answer to Question 1.5 (a).

Exzample 6.4. — The set Q = {2¥ + k; k > 0} is a Kazhdan set in Z and there are
irrational numbers 6 such that (eQi“”H)neQ is not dense in T. In particular, no rearrange-
ment (mg)g =1 of the elements of Q exists such that (e2™%); -, is equidistributed in T
for every irrational number 6.

Proof. — The sequence (ng)r=o defined by n, = 2% + k for every k > 0 satisfies the
relation 2ny = ng.1 + k — 1 for every k > 0. Let o be a probability measure on T such
that supy>q|0(ny) — 1| < 1/18. Since, by the Cauchy-Schwarz inequality,

6(k) — 1] < J AF = 1ldo(A) < V2 |5(k) — 1]Y2  for every k € Z,
T

we have

Gk—1)—1| < 2f A" 1|do(A) + f AL 1] do ()
T T

<2V2(8(nk) — 11V + V2[5 (ny1) — 1|2

for all k> 1, so that sup;~q |0(k) — 1| < 1. Since

1NA1<;— 1N)\’“d/\ 1 N
N 0= [ (7 BA)ao) — o) N — v

we have o({1}) > 0. So @ = {ng; k > 0} is a Kazhdan set in Z. But (ng)r=o being
lacunary, it follows from a result proved independently by Pollington [35] and De Mathan
[30] that there exists a subset A of [0, 1] of Hausdorff measure 1 such that for every 6 in
A, the set QO = {ni0 ; k = 0} is not dense modulo 1. One of these numbers 6 is irrational,
and the conclusion follows. d

Example 6.5. — The set Q' = {2¥; k > 0} is not a Kazhdan set in Z.

Proof. — The fact that Q' is not a Kazhdan set in Z relies on the observation that 2%
divides 28! for every k > 0. Using the same construction as the one of [13, Prop. 3.9],
we consider for any fixed € > 0 a decreasing sequence (a;);>1 of positive real numbers
with a1 < g/(2m) such that the series >}, a; is divergent. Then the infinite convolution
of two-points Dirac measures

o= 3k ((1 — aj)5{1} + ajé{ei,rz—jﬂ})

j=1
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is a well-defined probability measure on T, which is continuous by the assumption that
the series )] i1 diverges. For every k = 0,

G(Qk) - H(l —a; + ajem2k_j+1) = H (1 — aj(l — ei7r2’“—j+1))'

j=1 j=k+1
As |1 —a;(1 — €™ 7| < 1, it follows that

F2 1< Y it — ™ < magga 2 Y 27 = 2nap <e

j=k+1 j=k+1
for every k > 0. This proves that @’ is not a Kazhdan set in Z. O
Example 6.6. — If p is a non-constant polynomial with integer coefficients such that

p(Z) is included in aZ for no integer a with |a| = 2, then @ = {p(k); k = 0} is a Kazhdan
set in Z.

Proof. — Our assumption that p(Z) is included in aZ for no integer a with |a| = 2 implies
that ) generates Z. Since the sequence ()\p(k)) k>0 is uniformly distributed in T for every
A = €% with @ irrational (see for instance [28, Th. 3.2]), Theorem 2.1 implies that Q is
a Kazhdan set in Z. O

Example 6.7. — Let p be a non-constant real polynomial, and let Q = {p(k); k > 0}.
Then (—9,9) U @ is a Kazhdan subset of R for any § > 0.

Proof. — Write p as p(z) = Z?:O aj:cj, d=>1,andlet r € {1,...,d} besuch that a, # 0. It
is well-known (see for instance [28, Th. 3.2]) that the sequence (7)), 5 is uniformly
distributed in T as soon as ta, is irrational. This condition excludes only countably many
values of t. Set now W,, = (—n,n) for every integer n > 1. Thanks to Theorem 2.3, we
obtain that there exists n > 1 such that (—n,n) U @ is a Kazhdan set in R. Let ¢ > 0
be a Kazhdan constant for this set. Fix § > 0. In order to prove that (—d,d) U Q is a
Kazhdan set in R, we consider a positive number ~, which will be fixed later on, and let
o be a probability measure on R such that supse(_ss)00 |5(t) — 1| <. For any a € N and
any t € (—0,0),

2(1 — Red(at)) = f e’ — 1‘2da(a:) < QQJ e — 1’2d0'({£) < 2aRe (1 —5(t))
R R

so that supse(54) (1 —Red(at)) < a?y. If we choose a > n/§ and v < min(e, e2/(2a?)), we
obtain that supse(_n »)u0 |1-5(t)| < e, and since ¢ is a Kazhdan constant for (—n,n) U Q,
o({0}) > 0. Hence 7 is a Kazhdan constant for (—4,9) u Q. O

Remark 6.8. — It is necessary to add a small interval to the set @) in order to turn
it into a Kazhdan subset of R, even when @) generates a dense subgroup of R. Indeed,
consider the polynomial p(x) = z + /2. The set Q = {k + +/2; k > 0} is not a Kazhdan
set in R: for any € > 0, let b € N be such that |€2i7rb\/§ — 1| < . The measure o defined
as the Dirac mass at the point 27b satisfies sup,( |6(k + v2) — 1| < ¢, so that Q is not
a Kazhdan set in R.

We finish this section by exhibiting a link between Kazhdan subsets of Z¢ and Kazhdan
subsets of R%, d > 1. Let Q be a subset of Z% Seen as a subset of R?, @ is never a
Kazhdan set. But as a consequence of Theorem 2.3, we see that () becomes a Kazhdan
set in R? if we add a small perturbation to it.
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Proposition 6.9. — Fix an integer d = 1, and let (W,,)n>1 be an increasing sequence of
subsets of R? such that Uns1 Wa = R?. Let Q be a Kazhdan subset of Z*. There exists an
n =1 such that W,, U Q is a Kazhdan set in R, Also, B(0,0) U Q is a Kazhdan subset of
R? for any 6 > 0, where B(0,5) denotes the open unit ball of radius & for the Euclidean
norm on RY.

Proof. — Let € > 0 be a Kazhdan constant for @, seen as a subset of Z%. Let 7 be a
representation of R¢ on a separable Hilbert space H which admits a (Q, 2 /2)-invariant
vector x € H. Without loss of generality we can suppose that 7 is a direct integral on a
Borel space Z, with respect to a finite measure p on Z, of a family (7,),ez of irreducible
representations of R?. So 7 is a representation of R¢ on L?*(Z, ). We write elements f of
L*(Z, 1) as f = (f.).ez. We suppose that ||z|| = 1; our hypothesis implies that

2
sup |1 — (w(t)z, z)| < c.
teQ 2
Each representation 7, acts on vectors t = (t1,...,tq) of R? as m,(t) = exp(2in(t,8.)) for

some vector 0, = (01 z,...,04.) of R?. Hence

sup |1 J e2m<t’02>|mz|2d,u(z)‘ < —-

teQ A 2

Consider now the representation p of Z% on L?(Z, ju) defined by p(n) f : z —— e*™m02) £,

for every n = (n1,...,nq) € Z% and every f € L*(Z, ). We have
sup ||p(n)z — z||> < 2sup|l — {p(n)z,z)| < 2,
ne@ neqQ

and since ¢ is a Kazhdan constant for Q as a subset of Z%, p has a non-zero Z%invariant
vector. There exists hence f € L?(Z, ) with ||f|| = 1 such that p(n)f = f for every
n € Z% Fix a representative of f € L*(Z,u), and set Zy = {z € Z; f. # 0}. Then
w(Zp) > 0. For every z € Zy we have e2mm.02) — 1 for every n € Z¢, which implies that
0. €7 Foreachn = (ny,...,ng) € Z%, let Zp = {z € Zy; 6;, = n; for eachi e {1,...,n}}
and Hp = {f € L*(Z,p); f = 0 p-a.e. on Z\Zn}. We have | J,,.za Zn = Zo, so there exists
ng € Z% such that p(Zy,,) > 0. Each subspace Hy, is easily seen to be invariant for 7, and
the representation 7y, induced by 7 on Hy is given by mp(t) f : z+—— e2imtn) £ for
every t € R? and every f € Hy. So m admits a subrepresentation of dimension 1 as soon as
H,, is non-zero, i.e. as soon as u(Zp) > 0. Since p(Zyn,) > 0, 7 admit a subrepresentation
of dimension 1. An application of Theorem 2.5 now shows that W, u @ is a Kazhdan
set in R? for some n > 1. If we choose W,, = B(0,n) for every n > 1, and proceed as in
the proof of Example 6.7, we obtain that B(0,) U Q is a Kazhdan set in R? for every
0 > 0. O

We now move out of the commutative setting, and present a characterization of Kazhdan
sets in the Heisenberg groups H,,.

6.2. Kazhdan sets in the Heisenberg groups H,. — The Heisenberg group of di-
mension n > 1, denoted by H,, is formed of triples (¢, g, p) of R x R” x R" = R?"*1 The
group operation is given by

1
(t1,q1,01) - (t2,q2,p2) = (t1 +t2 + 5(?1 g2 —P2-q1),q1 + g2, 1 + P2),
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where p-q denotes the scalar product of two vectors p and q of R™. Irreducible unitary rep-
resentations of H,, are completely classified (see for instance [36, Ch. 2], or [15, Cor. 6.51]):
there are two distinct families of such representations, which we denote respectively by
(F1) and (F2):

— the representations belonging to the family (F;) are representations of H, on L?(R").
They are parametrized by an element of R, which we write as +A with A > 0. Then
mix(t, a4, p), (t,q,p) € R¥"H1, acts on L*(R") as

Wi)\(ta q, p) U r—— ei(i)\tiﬁq-m+%q?)u(a’. + \/Xp)

where u belongs to L?(R"). These representations have the following important property,
which will appear again in the next subsection:

Fact 6.10. — For every +) € R and every u,v € L2(R"),
(mer(t,q,p)u,v) —=0 as |p| ——= +o0.

Proof. — This follows directly from the dominated convergence theorem if u and v have
compact support in R™. It then suffices to approximate u and v by functions with compact
support to get the result. ]

— the representations belonging to the family (F3) are one-dimensional. They are
parametrized by elements (y, n) of R*": for every (¢, q,p) € Hp,

Tym(t, @, p) = W IHTP),

We denote by 7, the projection (¢, q,p) — (q,p) of H, onto R*". Our main result
concerning Kazhdan sets in H,, is the following:

Theorem 6.11. — Let QQ be a subset of the Heisenberg group Hy,, n = 1. The following
assertions are equivalent:

(1) Q is a Kazhdan set in Hy,;

(2) ,(Q) is a Kazhdan set in R*™.

Proof. — We set Qo = m,(Q). The proof of Theorem 6.11 relies on the same kind of ideas
as those employed in the proof of Proposition 6.9. We start with the easy implication,
which is that (1) implies (2). Suppose that @ is a Kazhdan set in H,,, and let € > 0 be a
Kazhdan constant for . Let o be a probability measure on R?” such that

2
J WP o (y ) — 1] < &
R2n 2

(6.1) sup |6(g,p) —1|= sup
(qvp)eQO (‘LP)EQO

and consider the representation p of H, on L?(R?", o) defined by

p(t,a,p)f : (y,m) — W ITP) f(y p)

for every (t,q,p) € H, and every f € L?(R?*",0). Then (6.1) implies that the constant
function 1 is a (Q, €)-invariant vector for p. Since (@, ¢) is a Kazhdan pair in H,,, it follows
that p admits a non-zero H,-invariant function f € L?(R?", o). Fix a representative of
f, and consider the subset A of R?" consisting of pairs (y,n) such that f(y,n) # O.
Then o(A) > 0, and for every (q,p) € R*", g-almost every element (y,n) of A satisfies
y-q+1n-p € 2rZ. Hence o-almost every element (y,n) of A has the property that
y-q+n-pe 2nZ for every (q,p) € Q*". By continuity, o-almost every element (y,n)
of A has the property that y - g + 7 - p belongs to 277 for every (g, p) € R?", so that
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(y,m) = (0,0). We have thus proved that o({0,0}) > 0, and it follows that Qo is a
Kazhdan set in R?".

Let us now prove the converse implication. Suppose that Qg is a Kazhdan set in R??,
and let 0 < & < 3 be a Kazhdan constant for ()g. Let 7 be a unitary representation of H,,
on a separable Hilbert space H, which admits a (@, §)-invariant vector x € H of norm 1.
We write as usual 7 as a direct integral m = S? 7, du(z), where u is a finite Borel measure
on a standard Borel space Z, and @ as (2.).ez, with {, |[z:][*du(z) = 1. We have

(6.2) sup ‘1 —f (. (t, q,p)xz,xz>d,u(z)‘ <
(t.q,p)eQ Z

For every z € Z, the irreducible representation 7, belongs to one of the two families (F7)

and (F2). If 7, belongs to (F1), we write it as w4, for some £, € R, and if 7 belongs to

(F2), as my, 5. for some (y.,7m.) € R?". Let, for i = 1,2, Z; be the subset of Z consisting

of the elements z € Z such that 7, belongs to (F;). We have z, € L?(R") for every z € 7,

and z, € C for every x € Zs. We now observe the following:

—~

oo ™

Lemma 6.12. — A Kazhdan subset of R®™ contains elements (q,p) such that the Eu-
clidean norm |p| of p is arbitrarily large.

Proof. — Let Q1 be a Kazhdan subset of R?", with Kazhdan constant € > 0, and suppose
that there exists a constant M > 0 such that |p| < M for every (q,p) € Q1. Let 6 > 0 be
such that 2M 6 < e and consider the probability measure on R?” defined by

dp
o =do x Lp(o,s) 1B(0,0)]
For every (gq,p) € Q1,
4 ds
5(a,p) — 1| = f eor 95 | < oslp <205 <.
lo(a.p) — 1| ’B(O,é) |B(0,4)] i

But ¢({(0,0)}) = 0, and it follows that Q; is not a Kazhdan set in R?", which is a
contradiction. O

By Fact 6.10, we have for every z € Z;
<7Ti)\z (t7 qvp)xm 33Z> —0 as |p‘ - +00, (t7 q7p) € Hn
Since [(ma(t, g, P)z2, 22)| < ||2:||? for every z € Zy, and §, ||z.]|?du(z) = 1, the domi-
nated convergence theorem implies that

f (ron(t, @, P)ts, 2:5du(z) —> 0 as |p| > +o0 , (t,q,p) € Hy.
Z1

By Lemma 6.12, there exists an element (%o, o, po) of @ with |po| so large that

g
<7ri>\z (t07 q0, pO)xza fL‘z>d/.L(Z)‘ < g

),
Property (6.2) implies then that

’1 o f Ty.,m- (t(]v quPO)‘szdM(Z)’ <

Z3

£
4
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from which it follows that J . Plugging

fe-Pdu(z) > 1 - =, so0 that J 2 |2dp(z) <
Za

€
A 4
this into (6.2) yields that
3e
up [1= [ my g Plu(a)| < 2
(tyq’p)eQ Za
Since SZQ |z, |2du(z) > 1 —¢/4 and 0 < € < 3, we can, by normalizing the family (z.).cz,,

suppose without loss of generality that Z = Zs, §, |2.|*du(z) = 1 and that

(6.3) sup ’1 - J e!(y=-a+n=p) \lezd,u(z)’ <e.
(t.q,p)eQ z

Consider now the unitary representation p of R2" on LQ( Z, 1) defined by
p(q, p) f D2 ei(yz'q"""lz'p)fz

for every (q,p) € R?" and every f = (f.).ez € L?>(Z, ). Then (6.3) can be rewritten as

sup |1 —{p(gq,p)z,x)| <e, ie. sup |1 —{p(g,p)z,z)| <e.
(t.q,p)eQ (¢,p)Qo
Since ¢ is a Kazhdan constant for Qg, the representation p admits a non-zero R?"-invariant
vector f € L?(Z, ). Proceeding as in the proof of (1) = (2), we see that for every
(q,p) € R?™, ¢W=+n=P) f(2) = f(2) p-almost everywhere on Z, so that there exists a
subset Zy of Z with u(Zp) > 0 such that f does not vanish on Zy and, for every z € Z,
Y. - q+ 1. - p belongs to 277 for every (q,p) € Q*". By continuity, y. - ¢ + 1. - p belongs
to 217 for every z € Zgy and every (q,p) € R?", so that (y.,n.) = (0,0) for every z € Z.
So if we set Zy = {2z € Z; (y,m:) = (0,0)}, we have u(Zj) > 0. The function f = 1z
is hence a non-zero element of L2(Z, ), which is clearly an H,-invariant vector for the
representation m. So (@, §) is a Kazhdan pair in H,,, and Theorem 6.11 is proved. O

6.3. Kazhdan sets in the group Aff,(R). — The underlying space of the group
Aff{ (R) of orientation-preserving affine homeomorphisms of R is (0, +00) x R, and the
group law is given by (a,b)(a’,V') = (ad/,b + ab'), where (a,b) and (a’,b') belong to
(0,+00) x R. As in the case of the Heisenberg groups, the irreducible unitary representa-
tions of Aff; (R) are completely classified (see [15, Sec. 6.7]) and fall within two classes:

— the class (F7) consists of two infinite dimensional representations 7 and 7w_ of
Aff, (R), which act respectively on the Hilbert spaces L?((0, +0),ds) and L?((—00,0), ds).
They are both defined by the formula

7 (a,b)f 1 s —— /ae?™ f(as)

where (a,b) € (0,+0) x R, f € L2((0, +),ds) in the case of 74, and f € L*((—o0,0),ds)
in the case of m_. It is a direct consequence of the Riemann-Lebesgue lemma that the
analogue of Fact 6.10 holds true for the two representations 7, and 7_ of G:

Fact 6.13. — For every fi, fo € L?((0,+),ds) and every g1, g2 € L*((—00,0),ds), we
have

(my(a,b)f1, fo) —=0 and {(m_(a,b)g1,92) —=0 as |b] —= +o0.
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— the representations of Aff| (R) belonging to the family (F2) are one-dimensional. They
are parametrized by R, and m) is defined for every A € R by the formula

A

ma(a,b) = a® for every (a,b) € (0, +0) x R.

Proceeding as in the proof of Theorem 6.11, we characterize the Kazhdan subsets of the
group Aff; (R) in the following way:

Theorem 6.14. — Let Q be a subset of Aff,(R). The following assertions are equivalent:
(1) Q is a Kazhdan set in Aff, (R);
(2) the set Qo = {te R;Ibe R (e',b) € Q} is a Kazhdan set in R.

Proof. — The proof is similar to that of Theorem 6.11, and we will not give it in full
detail here. Let us first sketch briefly a proof of the implication (1) = (2). Suppose that
@ is a Kazhdan set in Aff{ (R), and let € > 0 be a Kazhdan constant for (). Consider
a probability measure o on R such that supcq, |5(t) — 1| < €2/2. We associate to o a
representation p of Aff, (R) on L?(R,0) by setting, for every (a,b) € (0,4+m) x R and

every f € L*(R,0), pla,b)f : s+—e10) f(s). Since
lp(a,b)1 — 1| < QU (efstna) _ 1)d0(5)‘ for every (a,b) € (0, +0) x R,
R

we have sup(q.p);maco} |1P(@,0)1 — 1| < g, i.e. supypeq llp(a,b)1 — 1f| < . Hence p
admits a non-zero Aff, (R)-invariant function f € L?(R, o), and the same argument as in
the proof of Theorem 6.11 shows then that ¢({0}) > 0. The converse implication (2) =
(1) is proved in exactly the same way as in Theorem 6.11, using the same modifications
as those outlined above. The group R?" has to be replaced by the multiplicative group
((0, +0), x) and the analogue of Lemma 6.12 is that Kazhdan subsets of this group contain
elements of arbitrarily large absolute value. If Qg is a Kazhdan set in R, with Kazhdan
constant & small enough, the same argument as in the proof of Theorem 6.11 (involving
the same notation) shows that it suffices to prove the following statement: let p be a finite
Borel measure on a Borel space Z, x = (z.).cz a scalar-valued function of L?(Z, ) with
§,|z:1?du(z) = 1, and 7 a representation of G of the form 7 = SC;) T, dp(z) with
sup |1 —{(m(a,b)z, )| = sup |1-— J ei(lna)’\z|x2|2dp(z)‘ <e.
(a,b)eQ {a;lnaeQo} Z

Then the set Zy = {z € Z; A, = 0} satisfies u(Zp) > 0. The proof of this statement uses
the same argument as the one employed in the proof of Theorem 6.11. It involves the rep-
resentation p of the group ((0,400), x) on L?(Z, u) defined by p(a)f : z —— e!ma)X= £,
for every a > 0 and every (f.).cz € L?(Z, 1), and uses the obvious fact that since Qg is a
Kazhdan set in R, {a; Ina € Qo} is a Kazhdan set in ((0,+0), x). O

Remark 6.15. — Facts 6.10 and 6.13 have played a crucial role in the proofs of Theorems
6.11 and 6.14 respectively, as they allowed us to discard all irreducible representations
except the one-dimensional ones in inequalities of the form (6.2). In groups with the Howe-
Moore property (see for instance [23], [39] or [7] for the definition and for more about this
property), all non-trivial irreducible representations have the vanishing property of the
matrix coefficients stated in Facts 6.10 or 6.13. It easily follows from this observation that
all subsets with non-compact closure are Kazhdan sets in groups with the Howe-Moore
property, and that if the group is additionally supposed not to have Property (T), the
Kazhdan sets are exactly the sets with non-compact closure. As SLy(R) is a non-compact
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connected simple real Lie group with finite center, it has the Howe-Moore property. But
it does not have Property (T), and so we have:

Example 6.16. — The Kazhdan sets in SLy(R) are exactly the subsets of SLy(R) with
non-compact closure.

These observations testify of the rigidity of the structure of groups with the Howe-Moore
property, and stand in sharp contrast with all the examples we have presented in the rest
of this section.

Appendix A. Infinite tensor products of Hilbert spaces

We briefly describe in this appendix some constructions of tensor products of infinite
families of Hilbert spaces, and of tensor products of infinite families of unitary repre-
sentations. These last objects play an important role in the proof of Theorem 2.3. We
review here the properties and results which we need, following the original works of von
Neumann [32] and Guichardet [18].

A.1. The complete and incomplete tensor products of Hilbert spaces. — The
original construction of the complete and incomplete tensor products of a family (Hg)aer
of Hilbert spaces is due to von Neumann [32]. It was later on taken up by Guichardet in
[18] under a somewhat different point of view, and the incomplete tensor products of von
Neumann are rather known today as the Guichardet tensor products of Hilbert spaces.
Although these constructions can be carried out starting from an arbitrary family (Hy)aer
of Hilbert spaces, we will present them here only in the case of a countable family (H,,)p>1
of (complex) Hilbert spaces.

The complete infinite tensor product ),,>, Hy of the Hilbert spaces H, is defined in
[32, Part II, Ch. 3] in the following way: the elementary infinite tensor products are the
elements * = ®,>12,, where z,, belongs to H, for each n > 1 and the infinite product
[ =1 llzal| is convergent in the sense of [32, Def. 2.2.1], which by [32, Lem. 2.4.1] is
equivalent to the fact that either z,, = 0 for some n > 1 or the series }; -, max(||z,||—1,0)
is convergent. Sequences (Z)n>1 with this property are called by von Neumann in [32]
C-sequences. A scalar product is then defined on the set of finite linear combinations of
elementary tensor products by setting

<$7 y> = H <$na yn>
n=1
for any elementary tensor products & = Qp>12, and ¥ = Qn>1Yn, and extending the
definition by linearity to finite linear combinations of such elements. The product defin-
ing (x,y) for two elementary vectors & and y is quasi-convergent in the sense of [32,
Def. 2.5.1], i.e. [],>1 [{%n,yn)| is convergent. The value of this quasi-convergent product
is [ [,,=1 {@n,yn) if the product is convergent in the usual sense, and 0 if it is not.

That this is indeed a scalar product which turns the set of finite linear combinations of
elementary tensor products into a complex prehilbertian space is proved in [32, Lem. 3.21
and Theorem II]. For any elementary tensor product & = ®n>1Zn, |[Z|| = [],>; l|7all-
The space (X),,~; Hy is the completion of this space for the topology induced by the scalar
product. It is always non-separable.

The incomplete tensor products are closed subspaces of the complete tensor product.
They are defined by von Neumann using an equivalence relation between sequences (2, )p>1
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of vectors with z, € H, for each n > 1 and such that the series Y, |1 — ||zn|]| is
convergent. Such sequences are called Cy-sequences. They are C-sequences, and if (x,)p>1
is a C-sequence such that [, -, [|lza[| > 0 (i.e. (zn)n=1 is non-zero in &),,5, Hy) then
(Tn)n>1 is a Co-sequence. If (x,)n>1 is a Cp-sequence, (zy,),>1 is bounded, and the series
Yins1|1 = lJzn|[?] is convergent.

Two Cy-sequences (Z,)n=>1 and (y,)n>1 are equivalent if the series Zn>1|1 — <xn,yn>|
is convergent. If A denotes an equivalence class of Cy-sequences for this equivalence
relation, the incomplete tensor product ®;l4>1 H,, associated to A is the closed linear span
in ®n>1 H,, of the vectors & = ®p>1y, where (z,)n>1 belongs to A [32, Def. 4.1.1]. If
A and A" are two different equivalence classes, the spaces ®n>1 H,, and ®n>1 H, are

orthogonal, and the linear span of the incomplete tensor products ®n>1 H,, where A
runs over all equivalence classes of Cp-sequences, is dense in the complete tensor product

=1 Hn-

If A is an equivalence class of Cy-sequences, @ﬁ% H,, admits another, more transparent
description, which runs as follows [32, Lem. 4.1.2], see also [18, Rem. 1.1]: let (a,)n>1 be
a sequence with a, € H, and ||a,|| = 1 for every n > 1, such that the equivalence class of
(an)n=1 is A (such a sequence (a,)n>1 does exist: if (x,)p>1 is any non-zero Cp-sequence
belonging to A, x,, is non-zero for every n > 1, and we can define a Cy-sequence (a,)n>1
by setting a, = z,/||x,|| for every n > 1. It is not difficult to check that (ay)n>1 is
equivalent to (zp)n>1, and so belongs to .A). Then ®ﬁ>1 H,, coincides with the closed
linear span in ®n>1 H,, of vectors £ = ®n>12y,, where x,, = a, for all but finitely many
integers n = 1. Denoting the vector ®,>1a, by a, we write this closed linear span as
Q=1 Hn (see [18]), and thus Qp-, Hy = ®f>1 H,, where A is the equivalence class
of a. The space X >1 Hy is usually called the Guichardet tensor product of the spaces
H,, associated to the sequence (an)n>1. Proposition 1.1 of [18] states the following, which
is a direct consequence of the discussion above: if £ = (x,),>1 is a Cy-sequence which
is equivalent to a, z belongs to ®Z>1 H,. Vectors z of this form are also said to be
decomposable with respect to a, while vectors £ = (z,)p>1 with x,, = a,, for all but finitely
many indices n are called elementary vectors of ®Z>1 H,.

Suppose that all the spaces Hy,, n > 1, are separable. For each n > 1, let (ep,)1<p<p, be
a Hilbertian basis of H,,, with 1 < p, < 4+ and e;, = a,. The famlly of all elementary
vectors eg = ®n>1€8(n);n Of ®n>1 H,, where § is a map from N into itself such that
1 < B(n) < py, for every n = 1 and S(n) = 1 for all but finitely many integers n > 1, forms
a Hilbertian basis of @y~ Hy [32, Lem. 4.1.4]. In particular, Q- Hy is a separable
complex Hilbert space.

A.2. Tensor products of unitary representations. — Let GG be a topological group,
and let (Hy)n>1 be a sequence of complex separable Hilbert spaces. Let (a,)n>1 be a
sequence of vectors with a, € H, and ||a,|| = 1 for every n = 1. We are looking for
conditions under which one can define a unitary representation = of G on @)y, Hy, which
satisfies

(A'l) W(g) Onz=1 Tn = ®n>17‘—n<g)mn

for every g € G and every decomposable vector & = ®,>1x, with respect to a. Observe
that without any assumption, the equality 7(g) ®n>1 T = Qn=>17n(g)z, does not make
any sense, since (m,(g)%n)n>1, which is a Cy-sequence, may not be equivalent to a, and
thus may not belong to @, Hy.
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Infinite tensor products of unitary representations have already been studied in various
contexts (see for instance [4] and the references therein). In [4, Prop. 2.3], the following
observation is made: suppose that, for each n > 1, U,, is a unitary operator on H,. Then
there exists a unitary operator U = ®,>1U, on ®Z>1 H,, satisfying

U(®n>1$n) = ®n>1Unxn

for every decomposable vector = ®,>1x, with respect to a if and only if the series
Dins1 ’1 —(Upay, an>’ is convergent (which is equivalent to requiring that the Cp-sequence
(Unan)n=1 be equivalent to (a,)n>1, i.e. to the fact that ®,>1Una, be a decomposable
vector with respect to a). It follows from this result that the formula (A.1) makes sense
in ®n~, Hy if and only if the series

(A2) Z ‘1 — (mn(g)an, an>‘
n=1
is convergent for every g € G. Under this condition 7(g) = ®,>17,(g) is a unitary operator
on @~ Hy, for every g € G, and w(gh) = w(g) m(h) for every g,h € G.
If the group G is discrete, this tensor product representation is of course automatically
strongly continuous. It is also the case if GG is supposed to be locally compact.

Proposition A.1. — Suppose that G is a locally compact group, and that the series
Yzt 11 = (mn(g)an, an)| is convergent for every g € G. Then m = Qp>17y, is strongly
continuous, and is hence a unitary representation of G on ®g>1 H,.

Proof. — Since all the spaces H,, n > 1, are separable, ®Z>1 H,, is separable too, and
by [6, Lem. A.6.2] it suffices to show that g+——(m(g)&,€) is a measurable map from
G into C for every vector £ € @~ Hy. Since the linear span of the elementary vectors is
dense in @,‘;21 H,, standard arguments show that it suffices to prove this for elementary
vectors & = ®p>1%y of ®g>1 H,,. Since each map ¢g+— {(m,(g9)zy,x,) is continuous on

G, it is clear that g ——(m(g9)x, ) = [],=1 {(Tn(9)Tn,Tn) is measurable on G. O

In the general case one needs to impose an additional condition on the representations
7, and on the vectors a, in order that w be a strongly continuous representation of G on

®Z>1 Hy,.

Proposition A.2. — Suppose that the series ), -, |1 —{mp(g)an, an>| is convergent for

every g € G and that the function g+——=73 -, |1 — <7rn(g)an,an>| is continuous on a

neighborhood of the identity element e of G. Then T = Qp>17Tp @S strongly continuous,
and is hence a unitary representation of G on ®Z>1 H,.

Proof of Proposition A.2. — Since the linear span of the elementary vectors is dense in
@f;l H,, and the operators w(g), g € G, are unitary, it suffices to prove that the map
g—m(g)x is continuous at e for every elementary vector & = ®p>1x, of norm 1 of
®Z>1 H,. Let N > 1 be such that x,, = a, for every n > N. We have for every g € G:

r(g)z — 2| = 2(1 — Re¢(g), 7)) = 2( [T Recmals Zn >)

n>1 | nH [|n]|
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since ||| = | [ ||#nl/=1. Thus

n=1

In(g)e = alP <2 3 1 = o),

n>1 ’ n” ’an

<2Zﬁ%m@ﬁ2ﬁﬁ*ﬂxﬂ%%@%%ﬂ
n=1 n

Toull )

If £ is any positive number, it follows from the assumptions that ||[7(g)x — z|| < ¢ if g lies
in a suitable neighborhood of e. This proves the continuity of the map g+——=m(g)z. O

We finish this appendix by giving a sufficient condition for an infinite tensor product
representation on a space ®g>1 H,, to be weakly mixing: let, for each n > 1, H,, be a
separable Hilbert space, a,, a vector of H,, with ||a,|| = 1, and 7, a unitary representation
of G on H,,. We suppose that the assumptions of either Proposition A.1 (when G is locally
compact) or Proposition A.2 (in the general case) are satisfied, so that T = ®,>17, is a
unitary representation of G on @7‘;21 H,,. Then

Proposition A.3. — In the case where lim,,_, ., m(|{mn(+)an, an)?) = 0, the represen-
tation ™ = Qn>17y 18 weakly mizing.

Proof. — The proof of Proposition A.3 relies on the same idea as that of Proposition
A2: let £ = ®p17y, and ¥ = Qu>1Yn be two elementary vectors in ®Z>1 H,, with
llz]| = ||y|| = 1. We have

(o) 2.l = [ |(malo) i, 720] < (o) ot 72

k=1

for every n = 1 and every g € G. But

[t oz el < Kt o+ | 22— ]|+ | = |
Squaring and taking the mean on both sides we obtain that
2 2
()2, 9)7) < A () a0l + 4 |22 = | 4| e =

for every n > 1. Since lim,,_, , (/{7 (+ )an, any|?) = 0 and the two other terms are equal
to zero for n sufficiently large, m(|(w(.)z, y)|?) = 0. Weak mixing of ® now follows from
standard density arguments. O
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