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KAZHDAN SETS IN GROUPS AND EQUIDISTRIBUTION

PROPERTIES

by

Catalin Badea & Sophie Grivaux

Abstract. — Using functional and harmonic analysis methods, we study Kazhdan sets in
topological groups which do not necessarily have Property (T). We provide a new criterion for
a generating subset Q of a group G to be a Kazhdan set; it relies on the existence of a positive
number ε such that every unitary representation of G with a pQ, εq-invariant vector has a
finite dimensional subrepresentation. Using this result, we give an equidistribution criterion
for a generating subset of G to be a Kazhdan set. In the case where G “ Z, this shows that
if pnkqkě1 is a sequence of integers such that pe2iπθnk qkě1 is uniformly distributed in the unit
circle for all real numbers θ except at most countably many, then tnk ; k ě 1u is a Kazhdan
set in Z as soon as it generates Z. This answers a question of Y. Shalom from [B. Bekka,
P. de la Harpe, A. Valette, Kazhdan’s property (T), Cambridge Univ. Press, 2008]. We
also obtain characterizations of Kazhdan sets in second countable locally compact abelian
groups, in the Heisenberg groups and in the group Aff`pRq. This answers in particular a
question from [B. Bekka, P. de la Harpe, A. Valette, Kazhdan’s property (T), op. cit.].

1. Introduction

A unitary representation of a topological group G on a Hilbert space H is a group
morphism from G into the group U pHq of all unitary operators on H which is strongly
continuous, i. e. such that the map g � // πpgqx is continuous from G into H for all
vectors x P H. As all the representations we consider in this paper are unitary, we will
often drop the word “unitary” and speak simply of representations of a group G on a
Hilbert space H. In this paper the Hilbert spaces will always be supposed to be complex,
and endowed with an inner product x ¨ , ¨ y which is linear in the first variable and antilinear
in the second variable.
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Definition 1.1. — Let Q be a subset of a topological group G, ε a positive real number,
and π a unitary representation of G on a Hilbert space H. A vector x P H is said to be
pQ, εq-invariant for π if

sup
g PQ

||πpgqx´ x|| ă ε||x||.

A pQ, εq-invariant vector for π is in particular non-zero. A G-invariant vector for π is a
vector x P H such that πpgqx “ x for all g P G.

The notions of Kazhdan sets and Kazhdan pairs will be fundamental in our work.

Definition 1.2. — A subset Q of a topological group G is a Kazhdan set in G if there
exists ε ą 0 such that the following property holds true: any unitary representation π of
G on a complex Hilbert space H with a pQ, εq-invariant vector has a non-zero G-invariant
vector. In this case, the pair pQ, εq is Kazhdan pair, and ε is a Kazhdan constant for Q.
A group G has Property (T), or is a Kazhdan group, if it admits a compact Kazhdan set.

Property (T) is a rigidity property of topological groups which has been introduced by
Kazhdan in [26] for locally compact groups, and which has spectacular applications to
many fields. For instance, the groups SLnpRq and SLnpZq have Property (T) if and only
if n ě 3. We refer the reader to the monograph [6] by Bekka, de la Harpe, and Valette
for a comprehensive presentation of Kazhdan’s Property (T) and its applications (see also
[19]).

The aim of this paper is to identify and study Kazhdan sets in topological groups. For
discrete groups with Property (T) the Kazhdan sets are known. Recall first the following
definition.

Definition 1.3. — If Q is a subset of a group G, we denote by xQy the smallest subgroup
of G containing Q, i. e. the set of all elements of the form g˘1

1 . . . g˘1
n , where n ě 1 and

g1, . . . , gn belong to Q. We say that Q generates G, or is generating in G, if xQy “ G.

Locally compact groups with Property (T) are compactly generated. In particular, dis-
crete groups with Property (T) are finitely generated and it is known (see [6, Prop. 1.3.2])
that the Kazhdan subsets of a discrete group with Property (T) are exactly the generating
subsets of the group. More generally [6, Prop. 1.3.2], a generating set of a locally compact
group which has Property (T) is a Kazhdan set and, conversely, a Kazhdan set which has
non-empty interior is necessarily a generating set.

For groups without Property (T) the results about Kazhdan sets and Kazhdan pairs
are very sparse. It is known (see [6, Prop. 1.1.5]) that pG,

?
2q is a Kazhdan pair for

every topological group G, so G is always a (“large”) Kazhdan subset of itself. The main
motivations for the present paper are two questions from [6, Sec. 7.12]. The first one is
due to Y. Shalom:

Question 1.4. — [6, Sec. 7.12] “The question of knowing if a subset Q of Z is a Kazhdan
set is possibly related to the equidistribution of the sequence pe2iπnθqn PQ for θ irrational,
in the sense of Weyl.”

We refer the reader to the classical book [28] by Kuipers and Niederreiter for more
information about equidistributed (sometimes called uniformly distributed) sequences.
Recall that the Weyl Criterion ([28, Th. 2.1]) states that if pxkqkě1 is a sequence of real

numbers, pe2iπxkqkě1 is equidistributed in T if and only if 1
N

řN
k“1 e

2iπhxk tends to 0 as N
tends to infinity for every non-zero integer h. Hence if pnkqkě1 is a sequence of elements
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of Z, pe2iπnkθqkě1 is equidistributed in T for every θ P RzQ if and only if 1
N

řN
k“1 e

2iπnkθ

tends to 0 as N tends to infinity for every θ P RzQ. If χθ denotes, for every θ P R, the

character on Z associated to θ, this means that 1
N

řN
k“1 χθpnkq tends to 0 as N tends to

infinity for every θ P RzQ.

The first remark about Question 1.4 is that it concerns Kazhdan sets and equidis-
tributed sequences; notice that a rearrangement of the terms of a sequence can destroy
its equidistribution properties. It is known [28, p. 135] that given a sequence of elements
of the unit circle T, there exists a certain rearrangement of the terms which is is equidis-
tributed if and only if the original sequence is dense in T. The second remark is that,
as mentioned before, Kazhdan sets of Z are necessarily generating, while there are non-
generating subsets Q of Z, like Q “ pZ with p ě 2, for which the sequences pe2iπpkθqk PZ
are equidistributed for all irrational θ’s. So Question 1.4 may be rephrased as follows:

Question 1.5. — (a) Let Q be a Kazhdan subset of Z. Does a certain rearrangement
pnkqkě1 of the elements of Q exist such that pe2iπnkθqkě1 is equidistributed in T for every
θ P RzQ? Equivalently, is the sequence pe2iπnθqn PQ dense in T for every θ P RzQ?

(b) Let Q “ tnk ; k ě 1u be a generating subset of Z. Suppose that the sequence
pe2iπnkθqkě1 is equidistributed in T for every θ P RzQ. Is Q a Kazhdan set in Z?

We will prove in this paper that Question 1.5 (a) has a negative answer, a counterex-
ample being provided by the set Q “ t2k ` k ; k ě 1u (see Example 6.4). On the other
hand, one of the aims of this paper is to show that Question 1.5 (b) has a positive an-
swer. Actually, we will consider Question 1.5 (b) in the more general framework of Moore
groups, and answer it in the affirmative (Theorem 2.1).

The second question of [6, Sec. 7.12] runs as follows:

Question 1.6. — [6, Sec. 7.12] “More generally, what are the Kazhdan subsets of Zk,
Rk, the Heisenberg group, or other infinite amenable groups?”

We shall answer Question 1.6 in Section 6 by giving a complete description of Kazhdan
sets in many classic groups which do not have Property (T), including the groups Zk and
Rk, k ě 1, the Heisenberg groups of all dimensions, and the group Aff`pRq of orientation-
preserving affine homeomorphisms of R.

2. Main results

Let us now describe our main results in more detail.

2.1. Equidistributed sets in Moore groups. — In order to state Question 1.5 (b) for
more general groups, we first need to define equidistributed sequences. There are several
possible ways of doing this. If pgkqkě1 is a sequence of elements in a locally compact
group G, uniform distribution of pgkqkě1 in any of these senses requires a certain form of
convergence, as N tends to infinity, of the means

(2.1)
1

N

N
ÿ

k“1

πpgkq

to the orthogonal projection Pπ on the subspace of invariant vectors for π, for a certain
class of unitary representations π of G. Veech [37], [38] calls pgkqkě1 uniformly distributed
in G if the convergence of the means (2.1) holds in the weak operator topology for all
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unitary representations of G (or, equivalently, for all irreducible unitary representations
of G, provided G is supposed to be second countable). Unitary uniform distribution in
the sense of Losert and Rindler [29], [17] requires the convergence in the strong operator
topology of the means (2.1) for all irreducible unitary representations of the group, while
Hartman uniform distribution only requires convergence in the strong operator topology
for all finite dimensional unitary representations.

In this paper we deal with the following natural extension to general locally compact
groups G of the equidistribution condition of Question 1.5 (b): if pgkqkě1 is a sequence
of elements of G, we require the sequence of means (2.1) to converge to 0 in the weak
topology for all finite dimensional irreducible unitary representations of G except those
belonging at most countably many equivalence classes of irreducible representations. In
the case of the group Z, sequences pnkqkě1 of integers such that pe2iπθnkqkě1 is uniformly
distributed in T for all θ P R except countably many are said to be of first kind (see for
instance [21]). The class of groups we will consider in relation to Question 1.5 (b) is the
class of second countable Moore groups. Recall that G is said to be a Moore group if all
irreducible representations of G are finite dimensional. Locally compact Moore groups are
completely described in [31]: a Lie group is a Moore group if and only if it has a closed
subgroup H such that H modulo its center is compact, and a locally compact group is a
Moore group if and only if it is a projective limit of Lie groups which are Moore groups. See
also the survey [33] for more information concerning the links between various properties
of topological groups, among them the property of being a Moore group. Of course all
locally compact abelian groups are Moore groups.

Here is the first main result of this paper.

Theorem 2.1. — Let G be a second countable locally compact Moore group. Let pgkqkě1

be a sequence of elements of G. Suppose that pgkqkě1 satisfies the following equidistribution
assumption:

(2.2)

for all (finite dimensional) irreducible unitary representations π of G on a
Hilbert space H, except those belonging to at most countably many equivalence
classes,

1

N

N
ÿ

k“1

xπpgkqx, yy
N // `8

// 0 for every x, y P H.

– If Q “ tgk ; k ě 1u generates G (in which case G has to be countable), then Q is a
Kazhdan set in G.

– If Q is not assumed to generate G, Q becomes a Kazhdan set when one adds to it
a suitable “small” perturbation. More precisely, if pWnqně1 is an increasing sequence of
subsets of G such that

Ť

ně1Wn “ G, there exists n ě 1 such that Wn YQ is a Kazhdan
set in G.

The equidistribution property (2.2) of the sequence pgkqkě1 takes a more familiar form
when the group G is supposed to be abelian: it is equivalent to requiring that condition
(2.3) below holds true for all characters χ of the group except possibly countably many.
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Theorem 2.2. — Let G be a locally compact abelian group, and let pgkqkě1 be a sequence
of elements of G. Suppose that

(2.3)
1

N

N
ÿ

k“1

χpgkq
N // `8

// 0

for all characters χ on G, except at most countably many. If Q “ tgk ; k ě 1u generates
G, then Q is a Kazhdan set in G. If Q is not assumed to generate G, and if pWnqně1 is
an increasing sequence of subsets of G such that

Ť

ně1Wn “ G, then there exists n ě 1
such that Wn YQ is a Kazhdan set in G.

Theorem 2.2 can thus be seen as a particular case of Theorem 2.1, except for the fact
that there is no need to suppose that the group is second countable when it is known to
be abelian. The case G “ Z provides a positive answer to Question 1.5 (b) above.

2.2. Kazhdan sets and finite dimensional subrepresentations. — The proof of
Theorem 2.2 relies on Theorem 2.3 below, which gives a new condition for a “small per-
turbation” of a subset Q of a group G to be a Kazhdan set in G. Theorem 2.3 constitutes
the core of the paper, and has, besides the proofs of Theorems 2.1 and 2.2, several inter-
esting applications which we will present in Sections 5 and 6.

Theorem 2.3. — Let G be a topological group, and let pWnqně1 be an increasing sequence
of subsets of G such that W1 is a neighborhood of the unit element e of G and

Ť

ně1Wn “

G. Let Q be a subset of G satisfying the following assumption:

(*)
there exists a positive constant ε such that every unitary representation
π of G on a Hilbert space H admitting a pQ, εq-invariant vector has a
finite dimensional subrepresentation.

Then there exists an integer n ě 1 such that Qn “Wn YQ is a Kazhdan set in G.

If the group G is locally compact, the same statement holds true for any increasing
sequence pWnqně1 of subsets of G such that

Ť

ně1Wn “ G.

The condition that W1 be a neighborhood of e, which appears in the first part of the
statement of Theorem 2.3, will be used in the proof in order to ensure the strong continuity
of some infinite tensor product representations (see Proposition A.2). When G is locally
compact, this assumption is no longer necessary (see Proposition A.1).

We stress that Theorem 2.3 is valid for all topological groups. We will apply it mainly
to groups which do not have Property (T) and to subsets of such groups which are not
relatively compact, a notable exception being the proof of Theorem 5.1, where we retrieve
a characterization of Property (T) for σ-compact locally compact groups due to Bekka
and Valette [5], see also [6, Th. 2.12.9]. The original proof of this result relies on the
Delorme-Guichardet theorem that such a group has Property (T) if and only if it has
property (FH). See Section 5 for more details.

Theorem 2.3 admits a simpler formulation if we build the sequence pWnqně1 starting
from a set which generates the group:

Corollary 2.4. — Let G be a topological group. Let Q0 be a subset of G which generates
G and let Q be a subset of G. Suppose either that Q0 has non-empty interior, or that G
is a locally compact group. If Q satisfies assumption (*) of Theorem 2.3, then Q0 YQ is
a Kazhdan set in G.
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One of the main consequences of Corollary 2.4 is Theorem 2.5 below, which shows in
particular that property (*) of Theorem 2.3 characterizes Kazhdan sets among generating
sets (and which have non-empty interior – this assumption has to be added if the group
is not supposed to be locally compact).

Theorem 2.5. — Let G be a topological group and let Q be a subset of G which generates
G. Suppose either that Q has non-empty interior or that G is locally compact. Then the
following assertions are equivalent:

(a) Q is a Kazhdan set in G;
(b) there exists a constant δ P p0, 1q such that every unitary representation π of G on a

Hilbert space H admitting a vector x P H such that infgPQ |xπpgqx, xy| ą δ}x}2 has a
finite dimensional subrepresentation;

(c) there exists a constant ε ą 0 such that every unitary representation π of G on a Hilbert
space H admitting a pQ, εq-invariant vector has a finite dimensional subrepresentation.

The assumption that Q generates G cannot be dispensed with in Theorem 2.5: Q “ 2Z
is a subset of Z which satisfies property (c), but Q is clearly not a Kazhdan set in Z.
Condition (b) in Theorem 2.5 is easily seen to be equivalent to condition (c), which is
nothing else than assumption (*) of Theorem 2.3. Its interest will become clearer in
Section 6 below, where it will be used to obtain a characterization of Kazhdan sets in
second countable locally compact abelian groups (Theorem 6.1). In the case of the group
Z, the characterization we obtain (Theorem 6.3) involves a classic class of sets in harmonic
analysis, called Kaufman sets. We give in Section 6 several examples of “small” Kazhdan
sets in Z, describe Kazhdan sets in the Heisenberg groups Hn, n ě 1 (Theorem 6.11), and
also in the group Aff`pRq (Theorem 6.14). These results provide an answer to Question
1.6.

The paper also contains an appendix which reviews some constructions of infinite tensor
product representations on Hilbert spaces, used in the proof of Theorem 2.3.

3. Mixing properties for unitary representations and an abstract version of
the Wiener theorem

3.1. Ergodic and mixing properties for unitary representations. — We first re-
call in this section some definitions and results concerning the structure of unitary repre-
sentations of a topological group G. They can be found for instance in the book [27], the
notes [34], and the paper [8] by Bergelson and Rosenblatt.

Recall that the class WAPpGq of weakly almost periodic functions on G is defined as
follows: if `8pGq denotes the space of bounded functions on G, f P `8pGq belongs to
WAPpGq if the weak closure in `8pGq of the set tfps´1�q ; s P Gu is weakly compact. For
each s P G, fps´1�q denotes the function t � // fps´1tq on G. By comparison, recall
that f P `8pGq is an almost periodic function on G, written f P APpGq, if the norm
closure in `8pGq of tfps´1�q ; s P Gu is compact. If π is a unitary representation of G on
a Hilbert space H, the functions

xπp�qx, yy,
ˇ

ˇxπp�qx, yy
ˇ

ˇ, and
ˇ

ˇxπp�qx, yy
ˇ

ˇ

2
,

where x and y are any vectors of H, belong to WAPpGq. For more on weakly almost
periodic functions on a group, see for instance [10] or [16, Ch. 1, Sec. 9]. The interest of
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the class of weakly almost periodic functions on G in our context is that there exists on
WAPpGq a unique G-invariant mean m. It satisfies

mpfps´1�qq “ mpfp � s´1qq “ mpfq

for every f P WAPpGq and every s P G. The abstract ergodic theorem then states that
if π is a unitary representation of G on H, mpxπp�qx, yyq “ xPπx, yy for every vectors
x, y P H, where Pπ denotes the projection of H onto the space Eπ “ tx P H ; πpgqx “
x for every g P Gu of G-invariant vectors for π. The representation π is ergodic (i. e.
admits no non-zero G-invariant vector) if and only if mpxπp�qx, yyq “ 0 for every x, y P H.

Following [8], let us now recall that the representation π is said to be weakly mixing if
mp|xπp�qx, xy|q “ 0 for every x P H, or, equivalently, mp|xπp�qx, xy|2q “ 0 for every x P H.
Then mp|xπp�qx, yy|q “ mp|xπp�qx, yy|2q “ 0 for every x, y P H.

We will need the following characterization of weakly mixing representations.

Proposition 3.1. — Let π be a unitary representation of G on a Hilbert space H. The
following assertions are equivalent:

(1) π is weakly mixing;
(2) π admits no finite dimensional subrepresentation;
(3) π b π has no non-zero G-invariant vector.

Here π is the conjugate representation of π. The representation π b π is equivalent to
a representation of G on the space HSpHq of Hilbert-Schmidt operators on H, which is
often more convenient to work with. Recall that HSpHq is a Hilbert space when endowed
with the scalar product defined by the formula xA,By “ trpB˚Aq for every A,B P HSpHq.
The space H bH, where H is the conjugate of H, is identified to HSpHq by associating
to each elementary tensor product x b y of H bH the rank-one operator x � , yyx on H.
This map Θ : H bH // HSpHq extends into a unitary isomorphism, and we have for
every g P G and every T P HSpHq

Θπ b πpgqΘ´1pT q “ πpgqT πpg´1q.

We will, when needed, identify π b π with this equivalent representation, and use it in
particular in Section 3.3 to obtain a concrete description of the space Eπbπ of G-invariant
vectors for π b π, which is identified to the subspace of HSpHq

Eπ “ tT P HSpHq ; πpgqT “ T πpgq for every g P Gu¨

3.2. Compact unitary representations. — A companion to the property of weak
mixing for unitary representation is that of compactness: given a unitary representation
π of G on H a vector x P H is compact for π if the norm closure of the set tπpgqx ; g P Gu
is compact in H. The representation π itself is said to be compact if every vector of H
is compact for π. Compact representations decompose as direct sums of irreducible finite
dimensional representations. The general structural result for unitary representations is
given by the following result.

Proposition 3.2. — A unitary representation π of G on a Hilbert space H decomposes
as a direct sum of a weakly mixing representation and a compact representation:

H “ Hw

K

‘Hc ,
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where Hw and Hc are both G-invariant closed subspaces of H, πw “ π|Hw is weakly mixing
and πc “ π|Hc is compact. Hence π decomposes as a direct sum of a weakly mixing
representation and finite dimensional irreducible subrepresentations.

See [34, Ch. 1], [6, Appendix M], [8] or [12] (in the amenable case) for detailed proofs
of these results.

Now let π be a compact representation of G on a Hilbert space H, decomposed as
a direct sum of irreducible finite dimensional representations of G. We sort out these
representations by equivalence classes, and index the distinct equivalence classes by an
index j belonging to a set J , which may be finite or infinite (and which is countable if
H is separable). For every j P J , we index by i P Ij all the representations appearing
in the decomposition of π which are in the j-th equivalence class. More precisely, we can
decompose H and π as

H “ ‘
j PJ

`

‘
i PIj

Hi, j

˘

and π “ ‘
j PJ

`

‘
i PIj

πi, j
˘

respectively, where the following holds true:

– for every j P J , the spaces Hi, j , i P Ij , are equal. We denote by Kj this common
space, and by dj its dimension (which is finite). We also write

rHj “ ‘
i PIj

Hi, j , so that H “ ‘
j PJ

rHj ;

– for every j P J , there exists an irreducible representation πj of G on Kj such that
πi, j is equivalent to πj for every i P Ij ;

– if j, j1 belong to J and j ‰ j1, πj and πj1 are not equivalent.

Without loss of generality, we will suppose that πi, j “ πj for every i P Ij . However, we
will keep the notation Hi, j for the various orthogonal copies of the space Kj which appear
in the decomposition of H, as discarding this notation may be misleading in some of the
proofs presented below.

Let A P BpHq. We write A in block-matrix form with respect to the decompositions

H “ ‘
j PJ

`

‘
i PIj

Hi, j

˘

and H “ ‘
j PJ

rHj

as
A “

`

Au, v
˘

k, l P J, u P Ik, v P Il
and A “

`

rAk, l
˘

k, l PJ
respectively¨

For every j P J and every u, v P Ij , we denote by i
pjq
u, v the identity operator from Hu, j into

Hv, j .

3.3. A formula for the projection Pπ of HSpHq on Eπ. — We now give an explicit
formula for the projection PπA of a Hilbert-Schmidt operator A P HSpHq on the following
closed subspace of HSpHq:

Eπ “ tT P HSpHq ; πpgqT “ T πpgq for every g P Gu.

We also compute the norm of PπA.

Proposition 3.3. — Let π be a compact representation of G on H, written in the form
π “ ‘

j PJ

`

‘
i PIj

πj
˘

as discussed in Section 3.2 above. For every operator A P HSpHq, we
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have

PπA “
ÿ

j PJ

1

dj

ÿ

u, v P Ij

tr
`

Au, v
˘

i pjqu, v and ||PπA||
2 “

ÿ

j PJ

1

dj

ÿ

u, v PIj

ˇ

ˇtr
`

Au, v
˘ˇ

ˇ

2
.

The proof of Proposition 3.3 relies on the following straightforward lemma:

Lemma 3.4. — The space Eπ consists of the operators T P HSpHq such that

– for every k, l P J with k ‰ l, rTk, l “ 0;
– for every k P J and every u, v P Ik, there exists a complex number λu, v such that

Tu, v “ λu, v i
pkq
u, v. Thus rTk, k “

`

λu, v i
pkq
u, v

˘

u, v PIk
.

Proof of Lemma 3.4. — Let T P Eπ. For every k, l P J , u P Ik and v P Il, πkpgqTu, v “
Tu, v πlpgq for every g P G. Thus the operator Tu, v intertwines the two representations πk
and πl. If Tu, v is non-zero, it follows from Schur’s Lemma that Tu, v is an isomorphism.
The representations πk and πl are thus isomorphically (and hence unitarily) equivalent.
Since πk and πl are not equivalent for k ‰ l, it follows that Tu, v “ 0 in this case. If now

k “ l, Schur’s Lemma again implies that Tu, v “ λu, v i
pkq
u, v for some scalar λu, v. Thus any

operator T P Eπ satisfies the two conditions of the lemma. The converse is obvious.

The proof of Proposition 3.3 is now easy.

Proof of Proposition 3.3. — Consider, for every j P J and u, v P Ij , the one-dimensional

subspace E
pjq
u, v of HSpHq spanned by the operator i

pjq
u, v. These subspaces are pairwise

orthogonal in HSpHq, and by Lemma 3.4 we have

Eπ “ ‘
j PJ

`

‘
u, v PIj

E pjqu, v

˘

.

Hence, for every A P HSpHq,

PπA “
ÿ

j PJ

ÿ

u, v PIj

A

A,
i
pjq
u, v

||i
pjq
u, v||HS

E i
pjq
u, v

||i
pjq
u, v||HS

“
ÿ

j PJ

1

dj

ÿ

u, v PIj

tr
`

Au, v
˘

i pjqu, v,

which gives the two formulas we were looking for.

Corollary 3.5. — Let π “ ‘
j PJ

`

‘
i PIj

πj
˘

be a compact representation of G on H. Let

x “ ‘
j PJ

`

‘
i PIj

xi, j
˘

and y “ ‘
j PJ

`

‘
i PIj

yi, j
˘

be two vectors of H, and let A P HSpHq be the

rank-one operator x � , yyx. Then

PπA “
ÿ

j PJ

1

dj

ÿ

u, v PIj

xxu, j , yv, jy i
pjq
u, v.

Proof. — For every j P J and u, v P Ij , Au, v “ x � , yv, jyxu, j , so that tr
`

Au, v
˘

“

xxu, j , yv, jy. The result then follows from Proposition 3.3.
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3.4. An abstract version of the Wiener Theorem. — As recalled in Section 3.1,
Eπ is the space of G-invariant vectors for the representation π b π on HSpHq, where for
every x, y P H, xby is identified with the rank-one operator x � , yyx. For every pair px, yq
of vectors of H, denote by bbbx, y the element of K bK, with K “ ‘

j PJ
Kj , defined by

bbbx, y “
ÿ

j PJ

1
a

dj

´

ÿ

i PIj

xi, j b yi, j

¯

.

It should be pointed out that for a fixed index j P J the vectors xi, j and yi, j are understood
in the formula above as belonging to the same space Kj (and not to the various orthogonal
spaces Hi, j). So bbbx, y is a vector of K bK, not of H bH. Thus

||bbbx, y||
2 “

ÿ

j PJ

1

dj

ÿ

u, v PIj

xxu, j , xv, jy xyu, j , yv, jy.

Combining Corollary 3.5 with the formula

m
`

|xπp � qx, yy|2
˘

“ xPπbπ xb x, y b y y “ xPπx � , xyx, x � , yyyy

yields

Corollary 3.6. — Let π “ ‘
j PJ

`

‘
i PIj

πj
˘

be a compact representation of G on H. For

every vectors x “ ‘
j PJ

`

‘
i PIj

xi, j
˘

and y “ ‘
j PJ

`

‘
i PIj

yi, j
˘

of H, we have

m
`

|xπp � qx, yy|2
˘

“
ÿ

j PJ

1

dj

ÿ

u, v PIj

xxu, j , xv, jy . xyu, j , yv, jy “ ||bbbx, y||
2.(3.1)

We thus obtain the following abstract version of the Wiener Theorem for unitary rep-
resentations of a group G:

Theorem 3.7. — Let π “ πw‘πc be a unitary representation of G on a Hilbert space
H “ Hw‘Hc, where πw is the weakly mixing part of π and πc its compact part. Writing
πc “ ‘

j PJ

`

‘
i PIj

πj
˘

as above, we have for every vectors x “ xw‘xc and y “ yw‘ yc of H

(3.2) m
`

|xπp � qx, yy|2
˘

“ ||bbbxc, yc ||
2.

Proof. — As we have mp|xπp � qx, yy|2q “ m
`

|xπwp � qxw, ywy|2
˘

` m
`

|xπcp � qxc, ycy|2
˘

and

mp|xπwp � qxw, ywy|2q “ 0, this follows from Corollary 3.6.

We finally derive an inequality on the quantities m
`

|xπp � qx, yy|2
˘

for a compact rep-
resentation π, which is a direct consequence of Corollary 3.6. This inequality will be a
crucial tool for the proof of our main result, to be given in Section 4. Using the same
notation as in the statement of Corollary 3.6, we denote by x “ ‘j PJ rxj and y “ ‘j PJ ryj
the respective decompositions of the vectors x and y of H with respect to the decompo-

sition H “ ‘j PJ rHj of H. Applying the Cauchy-Schwarz inequality twice to (3.1) yields
the following inequalities:

Corollary 3.8. — Let π be a compact representation of G on H. For every vectors x
and y of H, we have

m
`

|xπp � qx, yy|2
˘

ď
ÿ

j PJ

1

dj
||rxj ||

2. ||ryj ||
2 ď

ÿ

j PJ

||rxj ||
2. ||ryj ||

2.
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3.5. Why is (3.2) an abstract version of the Wiener Theorem? — Theorem 3.7
admits a much simpler formulation in the case where G is an abelian group. If π is a
compact representation of G, the formula (3.1) becomes

m
`

|xπp � qx, yy|2
˘

“
ÿ

j PJ

ÿ

u, v P Ij

xu, j xv, j yu, jyv, j

where xi, j and yi, j , i P Ij , j P J , are simply scalars. Using the notation of Corollary 3.8,
we have

(3.3) m
`

|xπp � qx, yy|2
˘

“
ÿ

j PJ

ˇ

ˇ

ˇ

ÿ

u P Ij

xu, j yu, j

ˇ

ˇ

ˇ

2
“

ÿ

j PJ

ˇ

ˇxrxj , ryjy
ˇ

ˇ

2
.

For every character χ P Γ (where Γ denotes the dual group of G), we denote by Eχ the
subspace of H

Eχ “ tx P H ; πpgqx “ χpgqx for every g P Gu

and by Pχ the orthogonal projection of H on Eχ. Each representation πj , j P J , being

in fact a character χj on the group G, we can identify the space rHj with Eχj . Equation
(3.3) then yields the following corollary:

Corollary 3.9. — Let G be an abelian group, and let π be a representation of G on a
Hilbert space H. Then we have for every x, y P H

m
`

|xπp � qx, yy|2
˘

“
ÿ

j PJ

ˇ

ˇxPEχjx, PEχj yy
ˇ

ˇ

2
“

ÿ

χ PΓ

ˇ

ˇxPEχx, PEχyy
ˇ

ˇ

2
.

In particular, if x “ y,

m
`

|xπp � qx, xy|2
˘

“
ÿ

χ PΓ

ˇ

ˇ

ˇ

ˇPEχx
ˇ

ˇ

ˇ

ˇ

4
.

Specializing Corollary 3.9 to the case where G “ Z yields that for any unitary operator
U on H and any vectors x, y P H,

1

2N ` 1

N
ÿ

n“´N

ˇ

ˇxUnx, yy
ˇ

ˇ

2 //
N // `8

ÿ

λ PT

ˇ

ˇxPkerpU´λIdHqx, PkerpU´λIdHqyy
ˇ

ˇ

2
.

In particular, we have

(3.4)
1

2N ` 1

N
ÿ

n“´N

ˇ

ˇxUnx, xy
ˇ

ˇ

2 //
N // `8

ÿ

λ PT

ˇ

ˇ

ˇ

ˇPkerpU´λIdHqx
ˇ

ˇ

ˇ

ˇ

4
.

If σ is a probability measure on the unit circle T, the operator Mσ of multiplication by
eiθ on L2pT, σq is unitary. Applying (3.4) to U “Mσ and to x “ 1, the constant function
equal to 1, we obtain Wiener’s Theorem:

(3.5)
1

2N ` 1

N
ÿ

n“´N

| pσpnq|2 //
N // `8

ÿ

λ PT
σptλuq2 .

We refer the reader to [1, 2, 3, 9, 14] and the references therein for related aspects
and generalizations of Wiener’s theorem.

We now have all the necessary tools for the proof of Theorem 2.3, which we present in
the next section.
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4. Proof of Theorem 2.3

4.1. Notation. — Let pWnqně1 be an increasing sequence of subsets of G satisfying the
assumptions of Theorem 2.3, and let Q be a subset of G. For each n ě 1, we denote by Qn
the set Qn “WnYQ. Remark that G is the increasing union of the sets Qn, n ě 1. We also
denote by ε0 a positive constant such that assumption (*) holds true: any representation
of G admitting a pQ, ε0q-invariant vector has a finite dimensional subrepresentation.

In order to prove Theorem 2.3, we argue by contradiction, and suppose that Qn is a non-
Kazhdan set in G for every n ě 1. We will then construct for every ε ą 0 a representation
π of G which admits a pQ, εq-invariant vector, but is weakly mixing (which, by Proposition
3.1, is equivalent to the fact that π has no finite dimensional subrepresentation), and this
will contradict (*).

4.2. Construction of a sequence pπnqně1 of finite dimensional representations
of G. — The first step of the proof is to show that assumption (*) combined with the
hypothesis that Qn is a non-Kazhdan set for every n ě 1 implies the existence of sequences
of finite dimensional representations of G with certain properties.

Lemma 4.1. — Let ε0 be a positive constant such that assumption (*) holds true and
suppose that Qn is a non-Kazhdan set in G for every n ě 1. For every sequence pεnqně1

of positive real numbers decreasing to zero with ε1 P p0, ε0s, there exist a sequence pHnqně1

of finite dimensional Hilbert spaces and a sequence pπnqně1 of unitary representations of
G such that, for every n ě 1, πn is a representation of G on Hn and

– πn has no non-zero G-invariant vector;
– πn has a pQn, εnq-invariant unit vector an P Hn: ||an|| “ 1 and

sup
g PQn

||πnpgqan ´ an|| ă εn.

Proof. — Let n ě 1. Since Qn is a not a Kazhdan set in G, there exists a representation
ρn of G on a Hilbert space Kn which has no non-zero G-invariant vector, but is such that
there exists a unit vector xn P Kn with

sup
g PQn

|| ρnpgqxn ´ xn|| ă 2´n.

Since 2´n ď ε0 for n large enough, assumption (*) implies that, for such integers n, ρn
has a finite dimensional subrepresentation. By Proposition 3.1, ρn is not weakly mixing.
This means that if we decompose Kn as Kn “ Kn,w‘Kn, c and ρn as ρn “ ρn,w‘ ρn, c,
where ρn,w and ρn,c are respectively the weakly mixing and compact parts of πn, ρn, c is
non-zero. Since ρn has no non-zero G-invariant vector, neither have ρn,w nor ρn, c.

Decomposing xn as xn “ xn,w‘xn, c, we have 1 “ ||xn,w||
2 ` ||xn, c||

2. We claim that

limnÑ`8 ||xn, c|| ą 0. Indeed, suppose that it is not the case. Then limnÑ`8||xn,w|| “ 1.
Since ||ρnpgqxn ´ xn||

2 “ ||ρn,wpgqxn,w ´ xn,w||
2 ` ||ρn, cpgqxn, c ´ xn, c||

2 for every g P G,
we have

sup
g PQn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ρn,wpgq

xn,w
||xn,w||

´
xn,w
||xn,w||

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ă

2´n

||xn,w||

as soon as xn,w is non-zero. Since limnÑ`8||xn,w|| “ 1, this implies that for any δ ą 0
there exists an integer n such that ρn,w has a pQn, δq-invariant vector of norm 1. Applying
this to δ “ ε0, there exists n0 ě 1 such that ρn0, w has a pQn0 , ε0q-invariant vector, hence a
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pQ, ε0q-invariant vector. But ρn0, w is weakly mixing, so has no finite dimensional subrepre-
sentation. This contradicts assumption (*). So we deduce that limnÑ`8 ||xn, c|| “ γ ą 0.
The same observation as above, applied to the representation ρn, c, shows that

sup
g PQn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ρn, cpgq

xn, c
||xn, c||

´
xn, c
||xn, c||

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ă

2´n

||xn, c||

for every n such that xn, c is non-zero, and thus that

sup
g PQn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ρn, cpgq

xn, c
||xn, c||

´
xn, c
||xn, c||

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ă

2´pn´1q

γ

for infinitely many integers n. For these integers, ρn, c is a compact representation for which

yn “ xn, c{||xn, c|| is a pQn, 2
´pn´1q{γq-invariant vector of norm 1. It has no non-zero G-

invariant vector. Decomposing ρn, c as a direct sum of finite dimensional representations,
straightforward computations show that there exists for each such integer n a finite di-
mensional representation σn of G with a pQn, 2

´pn´2q{γq-invariant vector but no non-zero
G-invariant vector. Lemma 4.1 follows immediately by taking a suitable subsequence of
pσnqně1.

4.3. Construction of weakly mixing representations of G with pQ, εq-invariant
vectors. — Let ε ą 0 be an arbitrary positive number. Our aim is to show that there
exists a weakly mixing representation of G with a pQ, εq-invariant vector. We fix a sequence
pεnqně1 of positive numbers decreasing to zero so fast that the following properties hold:

(i) 0 ă εn ă ε0 for every n ě 1, and
ř

ně1 εn ă ε2{2;

(ii) the sequence p 1
pn`1qε2n

ř2n
j“n ε

2
j qně1 tends to 0 as n tends to infinity.

We consider the representation πππ “ bně1 πn of G on the infinite tensor product space
HHH “

Âaaa
ně1Hn, where the spaces Hn, the representations πn and the vectors an are

associated to εn for each n ě 1 by Lemma 4.1. We refer to the appendix for undefined
notation concerning infinite tensor products. We first prove the following fact:

Fact 4.2. — Under the assumptions above, πππ is a strongly continuous representation of
G on HHH which has a pQ, εq-invariant vector.

Proof of Fact 4.2. — In order to prove that πππ is well-defined and strongly continuous, it
suffices to check that the assumptions of Proposition A.2 in the appendix hold true. For
every g P G and n ě 1, we have |1´ xπnpgqan, any| ď ||πnpgqan ´ an|| so that

sup
g PQn

|1´ xπnpgqan, any| ă εn.

By assumption (i), the series
ř

ně1 εn is convergent. Since every element g P G belongs to
all the sets Qn except finitely many, the series

ř

ně1 |1 ´ xπnpgqan, any| is convergent for
every g P G. Moreover, it is uniformly convergent on Q1, and hence on W1. The function

g � //
ÿ

ně1

|1´ xπnpgqan, any|

is thus continuous on W1, which is a neighborhood of e. It follows then from Proposition
A.2 that πππ is strongly continuous on HHH. If G is locally compact, Proposition A.1 and the
first part of the argument above suffice to show that πππ is strongly continuous, even when
W1 is not a neighborhood of e.



14 CATALIN BADEA & SOPHIE GRIVAUX

Next, it is easy to check that the elementary vector aaa “ bně1an of
Âaaa

ně1Hn satisfies
||aaa|| “ 1 and supgPQ ||πππpgqaaa´ aaa|| ă ε. Indeed ||aaa|| “

ś

ně1 ||an|| “ 1, and for every g P Q
we have (using the fact that Q Ď Qn for every n ě 1)

||πππpgqaaa´ aaa||2 “ 2 p1´ Rexπππpgqaaa, aaayq ď 2
ˇ

ˇ

ˇ
1´

ź

ně1

xπnpgqan, any
ˇ

ˇ

ˇ

ď 2
ÿ

ně1

|1´ xπnpgqan, any| ă 2
ÿ

ně1

εn.

Assumption (i) on the sequence pεnqně1 implies that supg PQ ||πππpgqaaa´ aaa||2 ă ε2, and aaa is
thus a pQ, εq-invariant vector for πππ.

Using the notation of Section 3.2, we now decompose πn and Hn as

πn “ ‘
j P Jn

´

‘
i P Ij, n

πj, n

¯

and Hn “ ‘
j P Jn

´

‘
i P Ij, n

Hi, j, n

¯

respectively. Since Hn is finite dimensional, all the sets Jn and Ij, n, j P Jn, are finite,
and we assume that they are subsets of N. For every j P Jn, Hi, j, n “ Kj, n. We also
decompose an P Hn as an “ ‘

j PJn

`

‘
i PIj, n

ai, j, n
˘

, and write raj, n “ ‘iPIj, nai, j, n for every

j P Jn. We have

(4.1) ||raj, n|| “

¨

˝

ÿ

i PIj, n

|| ai, j, n||
2

˛

‚

1
2

and ||an|| “

˜

ÿ

j PJn

||raj, n||
2

¸
1
2

“ 1,

so that ||raj, n|| ď 1 for every j P Jn. Also,

||πnpgqan ´ an||
2 “

ÿ

j PJn

ÿ

i PIj, n

||πj, npgqai, j, n ´ ai, j, n||
2 for every g P G,(4.2)

so that

(4.3) sup
g PQn

´

ÿ

i PIj, n

||πj, npgq ai, j, n ´ ai, j, n||
2
¯1{2

ă εn for every j P Jn.

There are now two cases to consider.

‚ Case 1. We have limnÑ`8maxjPJn ||raj, n|| “ 0.

Using Corollary 3.8 and the fact that
ř

j PJn
||raj, n||

2 “ ||an||
2 “ 1, we obtain that

mp |xπnp � qan, any|
2q ď

ÿ

j PJn

||raj, n||
4 ď max

j PJn
||raj, n||

2 .
ÿ

j PJn

||raj, n||
2 ď max

j PJn
||raj, n||

2.

It follows from our assumption that limnÑ`8mp |xπnp � qan, any|
2q “ 0. So πππ is weakly

mixing by Proposition A.3. We have thus proved in this case the existence of a weakly
mixing representation of G with a pQ, εq-invariant vector.

‚ Case 2. There exists δ ą 0 such that maxjPJn ||raj, n|| ą δ for every n ě 1.

Let, for every n ě 1, jn P Jn be such that ||rajn, n|| ą δ. Set In “ Ijn, n Ď N, σn “ πjn, n,
Kn “ Kjn, n and bi, n “ ai, jn, n for every i P In. Then σn is a non-trivial irreducible
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representation of G on the finite dimensional space Kn, and by (4.1) and (4.3) the finite
family pbi, nqi PIn of vectors of Kn satisfies

(4.4) 1 ě
´

ÿ

i PIn

|| bi, n||
2
¯1{2

ą δ and sup
g PQn

´

ÿ

i PIn

||σnpgq bi, n ´ bi, n||
2
¯1{2
ă εn.

If we write
rKn “ ‘

i PIn
Kn, rbn “ ‘

i PIn
bi, n, and rσn “ ‘

i PIn
σn,

this means that

(4.5) 1 ě ||rbn|| ą δ and sup
g PQn

||rσnpgqrbn ´rbn|| ă εn.

Now we again have to consider separately two cases.

– Case 2.a. There exists an infinite subset D of N such that whenever k and l are two
distinct elements of D, σk and σl are not equivalent. Replacing the sequence pσnqně1 by
pσnqnPD, we can suppose without loss of generality that for every distinct integers m and
n, with m,n ě 1, σm and σn are not equivalent.

Consider for every n ě 1 the representation

ρn “ rσn‘ ¨ ¨ ¨‘ rσ2n of G on Hn “ rKn‘ ¨ ¨ ¨‘ rK2n,

and the vector bn “
`
ř2n
k“n ||

rbk||
2
˘´ 1

2
`

rbn‘ ¨ ¨ ¨‘rb2n
˘

of Hn, which satisfies ||bn|| “ 1. For
every g P Qn we have, since Qn is contained in Qj for every j ě n,

||ρnpgqbn ´ bn||
2 “

`

2n
ÿ

k“n

||rbk||
2
˘´1

2n
ÿ

j“n

ˇ

ˇ

ˇ

ˇ

rσjpgqrbj ´rbj
ˇ

ˇ

ˇ

ˇ

2
ă

1

δ2pn` 1q

2n
ÿ

j“n

ε2
j

by (4.5). By assumption (ii) on the sequence pεnqně1, we obtain that there exists an integer
n0 ě 1 such that supg PQn ||ρnpgqbn ´ bn|| ă εn for every n ě n0. Let now ρρρ “ bněn0ρn
be the infinite tensor product of the representations ρn on the space HHH “

Âaaa
něn0

Hn.
An argument similar to the one given in Fact 4.2 shows that ρρρ is a strongly continuous
representation of G on HHH which has a pQ, εq-invariant vector. It remains to prove that
ρρρ is weakly mixing, and for this we will show that mp|xρnp � qbn, bny|2q tends to zero as n
tends to infinity. Recall that for every n ě 1, the representations σn, . . . , σ2n are mutually
non-equivalent, so that, by Corollary 3.8, we have for every n ě 1

mp|xρnp � qbn, bny|
2q ď

2n
ÿ

j“n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

2n
ÿ

k“n

||rbk||
2
˘´ 1

2rbj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

4
ď

1

δ4pn` 1q2

2n
ÿ

j“n

||rbj ||
4 ď

1

δ4pn` 1q

by (4.5). So mp|xρnp � qbn, bny|2q tends to zero as n tends to infinity. By Proposition A.3,
ρρρ is weakly mixing. We have proved again in this case the existence of a weakly mixing
representation of G with a pQ, εq-invariant vector.

The other case we have to consider is when there exists an integer n1 ě 1 such that for
every n ě n1, σn is equivalent to one of the representations σ1, . . . , σn1 . Indeed, if there
is no such integer, we can construct a strictly increasing sequence pnkqkě1 of integers such
that, for every k ě 1, σnk is not equivalent to one of the representations σ1, . . . , σnk´1

.
The set D “ tnk ; k ě 1u then has the property that whenever m and n are two distinct
elements of D, σm and σn are not equivalent, and we are back to the setting of Case 2.a.
Without loss of generality, we can suppose that σn is equal to σ1 for every n ě 1.
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– Case 2.b. For every n ě 1, σn is equal to σ1. By (4.4), we have

1 ě
´

ÿ

i PIn

|| bi, n||
2
¯1{2

ą δ and sup
g PQn

´

ÿ

i PIn

||σ1pgqbi, n ´ bi, n||
2
¯1{2

ă εn,

where all the vectors bi,n, i P In, belong to H1. For each n ě 1, set cn “ ‘
i PIn

bi, n, seen

as a vector of the infinite direct sum H “ ‘
jě1

H1 by defining its jth coordinate to be zero

when j does not belong to In. Let also σ be the infinite direct sum σ “ ‘
jě1

σ1 of σ1 on

H. Then we have, for every n ě 1,

1 ě ||cn|| ą δ and sup
g PQn

||σpgqcn ´ cn|| ă εn.

Let now S be a finite subset of G. There exists an integer nS ě 1 such that S Ď Qn for
every n ě nS , and hence

sup
g PS

||σpgqcn ´ cn|| ă εn for every n ě nS .

It follows that σ has almost-invariant vectors for finite sets: for every δ ą 0 and every
finite subset S of G, σ has an pS, δq-invariant vector. This implies that σ1 itself has
almost-invariant vectors for finite sets (see [34, Lem. 1.5.4] or [27]). Since σ1 is a finite
dimensional representation, it follows that σ1 has almost-invariant vectors. If pvnqně1 is a
sequence of unit vectors of H1 such that

sup
g PG

||σpgqvn ´ vn|| ă 2´n for every n ě 1,

then any accumulation point of pvnqně1 is a non-zero G-invariant vector for σ1. This
contradicts our initial assumption on σ1, and shows that the hypothesis of Case 2.b cannot
be fulfilled.

Summing up our different cases, we have thus proved that there exists for every ε ą 0 a
representation of G with a pQ, εq-invariant vector but no finite dimensional subrepresen-
tation. This contradicts assumption (*) of Theorem 2.3, and concludes the proof.

5. Some consequences of Theorem 2.3

We begin this section by proving the two characterizations of Kazhdan sets obtained as
consequences of Theorem 2.3.

5.1. Proofs of Corollary 2.4 and Theorem 2.5. — Let us first prove Corollary 2.4.

Proof of Corollary 2.4. — Let Q0 be a subset of G which has non-empty interior and
which generates G. Denote for each n ě 1 by Q˘n

0 the set tg˘1
1 . . . g˘1

n ; g1, . . . , gn P Q0u.

Then G “
Ť

ně1Q
˘n
0 . Let g0 be an element of the interior of Q0. Then g´1

0 Q0 is a

neighborhood of e. There exists n0 ě 1 such that g´1
0 belongs to Q˘n0

0 , and thus Q
˘pn0`1q
0

is a neighborhood of e. If we set Wn “ Q
˘pn0`nq
0 for n ě 1, the sequence of sets pWnqně1 is

increasing, W1 is a neighborhood of e, and pWnqně1 satisfies the assumptions of Theorem
2.3. So if Q is a subset of G for which assumption (*) of Theorem 2.3 holds true, there

exists n ě 1 such that Q
˘pn`n0q

0 Y Q is a Kazhdan set in G. Let ε ą 0 be a Kazhdan
constant for this set. Then ε{pn ` n0q is a Kazhdan constant for Q0 Y Q, and Q0 Y Q
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is a Kazhdan set in G. If G is locally compact, the same proof holds true without the
assumption that Q0 has non-empty interior.

Proof of Theorem 2.5. — Let us first show that (a) implies (b). Suppose that Q is a

Kazhdan set, and let 0 ă ε ă
?

2 be a Kazhdan constant for Q. Let δ “
a

1´ ε2{2 and
consider a representation π of G on a Hilbert space H for which there is a vector x P H
with ||x|| “ 1 such that infgPQ |xπpgqx, xy| ą δ. Then the representation π b π of G on

H bH verifies

2Rexπ b πpgqxb x, xb xy “ 2|xπpgqx, xy|2 ą 2´ ε2

for every g P Q. Hence }π b πpgqxb x´ xb x} ă ε for every g P Q and π b π has a non-
zero G-invariant vector. It follows from Proposition 3.1 that π has a finite dimensional
subrepresentation. Thus pbq is true. That (b) implies (c) is straightforward, and that (c)
implies (a) is a consequence of Corollary 2.4.

5.2. Property (T) in σ-compact locally compact groups. — As a consequence of
Theorem 2.3, we retrieve a characterization of Property (T) due to Bekka and Valette [5],
[6, Th. 2.12.9], valid for σ-compact locally compact groups, which states the following:

Theorem 5.1 ([5]). — Let G be a σ-compact locally compact group. Then G has Property
(T) if and only if every unitary representation of G with almost-invariant vectors has a
non-trivial finite dimensional subrepresentation.

The proof of [5] relies on the equivalence between Property (T) and Property (FH) for
such groups [6, Th. 2.12.4]. As a direct consequence of Theorem 2.3, we will derive a new
proof of Theorem 5.1 which does not involve property (FH).

If Q is a subset of a topological group G, and if π is a unitary representation of G on
a Hilbert space H, we say that π has Q-almost-invariant vectors if it has pQ, εq-invariant
vectors for every ε ą 0. The same argument as in [6, Prop. 1.2.1] shows that Q is a
Kazhdan set in G if and only if every representation of G with Q-almost-invariant vectors
has a non-zero G-invariant vector. As a direct corollary of Theorem 2.5, we obtain the
following characterization of Kazhdan sets which generate the group:

Corollary 5.2. — Let Q be a subset of a locally compact group G which generates G.
Then Q is a Kazhdan set in G if and only if every representation π of G with Q-almost-
invariant vectors has a non-trivial finite dimensional subrepresentation.

Proof of Corollary 5.2. — The only thing to prove is that if every representation π of G
with Q-almost-invariant vectors has a non-trivial finite dimensional representation, Q is a
Kazhdan set. For this it suffices to show the existence of an ε ą 0 such that assumption
(*) of Theorem 2.3 holds true. The argument is exactly the same as the one given in [6,
Prop. 1.2.1]: suppose that there is no such ε, and let, for every ε ą 0, πε be a representation
of G with a pQ, εq-invariant vector but no finite dimensional subrepresentation. Then
π “

À

εą0 πε has Q-almost-invariant vectors but no finite dimensional subrepresentation
(this follows immediately from [6, Prop. A.1.8]), contradicting our initial assumption.

Proof of Theorem 5.1. — It is clear that Property (T) implies that every representation
of G with almost-invariant vectors has a non-trivial finite dimensional subrepresentation.
Conversely, suppose that every representation of G with almost-invariant vectors has a
non-trivial finite dimensional subrepresentation. Using the same argument as in the proof
of Corollary 5.2, we see that there exists a compact subset Q of G such that assumption
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(*) of Theorem 2.3 holds true. Choosing for pWnqně1 an increasing sequence of compact
subsets of G such that

Ť

ně1Wn “ G, Theorem 2.3 implies that there exists an n ě 1 such
that Wn YQ is a Kazhdan set in G. Since Wn YQ is compact, G has Property (T).

5.3. Equidistribution assumptions: proofs of Theorems 2.2 and 2.1. — Let G
be a second countable locally compact group, and let π be a unitary representation of G on
a separable Hilbert space H. Such a representation can be decomposed as a direct integral
of irreducible unitary representations over a Borel space (see for instance [6, Sec. F.5] or
[15]). More precisely, there exists a finite positive measure µ on a standard Borel space Z,
a measurable field z ÞÑ Hz of Hilbert spaces over Z, and a measurable field of irreducible
representations z ÞÑ πz, where each πz is a representation of G on Hz, such that π is

unitarily equivalent to the direct integral πµ “

ż ‘

Z
πz dµpzq on H “

ż ‘

Z
Hz dµpzq. The

Hilbert space H is the set of equivalence classes of square integrable vector fields z ÞÑ xz,
with xz P Hz, with respect to the measure µ; πµ is the representation of G on H defined
by πµpgqx “ rz ÞÑ πzpgqxzs for every g P G and x P H .

Proof of Theorem 2.1. — Our aim is to show that, under the hypothesis of Theorem 2.1,
assumption (*) of Theorem 2.3 is satisfied. Let π be a representation of G on a Hilbert
space H. Since G is second countable, we can suppose that H is separable. Suppose that
π admits a pQ, 1{2q-invariant vector x P H and, using the notation and the result recalled
above, write

π “

ż ‘

Z
πz dµpzq, x “ rz � // xz s, and H “

ż ‘

Z
Hz dµpzq.

We have for every k ě 1

Re xπpgkqx, xy “ Re

ż

Z
xπzpgkqxz, xzy dµpzq “ 1´

1

2
||πpgkqx´ x||

2 ą
7

8

so that

Re

ż

Z

1

N

N
ÿ

k“1

xπzpgkqxz, xzy dµpzq ą
7

8
for everyN ě 1.(5.1)

Now, assumption (2.2) of Theorem 2.1 states that there exists a countable set C0 of equiva-
lence classes of irreducible representations such that

(5.2)
1

N

N
ÿ

k“1

xπpgkqx, xy ÝÑ 0 as N ÝÑ `8

for every irreducible representation π whose equivalence class rπs does not belong to C0

and every vector x in the underlying Hilbert space. It follows from (5.2) that the set
Z0 “ tz P Z ; rπzs P C0u satisfies µpZ0q ą 0, and there exists rπ0s P C0 such that
µptz P Z ; πz and π0 are equivalentuq ą 0. Hence π0 is a subrepresentation of π. Since all
irreducible representations of G are supposed to be finite dimensional, π has a finite dimen-
sional subrepresentation. So assumption (*) of Theorem 2.3 is satisfied. As Q generates
G, it now follows from Theorem 2.5 that Q is a Kazhdan set in G.

Proof of Theorem 2.2. — The proof of Theorem 2.2 is exactly the same as that of Theorem
2.1, using the fact that if G is a locally compact abelian group (not necessarily second



KAZHDAN SETS AND EQUIDISTRIBUTION PROPERTIES 19

countable), any unitary representation of G is equivalent to a direct integral of irreducible
representations (see for instance [15, Th. 7.36]).

6. Examples and applications

We present in this section some examples of Kazhdan sets in different kinds of groups,
some statements being obtained as consequences of Theorems 2.3 or 2.5. We do not try to
be exhaustive, and our aim here is rather to highlight some interesting phenomena which
appear when looking for Kazhdan sets, as well as the connections of these phenomena
with some remarkable properties of the group. We begin with the simplest case, that of
locally compact abelian (LCA) groups.

6.1. Kazhdan sets in locally compact abelian groups. — Let G be a second count-
able LCA group, the dual group of which we denote by Γ. If σ is a finite Borel measure
on Γ, recall that its Fourier-Stieljes transform is defined by

pσpgq “

ż

Γ
γpgq dσpγq for every g P G.

It is an easy consequence of the spectral theorem for unitary representations that if Q is
a subset of a second countable LCA group G, Q is a Kazhdan set in G if and only if there
exists ε ą 0 such that any probability measure σ on Γ with supgPQ |pσpgq ´ 1| ă ε satisfies
σpt1uq ą 0, where 1 denotes the trivial character on G. Using Theorem 2.5 combined with
the spectral theorem for unitary representations again, we obtain the following stronger
characterization of Kazhdan sets which generate the group in any second countable LCA
group.

Theorem 6.1. — Let G be a second countable LCA group, and let Q a subset of G which
generates G. The following assertions are equivalent:

(1) Q is a Kazhdan set in G;
(2) there exists δ P p0, 1q such that any probability measure σ on Γ with infgPQ |pσpgq| ą δ

has a discrete part;
(3) there exists ε ą 0 such that any probability measure σ on Γ with supgPQ |pσpgq´1| ă ε

has a discrete part.

Theorem 6.1 becomes particularly meaningful in the case of the group Z, as it yields a
characterization of Kazhdan subsets of Z involving some classic sets in harmonic analysis,
introduced by Kaufman in [24]. They are called w-sets by Kaufman [25], and Kaufman
sets (Ka sets) by other authors, such as Hartman [20], [21].

Definition 6.2. — Let Q be a subset of Z, and let δ P p0, 1q.
‚ We say that Q belongs to the class Ka if there exists a finite complex-valued con-

tinuous Borel measure µ on T such that infnPQ |µ̂pnq| ą 0, and to the class δ-Ka if there
exists a finite complex-valued continuous Borel measure µ on T with µpTq “ 1 such that
infnPQ |µ̂pnq| ą δ.
‚ We say that Q belongs to the class Ka` if there exists a continuous probability

measure σ on T such that infnPQ |σ̂pnq| ą 0, and to the class δ-Ka` if there exists a
continuous probability measure σ on T such that infnPQ |σ̂pnq| ą δ.

Our characterization of Kazhdan subsets of Z is given by Theorem 6.3 below:
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Theorem 6.3. — Let Q a subset of Z which generates Z. Then Q is a Kazhdan set in
Z if and only if there exists a δ P p0, 1q such that Q does not belong to δ-Ka`.

It is interesting to remark [21] that a set Q belongs to Ka if and only if it belongs to
δ-Ka for every δ P p0, 1q. There is no similar statement for the class Ka`: any sufficiently
lacunary subset of Z, such as Q “ t3k ` k ; k ě 1u, is easily seen to belong to Ka` (it
suffices to consider an associated Riesz product – see for instance [22] for details); but the
same reasoning as in Example 6.4 below shows that this set Q is a Kazhdan subset of Z.
Thus there exists by Theorem 6.3 a δ P p0, 1q such that Q does not belong to δ-Ka`.

We present now some typical examples of Kazhdan sets in Z or R obtained using the
above characterizations. The first one provides a negative answer to Question 1.5 (a).

Example 6.4. — The set Q “ t2k ` k ; k ě 0u is a Kazhdan set in Z and there are
irrational numbers θ such that pe2iπnθqnPQ is not dense in T. In particular, no rearrange-

ment pmkqkě1 of the elements of Q exists such that pe2iπmkθqkě1 is equidistributed in T
for every irrational number θ.

Proof. — The sequence pnkqkě0 defined by nk “ 2k ` k for every k ě 0 satisfies the
relation 2nk “ nk`1 ` k ´ 1 for every k ě 0. Let σ be a probability measure on T such
that supkě0 |pσpnkq ´ 1| ă 1{18. Since, by the Cauchy-Schwarz inequality,

|pσpkq ´ 1| ď

ż

T
|λk ´ 1|dσpλq ď

?
2 |pσpkq ´ 1|1{2 for every k P Z,

we have

|pσpk ´ 1q ´ 1| ď 2

ż

T
|λnk ´ 1|dσpλq `

ż

T
|λnk`1 ´ 1|dσpλq

ď 2
?

2 |pσpnkq ´ 1|1{2 `
?

2 |pσpnk`1q ´ 1|1{2

for all k ě 1, so that supkě0 |pσpkq ´ 1| ă 1. Since

1

N

N
ÿ

k“1

pσpkq “

ż

T

´ 1

N

N
ÿ

k“1

λk
¯

dσpλq // σpt1uq as N // `8,

we have σpt1uq ą 0. So Q “ tnk ; k ě 0u is a Kazhdan set in Z. But pnkqkě0 being
lacunary, it follows from a result proved independently by Pollington [35] and De Mathan
[30] that there exists a subset A of r0, 1s of Hausdorff measure 1 such that for every θ in
A, the set Qθ “ tnkθ ; k ě 0u is not dense modulo 1. One of these numbers θ is irrational,
and the conclusion follows.

Example 6.5. — The set Q1 “ t2k ; k ě 0u is not a Kazhdan set in Z.

Proof. — The fact that Q1 is not a Kazhdan set in Z relies on the observation that 2k

divides 2k`1 for every k ě 0. Using the same construction as the one of [13, Prop. 3.9],
we consider for any fixed ε ą 0 a decreasing sequence pajqjě1 of positive real numbers
with a1 ă ε{p2πq such that the series

ř

jě1 aj is divergent. Then the infinite convolution
of two-points Dirac measures

σ “ ˚
jě1

`

p1´ ajqδt1u ` ajδteiπ2´j`1
u

˘



KAZHDAN SETS AND EQUIDISTRIBUTION PROPERTIES 21

is a well-defined probability measure on T, which is continuous by the assumption that
the series

ř

jě1 aj diverges. For every k ě 0,

pσp2kq “
ź

jě1

`

1´ aj ` aje
iπ2k´j`1˘

“
ź

jěk`1

`

1´ ajp1´ e
iπ2k´j`1

q
˘

.

As |1´ ajp1´ e
iπ2k´j`1

q| ď 1, it follows that

|pσp2kq ´ 1| ď
ÿ

jěk`1

aj |1´ e
iπ2k´j`1

| ď π ak`1 2k`1
ÿ

jěk`1

2´j “ 2πak`1 ă ε

for every k ě 0. This proves that Q1 is not a Kazhdan set in Z.

Example 6.6. — If p is a non-constant polynomial with integer coefficients such that
ppZq is included in aZ for no integer a with |a| ě 2, then Q “ tppkq ; k ě 0u is a Kazhdan
set in Z.

Proof. — Our assumption that ppZq is included in aZ for no integer a with |a| ě 2 implies

that Q generates Z. Since the sequence pλppkqqkě0 is uniformly distributed in T for every
λ “ e2iπθ with θ irrational (see for instance [28, Th. 3.2]), Theorem 2.1 implies that Q is
a Kazhdan set in Z.

Example 6.7. — Let p be a non-constant real polynomial, and let Q “ tppkq ; k ě 0u.
Then p´δ, δq YQ is a Kazhdan subset of R for any δ ą 0.

Proof. — Write p as ppxq “
řd
j“0 ajx

j , d ě 1, and let r P t1, . . . , du be such that ar ‰ 0. It

is well-known (see for instance [28, Th. 3.2]) that the sequence pe2iπtppkqqkPZ is uniformly
distributed in T as soon as tar is irrational. This condition excludes only countably many
values of t. Set now Wn “ p´n, nq for every integer n ě 1. Thanks to Theorem 2.3, we
obtain that there exists n ě 1 such that p´n, nq Y Q is a Kazhdan set in R. Let ε ą 0
be a Kazhdan constant for this set. Fix δ ą 0. In order to prove that p´δ, δq Y Q is a
Kazhdan set in R, we consider a positive number γ, which will be fixed later on, and let
σ be a probability measure on R such that suptPp´δ,δqYQ

ˇ

ˇ

pσptq´ 1
ˇ

ˇ ă γ. For any a P N and

any t P p´δ, δq,

2p1´ Re pσpatqq “

ż

R

ˇ

ˇeiatx ´ 1
ˇ

ˇ

2
dσpxq ď a2

ż

R

ˇ

ˇeitx ´ 1
ˇ

ˇ

2
dσpxq ď 2a2Re p1´ pσptqq

so that suptPpδ,δq p1´ Re pσpatqq ă a2γ. If we choose a ą n{δ and γ ă minpε, ε2{p2a2qq, we

obtain that suptPp´n,nqYQ
ˇ

ˇ1´pσptq
ˇ

ˇ ă ε, and since ε is a Kazhdan constant for p´n, nqYQ,

σpt0uq ą 0. Hence γ is a Kazhdan constant for p´δ, δq YQ.

Remark 6.8. — It is necessary to add a small interval to the set Q in order to turn
it into a Kazhdan subset of R, even when Q generates a dense subgroup of R. Indeed,
consider the polynomial ppxq “ x `

?
2. The set Q “ tk `

?
2 ; k ě 0u is not a Kazhdan

set in R: for any ε ą 0, let b P N be such that |e2iπb
?

2 ´ 1| ă ε. The measure σ defined
as the Dirac mass at the point 2πb satisfies supkě0 |pσpk `

?
2q ´ 1| ă ε, so that Q is not

a Kazhdan set in R.

We finish this section by exhibiting a link between Kazhdan subsets of Zd and Kazhdan
subsets of Rd, d ě 1. Let Q be a subset of Zd. Seen as a subset of Rd, Q is never a
Kazhdan set. But as a consequence of Theorem 2.3, we see that Q becomes a Kazhdan
set in Rd if we add a small perturbation to it.
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Proposition 6.9. — Fix an integer d ě 1, and let pWnqně1 be an increasing sequence of
subsets of Rd such that

Ť

ně1Wn “ Rd. Let Q be a Kazhdan subset of Zd. There exists an

n ě 1 such that WnYQ is a Kazhdan set in Rd. Also, Bp0, δqYQ is a Kazhdan subset of
Rd for any δ ą 0, where Bp0, δq denotes the open unit ball of radius δ for the Euclidean
norm on Rd.

Proof. — Let ε ą 0 be a Kazhdan constant for Q, seen as a subset of Zd. Let π be a
representation of Rd on a separable Hilbert space H which admits a pQ, ε2{2q-invariant
vector x P H. Without loss of generality we can suppose that π is a direct integral on a
Borel space Z, with respect to a finite measure µ on Z, of a family pπzqzPZ of irreducible
representations of Rd. So π is a representation of Rd on L2pZ, µq. We write elements f of
L2pZ, µq as f “ pfzqzPZ . We suppose that ||x|| “ 1; our hypothesis implies that

sup
tttPQ

ˇ

ˇ1´ xπptttqx, xy
ˇ

ˇ ă
ε2

2
¨

Each representation πz acts on vectors ttt “ pt1, . . . , tdq of Rd as πzptttq “ expp2iπxttt, θθθzyq for
some vector θθθz “ pθ1,z, . . . , θd,zq of Rd. Hence

sup
tttPQ

ˇ

ˇ

ˇ
1´

ż

Z
e2iπxttt,θθθzy|xz|

2dµpzq
ˇ

ˇ

ˇ
ă
ε2

2
¨

Consider now the representation ρ of Zd on L2pZ, µq defined by ρpnnnq f : z � // e2iπxnnn,θθθzyfz
for every nnn “ pn1, . . . , ndq P Zd and every f P L2pZ, µq. We have

sup
nnnPQ

||ρpnnnqx´ x||2 ď 2 sup
nnnPQ

ˇ

ˇ1´ xρpnnnqx, xy
ˇ

ˇ ă ε2,

and since ε is a Kazhdan constant for Q as a subset of Zd, ρ has a non-zero Zd-invariant
vector. There exists hence f P L2pZ, µq with ||f || “ 1 such that ρpnnnqf “ f for every
nnn P Zd. Fix a representative of f P L2pZ, µq, and set Z0 “ tz P Z ; fz ‰ 0u. Then

µpZ0q ą 0. For every z P Z0 we have e2iπxnnn,θθθzy “ 1 for every nnn P Zd, which implies that
θθθz P Zd. For each nnn “ pn1, . . . , ndq P Zd, let Znnn “ tz P Z0 ; θi,z “ ni for each i P t1, . . . , nuu
and Hnnn “ tf P L

2pZ, µq ; f “ 0 µ-a. e. on ZzZnnnu. We have
Ť

nnnPZd Znnn “ Z0, so there exists

nnn0 P Zd such that µpZnnn0q ą 0. Each subspace Hnnn is easily seen to be invariant for π, and
the representation πnnn induced by π on Hnnn is given by πnnnptttq f : z � // e2iπxttt,nnnyfz for
every ttt P Rd and every f P Hnnn. So π admits a subrepresentation of dimension 1 as soon as
Hnnn is non-zero, i. e. as soon as µpZnnnq ą 0. Since µpZnnn0q ą 0, π admit a subrepresentation
of dimension 1. An application of Theorem 2.5 now shows that Wn Y Q is a Kazhdan
set in Rd for some n ě 1. If we choose Wn “ Bp0, nq for every n ě 1, and proceed as in
the proof of Example 6.7, we obtain that Bp0, δq Y Q is a Kazhdan set in Rd for every
δ ą 0.

We now move out of the commutative setting, and present a characterization of Kazhdan
sets in the Heisenberg groups Hn.

6.2. Kazhdan sets in the Heisenberg groups Hn. — The Heisenberg group of di-
mension n ě 1, denoted by Hn, is formed of triples pt, qqq, pppq of RˆRnˆRn “ R2n`1. The
group operation is given by

pt1, qqq1, ppp1q ¨ pt2, qqq2, ppp2q “ pt1 ` t2 `
1

2
pppp1 ¨ qqq2 ´ ppp2 ¨ qqq1q, qqq1 ` qqq2, ppp1 ` ppp2q,
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where ppp¨qqq denotes the scalar product of two vectors ppp and qqq of Rn. Irreducible unitary rep-
resentations of Hn are completely classified (see for instance [36, Ch. 2], or [15, Cor. 6.51]):
there are two distinct families of such representations, which we denote respectively by
pF1q and pF2q:

– the representations belonging to the family pF1q are representations of Hn on L2pRnq.
They are parametrized by an element of R, which we write as ˘λ with λ ą 0. Then
π˘λpt, qqq, pppq, pt, qqq, pppq P R2n`1, acts on L2pRnq as

π˘λpt, qqq, pppqu : xxx � // eip˘λt˘
?
λqqq¨xxx`λ

2
qqq¨pppqupxxx`

?
λ pppq

where u belongs to L2pRnq. These representations have the following important property,
which will appear again in the next subsection:

Fact 6.10. — For every ˘λ P R and every u, v P L2pRnq,

xπ˘λpt, qqq, pppqu, vy // 0 as |ppp| // `8.

Proof. — This follows directly from the dominated convergence theorem if u and v have
compact support in Rn. It then suffices to approximate u and v by functions with compact
support to get the result.

– the representations belonging to the family pF2q are one-dimensional. They are
parametrized by elements pyyy, ηηηq of R2n: for every pt, qqq, pppq P Hn,

πyyy,ηηηpt, qqq, pppq “ eipyyy¨qqq`ηηη¨pppq.

We denote by πn the projection pt, qqq, pppq ÞÝÑ pqqq, pppq of Hn onto R2n. Our main result
concerning Kazhdan sets in Hn is the following:

Theorem 6.11. — Let Q be a subset of the Heisenberg group Hn, n ě 1. The following
assertions are equivalent:

(1) Q is a Kazhdan set in Hn;
(2) πnpQq is a Kazhdan set in R2n.

Proof. — We set Q0 “ πnpQq. The proof of Theorem 6.11 relies on the same kind of ideas
as those employed in the proof of Proposition 6.9. We start with the easy implication,
which is that p1q implies p2q. Suppose that Q is a Kazhdan set in Hn, and let ε ą 0 be a
Kazhdan constant for Q. Let σ be a probability measure on R2n such that

(6.1) sup
pqqq,pppqPQ0

ˇ

ˇ

pσpqqq, pppq ´ 1
ˇ

ˇ “ sup
pqqq,pppqPQ0

ˇ

ˇ

ˇ

ż

R2n

eipyyy¨qqq`ηηη¨pppqdσpyyy, ηηηq ´ 1
ˇ

ˇ

ˇ
ă
ε2

2

and consider the representation ρ of Hn on L2pR2n, σq defined by

ρpt, qqq, pppqf : pyyy, ηηηq � // eipyyy¨qqq`ηηη¨pppqfpyyy, ηηηq

for every pt, qqq, pppq P Hn and every f P L2pR2n, σq. Then (6.1) implies that the constant
function 1 is a pQ, εq-invariant vector for ρ. Since pQ, εq is a Kazhdan pair in Hn, it follows
that ρ admits a non-zero Hn-invariant function f P L2pR2n, σq. Fix a representative of
f , and consider the subset A of R2n consisting of pairs pyyy, ηηηq such that fpyyy, ηηηq ‰ 0.
Then σpAq ą 0, and for every pqqq, pppq P R2n, σ-almost every element pyyy, ηηηq of A satisfies
yyy ¨ qqq ` ηηη ¨ ppp P 2πZ. Hence σ-almost every element pyyy, ηηηq of A has the property that
yyy ¨ qqq ` ηηη ¨ ppp P 2πZ for every pqqq, pppq P Q2n. By continuity, σ-almost every element pyyy, ηηηq
of A has the property that yyy ¨ qqq ` ηηη ¨ ppp belongs to 2πZ for every pqqq, pppq P R2n, so that
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pyyy, ηηηq “ p000, 000q. We have thus proved that σpt000, 000uq ą 0, and it follows that Q0 is a
Kazhdan set in R2n.

Let us now prove the converse implication. Suppose that Q0 is a Kazhdan set in R2n,
and let 0 ă ε ă 3 be a Kazhdan constant for Q0. Let π be a unitary representation of Hn

on a separable Hilbert space H, which admits a pQ, ε8q-invariant vector x P H of norm 1.

We write as usual π as a direct integral π “
ş‘

Z πz dµpzq, where µ is a finite Borel measure

on a standard Borel space Z, and x as pxzqzPZ , with
ş

Z ||xz||
2dµpzq “ 1. We have

(6.2) sup
pt,qqq,pppqPQ

ˇ

ˇ

ˇ
1´

ż

Z
xπzpt, qqq, pppqxz, xzydµpzq

ˇ

ˇ

ˇ
ă
ε

8
¨

For every z P Z, the irreducible representation πz belongs to one of the two families pF1q

and pF2q. If πz belongs to pF1q, we write it as π˘λz for some ˘λz P R, and if π belongs to
pF2q, as πyyyz ,ηηηz for some pyyyz, ηηηzq P R2n. Let, for i “ 1, 2, Zi be the subset of Z consisting
of the elements z P Z such that πz belongs to pFiq. We have xz P L

2pRnq for every z P Z1,
and xz P C for every x P Z2. We now observe the following:

Lemma 6.12. — A Kazhdan subset of R2n contains elements pqqq, pppq such that the Eu-
clidean norm |ppp| of ppp is arbitrarily large.

Proof. — Let Q1 be a Kazhdan subset of R2n, with Kazhdan constant ε ą 0, and suppose
that there exists a constant M ą 0 such that |ppp| ďM for every pqqq, pppq P Q1. Let δ ą 0 be
such that 2Mδ ă ε and consider the probability measure on R2n defined by

σ “ δ000 ˆ 1Bp000,δq
dppp

|Bp000, δq|
¨

For every pqqq, pppq P Q1,

|pσpqqq, pppq ´ 1| “
ˇ

ˇ

ˇ

ż

Bp000,δq
eisss¨ppp

dsss

|Bp000, δq|
´ 1

ˇ

ˇ

ˇ
ď 2δ|ppp| ď 2Mδ ă ε.

But σptp000, 000quq “ 0, and it follows that Q1 is not a Kazhdan set in R2n, which is a
contradiction.

By Fact 6.10, we have for every x P Z1

xπ˘λzpt, qqq, pppqxz, xzy
// 0 as |ppp| // `8 , pt, qqq, pppq P Hn.

Since |xπ˘λpt, qqq, pppqxz, xzy| ď ||xz||
2 for every z P Z1, and

ş

Z ||xz||
2dµpzq “ 1, the domi-

nated convergence theorem implies that
ż

Z1

xπ˘λzpt, qqq, pppqxz, xzydµpzq
// 0 as |ppp| // `8 , pt, qqq, pppq P Hn.

By Lemma 6.12, there exists an element pt0, qqq0, ppp0q of Q with |ppp0| so large that
ˇ

ˇ

ˇ

ż

Z1

xπ˘λzpt0, qqq0, ppp0qxz, xzydµpzq
ˇ

ˇ

ˇ
ă
ε

8
¨

Property (6.2) implies then that
ˇ

ˇ

ˇ
1´

ż

Z2

πyyyz ,ηηηzpt0, qqq0, ppp0q|xz|
2dµpzq

ˇ

ˇ

ˇ
ă
ε

4
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from which it follows that

ż

Z2

|xz|
2dµpzq ą 1´

ε

4
, so that

ż

Z1

||xz||
2dµpzq ă

ε

4
. Plugging

this into (6.2) yields that

sup
pt,qqq,pppqPQ

ˇ

ˇ

ˇ
1´

ż

Z2

πyyyz ,ηηηzpt, qqq, pppq|xz|
2dµpzq

ˇ

ˇ

ˇ
ă

3ε

8
¨

Since
ş

Z2
|xz|

2dµpzq ą 1´ ε{4 and 0 ă ε ă 3, we can, by normalizing the family pxzqzPZ2 ,

suppose without loss of generality that Z “ Z2,
ş

Z |xz|
2dµpzq “ 1 and that

(6.3) sup
pt,qqq,pppqPQ

ˇ

ˇ

ˇ
1´

ż

Z
eipyyyz ¨qqq`ηηηz ¨pppq |xz|

2 dµpzq
ˇ

ˇ

ˇ
ă ε.

Consider now the unitary representation ρ of R2n on L2pZ, µq defined by

ρpqqq, pppq f : z � // eipyyyz ¨qqq`ηηηz ¨pppqfz

for every pqqq, pppq P R2n and every f “ pfzqzPZ P L
2pZ, µq. Then (6.3) can be rewritten as

sup
pt,qqq,pppqPQ

ˇ

ˇ1´ xρpqqq, pppqx, xy
ˇ

ˇ ă ε, i.e. sup
pqqq,pppqPQ0

ˇ

ˇ1´ xρpqqq, pppqx, xy
ˇ

ˇ ă ε.

Since ε is a Kazhdan constant for Q0, the representation ρ admits a non-zero R2n-invariant
vector f P L2pZ, µq. Proceeding as in the proof of p1q ùñ p2q, we see that for every

pqqq, pppq P R2n, eipyyyz ¨qqq`ηηηz ¨pppqfpzq “ fpzq µ-almost everywhere on Z, so that there exists a
subset Z0 of Z with µpZ0q ą 0 such that f does not vanish on Z0 and, for every z P Z0,
yyyz ¨ qqq ` ηηηz ¨ ppp belongs to 2πZ for every pqqq, pppq P Q2n. By continuity, yyyz ¨ qqq ` ηηηz ¨ ppp belongs
to 2πZ for every z P Z0 and every pqqq, pppq P R2n, so that pyyyz, ηηηzq “ p000, 000q for every z P Z0.
So if we set Z 10 “ tz P Z ; pyyyz, ηηηzq “ p000, 000qu, we have µpZ 10q ą 0. The function f “ 1Z10

is hence a non-zero element of L2pZ, µq, which is clearly an Hn-invariant vector for the
representation π. So pQ, ε8q is a Kazhdan pair in Hn, and Theorem 6.11 is proved.

6.3. Kazhdan sets in the group Aff`pRq. — The underlying space of the group
Aff`pRq of orientation-preserving affine homeomorphisms of R is p0,`8q ˆ R, and the
group law is given by pa, bqpa1, b1q “ paa1, b ` ab1q, where pa, bq and pa1, b1q belong to
p0,`8q ˆ R. As in the case of the Heisenberg groups, the irreducible unitary representa-
tions of Aff`pRq are completely classified (see [15, Sec. 6.7]) and fall within two classes:

– the class pF1q consists of two infinite dimensional representations π` and π´ of
Aff`pRq, which act respectively on the Hilbert spaces L2pp0,`8q, dsq and L2pp´8, 0q, dsq.
They are both defined by the formula

π˘pa, bqf : s � // ?a e2iπbsfpasq

where pa, bq P p0,`8qˆR, f P L2pp0,`8q, dsq in the case of π`, and f P L2pp´8, 0q, dsq
in the case of π´. It is a direct consequence of the Riemann-Lebesgue lemma that the
analogue of Fact 6.10 holds true for the two representations π` and π´ of G:

Fact 6.13. — For every f1, f2 P L
2pp0,`8q, dsq and every g1, g2 P L

2pp´8, 0q, dsq, we
have

xπ`pa, bqf1, f2y // 0 and xπ´pa, bqg1, g2y // 0 as |b| // `8.
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– the representations of Aff`pRq belonging to the family pF2q are one-dimensional. They
are parametrized by R, and πλ is defined for every λ P R by the formula

πλpa, bq “ aiλ for every pa, bq P p0,`8q ˆ R.
Proceeding as in the proof of Theorem 6.11, we characterize the Kazhdan subsets of the
group Aff`pRq in the following way:

Theorem 6.14. — Let Q be a subset of Aff`pRq. The following assertions are equivalent:

(1) Q is a Kazhdan set in Aff`pRq;
(2) the set Q0 “ tt P R ; D b P R pet, bq P Qu is a Kazhdan set in R.

Proof. — The proof is similar to that of Theorem 6.11, and we will not give it in full
detail here. Let us first sketch briefly a proof of the implication p1q ùñ p2q. Suppose that
Q is a Kazhdan set in Aff`pRq, and let ε ą 0 be a Kazhdan constant for Q. Consider
a probability measure σ on R such that suptPQ0

ˇ

ˇ

pσptq ´ 1
ˇ

ˇ ă ε2{2. We associate to σ a

representation ρ of Aff`pRq on L2pR, σq by setting, for every pa, bq P p0,`8q ˆ R and

every f P L2pR, σq, ρpa, bqf : s � // eispln aqfpsq. Since

||ρpa, bq1´ 1||2 ď 2
ˇ

ˇ

ˇ

ż

R

`

eispln aq ´ 1qdσpsq
ˇ

ˇ

ˇ
for every pa, bq P p0,`8q ˆ R,

we have suptpa,bq ; ln aPQ0u
||ρpa, bq1 ´ 1|| ă ε, i. e. suppa,bqPQ ||ρpa, bq1 ´ 1|| ă ε. Hence ρ

admits a non-zero Aff`pRq-invariant function f P L2pR, σq, and the same argument as in
the proof of Theorem 6.11 shows then that σpt0uq ą 0. The converse implication p2q ùñ
p1q is proved in exactly the same way as in Theorem 6.11, using the same modifications
as those outlined above. The group R2n has to be replaced by the multiplicative group
pp0,`8q,ˆq and the analogue of Lemma 6.12 is that Kazhdan subsets of this group contain
elements of arbitrarily large absolute value. If Q0 is a Kazhdan set in R, with Kazhdan
constant ε small enough, the same argument as in the proof of Theorem 6.11 (involving
the same notation) shows that it suffices to prove the following statement: let µ be a finite
Borel measure on a Borel space Z, x “ pxzqzPZ a scalar-valued function of L2pZ, µq with
ş

Z |xz|
2dµpzq “ 1, and π a representation of G of the form π “

ş‘

Z πλzdµpzq with

sup
pa,bqPQ

ˇ

ˇ1´ xπpa, bqx, xy
ˇ

ˇ “ sup
ta ; ln a PQ0u

ˇ

ˇ

ˇ
1´

ż

Z
eipln aqλz |xz|

2dµpzq
ˇ

ˇ

ˇ
ă ε.

Then the set Z0 “ tz P Z ; λz “ 0u satisfies µpZ0q ą 0. The proof of this statement uses
the same argument as the one employed in the proof of Theorem 6.11. It involves the rep-
resentation ρ of the group pp0,`8q,ˆq on L2pZ, µq defined by ρpaqf : z � // eipln aqλzfz
for every a ą 0 and every pfzqzPZ P L

2pZ, µq, and uses the obvious fact that since Q0 is a
Kazhdan set in R, ta ; ln a P Q0u is a Kazhdan set in pp0,`8q,ˆq.

Remark 6.15. — Facts 6.10 and 6.13 have played a crucial role in the proofs of Theorems
6.11 and 6.14 respectively, as they allowed us to discard all irreducible representations
except the one-dimensional ones in inequalities of the form (6.2). In groups with the Howe-
Moore property (see for instance [23], [39] or [7] for the definition and for more about this
property), all non-trivial irreducible representations have the vanishing property of the
matrix coefficients stated in Facts 6.10 or 6.13. It easily follows from this observation that
all subsets with non-compact closure are Kazhdan sets in groups with the Howe-Moore
property, and that if the group is additionally supposed not to have Property (T), the
Kazhdan sets are exactly the sets with non-compact closure. As SL2pRq is a non-compact
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connected simple real Lie group with finite center, it has the Howe-Moore property. But
it does not have Property (T), and so we have:

Example 6.16. — The Kazhdan sets in SL2pRq are exactly the subsets of SL2pRq with
non-compact closure.

These observations testify of the rigidity of the structure of groups with the Howe-Moore
property, and stand in sharp contrast with all the examples we have presented in the rest
of this section.

Appendix A. Infinite tensor products of Hilbert spaces

We briefly describe in this appendix some constructions of tensor products of infinite
families of Hilbert spaces, and of tensor products of infinite families of unitary repre-
sentations. These last objects play an important role in the proof of Theorem 2.3. We
review here the properties and results which we need, following the original works of von
Neumann [32] and Guichardet [18].

A.1. The complete and incomplete tensor products of Hilbert spaces. — The
original construction of the complete and incomplete tensor products of a family pHαqαPI
of Hilbert spaces is due to von Neumann [32]. It was later on taken up by Guichardet in
[18] under a somewhat different point of view, and the incomplete tensor products of von
Neumann are rather known today as the Guichardet tensor products of Hilbert spaces.
Although these constructions can be carried out starting from an arbitrary family pHαqαPI
of Hilbert spaces, we will present them here only in the case of a countable family pHnqně1

of (complex) Hilbert spaces.

The complete infinite tensor product
Â

ně1Hn of the Hilbert spaces Hn is defined in
[32, Part II, Ch. 3] in the following way: the elementary infinite tensor products are the
elements xxx “ bně1xn, where xn belongs to Hn for each n ě 1 and the infinite product
ś

ně1 ||xn|| is convergent in the sense of [32, Def. 2.2.1], which by [32, Lem. 2.4.1] is
equivalent to the fact that either xn “ 0 for some n ě 1 or the series

ř

ně1 maxp||xn||´1, 0q
is convergent. Sequences pxnqně1 with this property are called by von Neumann in [32]
C-sequences. A scalar product is then defined on the set of finite linear combinations of
elementary tensor products by setting

xxxx, yyyy “
ź

ně1

xxn, yny

for any elementary tensor products xxx “ bně1xn and yyy “ bně1yn, and extending the
definition by linearity to finite linear combinations of such elements. The product defin-
ing xxxx, yyyy for two elementary vectors xxx and yyy is quasi-convergent in the sense of [32,
Def. 2.5.1], i.e.

ś

ně1 |xxn, yny| is convergent. The value of this quasi-convergent product
is
ś

ně1 xxn, yny if the product is convergent in the usual sense, and 0 if it is not.

That this is indeed a scalar product which turns the set of finite linear combinations of
elementary tensor products into a complex prehilbertian space is proved in [32, Lem. 3.21
and Theorem II]. For any elementary tensor product xxx “ bně1xn, ||xxx|| “

ś

ně1 ||xn||.
The space

Â

ně1Hn is the completion of this space for the topology induced by the scalar
product. It is always non-separable.

The incomplete tensor products are closed subspaces of the complete tensor product.
They are defined by von Neumann using an equivalence relation between sequences pxnqně1
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of vectors with xn P Hn for each n ě 1 and such that the series
ř

ně1

ˇ

ˇ1 ´ ||xn||
ˇ

ˇ is
convergent. Such sequences are called C0-sequences. They are C-sequences, and if pxnqně1

is a C-sequence such that
ś

ně1 ||xn|| ą 0 (i. e. pxnqně1 is non-zero in
Â

ně1Hn) then
pxnqně1 is a C0-sequence. If pxnqně1 is a C0-sequence, pxnqně1 is bounded, and the series
ř

ně1

ˇ

ˇ1´ ||xn||
2
ˇ

ˇ is convergent.

Two C0-sequences pxnqně1 and pynqně1 are equivalent if the series
ř

ně1

ˇ

ˇ1 ´ xxn, yny
ˇ

ˇ

is convergent. If A denotes an equivalence class of C0-sequences for this equivalence
relation, the incomplete tensor product

ÂA
ně1Hn associated to A is the closed linear span

in
Â

ně1Hn of the vectors xxx “ bně1xn, where pxnqně1 belongs to A [32, Def. 4.1.1]. If
A and A1 are two different equivalence classes, the spaces

ÂA
ně1Hn and

ÂA1
ně1Hn are

orthogonal, and the linear span of the incomplete tensor products
ÂA

ně1Hn, where A
runs over all equivalence classes of C0-sequences, is dense in the complete tensor product
Â

ně1Hn.

If A is an equivalence class of C0-sequences,
ÂA

ně1Hn admits another, more transparent
description, which runs as follows [32, Lem. 4.1.2], see also [18, Rem. 1.1]: let panqně1 be
a sequence with an P Hn and ||an|| “ 1 for every n ě 1, such that the equivalence class of
panqně1 is A (such a sequence panqně1 does exist: if pxnqně1 is any non-zero C0-sequence
belonging to A, xn is non-zero for every n ě 1, and we can define a C0-sequence panqně1

by setting an “ xn{||xn|| for every n ě 1. It is not difficult to check that panqně1 is

equivalent to pxnqně1, and so belongs to A). Then
ÂA

ně1Hn coincides with the closed
linear span in

Â

ně1Hn of vectors xxx “ bně1xn, where xn “ an for all but finitely many
integers n ě 1. Denoting the vector bně1an by aaa, we write this closed linear span as
Âaaa

ně1Hn (see [18]), and thus
Âaaa

ně1Hn “
ÂA

ně1Hn, where A is the equivalence class

of aaa. The space
Âaaa

ně1Hn is usually called the Guichardet tensor product of the spaces
Hn associated to the sequence panqně1. Proposition 1.1 of [18] states the following, which
is a direct consequence of the discussion above: if xxx “ pxnqně1 is a C0-sequence which
is equivalent to aaa, xxx belongs to

Âaaa
ně1Hn. Vectors xxx of this form are also said to be

decomposable with respect to aaa, while vectors xxx “ pxnqně1 with xn “ an for all but finitely
many indices n are called elementary vectors of

Âaaa
ně1Hn.

Suppose that all the spaces Hn, n ě 1, are separable. For each n ě 1, let pep,nq1ďpďpn be
a Hilbertian basis of Hn, with 1 ď pn ď `8 and e1,n “ an. The family of all elementary
vectors eeeβ “ bně1eβpnq,n of

Âaaa
ně1Hn, where β is a map from N into itself such that

1 ď βpnq ď pn for every n ě 1 and βpnq “ 1 for all but finitely many integers n ě 1, forms
a Hilbertian basis of

Âaaa
ně1Hn [32, Lem. 4.1.4]. In particular,

Âaaa
ně1Hn is a separable

complex Hilbert space.

A.2. Tensor products of unitary representations. — Let G be a topological group,
and let pHnqně1 be a sequence of complex separable Hilbert spaces. Let panqně1 be a
sequence of vectors with an P Hn and ||an|| “ 1 for every n ě 1. We are looking for
conditions under which one can define a unitary representation πππ of G on

Âaaa
ně1Hn which

satisfies

(A.1) πππpgq bně1 xn “ bně1πnpgqxn

for every g P G and every decomposable vector xxx “ bně1xn with respect to aaa. Observe
that without any assumption, the equality πππpgq bně1 xn “ bně1πnpgqxn does not make
any sense, since pπnpgqxnqně1, which is a C0-sequence, may not be equivalent to aaa, and
thus may not belong to

Âaaa
ně1Hn.
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Infinite tensor products of unitary representations have already been studied in various
contexts (see for instance [4] and the references therein). In [4, Prop. 2.3], the following
observation is made: suppose that, for each n ě 1, Un is a unitary operator on Hn. Then
there exists a unitary operator UUU “ bně1Un on

Âaaa
ně1Hn satisfying

UUU
`

bně1xn
˘

“ bně1Unxn

for every decomposable vector xxx “ bně1xn with respect to aaa if and only if the series
ř

ně1

ˇ

ˇ1´ xUnan, any
ˇ

ˇ is convergent (which is equivalent to requiring that the C0-sequence
pUnanqně1 be equivalent to panqně1, i. e. to the fact that bně1Unan be a decomposable
vector with respect to aaa). It follows from this result that the formula (A.1) makes sense
in

Âaaa
ně1Hn if and only if the series

(A.2)
ÿ

ně1

ˇ

ˇ1´ xπnpgqan, any
ˇ

ˇ

is convergent for every g P G. Under this condition πππpgq “ bně1πnpgq is a unitary operator
on

Âaaa
ně1Hn for every g P G, and πππpghq “ πππpgqπππphq for every g, h P G.

If the group G is discrete, this tensor product representation is of course automatically
strongly continuous. It is also the case if G is supposed to be locally compact.

Proposition A.1. — Suppose that G is a locally compact group, and that the series
ř

ně1 |1 ´ xπnpgqan, any| is convergent for every g P G. Then πππ “ bně1πn is strongly

continuous, and is hence a unitary representation of G on
Âaaa

ně1Hn.

Proof. — Since all the spaces Hn, n ě 1, are separable,
Âaaa

ně1Hn is separable too, and
by [6, Lem. A.6.2] it suffices to show that g � // xπππpgqξξξ, ξξξy is a measurable map from
G into C for every vector ξξξ P

Âaaa
ně1Hn. Since the linear span of the elementary vectors is

dense in
Âaaa

ně1Hn, standard arguments show that it suffices to prove this for elementary

vectors xxx “ bně1xn of
Âaaa

ně1Hn. Since each map g � // xπnpgqxn, xny is continuous on
G, it is clear that g � // xπππpgqxxx, xxxy “

ś

ně1 xπnpgqxn, xny is measurable on G.

In the general case one needs to impose an additional condition on the representations
πn and on the vectors an in order that πππ be a strongly continuous representation of G on
Âaaa

ně1Hn.

Proposition A.2. — Suppose that the series
ř

ně1

ˇ

ˇ1´ xπnpgqan, any
ˇ

ˇ is convergent for

every g P G and that the function g � //
ř

ně1

ˇ

ˇ1´ xπnpgqan, any
ˇ

ˇ is continuous on a

neighborhood of the identity element e of G. Then πππ “ bně1πn is strongly continuous,
and is hence a unitary representation of G on

Âaaa
ně1Hn.

Proof of Proposition A.2. — Since the linear span of the elementary vectors is dense in
Âaaa

ně1Hn, and the operators πππpgq, g P G, are unitary, it suffices to prove that the map
g � // πππpgqxxx is continuous at e for every elementary vector xxx “ bně1xn of norm 1 of
Âaaa

ně1Hn. Let N ě 1 be such that xn “ an for every n ą N . We have for every g P G:

||πππpgqxxx´ xxx||2 “ 2p1´ Rexπππpgqxxx, xxxyq “ 2

ˆ

1´
ź

ně1

Rexπnpgq
xn
||xn||

,
xn
||xn||

y

˙
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since ||xxx|| “
ź

ně1

||xn||=1. Thus

||πππpgqxxx´ xxx||2 ď 2
ÿ

ně1

ˇ

ˇ

ˇ
1´ xπnpgq

xn
||xn||

,
xn
||xn||

y

ˇ

ˇ

ˇ

ď 2
N
ÿ

n“1

ˇ

ˇ

ˇ
1´ xπnpgq

xn
||xn||

,
xn
||xn||

y

ˇ

ˇ

ˇ
` 2

ÿ

ně1

|1´ xπnpgqan, any|.

If ε is any positive number, it follows from the assumptions that ||πππpgqxxx´ xxx|| ă ε if g lies
in a suitable neighborhood of e. This proves the continuity of the map g � // πππpgqxxx.

We finish this appendix by giving a sufficient condition for an infinite tensor product
representation on a space

Âaaa
ně1Hn to be weakly mixing: let, for each n ě 1, Hn be a

separable Hilbert space, an a vector of Hn with ||an|| “ 1, and πn a unitary representation
of G on Hn. We suppose that the assumptions of either Proposition A.1 (when G is locally
compact) or Proposition A.2 (in the general case) are satisfied, so that πππ “ bně1πn is a
unitary representation of G on

Âaaa
ně1Hn. Then

Proposition A.3. — In the case where limnÑ`8mp|xπnp � qan, any|
2q “ 0, the represen-

tation πππ “ bně1πn is weakly mixing.

Proof. — The proof of Proposition A.3 relies on the same idea as that of Proposition
A.2: let xxx “ bně1xn and yyy “ bně1yn be two elementary vectors in

Âaaa
ně1Hn with

||xxx|| “ ||yyy|| “ 1. We have

|xπππpgq xxx, yyyy|2 “
ź

kě1

ˇ

ˇ

ˇ

A

πkpgq
xk
||xk||

,
yk
||yk||

Eˇ

ˇ

ˇ

2
ď

ˇ

ˇ

ˇ

A

πnpgq
xn
||xn||

,
yn
||yn||

Eˇ

ˇ

ˇ

2

for every n ě 1 and every g P G. But

ˇ

ˇ

ˇ

A

πnpgq
xn
||xn||

,
yn
||yn||

Eˇ

ˇ

ˇ
ď |xπnpgqan, any| `

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xn
||xn||

´ an

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

yn
||yn||

´ an

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Squaring and taking the mean on both sides we obtain that

mp|xπππp � qxxx, yyyy|2q ď 4mp|xπnp � q an, any|
2q ` 4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xn
||xn||

´ an

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

` 4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

yn
||yn||

´ an

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

for every n ě 1. Since limnÑ`8mp|xπnp � qan, any|
2q “ 0 and the two other terms are equal

to zero for n sufficiently large, mp|xπππp � qxxx, yyyy|2q “ 0. Weak mixing of πππ now follows from
standard density arguments.
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