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Using functional and harmonic analysis methods, we study Kazhdan sets in topological groups which do not necessarily have Property (T). We provide a new criterion for a generating subset Q of a group G to be a Kazhdan set; it relies on the existence of a positive number ε such that every unitary representation of G with a pQ, εq-invariant vector has a finite dimensional subrepresentation. Using this result, we give an equidistribution criterion for a generating subset of G to be a Kazhdan set. In the case where G " Z, this shows that if pn k q kě1 is a sequence of integers such that pe 2iπθn k q kě1 is uniformly distributed in the unit circle for all real numbers θ except at most countably many, then tn k ; k ě 1u is a Kazhdan set in Z as soon as it generates Z. This answers a question of Y. Shalom from [B.

Introduction

A unitary representation of a topological group G on a Hilbert space H is a group morphism from G into the group U pHq of all unitary operators on H which is strongly continuous, i. e. such that the map g / / πpgqx is continuous from G into H for all vectors x P H. As all the representations we consider in this paper are unitary, we will often drop the word "unitary" and speak simply of representations of a group G on a Hilbert space H. In this paper the Hilbert spaces will always be supposed to be complex, and endowed with an inner product x ¨, ¨y which is linear in the first variable and antilinear in the second variable. Definition 1.1. -Let Q be a subset of a topological group G, ε a positive real number, and π a unitary representation of G on a Hilbert space H. A vector x P H is said to be pQ, εq-invariant for π if sup g PQ ||πpgqx ´x|| ă ε||x||.

A pQ, εq-invariant vector for π is in particular non-zero. A G-invariant vector for π is a vector x P H such that πpgqx " x for all g P G.

The notions of Kazhdan sets and Kazhdan pairs will be fundamental in our work.

Definition 1.2. -A subset Q of a topological group G is a Kazhdan set in G if there exists ε ą 0 such that the following property holds true: any unitary representation π of G on a complex Hilbert space H with a pQ, εq-invariant vector has a non-zero G-invariant vector. In this case, the pair pQ, εq is Kazhdan pair, and ε is a Kazhdan constant for Q.

A group G has Property (T), or is a Kazhdan group, if it admits a compact Kazhdan set.

Property (T) is a rigidity property of topological groups which has been introduced by Kazhdan in [START_REF] Kazhdan | Connection of the dual space of a group with the structure of its closed subgroups[END_REF] for locally compact groups, and which has spectacular applications to many fields. For instance, the groups SL n pRq and SL n pZq have Property (T) if and only if n ě 3. We refer the reader to the monograph [START_REF] Bekka | Kazhdan's Property (T)[END_REF] by Bekka, de la Harpe, and Valette for a comprehensive presentation of Kazhdan's Property (T) and its applications (see also [START_REF] De La Harpe | La propriété (T) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger)[END_REF]).

The aim of this paper is to identify and study Kazhdan sets in topological groups. For discrete groups with Property (T) the Kazhdan sets are known. Recall first the following definition.

Definition 1.3. -If Q is a subset of a group G, we denote by xQy the smallest subgroup of G containing Q, i. e. the set of all elements of the form g ˘1 1 . . . g ˘1 n , where n ě 1 and g 1 , . . . , g n belong to Q. We say that Q generates G, or is generating in G, if xQy " G.

Locally compact groups with Property (T) are compactly generated. In particular, discrete groups with Property (T) are finitely generated and it is known (see [START_REF] Bekka | Kazhdan's Property (T)[END_REF]Prop. 1.3.2]) that the Kazhdan subsets of a discrete group with Property (T) are exactly the generating subsets of the group. More generally [START_REF] Bekka | Kazhdan's Property (T)[END_REF]Prop. 1.3.2], a generating set of a locally compact group which has Property (T) is a Kazhdan set and, conversely, a Kazhdan set which has non-empty interior is necessarily a generating set.

For groups without Property (T) the results about Kazhdan sets and Kazhdan pairs are very sparse. It is known (see [START_REF] Bekka | Kazhdan's Property (T)[END_REF]Prop. 1.1.5]) that pG, ? 2q is a Kazhdan pair for every topological group G, so G is always a ("large") Kazhdan subset of itself. The main motivations for the present paper are two questions from [START_REF] Bekka | Kazhdan's Property (T)[END_REF]Sec. 7.12]. The first one is due to Y. Shalom: Question 1.4. -[6, Sec. 7.12] "The question of knowing if a subset Q of Z is a Kazhdan set is possibly related to the equidistribution of the sequence pe 2iπnθ q n PQ for θ irrational, in the sense of Weyl." of Z, pe 2iπn k θ q kě1 is equidistributed in T for every θ P RzQ if and only if 1 N ř N k"1 e 2iπn k θ tends to 0 as N tends to infinity for every θ P RzQ. If χ θ denotes, for every θ P R, the character on Z associated to θ, this means that 1 N ř N k"1 χ θ pn k q tends to 0 as N tends to infinity for every θ P RzQ.

The first remark about Question 1.4 is that it concerns Kazhdan sets and equidistributed sequences; notice that a rearrangement of the terms of a sequence can destroy its equidistribution properties. It is known [28, p. 135] that given a sequence of elements of the unit circle T, there exists a certain rearrangement of the terms which is is equidistributed if and only if the original sequence is dense in T. The second remark is that, as mentioned before, Kazhdan sets of Z are necessarily generating, while there are nongenerating subsets Q of Z, like Q " pZ with p ě 2, for which the sequences pe 2iπpkθ q k PZ are equidistributed for all irrational θ's. So Question 1.4 may be rephrased as follows:

Question 1.5. -(a) Let Q be a Kazhdan subset of Z. Does a certain rearrangement pn k q k ě1 of the elements of Q exist such that pe 2iπn k θ q k ě1 is equidistributed in T for every θ P RzQ? Equivalently, is the sequence pe 2iπnθ q n PQ dense in T for every θ P RzQ? (b) Let Q " tn k ; k ě 1u be a generating subset of Z. Suppose that the sequence pe 2iπn k θ q k ě1 is equidistributed in T for every θ P RzQ. Is Q a Kazhdan set in Z?

We will prove in this paper that Question 1.5 (a) has a negative answer, a counterexample being provided by the set Q " t2 k `k ; k ě 1u (see Example 6.4). On the other hand, one of the aims of this paper is to show that Question 1.5 (b) has a positive answer. Actually, we will consider Question 1.5 (b) in the more general framework of Moore groups, and answer it in the affirmative (Theorem 2.1).

The second question of [START_REF] Bekka | Kazhdan's Property (T)[END_REF]Sec. 7.12] runs as follows:

Question 1.6. -[6, Sec. 7.12] "More generally, what are the Kazhdan subsets of Z k , R k , the Heisenberg group, or other infinite amenable groups?"

We shall answer Question 1.6 in Section 6 by giving a complete description of Kazhdan sets in many classic groups which do not have Property (T), including the groups Z k and R k , k ě 1, the Heisenberg groups of all dimensions, and the group Aff `pRq of orientationpreserving affine homeomorphisms of R.

Main results

Let us now describe our main results in more detail.

2.1. Equidistributed sets in Moore groups. -In order to state Question 1.5 (b) for more general groups, we first need to define equidistributed sequences. There are several possible ways of doing this. If pg k q kě1 is a sequence of elements in a locally compact group G, uniform distribution of pg k q kě1 in any of these senses requires a certain form of convergence, as N tends to infinity, of the means

(2.1) 1 N N ÿ k"1 πpg k q
to the orthogonal projection P π on the subspace of invariant vectors for π, for a certain class of unitary representations π of G. Veech [START_REF] Veech | Some questions of uniform distribution[END_REF], [START_REF] Veech | Topological dynamics[END_REF] calls pg k q kě1 uniformly distributed in G if the convergence of the means (2.1) holds in the weak operator topology for all unitary representations of G (or, equivalently, for all irreducible unitary representations of G, provided G is supposed to be second countable). Unitary uniform distribution in the sense of Losert and Rindler [START_REF] Losert | Uniform distribution and the mean ergodic theorem[END_REF], [START_REF] Gröchenig | Uniform distribution in solvable groups, Probability measures on groups VIII (Oberwolfach[END_REF] requires the convergence in the strong operator topology of the means (2.1) for all irreducible unitary representations of the group, while Hartman uniform distribution only requires convergence in the strong operator topology for all finite dimensional unitary representations.

In this paper we deal with the following natural extension to general locally compact groups G of the equidistribution condition of Question 1.5 (b): if pg k q kě1 is a sequence of elements of G, we require the sequence of means (2.1) to converge to 0 in the weak topology for all finite dimensional irreducible unitary representations of G except those belonging at most countably many equivalence classes of irreducible representations. In the case of the group Z, sequences pn k q kě1 of integers such that pe 2iπθn k q kě1 is uniformly distributed in T for all θ P R except countably many are said to be of first kind (see for instance [START_REF] Hartman | On harmonic separation[END_REF]). The class of groups we will consider in relation to Question 1.5 (b) is the class of second countable Moore groups. Recall that G is said to be a Moore group if all irreducible representations of G are finite dimensional. Locally compact Moore groups are completely described in [START_REF] Moore | Groups with finite dimensional irreducible representations[END_REF]: a Lie group is a Moore group if and only if it has a closed subgroup H such that H modulo its center is compact, and a locally compact group is a Moore group if and only if it is a projective limit of Lie groups which are Moore groups. See also the survey [START_REF] Palmer | Classes on nonabelian, noncompact, locally compact groups[END_REF] for more information concerning the links between various properties of topological groups, among them the property of being a Moore group. Of course all locally compact abelian groups are Moore groups.

Here is the first main result of this paper.

Theorem 2.1. -Let G be a second countable locally compact Moore group. Let pg k q kě1 be a sequence of elements of G. Suppose that pg k q kě1 satisfies the following equidistribution assumption:

(2.2)
for all (finite dimensional) irreducible unitary representations π of G on a Hilbert space H, except those belonging to at most countably many equivalence classes,

1 N N ÿ k"1
xπpg k qx, yy N / / `8 / / 0 for every x, y P H.

-If Q " tg k ; k ě 1u generates G (in which case G has to be countable), then Q is a Kazhdan set in G.
-If Q is not assumed to generate G, Q becomes a Kazhdan set when one adds to it a suitable "small" perturbation. More precisely, if pW n q ně1 is an increasing sequence of subsets of G such that

Ť ně1 W n " G, there exists n ě 1 such that W n Y Q is a Kazhdan set in G.
The equidistribution property (2.2) of the sequence pg k q kě1 takes a more familiar form when the group G is supposed to be abelian: it is equivalent to requiring that condition (2.3) below holds true for all characters χ of the group except possibly countably many.

Theorem 2.2. -Let G be a locally compact abelian group, and let pg k q kě1 be a sequence of elements of G. Suppose that

(2.3) 1 N N ÿ k"1 χpg k q N / / `8 / / 0
for all characters χ on G, except at most countably many.

If Q " tg k ; k ě 1u generates G, then Q is a Kazhdan set in G. If Q is not assumed to generate G, and if pW n q ně1 is an increasing sequence of subsets of G such that Ť ně1 W n " G, then there exists n ě 1 such that W n Y Q is a Kazhdan set in G.
Theorem 2.2 can thus be seen as a particular case of Theorem 2.1, except for the fact that there is no need to suppose that the group is second countable when it is known to be abelian. The case G " Z provides a positive answer to Question 1.5 (b) above.

2.2. Kazhdan sets and finite dimensional subrepresentations. -The proof of Theorem 2.2 relies on Theorem 2.3 below, which gives a new condition for a "small perturbation" of a subset Q of a group G to be a Kazhdan set in G. Theorem 2.3 constitutes the core of the paper, and has, besides the proofs of Theorems 2.1 and 2.2, several interesting applications which we will present in Sections 5 and 6.

Theorem 2.3. -Let G be a topological group, and let pW n q ně1 be an increasing sequence of subsets of G such that W 1 is a neighborhood of the unit element e of G and Ť ně1 W n " G. Let Q be a subset of G satisfying the following assumption:

(*)
there exists a positive constant ε such that every unitary representation π of G on a Hilbert space H admitting a pQ, εq-invariant vector has a finite dimensional subrepresentation.

Then there exists an integer n ě 1 such that

Q n " W n Y Q is a Kazhdan set in G.
If the group G is locally compact, the same statement holds true for any increasing sequence pW n q ně1 of subsets of G such that Ť ně1 W n " G. The condition that W 1 be a neighborhood of e, which appears in the first part of the statement of Theorem 2.3, will be used in the proof in order to ensure the strong continuity of some infinite tensor product representations (see Proposition A.2). When G is locally compact, this assumption is no longer necessary (see Proposition A.1).

We stress that Theorem 2.3 is valid for all topological groups. We will apply it mainly to groups which do not have Property (T) and to subsets of such groups which are not relatively compact, a notable exception being the proof of Theorem 5.1, where we retrieve a characterization of Property (T) for σ-compact locally compact groups due to Bekka and Valette [START_REF] Bekka | Kazhdan's Property (T) and amenable representations[END_REF], see also [6, Th. 2.12.9]. The original proof of this result relies on the Delorme-Guichardet theorem that such a group has Property (T) if and only if it has property (FH). See Section 5 for more details.

Theorem 2.3 admits a simpler formulation if we build the sequence pW n q ně1 starting from a set which generates the group: Corollary 2.4. -Let G be a topological group. Let Q 0 be a subset of G which generates G and let Q be a subset of G. Suppose either that Q 0 has non-empty interior, or that G is a locally compact group.

If Q satisfies assumption (*) of Theorem 2.3, then Q 0 Y Q is a Kazhdan set in G.
One of the main consequences of Corollary 2.4 is Theorem 2.5 below, which shows in particular that property (*) of Theorem 2.3 characterizes Kazhdan sets among generating sets (and which have non-empty interior -this assumption has to be added if the group is not supposed to be locally compact).

Theorem 2.5. -Let G be a topological group and let Q be a subset of G which generates G. Suppose either that Q has non-empty interior or that G is locally compact. Then the following assertions are equivalent: (a) Q is a Kazhdan set in G; (b) there exists a constant δ P p0, 1q such that every unitary representation π of G on a

Hilbert space H admitting a vector x P H such that inf gPQ |xπpgqx, xy| ą δ}x} 2 has a finite dimensional subrepresentation; (c) there exists a constant ε ą 0 such that every unitary representation π of G on a Hilbert space H admitting a pQ, εq-invariant vector has a finite dimensional subrepresentation.

The assumption that Q generates G cannot be dispensed with in Theorem 2.5: Q " 2Z is a subset of Z which satisfies property (c), but Q is clearly not a Kazhdan set in Z. Condition (b) in Theorem 2.5 is easily seen to be equivalent to condition (c), which is nothing else than assumption (*) of Theorem 2.3. Its interest will become clearer in Section 6 below, where it will be used to obtain a characterization of Kazhdan sets in second countable locally compact abelian groups (Theorem 6.1). In the case of the group Z, the characterization we obtain (Theorem 6.3) involves a classic class of sets in harmonic analysis, called Kaufman sets. We give in Section 6 several examples of "small" Kazhdan sets in Z, describe Kazhdan sets in the Heisenberg groups H n , n ě 1 (Theorem 6.11), and also in the group Aff `pRq (Theorem 6.14). These results provide an answer to Question 1.6.

The paper also contains an appendix which reviews some constructions of infinite tensor product representations on Hilbert spaces, used in the proof of Theorem 2.3.

Mixing properties for unitary representations and an abstract version of

the Wiener theorem 3.1. Ergodic and mixing properties for unitary representations. -We first recall in this section some definitions and results concerning the structure of unitary representations of a topological group G. They can be found for instance in the book [START_REF] Kerr | Ergodic Theory: Independence and dichotomies[END_REF], the notes [START_REF] Peterson | Lecture notes on ergodic theory[END_REF], and the paper [START_REF] Bergelson | Mixing actions of groups[END_REF] by Bergelson and Rosenblatt.

Recall that the class WAPpGq of weakly almost periodic functions on G is defined as follows: if 8 pGq denotes the space of bounded functions on G, f P 8 pGq belongs to WAPpGq if the weak closure in 8 pGq of the set tf ps ´1 q ; s P Gu is weakly compact. For each s P G, f ps ´1 q denotes the function t / / f ps ´1tq on G. By comparison, recall that f P 8 pGq is an almost periodic function on G, written f P APpGq, if the norm closure in 8 pGq of tf ps ´1 q ; s P Gu is compact. If π is a unitary representation of G on a Hilbert space H, the functions xπp qx, yy, ˇˇxπp qx, yy ˇˇ, and ˇˇxπp qx, yy

ˇˇ2

, where x and y are any vectors of H, belong to WAPpGq. For more on weakly almost periodic functions on a group, see for instance [START_REF] Burckel | Weakly almost periodic functions on semigroups[END_REF] or [START_REF] Glasner | Ergodic theory via joinings[END_REF]Ch. 1,Sec. 9]. The interest of the class of weakly almost periodic functions on G in our context is that there exists on WAPpGq a unique G-invariant mean m. It satisfies mpf ps ´1 qq " mpf p s ´1qq " mpf q for every f P WAPpGq and every s P G. The abstract ergodic theorem then states that if π is a unitary representation of G on H, mpxπp qx, yyq " xP π x, yy for every vectors x, y P H, where P π denotes the projection of H onto the space E π " tx P H ; πpgqx "

x for every g P Gu of G-invariant vectors for π. The representation π is ergodic (i. e. admits no non-zero G-invariant vector) if and only if mpxπp qx, yyq " 0 for every x, y P H. Following [START_REF] Bergelson | Mixing actions of groups[END_REF], let us now recall that the representation π is said to be weakly mixing if mp|xπp qx, xy|q " 0 for every x P H, or, equivalently, mp|xπp qx, xy| 2 q " 0 for every x P H. Then mp|xπp qx, yy|q " mp|xπp qx, yy| 2 q " 0 for every x, y P H.

We will need the following characterization of weakly mixing representations.

Proposition 3.1. -Let π be a unitary representation of G on a Hilbert space H. The following assertions are equivalent:

(1) π is weakly mixing;

(2) π admits no finite dimensional subrepresentation;

(3) π b π has no non-zero G-invariant vector.

Here π is the conjugate representation of π. The representation π b π is equivalent to a representation of G on the space HSpHq of Hilbert-Schmidt operators on H, which is often more convenient to work with. Recall that HSpHq is a Hilbert space when endowed with the scalar product defined by the formula xA, By " trpB ˚Aq for every A, B P HSpHq. The space H b H, where H is the conjugate of H, is identified to HSpHq by associating to each elementary tensor product x b y of H b H the rank-one operator x , yy x on H. This map Θ : H b H / / HSpHq extends into a unitary isomorphism, and we have for every g P G and every T P HSpHq Θ π b πpgq Θ ´1pT q " πpgq T πpg ´1q.

We will, when needed, identify π b π with this equivalent representation, and use it in particular in Section 3.3 to obtain a concrete description of the space E πbπ of G-invariant vectors for π b π, which is identified to the subspace of HSpHq E π " tT P HSpHq ; πpgq T " T πpgq for every g P Gu3 .2. Compact unitary representations. -A companion to the property of weak mixing for unitary representation is that of compactness: given a unitary representation π of G on H a vector x P H is compact for π if the norm closure of the set tπpgqx ; g P Gu is compact in H. The representation π itself is said to be compact if every vector of H is compact for π. Compact representations decompose as direct sums of irreducible finite dimensional representations. The general structural result for unitary representations is given by the following result. Proposition 3.2. -A unitary representation π of G on a Hilbert space H decomposes as a direct sum of a weakly mixing representation and a compact representation:

H " H w K ' H c ,
where H w and H c are both G-invariant closed subspaces of H, π w " π| Hw is weakly mixing and π c " π| Hc is compact. Hence π decomposes as a direct sum of a weakly mixing representation and finite dimensional irreducible subrepresentations.

See [START_REF] Peterson | Lecture notes on ergodic theory[END_REF]Ch. 1], [6, Appendix M], [START_REF] Bergelson | Mixing actions of groups[END_REF] or [START_REF] Dye | On the ergodic mixing theorem[END_REF] (in the amenable case) for detailed proofs of these results. Now let π be a compact representation of G on a Hilbert space H, decomposed as a direct sum of irreducible finite dimensional representations of G. We sort out these representations by equivalence classes, and index the distinct equivalence classes by an index j belonging to a set J, which may be finite or infinite (and which is countable if H is separable). For every j P J, we index by i P I j all the representations appearing in the decomposition of π which are in the j-th equivalence class. More precisely, we can decompose H and π as

H " ' j PJ `' i PI j H i, j ˘and π " ' j PJ `' i PI j π i, j ȓespectively,
where the following holds true: -for every j P J, the spaces H i, j , i P I j , are equal. We denote by K j this common space, and by d j its dimension (which is finite). We also write

r H j " ' i PI j H i, j , so that H " ' j PJ r H j ;
-for every j P J, there exists an irreducible representation π j of G on K j such that π i, j is equivalent to π j for every i P I j ; -if j, j 1 belong to J and j ‰ j 1 , π j and π j 1 are not equivalent. Without loss of generality, we will suppose that π i, j " π j for every i P I j . However, we will keep the notation H i, j for the various orthogonal copies of the space K j which appear in the decomposition of H, as discarding this notation may be misleading in some of the proofs presented below.

Let A P BpHq. We write A in block-matrix form with respect to the decompositions

H " ' j PJ `' i PI j H i, j ˘and H " ' j PJ r H j as A " `Au, v ˘k, l P J, u P I k , v P I l and A " `r A k, l ˘k, l PJ respectivelyF
or every j P J and every u, v P I j , we denote by i pjq u, v the identity operator from H u, j into H v, j .

3.3.

A formula for the projection P π of HSpHq on E π . -We now give an explicit formula for the projection P π A of a Hilbert-Schmidt operator A P HSpHq on the following closed subspace of HSpHq: E π " tT P HSpHq ; πpgq T " T πpgq for every g P Gu.

We also compute the norm of P π A. Proposition 3.3. -Let π be a compact representation of G on H, written in the form π " ' j PJ `' i PI j π j ˘as discussed in Section 3.2 above. For every operator A P HSpHq, we have

P π A " ÿ j PJ 1 d j ÿ u, v P I j tr `Au, v ˘i pjq u, v and ||P π A|| 2 " ÿ j PJ 1 d j ÿ u, v PI j ˇˇtr `Au, v ˘ˇ2 .
The proof of Proposition 3.3 relies on the following straightforward lemma:

Lemma 3.4.
-The space E π consists of the operators T P HSpHq such that -for every k, l P J with k ‰ l, r T k, l " 0; -for every k P J and every u, v P I k , there exists a complex number λ u, v such that

T u, v " λ u, v i pkq u, v . Thus r T k, k " `λu, v i pkq u, v ˘u, v PI k .
Proof of Lemma 3.4. -Let T P E π . For every k, l P J, u P I k and v P I l , π k pgq T u, v " T u, v π l pgq for every g P G. Thus the operator T u, v intertwines the two representations π k and π l . If T u, v is non-zero, it follows from Schur's Lemma that T u, v is an isomorphism. The representations π k and π l are thus isomorphically (and hence unitarily) equivalent. Since π k and π l are not equivalent for k ‰ l, it follows that T u, v " 0 in this case. If now k " l, Schur's Lemma again implies that T u, v " λ u, v i pkq u, v for some scalar λ u, v . Thus any operator T P E π satisfies the two conditions of the lemma. The converse is obvious.

The proof of Proposition 3.3 is now easy.

Proof of Proposition 3.3. -Consider, for every j P J and u, v P I j , the one-dimensional subspace E pjq u, v of HSpHq spanned by the operator i pjq u, v . These subspaces are pairwise orthogonal in HSpHq, and by Lemma 3.4 we have

E π " ' j PJ `' u, v PI j E pjq u, v ˘.
Hence, for every A P HSpHq,

P π A " ÿ j PJ ÿ u, v PI j A A, i pjq u, v ||i pjq u, v || HS E i pjq u, v ||i pjq u, v || HS " ÿ j PJ 1 d j ÿ u, v PI j tr `Au, v ˘i pjq u, v ,
which gives the two formulas we were looking for.

Corollary 3.5. -Let π " ' j PJ `' i PI j π j ˘be a compact representation of G on H. Let
x " ' j PJ `' i PI j x i, j ˘and y " ' j PJ `' i PI j y i, j ˘be two vectors of H, and let A P HSpHq be the rank-one operator x , yy x. Then

P π A " ÿ j PJ 1 d j ÿ u, v PI j xx u, j , y v, j y i pjq u, v .
Proof. -For every j P J and u, v P I j , A u, v " x , y v, j y x u, j , so that tr `Au, v ˘" xx u, j , y v, j y. The result then follows from Proposition 3.3.

An abstract version of the Wiener

Theorem. -As recalled in Section 3.1, E π is the space of G-invariant vectors for the representation π b π on HSpHq, where for every x, y P H, x b y is identified with the rank-one operator x , yy x. For every pair px, yq of vectors of H, denote by b b b x, y the element of K b K, with K " '

j PJ K j , defined by b b b x, y " ÿ j PJ 1 a d j ´ÿ i PI j x i, j b y i, j ¯.
It should be pointed out that for a fixed index j P J the vectors x i, j and y i, j are understood in the formula above as belonging to the same space K j (and not to the various orthogonal spaces

H i, j ). So b b b x, y is a vector of K b K, not of H b H. Thus ||b b b x, y || 2 " ÿ j PJ 1 d j ÿ u, v PI j xx u, j , x v, j y xy u, j , y v, j y.
Combining Corollary 3.5 with the formula

m `|xπp qx, yy| 2 ˘" xP πb π x b x, y b y y " xP π x , xyx, x , yyyy yields Corollary 3.6. -Let π " ' j PJ `' i PI j π j ˘be a compact representation of G on H. For every vectors x " ' j PJ `' i PI j x i, j ˘and y " ' j PJ `' i PI j y i, j ˘of H, we have m `|xπp qx, yy| 2 ˘" ÿ j PJ 1 d j ÿ u, v PI j xx u, j , x v, j y . xy u, j , y v, j y " ||b b b x, y || 2 . (3.1)
We thus obtain the following abstract version of the Wiener Theorem for unitary representations of a group G: Theorem 3.7. -Let π " π w ' π c be a unitary representation of G on a Hilbert space H " H w ' H c , where π w is the weakly mixing part of π and π c its compact part. Writing π c " ' j PJ `' i PI j π j ˘as above, we have for every vectors x " x w ' x c and y " y w ' y c of H

(3.2) m `|xπp qx, yy| 2 ˘" || b b b xc, yc || 2 .
Proof. -As we have mp|xπp qx, yy| 2 q " m `|xπ w p qx w , y w y| 2 ˘`m `|xπ c p qx c , y c y| 2 ˘and mp|xπ w p qx w , y w y| 2 q " 0, this follows from Corollary 3.6.

We finally derive an inequality on the quantities m `|xπp qx, yy| 2 ˘for a compact representation π, which is a direct consequence of Corollary 3.6. This inequality will be a crucial tool for the proof of our main result, to be given in Section 4. Using the same notation as in the statement of Corollary 3.6, we denote by x " ' j PJ r

x j and y " ' j PJ r y j the respective decompositions of the vectors x and y of H with respect to the decomposition H " ' j PJ r H j of H. Applying the Cauchy-Schwarz inequality twice to (3.1) yields the following inequalities: Corollary 3.8. -Let π be a compact representation of G on H. For every vectors x and y of H, we have

m `|xπp qx, yy| 2 ˘ď ÿ j PJ 1 d j ||r x j || 2 . ||r y j || 2 ď ÿ j PJ ||r x j || 2 . ||r y j || 2 .
3.5. Why is (3.2) an abstract version of the Wiener Theorem? -Theorem 3.7 admits a much simpler formulation in the case where G is an abelian group. If π is a compact representation of G, the formula (3.1) becomes

m `|xπp qx, yy| 2 ˘" ÿ j PJ ÿ u, v P I j x u, j x v, j y u, j y v, j
where x i, j and y i, j , i P I j , j P J, are simply scalars. Using the notation of Corollary 3.8, we have

(3.3) m `|xπp qx, yy| 2 ˘" ÿ j PJ ˇˇÿ u P I j x u, j y u, j ˇˇ2 " ÿ j PJ ˇˇxr x j , r y j y ˇˇ2 .
For every character χ P Γ (where Γ denotes the dual group of G), we denote by E χ the subspace of H E χ " tx P H ; πpgqx " χpgqx for every g P Gu and by P χ the orthogonal projection of H on E χ . Each representation π j , j P J, being in fact a character χ j on the group G, we can identify the space r H j with E χ j . Equation (3.3) then yields the following corollary: Corollary 3.9. -Let G be an abelian group, and let π be a representation of G on a Hilbert space H. Then we have for every

x, y P H m `|xπp qx, yy| 2 ˘" ÿ j PJ ˇˇxP Eχ j x, P Eχ j yy ˇˇ2 " ÿ χ P Γ ˇˇxP Eχ x, P Eχ yy ˇˇ2 . In particular, if x " y, m `|xπp qx, xy| 2 ˘" ÿ χ P Γ ˇˇˇˇP Eχ x ˇˇˇˇ4 .
Specializing Corollary 3.9 to the case where G " Z yields that for any unitary operator U on H and any vectors x, y P H,

1 2N `1 N ÿ n"´N ˇˇxU n x, yy ˇˇ2 / / N / / `8 ÿ λ P T
ˇˇxP kerpU ´λId H q x, P kerpU ´λId H q yy ˇˇ2 .

In particular, we have

(3.4) 1 2N `1 N ÿ n"´N ˇˇxU n x, xy ˇˇ2 / / N / / `8 ÿ λ P T ˇˇˇˇP kerpU ´λId H q x ˇˇˇˇ4 .
If σ is a probability measure on the unit circle T, the operator M σ of multiplication by e iθ on L 2 pT, σq is unitary. Applying (3.4) to U " M σ and to x " 1, the constant function equal to 1, we obtain Wiener's Theorem:

(3.5) 1 2N `1 N ÿ n"´N | p σpnq| 2 / / N / / `8 ÿ λ P T σptλuq 2 .
We refer the reader to [1, 2, 3, 9, 14] and the references therein for related aspects and generalizations of Wiener's theorem.

We now have all the necessary tools for the proof of Theorem 2.3, which we present in the next section. -Let pW n q ně1 be an increasing sequence of subsets of G satisfying the assumptions of Theorem 2.3, and let Q be a subset of G. For each n ě 1, we denote by Q n the set Q n " W n YQ. Remark that G is the increasing union of the sets Q n , n ě 1. We also denote by ε 0 a positive constant such that assumption (*) holds true: any representation of G admitting a pQ, ε 0 q-invariant vector has a finite dimensional subrepresentation.

In order to prove Theorem 2.3, we argue by contradiction, and suppose that Q n is a non-Kazhdan set in G for every n ě 1. We will then construct for every ε ą 0 a representation π of G which admits a pQ, εq-invariant vector, but is weakly mixing (which, by Proposition 3.1, is equivalent to the fact that π has no finite dimensional subrepresentation), and this will contradict (*).

4.2. Construction of a sequence pπ n q ně1 of finite dimensional representations of G. -The first step of the proof is to show that assumption (*) combined with the hypothesis that Q n is a non-Kazhdan set for every n ě 1 implies the existence of sequences of finite dimensional representations of G with certain properties. Lemma 4.1. -Let 0 be a positive constant such that assumption (*) holds true and suppose that Q n is a non-Kazhdan set in G for every n ě 1. For every sequence pε n q ně1 of positive real numbers decreasing to zero with ε 1 P p0, ε 0 s, there exist a sequence pH n q ně1 of finite dimensional Hilbert spaces and a sequence pπ n q ně1 of unitary representations of G such that, for every n ě 1, π n is a representation of G on H n and -π n has no non-zero G-invariant vector; -π n has a pQ n , ε n q-invariant unit vector a n P H n : ||a n || " 1 and as soon as x n, w is non-zero. Since lim nÑ`8 ||x n, w || " 1, this implies that for any δ ą 0 there exists an integer n such that ρ n, w has a pQ n , δq-invariant vector of norm 1. Applying this to δ " ε 0 , there exists n 0 ě 1 such that ρ n 0 , w has a pQ n 0 , ε 0 q-invariant vector, hence a pQ, ε 0 q-invariant vector. But ρ n 0 , w is weakly mixing, so has no finite dimensional subrepresentation. This contradicts assumption (*). -Let ε ą 0 be an arbitrary positive number. Our aim is to show that there exists a weakly mixing representation of G with a pQ, εq-invariant vector. We fix a sequence pε n q ně1 of positive numbers decreasing to zero so fast that the following properties hold: (i) 0 ă ε n ă ε 0 for every n ě 1, and

sup g P Qn || π n pgqa n ´an || ă ε n . Proof. -Let n ě 1. Since Q n is
ř ně1 ε n ă ε 2 {2; (ii) the sequence p 1 pn`1qε 2 n ř 2n
j"n ε 2 j q ně1 tends to 0 as n tends to infinity. We consider the representation π π π " b ně1 π n of G on the infinite tensor product space H H H " Â a a a ně1 H n , where the spaces H n , the representations π n and the vectors a n are associated to ε n for each n ě 1 by Lemma 4.1. We refer to the appendix for undefined notation concerning infinite tensor products. We first prove the following fact: Fact 4.2. -Under the assumptions above, π π π is a strongly continuous representation of G on H H H which has a pQ, εq-invariant vector.

Proof of Fact 4.2. -In order to prove that π π π is well-defined and strongly continuous, it suffices to check that the assumptions of Proposition A.2 in the appendix hold true. For every g P G and n ě 1, we have |1 ´xπ n pgqa n , a n y| ď ||π n pgqa n ´an || so that sup

g P Qn |1 ´xπ n pgqa n , a n y| ă ε n .
By assumption (i), the series ř ně1 ε n is convergent. Since every element g P G belongs to all the sets Q n except finitely many, the series ř ně1 |1 ´xπ n pgqa n , a n y| is convergent for every g P G. Moreover, it is uniformly convergent on Q 1 , and hence on W 1 . The function

g / / ÿ ně1 |1 ´xπ n pgqa n , a n y| is thus continuous on W 1 ,
which is a neighborhood of e. It follows then from Proposition A.2 that π π π is strongly continuous on H H H. If G is locally compact, Proposition A.1 and the first part of the argument above suffice to show that π π π is strongly continuous, even when W 1 is not a neighborhood of e.

Next, it is easy to check that the elementary vector a a a " b ně1 a n of  a a a ně1 H n satisfies ||a a a|| " 1 and sup gPQ ||π π πpgqa a a ´a a a|| ă ε. Indeed ||a a a|| " ś ně1 ||a n || " 1, and for every g P Q we have (using the fact that Q Ď Q n for every n ě 1) ||π π πpgqa a a ´a a a|| 2 " 2 p1 ´Rexπ π πpgqa a a, a a ayq ď 2 ˇˇ1 ´ź ně1 xπ n pgqa n , a n y ˇď

2 ÿ ně1 |1 ´xπ n pgqa n , a n y| ă 2 ÿ ně1 ε n .
Assumption (i) on the sequence pε n q ně1 implies that sup g P Q ||π π πpgqa a a ´a a a|| 2 ă ε 2 , and a a a is thus a pQ, εq-invariant vector for π π π.

Using the notation of Section 3.2, we now decompose π n and H n as

π n " ' j P Jn ´' i P I j, n π j, n ¯and H n " ' j P Jn ´' i P I j, n H i, j, n
respectively.

Since H n is finite dimensional, all the sets J n and I j, n , j P J n , are finite, and we assume that they are subsets of N. For every j P J n , H i, j, n " K j, n . We also decompose a n P H n as a n " ' j PJn `' i PI j, n a i, j, n ˘, and write r a j, n " ' iPI j, n a i, j, n for every j P J n . We have ||π j, n pgq a i, j, n ´ai, j, n || 2 ¯1{2 ă ε n for every j P J n .

(
There are now two cases to consider.

' Case 1. We have lim nÑ`8 max jPJn ||r a j, n || " 0.

Using Corollary 3.8 and the fact that

ř j PJn || r a j, n || 2 " ||a n || 2 " 1, we obtain that mp |xπ n p qa n , a n y| 2 q ď ÿ j PJn || r a j, n || 4 ď max j PJn || r a j, n || 2 . ÿ j PJn || r a j, n || 2 ď max j PJn || r a j, n || 2 .
It follows from our assumption that lim nÑ`8 mp |xπ n p qa n , a n y| 2 q " 0. So π π π is weakly mixing by Proposition A.3. We have thus proved in this case the existence of a weakly mixing representation of G with a pQ, εq-invariant vector.

' Case 2. There exists δ ą 0 such that max jPJn ||r a j, n || ą δ for every n ě 1.

Let, for every n ě 1, j n P J n be such that ||r a jn, n || ą δ. Set I n " I jn, n Ď N, σ n " π jn, n , K n " K jn, n and b i, n " a i, jn, n for every i P I n . Then σ n is a non-trivial irreducible representation of G on the finite dimensional space K n , and by (4.1) and (4.3) the finite family pb i, n q i PIn of vectors of K n satisfies -Case 2.a. There exists an infinite subset D of N such that whenever k and l are two distinct elements of D, σ k and σ l are not equivalent. Replacing the sequence pσ n q ně1 by pσ n q nPD , we can suppose without loss of generality that for every distinct integers m and n, with m, n ě 1, σ m and σ n are not equivalent. Consider for every n ě 1 the representation

ρ n " r σ n ' ¨¨¨' r σ 2n of G on H n " r K n ' ¨¨¨' r K 2n ,
and the vector b n " `ř2n (4.5). By assumption (ii) on the sequence pε n q ně1 , we obtain that there exists an integer n 0 ě 1 such that sup g P Qn ||ρ n pgqb n ´bn || ă ε n for every n ě n 0 . Let now ρ ρ ρ " b něn 0 ρ n be the infinite tensor product of the representations ρ n on the space H H H " Â a a a něn 0 H n . An argument similar to the one given in Fact 4.2 shows that ρ ρ ρ is a strongly continuous representation of G on H H H which has a pQ, εq-invariant vector. It remains to prove that ρ ρ ρ is weakly mixing, and for this we will show that mp|xρ n p qb n , b n y| 2 q tends to zero as n tends to infinity. Recall that for every n ě 1, the representations σ n , . . . , σ 2n are mutually non-equivalent, so that, by Corollary 3.8, we have for every n ě 1

k"n || r b k || 2 ˘´1 2 `r b n ' ¨¨¨' r b 2n ˘of H n , which satisfies ||b n || " 1. For every g P Q n we have, since Q n is contained in Q j for every j ě n, ||ρ n pgqb n ´bn || 2 " `2n ÿ k"n || r b k || 2 ˘´1 2n ÿ j"n ˇˇˇˇr σ j pgq r b j ´r b j ˇˇˇˇ2 ă 1 δ 2 pn `1q 2n ÿ j"n ε 2 j by
mp|xρ n p qb n , b n y| 2 q ď 2n ÿ j"n ˇˇˇˇ`2 n ÿ k"n || r b k || 2 ˘´1 2 r b j ˇˇˇˇ4 ď 1 δ 4 pn `1q 2 2n ÿ j"n || r b j || 4 ď 1 δ 4 pn `1q
by (4.5). So mp|xρ n p qb n , b n y| 2 q tends to zero as n tends to infinity. By Proposition A.3, ρ ρ ρ is weakly mixing. We have proved again in this case the existence of a weakly mixing representation of G with a pQ, εq-invariant vector.

The other case we have to consider is when there exists an integer n 1 ě 1 such that for every n ě n 1 , σ n is equivalent to one of the representations σ 1 , . . . , σ n 1 . Indeed, if there is no such integer, we can construct a strictly increasing sequence pn k q kě1 of integers such that, for every k ě 1, σ n k is not equivalent to one of the representations σ 1 , . . . , σ n k´1 . The set D " tn k ; k ě 1u then has the property that whenever m and n are two distinct elements of D, σ m and σ n are not equivalent, and we are back to the setting of Case 2.a. Without loss of generality, we can suppose that σ n is equal to σ 1 for every n ě 1.

-Case 2.b. For every n ě 1, σ n is equal to σ 1 . By (4.4), we have It follows that σ has almost-invariant vectors for finite sets: for every δ ą 0 and every finite subset S of G, σ has an pS, δq-invariant vector. This implies that σ 1 itself has almost-invariant vectors for finite sets (see [START_REF] Peterson | Lecture notes on ergodic theory[END_REF]Lem. 1.5.4] or [START_REF] Kerr | Ergodic Theory: Independence and dichotomies[END_REF]). Since σ 1 is a finite dimensional representation, it follows that σ 1 has almost-invariant vectors. If pv n q ně1 is a sequence of unit vectors of H 1 such that sup g PG ||σpgqv n ´vn || ă 2 ´n for every n ě 1, then any accumulation point of pv n q ně1 is a non-zero G-invariant vector for σ 1 . This contradicts our initial assumption on σ 1 , and shows that the hypothesis of Case 2.b cannot be fulfilled.

Summing up our different cases, we have thus proved that there exists for every ε ą 0 a representation of G with a pQ, εq-invariant vector but no finite dimensional subrepresentation. This contradicts assumption (*) of Theorem 2.3, and concludes the proof.

Some consequences of Theorem 2.3

We begin this section by proving the two characterizations of Kazhdan sets obtained as consequences of Theorem 2.3. 

Proofs of

. . . g ˘1 n ; g 1 , . . . , g n P Q 0 u. Then G " Ť ně1 Q ˘n 0 .
Let g 0 be an element of the interior of Q 0 . Then g ´1 0 Q 0 is a neighborhood of e. There exists n 0 ě 1 such that g ´1 0 belongs to Q ˘n0 0 , and thus Q ˘pn 0 `1q 0 is a neighborhood of e. If we set W n " Q ˘pn 0 `nq 0

for n ě 1, the sequence of sets pW n q ně1 is increasing, W 1 is a neighborhood of e, and pW n q ně1 satisfies the assumptions of Theorem 2.3. So if Q is a subset of G for which assumption (*) of Theorem 2.3 holds true, there exists n ě 1 such that Q ˘pn`n 0 q 0 Y Q is a Kazhdan set in G. Let ε ą 0 be a Kazhdan constant for this set. Then ε{pn `n0 q is a Kazhdan constant for Q 0 Y Q, and Q 0 Y Q is a Kazhdan set in G. If G is locally compact, the same proof holds true without the assumption that Q 0 has non-empty interior.

Proof of Theorem 2.5. -Let us first show that (a) implies (b). Suppose that Q is a Kazhdan set, and let 0 ă ε ă ? 2 be a Kazhdan constant for Q. Let δ " a 1 ´ε2 {2 and consider a representation π of G on a Hilbert space H for which there is a vector 

Property (T) in

σ-compact locally compact groups. -As a consequence of Theorem 2.3, we retrieve a characterization of Property (T) due to Bekka and Valette [START_REF] Bekka | Kazhdan's Property (T) and amenable representations[END_REF], [6, Th. 2.12.9], valid for σ-compact locally compact groups, which states the following: Theorem 5.1 ( [START_REF] Bekka | Kazhdan's Property (T) and amenable representations[END_REF]). -Let G be a σ-compact locally compact group. Then G has Property (T) if and only if every unitary representation of G with almost-invariant vectors has a non-trivial finite dimensional subrepresentation.

The proof of [START_REF] Bekka | Kazhdan's Property (T) and amenable representations[END_REF] relies on the equivalence between Property (T) and Property (FH) for such groups [6, Th. 2.12.4]. As a direct consequence of Theorem 2.3, we will derive a new proof of Theorem 5.1 which does not involve property (FH).

If Q is a subset of a topological group G, and if π is a unitary representation of G on a Hilbert space H, we say that π has Q-almost-invariant vectors if it has pQ, εq-invariant vectors for every ε ą 0. The same argument as in [6, Prop. 1.2.1] shows that Q is a Kazhdan set in G if and only if every representation of G with Q-almost-invariant vectors has a non-zero G-invariant vector. As a direct corollary of Theorem 2.5, we obtain the following characterization of Kazhdan sets which generate the group: Corollary 5.2. -Let Q be a subset of a locally compact group G which generates G. Then Q is a Kazhdan set in G if and only if every representation π of G with Q-almostinvariant vectors has a non-trivial finite dimensional subrepresentation.

Proof of Corollary 5.2. -The only thing to prove is that if every representation π of G with Q-almost-invariant vectors has a non-trivial finite dimensional representation, Q is a Kazhdan set. For this it suffices to show the existence of an ε ą 0 such that assumption (*) of Theorem 2.3 holds true. The argument is exactly the same as the one given in [6, Prop. 1.2.1]: suppose that there is no such ε, and let, for every ε ą 0, π ε be a representation of G with a pQ, εq-invariant vector but no finite dimensional subrepresentation. Then π " À εą0 π ε has Q-almost-invariant vectors but no finite dimensional subrepresentation (this follows immediately from [6, Prop. A.1.8]), contradicting our initial assumption.

Proof of Theorem 5.1. -It is clear that Property (T) implies that every representation of G with almost-invariant vectors has a non-trivial finite dimensional subrepresentation. Conversely, suppose that every representation of G with almost-invariant vectors has a non-trivial finite dimensional subrepresentation. Using the same argument as in the proof of Corollary 5.2, we see that there exists a compact subset Q of G such that assumption (*) of Theorem 2.3 holds true. Choosing for pW n q ně1 an increasing sequence of compact subsets of G such that Ť ně1 W n " G, Theorem 2.3 implies that there exists an n ě

1 such that W n Y Q is a Kazhdan set in G. Since W n Y Q is compact, G has Property (T).
5.3. Equidistribution assumptions: proofs of Theorems 2.2 and 2.1. -Let G be a second countable locally compact group, and let π be a unitary representation of G on a separable Hilbert space H. Such a representation can be decomposed as a direct integral of irreducible unitary representations over a Borel space (see for instance [6, Sec. F.5] or [START_REF] Folland | A course in abstract harmonic analysis[END_REF]). More precisely, there exists a finite positive measure µ on a standard Borel space Z, a measurable field z Þ Ñ H z of Hilbert spaces over Z, and a measurable field of irreducible representations z Þ Ñ π z , where each π z is a representation of G on H z , such that π is unitarily equivalent to the direct integral π µ "

' Z π z dµpzq on H " ż ' Z H z dµpzq. The
Hilbert space H is the set of equivalence classes of square integrable vector fields z Þ Ñ x z , with x z P H z , with respect to the measure µ; π µ is the representation of G on H defined by π µ pgqx " rz Þ Ñ π z pgqx z s for every g P G and x P H . Proof of Theorem 2.1. -Our aim is to show that, under the hypothesis of Theorem 2.1, assumption (*) of Theorem 2.3 is satisfied. Let π be a representation of G on a Hilbert space H. Since G is second countable, we can suppose that H is separable. Suppose that π admits a pQ, 1{2q-invariant vector x P H and, using the notation and the result recalled above, write for every irreducible representation π whose equivalence class rπs does not belong to C 0 and every vector x in the underlying Hilbert space. It follows from (5.2) that the set Z 0 " tz P Z ; rπ z s P C 0 u satisfies µpZ 0 q ą 0, and there exists rπ 0 s P C 0 such that µptz P Z ; π z and π 0 are equivalentuq ą 0. Hence π 0 is a subrepresentation of π. Since all irreducible representations of G are supposed to be finite dimensional, π has a finite dimensional subrepresentation. So assumption (*) of Theorem 2.3 is satisfied. As Q generates G, it now follows from Theorem 2.5 that Q is a Kazhdan set in G.

π " ż ' Z π z dµpzq, x " r z / / x
Proof of Theorem 2.2. -The proof of Theorem 2.2 is exactly the same as that of Theorem 2.1, using the fact that if G is a locally compact abelian group (not necessarily second countable), any unitary representation of G is equivalent to a direct integral of irreducible representations (see for instance [START_REF] Folland | A course in abstract harmonic analysis[END_REF]Th. 7.36]).

Examples and applications

We present in this section some examples of Kazhdan sets in different kinds of groups, some statements being obtained as consequences of Theorems 2.3 or 2.5. We do not try to be exhaustive, and our aim here is rather to highlight some interesting phenomena which appear when looking for Kazhdan sets, as well as the connections of these phenomena with some remarkable properties of the group. We begin with the simplest case, that of locally compact abelian (LCA) groups.

6.1. Kazhdan sets in locally compact abelian groups. -Let G be a second countable LCA group, the dual group of which we denote by Γ. If σ is a finite Borel measure on Γ, recall that its Fourier-Stieljes transform is defined by p σpgq " ż Γ γpgq dσpγq for every g P G.

It is an easy consequence of the spectral theorem for unitary representations that if Q is a subset of a second countable LCA group G, Q is a Kazhdan set in G if and only if there exists ε ą 0 such that any probability measure σ on Γ with sup gPQ |p σpgq ´1| ă ε satisfies σpt1uq ą 0, where 1 denotes the trivial character on G. Using Theorem 2.5 combined with the spectral theorem for unitary representations again, we obtain the following stronger characterization of Kazhdan sets which generate the group in any second countable LCA group. Theorem 6.1. -Let G be a second countable LCA group, and let Q a subset of G which generates G. The following assertions are equivalent:

(1) Q is a Kazhdan set in G;

(2) there exists δ P p0, 1q such that any probability measure σ on Γ with inf gPQ |p σpgq| ą δ has a discrete part; (3) there exists ε ą 0 such that any probability measure σ on Γ with sup gPQ |p σpgq ´1| ă ε has a discrete part.

Theorem 6.1 becomes particularly meaningful in the case of the group Z, as it yields a characterization of Kazhdan subsets of Z involving some classic sets in harmonic analysis, introduced by Kaufman in [START_REF] Kaufman | Remark on Fourier-Stieltjes transforms of continuous measures[END_REF]. They are called w-sets by Kaufman [START_REF] Kaufman | Continuous measures and analytic sets[END_REF], and Kaufman sets (Ka sets) by other authors, such as Hartman [START_REF] Hartman | The method of Grothendieck-Ramirez and weak topologies in C(T)[END_REF], [START_REF] Hartman | On harmonic separation[END_REF]. Definition 6.2. -Let Q be a subset of Z, and let δ P p0, 1q.

' We say that Q belongs to the class Ka if there exists a finite complex-valued continuous Borel measure µ on T such that inf nPQ |μpnq| ą 0, and to the class δ-Ka if there exists a finite complex-valued continuous Borel measure µ on T with µpTq " 1 such that inf nPQ |μpnq| ą δ.

' We say that Q belongs to the class Ka `if there exists a continuous probability measure σ on T such that inf nPQ |σpnq| ą 0, and to the class δ-Ka `if there exists a continuous probability measure σ on T such that inf nPQ |σpnq| ą δ.

Our characterization of Kazhdan subsets of Z is given by Theorem 6.3 below: Theorem 6.3. -Let Q a subset of Z which generates Z. Then Q is a Kazhdan set in Z if and only if there exists a δ P p0, 1q such that Q does not belong to δ-Ka `.

It is interesting to remark [START_REF] Hartman | On harmonic separation[END_REF] that a set Q belongs to Ka if and only if it belongs to δ-Ka for every δ P p0, 1q. There is no similar statement for the class Ka `: any sufficiently lacunary subset of Z, such as Q " t3 k `k ; k ě 1u, is easily seen to belong to Ka `(it suffices to consider an associated Riesz product -see for instance [START_REF] Host | Non-singular transformations and spectral analysis of measures[END_REF] for details); but the same reasoning as in Example 6.4 below shows that this set Q is a Kazhdan subset of Z. Thus there exists by Theorem 6.3 a δ P p0, 1q such that Q does not belong to δ-Ka `.

We present now some typical examples of Kazhdan sets in Z or R obtained using the above characterizations. The first one provides a negative answer to Question 1.5 (a). Example 6.4. -The set Q " t2 k `k ; k ě 0u is a Kazhdan set in Z and there are irrational numbers θ such that pe 2iπnθ q nPQ is not dense in T. In particular, no rearrangement pm k q k ě1 of the elements of Q exists such that pe 2iπm k θ q k ě1 is equidistributed in T for every irrational number θ.

Proof. -The sequence pn k q kě0 defined by n k " 2 k `k for every k ě 0 satisfies the relation 2n k " n k`1 `k ´1 for every k ě 0. Let σ be a probability measure on T such that sup kě0 |p σpn k q ´1| ă 1{18. Since, by the Cauchy-Schwarz inequality,

|p σpkq ´1| ď ż T |λ k ´1|dσpλq ď ? 2 |p σpkq ´1| 1{2 for every k P Z,
we have

|p σpk ´1q ´1| ď 2 ż T |λ n k ´1|dσpλq `żT |λ n k`1 ´1|dσpλq ď 2 ? 2 |p σpn k q ´1| 1{2 `?2 |p σpn k`1 q ´1| 1{2
for all k ě 1, so that sup kě0 |p σpkq ´1| ă 1. Since

1 N N ÿ k"1 p σpkq " ż T ´1 N N ÿ k"1 λ k ¯dσpλq / / σpt1uq as N / / `8,
we have σpt1uq ą 0. So Q " tn k ; k ě 0u is a Kazhdan set in Z. But pn k q kě0 being lacunary, it follows from a result proved independently by Pollington [START_REF] Pollington | On the density of sequences pn k ξq[END_REF] and De Mathan [START_REF] Mathan | Numbers contravening a condition in density modulo 1[END_REF] that there exists a subset A of r0, 1s of Hausdorff measure 1 such that for every θ in A, the set Qθ " tn k θ ; k ě 0u is not dense modulo 1. One of these numbers θ is irrational, and the conclusion follows.

Example 6.5.

-The set Q 1 " t2 k ; k ě 0u is not a Kazhdan set in Z.
Proof. -The fact that Q 1 is not a Kazhdan set in Z relies on the observation that 2 k divides 2 k`1 for every k ě 0. Using the same construction as the one of [13, Prop. 3.9], we consider for any fixed ε ą 0 a decreasing sequence pa j q jě1 of positive real numbers with a 1 ă ε{p2πq such that the series ř jě1 a j is divergent. Then the infinite convolution of two-points Dirac measures σ " j ě1 `p1 ´aj qδ t1u `aj δ te iπ2 ´j`1 u ˘ is a well-defined probability measure on T, which is continuous by the assumption that the series ř jě1 a j diverges. For every k ě 0,

p σp2 k q " ź jě1 `1 ´aj `aj e iπ2 k´j`1 ˘" ź jěk`1 `1 ´aj p1 ´eiπ2 k´j`1 q ˘.
As |1 ´aj p1 ´eiπ2 k´j`1 q| ď 1, it follows that

|p σp2 k q ´1| ď ÿ jěk`1 a j |1 ´eiπ2 k´j`1 | ď π a k`1 2 k`1 ÿ jěk`1 2 ´j " 2πa k`1 ă ε
for every k ě 0. This proves that Q 1 is not a Kazhdan set in Z.

Example 6.6. -If p is a non-constant polynomial with integer coefficients such that ppZq is included in aZ for no integer a with |a| ě 2, then Q " tppkq ; k ě 0u is a Kazhdan set in Z.

Proof. -Our assumption that ppZq is included in aZ for no integer a with |a| ě 2 implies that Q generates Z. Since the sequence pλ ppkq q kě0 is uniformly distributed in T for every λ " e 2iπθ with θ irrational (see for instance [START_REF] Kuipers | Uniform distribution of sequences[END_REF]Th. 3.2]), Theorem 2.1 implies that Q is a Kazhdan set in Z.

Example 6.7. -Let p be a non-constant real polynomial, and let Q " tppkq ; k ě 0u.

Then p´δ, δq Y Q is a Kazhdan subset of R for any δ ą 0.

Proof. -Write p as ppxq " ř d j"0 a j x j , d ě 1, and let r P t1, . . . , du be such that a r ‰ 0. It is well-known (see for instance [START_REF] Kuipers | Uniform distribution of sequences[END_REF]Th. 3.2]) that the sequence pe 2iπtppkq q kPZ is uniformly distributed in T as soon as ta r is irrational. This condition excludes only countably many values of t. Set now W n " p´n, nq for every integer n ě 1. Thanks to Theorem 2.3, we obtain that there exists n ě 1 such that p´n, nq Y Q is a Kazhdan set in R. Let ε ą 0 be a Kazhdan constant for this set. Fix δ ą 0. In order to prove that p´δ, δq Y Q is a Kazhdan set in R, we consider a positive number γ, which will be fixed later on, and let σ be a probability measure on R such that sup tPp´δ,δqYQ ˇˇp σptq ´1ˇˇă γ. For any a P N and any t P p´δ, δq,

2p1 ´Re p σpatqq " ż R ˇˇe iatx ´1ˇˇ2 dσpxq ď a 2 ż R
ˇˇe itx ´1ˇˇ2 dσpxq ď 2a 2 Re p1 ´p σptqq so that sup tPpδ,δq p1 ´Re p σpatqq ă a 2 γ. If we choose a ą n{δ and γ ă minpε, ε 2 {p2a 2 qq, we obtain that sup tPp´n,nqYQ ˇˇ1 ´p σptq ˇˇă ε, and since ε is a Kazhdan constant for p´n, nq Y Q, σpt0uq ą 0. Hence γ is a Kazhdan constant for p´δ, δq Y Q. Remark 6.8. -It is necessary to add a small interval to the set Q in order to turn it into a Kazhdan subset of R, even when Q generates a dense subgroup of R. Indeed, consider the polynomial ppxq " x `?2. The set Q " tk `?2 ; k ě 0u is not a Kazhdan set in R: for any ε ą 0, let b P N be such that |e 2iπb ? 2 ´1| ă ε. The measure σ defined as the Dirac mass at the point 2πb satisfies sup kě0 |p σpk `?2q ´1| ă ε, so that Q is not a Kazhdan set in R.

We finish this section by exhibiting a link between Kazhdan subsets of Z d and Kazhdan subsets of R d , d ě 1. Let Q be a subset of Z d . Seen as a subset of R d , Q is never a Kazhdan set. But as a consequence of Theorem 2.3, we see that Q becomes a Kazhdan set in R d if we add a small perturbation to it. Proposition 6.9. -Fix an integer d ě 1, and let pW n q ně1 be an increasing sequence of subsets of R d such that Proof. -Let ε ą 0 be a Kazhdan constant for Q, seen as a subset of Z d . Let π be a representation of R d on a separable Hilbert space H which admits a pQ, ε 2 {2q-invariant vector x P H. Without loss of generality we can suppose that π is a direct integral on a Borel space Z, with respect to a finite measure µ on Z, of a family pπ z q zPZ of irreducible representations of R d . So π is a representation of R d on L 2 pZ, µq. We write elements f of L 2 pZ, µq as f " pf z q zPZ . We suppose that ||x|| " 1; our hypothesis implies that sup t t tPQ ˇˇ1 ´xπpt t tqx, xy ˇˇă ε 2 2 Ëach representation π z acts on vectors t t t " pt 1 , . . . , t d q of R d as π z pt t tq " expp2iπxt t t, θ θ θ z yq for some vector θ θ θ z " pθ 1,z , . . . , θ d,z q of R d . Hence

Ť ně1 W n " R d . Let Q be a Kazhdan subset of Z d . There exists an n ě 1 such that W n Y Q is a Kazhdan set in R d . Also, Bp0, δq Y Q is a
sup t t tPQ ˇˇ1 ´żZ e 2iπxt t t,θ θ θzy |x z | 2 dµpzq ˇˇă ε 2 2 Consider
now the representation ρ of Z d on L 2 pZ, µq defined by ρpn n nq f : z / / e 2iπxn n n,θ θ θzy f z for every n n n " pn 1 , . . . , n d q P Z d and every f P L 2 pZ, µq. We have

sup n n nPQ ||ρpn n nqx ´x|| 2 ď 2 sup n n nPQ ˇˇ1 ´xρpn n nqx, xy ˇˇă ε 2 ,
and since ε is a Kazhdan constant for Q as a subset of Z d , ρ has a non-zero Z d -invariant vector. There exists hence f P L 2 pZ, µq with ||f || " 1 such that ρpn n nqf " f for every n n n P Z d . Fix a representative of f P L 2 pZ, µq, and set Z 0 " tz P Z ; f z ‰ 0u. Then µpZ 0 q ą 0. For every z P Z 0 we have e 2iπxn n n,θ θ θzy " 1 for every n n n P Z d , which implies that θ θ θ z P Z d . For each n n n " pn 1 , . . . , n d q P Z d , let Z n n n " tz P Z 0 ; θ i,z " n i for each i P t1, . . . , nuu and H n n n " tf P L 2 pZ, µq ; f " 0 µ-a. e. on ZzZ n n n u. We have Ť n n nPZ d Z n n n " Z 0 , so there exists n n n 0 P Z d such that µpZ n n n 0 q ą 0. Each subspace H n n n is easily seen to be invariant for π, and the representation π n n n induced by π on H n n n is given by π n n n pt t tq f : z / / e 2iπxt t t,n n ny f z for every t t t P R d and every f P H n n n . So π admits a subrepresentation of dimension 1 as soon as H n n n is non-zero, i. e. as soon as µpZ n n n q ą 0. Since µpZ n n n 0 q ą 0, π admit a subrepresentation of dimension 1. An application of Theorem 2.5 now shows that W n Y Q is a Kazhdan set in R d for some n ě 1. If we choose W n " Bp0, nq for every n ě 1, and proceed as in the proof of Example 6.7, we obtain that Bp0, δq Y Q is a Kazhdan set in R d for every δ ą 0.

We now move out of the commutative setting, and present a characterization of Kazhdan sets in the Heisenberg groups H n . 6.2. Kazhdan sets in the Heisenberg groups H n . -The Heisenberg group of dimension n ě 1, denoted by H n , is formed of triples pt, q q q, p p pq of R ˆRn ˆRn " R 2n`1 . The group operation is given by pt 1 , q q q 1 , p p p 1 q ¨pt 2 , q q q 2 , p p p 2 q " pt 1 `t2 `1 2 pp p p 1 ¨q q q 2 ´p p p 2 ¨q q q 1 q, q q q 1 `q q q 2 , p p p 1 `p p p 2 q, where p p p¨q q q denotes the scalar product of two vectors p p p and q q q of R n . Irreducible unitary representations of H n are completely classified (see for instance [START_REF] Taylor | Noncommutative harmonic analysis[END_REF]Ch. 2], or [START_REF] Folland | A course in abstract harmonic analysis[END_REF]Cor. 6.51]): there are two distinct families of such representations, which we denote respectively by pF 1 q and pF 2 q:

-the representations belonging to the family pF 1 q are representations of H n on L 2 pR n q. They are parametrized by an element of R, which we write as ˘λ with λ ą 0. Then π ˘λpt, q q q, p p pq, pt, q q q, p p pq P R 2n`1 , acts on L 2 pR n q as π ˘λpt, q q q, p p pq u : x x x

/ / e ip˘λt˘?λq q q¨x x x`λ 2 q q q¨p p pq upx x x `?λ p p pq where u belongs to L 2 pR n q. These representations have the following important property, which will appear again in the next subsection: Fact 6.10. -For every ˘λ P R and every u, v P L 2 pR n q, xπ ˘λpt, q q q, p p pq u, vy / / 0 as |p p p| / / `8.

Proof. -This follows directly from the dominated convergence theorem if u and v have compact support in R n . It then suffices to approximate u and v by functions with compact support to get the result.

-the representations belonging to the family pF 2 q are one-dimensional. They are parametrized by elements py y y, η η ηq of R 2n : for every pt, q q q, p p pq P H n , π y y y,η η η pt, q q q, p p pq " e ipy y y¨q q q`η η η¨p p pq .

We denote by π n the projection pt, q q q, p p pq Þ ÝÑ pq q q, p p pq of H n onto R 2n . Our main result concerning Kazhdan sets in H n is the following: Theorem 6.11. -Let Q be a subset of the Heisenberg group H n , n ě 1. The following assertions are equivalent:

(1) Q is a Kazhdan set in H n ;

(2) π n pQq is a Kazhdan set in R 2n .

Proof. -We set Q 0 " π n pQq. The proof of Theorem 6.11 relies on the same kind of ideas as those employed in the proof of Proposition 6.9. We start with the easy implication, which is that p1q implies p2q. Suppose that Q is a Kazhdan set in H n , and let ε ą 0 be a Kazhdan constant for Q. Let σ be a probability measure on R 2n such that (6.1) sup pq q q,p p pqPQ 0 ˇˇp σpq q q, p p pq ´1ˇˇ" sup pq q q,p p pqPQ 0 ˇˇż R 2n e ipy y y¨q q q`η η η¨p p pq dσpy y y, η η ηq ´1ˇˇˇă ε 2 2 and consider the representation ρ of H n on L 2 pR 2n , σq defined by ρpt, q q q, p p pqf : py y y, η η ηq / / e ipy y y¨q q q`η η η¨p p pq f py y y, η η ηq for every pt, q q q, p p pq P H n and every f P L 2 pR 2n , σq. Then (6.1) implies that the constant function 1 is a pQ, εq-invariant vector for ρ. Since pQ, εq is a Kazhdan pair in H n , it follows that ρ admits a non-zero H n -invariant function f P L 2 pR 2n , σq. Fix a representative of f , and consider the subset A of R 2n consisting of pairs py y y, η η ηq such that f py y y, η η ηq ‰ 0. Then σpAq ą 0, and for every pq q q, p p pq P R 2n , σ-almost every element py y y, η η ηq of A satisfies y y y ¨q q q `η η η ¨p p p P 2πZ. Hence σ-almost every element py y y, η η ηq of A has the property that y y y ¨q q q `η η η ¨p p p P 2πZ for every pq q q, p p pq P Q 2n . By continuity, σ-almost every element py y y, η η ηq of A has the property that y y y ¨q q q `η η η ¨p p p belongs to 2πZ for every pq q q, p p pq P R 2n , so that py y y, η η ηq " p0 0 0, 0 0 0q. We have thus proved that σpt0 0 0, 0 0 0uq ą 0, and it follows that Q 0 is a Kazhdan set in R 2n .

Let us now prove the converse implication. Suppose that Q 0 is a Kazhdan set in R 2n , and let 0 ă ε ă 3 be a Kazhdan constant for Q 0 . Let π be a unitary representation of H n on a separable Hilbert space H, which admits a pQ, ε 8 q-invariant vector x P H of norm 1. We write as usual π as a direct integral π " ş ' Z π z dµpzq, where µ is a finite Borel measure on a standard Borel space Z, and x as px z q zPZ , with ş Z ||x z || 2 dµpzq " 1. We have (6.2) sup pt,q q q,p p pqPQ ˇˇ1 ´żZ xπ z pt, q q q, p p pqx z , x z ydµpzq ˇˇă ε 8 For every z P Z, the irreducible representation π z belongs to one of the two families pF 1 q and pF 2 q. If π z belongs to pF 1 q, we write it as π ˘λz for some ˘λz P R, and if π belongs to pF 2 q, as π y y yz,η η ηz for some py y y z , η η η z q P R 2n . Let, for i " 1, 2, Z i be the subset of Z consisting of the elements z P Z such that π z belongs to pF i q. We have x z P L 2 pR n q for every z P Z 1 , and x z P C for every x P Z 2 . We now observe the following: Lemma 6.12. -A Kazhdan subset of R 2n contains elements pq q q, p p pq such that the Euclidean norm |p p p| of p p p is arbitrarily large.

Proof. -Let Q 1 be a Kazhdan subset of R 2n , with Kazhdan constant ε ą 0, and suppose that there exists a constant M ą 0 such that |p p p| ď M for every pq q q, p p pq P Q 1 . Let δ ą 0 be such that 2M δ ă ε and consider the probability measure on R 2n defined by σ " δ 0 0 0 ˆ1Bp0 0 0,δq dp p p |Bp0 0 0, δq| For every pq q q, p p pq P Q 1 , |p σpq q q, p p pq ´1| " ˇˇż Bp0 0 0,δq e is s s¨p p p ds s s |Bp0 0 0, δq| ´1ˇˇˇď 2δ|p p p| ď 2M δ ă ε.

But σptp0 0 0, 0 0 0quq " 0, and it follows that Q 1 is not a Kazhdan set in R 2n , which is a contradiction.

By Fact 6.10, we have for every x P Z 1 xπ ˘λz pt, q q q, p p pqx z , x z y / / 0 as |p p p| / / `8 , pt, q q q, p p pq P H n .

Since |xπ ˘λpt, q q q, p p pqx z , x z y| ď ||x z || 2 for every z P Z 1 , and ş Z ||x z || 2 dµpzq " 1, the dominated convergence theorem implies that ż Z 1 xπ ˘λz pt, q q q, p p pqx z , x z ydµpzq / / 0 as |p p p| / / `8 , pt, q q q, p p pq P H n .

By Lemma 6.12, there exists an element pt 0 , q q q 0 , p p p 0 q of Q with |p p p 0 | so large that ˇˇż Z 1 xπ ˘λz pt 0 , q q q 0 , p p p 0 qx z , x z ydµpzq ˇˇă ε 8 Property (6.2) implies then that ˇˇ1 ´żZ 2 π y y yz,η η ηz pt 0 , q q q 0 , p p p 0 q|x z | 2 dµpzq ˇˇă ε 4 from which it follows that

ż Z 2 |x z | 2 dµpzq ą 1 ´ε 4 , so that ż Z 1 ||x z || 2 dµpzq ă ε 4
. Plugging this into (6.2) yields that sup pt,q q q,p p pqPQ ˇˇ1 ´żZ 2 π y y yz,η η ηz pt, q q q, p p pq|x z | 2 dµpzq ˇˇă 3ε 8 Since ş Z 2 |x z | 2 dµpzq ą 1 ´ε{4 and 0 ă ε ă 3, we can, by normalizing the family px z q zPZ 2 , suppose without loss of generality that Z " Z 2 , ş Z |x z | 2 dµpzq " 1 and that (6.3) sup pt,q q q,p p pqPQ ˇˇ1 ´żZ e ipy y yz¨q q q`η η ηz¨p p pq |x z | 2 dµpzq ˇˇă ε.

Consider now the unitary representation ρ of R 2n on L 2 pZ, µq defined by ρpq q q, p p pq f : z / / e ipy y yz¨q q q`η η ηz¨p p pq f z for every pq q q, p p pq P R 2n and every f " pf z q zPZ P L 2 pZ, µq. Then (6.3) can be rewritten as sup pt,q q q,p p pqPQ ˇˇ1 ´xρpq q q, p p pqx, xy ˇˇă ε, i.e. sup pq q q,p p pqPQ 0 ˇˇ1 ´xρpq q q, p p pqx, xy ˇˇă ε.

Since ε is a Kazhdan constant for Q 0 , the representation ρ admits a non-zero R 2n -invariant vector f P L 2 pZ, µq. Proceeding as in the proof of p1q ùñ p2q, we see that for every pq q q, p p pq P R 2n , e ipy y yz¨q q q`η η ηz¨p p pq f pzq " f pzq µ-almost everywhere on Z, so that there exists a subset Z 0 of Z with µpZ 0 q ą 0 such that f does not vanish on Z 0 and, for every z P Z 0 , y y y z ¨q q q `η η η z ¨p p p belongs to 2πZ for every pq q q, p p pq P Q 2n . By continuity, y y y z ¨q q q `η η η z ¨p p p belongs to 2πZ for every z P Z 0 and every pq q q, p p pq P R 2n , so that py y y z , η η η z q " p0 0 0, 0 0 0q for every z P Z 0 . So if we set Z 1 0 " tz P Z ; py y y z , η η η z q " p0 0 0, 0 0 0qu, we have µpZ 1 0 q ą 0. The function f " 1 Z 1 0 is hence a non-zero element of L 2 pZ, µq, which is clearly an H n -invariant vector for the representation π. So pQ, ε 8 q is a Kazhdan pair in H n , and Theorem 6.11 is proved. 6.3. Kazhdan sets in the group Aff `pRq. -The underlying space of the group Aff `pRq of orientation-preserving affine homeomorphisms of R is p0, `8q ˆR, and the group law is given by pa, bqpa 1 , b 1 q " paa 1 , b `ab 1 q, where pa, bq and pa 1 , b 1 q belong to p0, `8q ˆR. As in the case of the Heisenberg groups, the irreducible unitary representations of Aff `pRq are completely classified (see [START_REF] Folland | A course in abstract harmonic analysis[END_REF]Sec. 6.7]) and fall within two classes:

-the class pF 1 q consists of two infinite dimensional representations π `and π ´of Aff `pRq, which act respectively on the Hilbert spaces L 2 pp0, `8q, dsq and L 2 pp´8, 0q, dsq. They are both defined by the formula π ˘pa, bqf : s / / ? a e 2iπbs f pasq where pa, bq P p0, `8q ˆR, f P L 2 pp0, `8q, dsq in the case of π `, and f P L 2 pp´8, 0q, dsq in the case of π ´. It is a direct consequence of the Riemann-Lebesgue lemma that the analogue of Fact 6.10 holds true for the two representations π `and π ´of G: Fact 6.13. -For every f 1 , f 2 P L 2 pp0, `8q, dsq and every g 1 , g 2 P L 2 pp´8, 0q, dsq, we have xπ `pa, bqf 1 , f 2 y / / 0 and xπ ´pa, bqg 1 , g 2 y / / 0 as |b| / / `8.

-the representations of Aff `pRq belonging to the family pF 2 q are one-dimensional. They are parametrized by R, and π λ is defined for every λ P R by the formula π λ pa, bq " a iλ for every pa, bq P p0, `8q ˆR.

Proceeding as in the proof of Theorem 6.11, we characterize the Kazhdan subsets of the group Aff `pRq in the following way: Theorem 6.14. -Let Q be a subset of Aff `pRq. The following assertions are equivalent:

(1) Q is a Kazhdan set in Aff `pRq;

(2) the set Q 0 " tt P R ; D b P R pe t , bq P Qu is a Kazhdan set in R.

Proof. -The proof is similar to that of Theorem 6.11, and we will not give it in full detail here. Let us first sketch briefly a proof of the implication p1q ùñ p2q. Suppose that Q is a Kazhdan set in Aff `pRq, and let ε ą 0 be a Kazhdan constant for Q. Consider a probability measure σ on R such that sup tPQ 0 ˇˇp σptq ´1ˇˇă ε 2 {2. We associate to σ a representation ρ of Aff `pRq on L 2 pR, σq by setting, for every pa, bq P p0, `8q ˆR and every f P L 2 pR, σq, ρpa, bqf : s / / e ispln aq f psq. Since ||ρpa, bq1 ´1|| 2 ď 2 ˇˇż R `eispln aq ´1qdσpsq ˇˇfor every pa, bq P p0, `8q ˆR, we have sup tpa,bq ; ln aPQ 0 u ||ρpa, bq1 ´1|| ă ε, i. e. sup pa,bqPQ ||ρpa, bq1 ´1|| ă ε. Hence ρ admits a non-zero Aff `pRq-invariant function f P L 2 pR, σq, and the same argument as in the proof of Theorem 6.11 shows then that σpt0uq ą 0. The converse implication p2q ùñ p1q is proved in exactly the same way as in Theorem 6.11, using the same modifications as those outlined above. The group R 2n has to be replaced by the multiplicative group pp0, `8q, ˆq and the analogue of Lemma 6.12 is that Kazhdan subsets of this group contain elements of arbitrarily large absolute value. If Q 0 is a Kazhdan set in R, with Kazhdan constant ε small enough, the same argument as in the proof of Theorem 6.11 (involving the same notation) shows that it suffices to prove the following statement: let µ be a finite Borel measure on a Borel space Z, x " px z q zPZ a scalar-valued function of L Then the set Z 0 " tz P Z ; λ z " 0u satisfies µpZ 0 q ą 0. The proof of this statement uses the same argument as the one employed in the proof of Theorem 6.11. It involves the representation ρ of the group pp0, `8q, ˆq on L 2 pZ, µq defined by ρpaqf : z / / e ipln aqλz f z for every a ą 0 and every pf z q zPZ P L 2 pZ, µq, and uses the obvious fact that since Q 0 is a Kazhdan set in R, ta ; ln a P Q 0 u is a Kazhdan set in pp0, `8q, ˆq. Remark 6.15. -Facts 6.10 and 6.13 have played a crucial role in the proofs of Theorems 6.11 and 6.14 respectively, as they allowed us to discard all irreducible representations except the one-dimensional ones in inequalities of the form (6.2). In groups with the Howe-Moore property (see for instance [START_REF] Howe | Asymptotic properties of unitary representations[END_REF], [START_REF] Zimmer | Ergodic theory and semisimple groups[END_REF] or [START_REF] Bekka | Ergodic theory and topological dynamics of group actions on homogeneous spaces[END_REF] for the definition and for more about this property), all non-trivial irreducible representations have the vanishing property of the matrix coefficients stated in Facts 6.10 or 6.13. It easily follows from this observation that all subsets with non-compact closure are Kazhdan sets in groups with the Howe-Moore property, and that if the group is additionally supposed not to have Property (T), the Kazhdan sets are exactly the sets with non-compact closure. As SL 2 pRq is a non-compact connected simple real Lie group with finite center, it has the Howe-Moore property. But it does not have Property (T), and so we have: Example 6.16. -The Kazhdan sets in SL 2 pRq are exactly the subsets of SL 2 pRq with non-compact closure.

These observations testify of the rigidity of the structure of groups with the Howe-Moore property, and stand in sharp contrast with all the examples we have presented in the rest of this section. of vectors with x n P H n for each n ě 1 and such that the series ř ně1 ˇˇ1 ´||x n || ˇˇis convergent. Such sequences are called C 0 -sequences. They are C-sequences, and if px n q ně1 is a C-sequence such that ś ně1 ||x n || ą 0 (i. e. px n q ně1 is non-zero in [START_REF] Guichardet | Produits tensoriels infinis et représentations des relations d'anticommutation[END_REF]Rem. 1.1]: let pa n q ně1 be a sequence with a n P H n and ||a n || " 1 for every n ě 1, such that the equivalence class of pa n q ně1 is A (such a sequence pa n q ně1 does exist: if px n q ně1 is any non-zero C 0 -sequence belonging to A, x n is non-zero for every n ě 1, and we can define a C 0 -sequence pa n q ně1 by setting a n " x n {||x n || for every n ě 1. It is not difficult to check that pa n q ně1 is equivalent to px n q ně1 , and so belongs to A). Then  A ně1 H n coincides with the closed linear span in  ně1 H n of vectors x x x " b ně1 x n , where x n " a n for all but finitely many integers n ě 1. Denoting the vector b ně1 a n by a a a, we write this closed linear span as  a a a ně1 H n (see [START_REF] Guichardet | Produits tensoriels infinis et représentations des relations d'anticommutation[END_REF]), and thus

 ně1 H n ) then px n q ně1 is a C 0 -sequence. If px n q ně1 is a C 0 -sequence, px n q ně1 is
 a a a ně1 H n "  A ně1 H n ,
where A is the equivalence class of a a a. The space  a a a ně1 H n is usually called the Guichardet tensor product of the spaces H n associated to the sequence pa n q ně1 . Proposition 1.1 of [START_REF] Guichardet | Produits tensoriels infinis et représentations des relations d'anticommutation[END_REF] states the following, which is a direct consequence of the discussion above: if x x x " px n q ně1 is a C 0 -sequence which is equivalent to a a a, x x x belongs to  a a a ně1 H n . Vectors x x x of this form are also said to be decomposable with respect to a a a, while vectors x x x " px n q ně1 with x n " a n for all but finitely many indices n are called elementary vectors of  a a a ně1 H n . Suppose that all the spaces H n , n ě 1, are separable. For each n ě 1, let pe p,n q 1ďpďpn be a Hilbertian basis of H n , with 1 ď p n ď `8 and e 1,n " a n . The family of all elementary vectors e e e β " b ně1 e βpnq,n of  a a a ně1 H n , where β is a map from N into itself such that 1 ď βpnq ď p n for every n ě 1 and βpnq " 1 for all but finitely many integers n ě 1, forms a Hilbertian basis of  a a a ně1 H n [START_REF] Neumann | On infinite direct products[END_REF]Lem. 4.1.4]. In particular,  a a a ně1 H n is a separable complex Hilbert space.

A.2. Tensor products of unitary representations. -Let G be a topological group, and let pH n q ně1 be a sequence of complex separable Hilbert spaces. Let pa n q ně1 be a sequence of vectors with a n P H n and ||a n || " 1 for every n ě 1. We are looking for conditions under which one can define a unitary representation π π π of G on  a a a ně1 H n which satisfies (A.1) π π πpgq b ně1 x n " b ně1 π n pgqx n for every g P G and every decomposable vector x x x " b ně1 x n with respect to a a a. Observe that without any assumption, the equality π π πpgq b ně1 x n " b ně1 π n pgqx n does not make any sense, since pπ n pgqx n q ně1 , which is a C 0 -sequence, may not be equivalent to a a a, and thus may not belong to  a a a ně1 H n .

Infinite tensor products of unitary representations have already been studied in various contexts (see for instance [START_REF] Bedos | On infinite tensor products of projective unitary representations[END_REF] and the references therein). In [4, Prop. 2.3], the following observation is made: suppose that, for each n ě 1, U n is a unitary operator on H n . Then there exists a unitary operator U U U " b ně1 U n on  a a a ně1 H n satisfying U U U `bně1 x n ˘" b ně1 U n x n for every decomposable vector x x x " b ně1 x n with respect to a a a if and only if the series ř ně1 ˇˇ1 ´xU n a n , a n y ˇˇis convergent (which is equivalent to requiring that the C 0 -sequence pU n a n q ně1 be equivalent to pa n q ně1 , i. e. to the fact that b ně1 U n a n be a decomposable vector with respect to a a a). It follows from this result that the formula (A. In the general case one needs to impose an additional condition on the representations π n and on the vectors a n in order that π π π be a strongly continuous representation of G on  a a a ně1 H n . Proposition A.2. -Suppose that the series ř ně1 ˇˇ1 ´xπ n pgqa n , a n y ˇˇis convergent for every g P G and that the function g / / ř ně1 ˇˇ1 ´xπ n pgqa n , a n y ˇˇis continuous on a neighborhood of the identity element e of G. Then π π π " b ně1 π n is strongly continuous, and is hence a unitary representation of G on  a a a ně1 H n . Proof of Proposition A.2. -Since the linear span of the elementary vectors is dense in  a a a ně1 H n , and the operators π π πpgq, g P G, are unitary, it suffices to prove that the map g / / π π πpgqx x x is continuous at e for every elementary vector x x x " b ně1 x n of norm 1 of  a a a ně1 H n . Let N ě 1 be such that x n " a n for every n ą N . We have for every g P G:

||π π πpgqx x x ´x x x|| If ε is any positive number, it follows from the assumptions that ||π π πpgqx x x ´x x x|| ă ε if g lies in a suitable neighborhood of e. This proves the continuity of the map g / / π π πpgqx x x.

We finish this appendix by giving a sufficient condition for an infinite tensor product representation on a space  a a a ně1 H n to be weakly mixing: let, for each n ě 1, H n be a separable Hilbert space, a n a vector of H n with ||a n || " 1, and π n a unitary representation of G on H n . We suppose that the assumptions of either Proposition A.1 (when G is locally compact) or Proposition A.2 (in the general case) are satisfied, so that π π π " b ně1 π n is a unitary representation of G on  a a a ně1 H n . Then Proposition A.3. -In the case where lim nÑ`8 mp|xπ n p qa n , a n y| 2 q " 0, the representation π π π " b ně1 π n is weakly mixing.

Proof. -The proof of Proposition A.3 relies on the same idea as that of Proposition A.2: let x x x " b ně1 x n and y y y " b ně1 y n be two elementary vectors in  a a a ně1 H n with ||x x x|| " ||y y y|| " 1. We have |xπ π πpgq x x x, y y yy| Squaring and taking the mean on both sides we obtain that mp|xπ π πp qx x x, y y yy| 2 q ď 4 mp|xπ n p q a n , a n y| 2 q `4 ˇˇˇˇˇˇx n ||x n || ´an ˇˇˇˇˇˇ2 `4 ˇˇˇˇˇˇy n ||y n || ´an ˇˇˇˇˇˇ2

for every n ě 1. Since lim nÑ`8 mp|xπ n p qa n , a n y| 2 q " 0 and the two other terms are equal to zero for n sufficiently large, mp|xπ π πp qx x x, y y yy| 2 q " 0. Weak mixing of π π π now follows from standard density arguments.

4 .

 4 Proof of Theorem 2.3 4.1. Notation.

  PIn || b i, n || 2 ¯1{2 ą δ and sup g P Qn ´ÿ i PIn ||σ n pgq b i, n ´bi, n || 2 ¯1{2 ă ε n . If we write r K n " ' i PIn K n , r b n " ' i PIn b i, n , and r σ n " ' r b n || ą δ and sup g P Qn ||r σ n pgq r b n ´r b n || ă ε n . Now we again have to consider separately two cases.

  Corollary 2.4 and Theorem 2.5. -Let us first prove Corollary 2.4. Proof of Corollary 2.4. -Let Q 0 be a subset of G which has non-empty interior and which generates G. Denote for each n ě 1 by Q ˘n 0 the set tg ˘1 1

  x P H with ||x|| " 1 such that inf gPQ |xπpgqx, xy| ą δ. Then the representation π b π of G on H b H verifies 2Rexπ b πpgqx b x, x b xy " 2|xπpgqx, xy| 2 ą 2 ´ε2 for every g P Q. Hence }π b πpgqx b x ´x b x} ă ε for every g P Q and π b π has a nonzero G-invariant vector. It follows from Proposition 3.1 that π has a finite dimensional subrepresentation. Thus pbq is true. That (b) implies (c) is straightforward, and that (c) implies (a) is a consequence of Corollary 2.4.

  Kazhdan subset of R d for any δ ą 0, where Bp0, δq denotes the open unit ball of radius δ for the Euclidean norm on R d .

  || 2 `||x n, c || 2 . We claim that lim nÑ`8 || x n, c || ą 0. Indeed, suppose that it is not the case. Then lim nÑ`8 ||x n, w || " 1. Since ||ρ n pgqx n ´xn || 2 " ||ρ n, w pgqx n, w ´xn, w || 2 `||ρ n, c pgqx n, c ´xn, c || 2 for every g P G,

	we have					
	sup g P Qn	ˇˇˇˇρ n, w pgq	x n, w ||x n, w ||	||x n, w || ´xn, w	ˇˇˇˇă	2

a not a Kazhdan set in G, there exists a representation ρ n of G on a Hilbert space K n which has no non-zero G-invariant vector, but is such that there exists a unit vector x n P K n with sup

g P Qn || ρ n pgqx n ´xn || ă 2 ´n.

Since 2 ´n ď ε 0 for n large enough, assumption (*) implies that, for such integers n, ρ n has a finite dimensional subrepresentation. By Proposition 3.1, ρ n is not weakly mixing. This means that if we decompose K n as K n " K n, w ' K n, c and ρ n as ρ n " ρ n, w ' ρ n, c , where ρ n,w and ρ n,c are respectively the weakly mixing and compact parts of π n , ρ n, c is non-zero. Since ρ n has no non-zero G-invariant vector, neither have ρ n, w nor ρ n, c . Decomposing x n as x n " x n, w ' x n, c , we have 1 " ||x n, w ´n ||x n, w ||

  So we deduce that lim nÑ`8 || x n, c || " γ ą 0. The same observation as above, applied to the representation ρ n, c , shows that sup For these integers, ρ n, c is a compact representation for which y n " x n, c {||x n, c || is a pQ n , 2 ´pn´1q {γq-invariant vector of norm 1. It has no non-zero Ginvariant vector. Decomposing ρ n, c as a direct sum of finite dimensional representations, straightforward computations show that there exists for each such integer n a finite dimensional representation σ n of G with a pQ n , 2 ´pn´2q {γq-invariant vector but no non-zero G-invariant vector. Lemma 4.1 follows immediately by taking a suitable subsequence of pσ n q ně1 .

	g P Qn	ˇˇˇˇρ n, c pgq	x n, c ||x n, c ||	´xn, c ||x n, c ||	ˇˇˇˇă	2 ´n ||x n, c ||
	for every n such that x n, c is non-zero, and thus that		
	sup g P Qn	ˇˇˇˇρ n, c pgq	x n, c ||x n, c ||	´xn, c ||x n, c ||	ˇˇˇˇă	2 ´pn´1q γ
	for infinitely many integers n.				

4.3. Construction of weakly mixing representations of G with pQ, εq-invariant vectors.

  1 ě ´ÿ i PIn || b i, n || 2 ¯1{2 ą δ and sup g P Qn ´ÿ i PIn ||σ 1 pgqb i, n ´bi, n || 2 ¯1{2 ă ε n , where all the vectors b i,n , i P I n , belong to H 1 . For each n ě 1, set c n " ' Then we have, for every n ě 1, 1 ě ||c n || ą δ and sup g P Qn ||σpgqc n ´cn || ă ε n . Let now S be a finite subset of G. There exists an integer n S ě 1 such that S Ď Q n for every n ě n S , and hence sup g PS ||σpgqc n ´cn || ă ε n for every n ě n S .

	i PIn	b i, n , seen
	as a vector of the infinite direct sum H " '	

jě1

H 1 by defining its j th coordinate to be zero when j does not belong to I n . Let also σ be the infinite direct sum σ " ' jě1 σ 1 of σ 1 on H.

  bounded, and the series ř ně1 ˇˇ1 ´||x n || 2 ˇˇis convergent. Two C 0 -sequences px n q ně1 and py n q ně1 are equivalent if the series ř ně1 ˇˇ1 ´xx n , y n y ˇǐs convergent. If A denotes an equivalence class of C 0 -sequences for this equivalence relation, the incomplete tensor product  A ně1 H n associated to A is the closed linear span in  ně1 H n of the vectors x x x " b ně1 x n , where px n q ně1 belongs to A [32, Def. 4.1.1]. If A and A 1 are two different equivalence classes, the spaces  A ně1 H n and  A 1 ně1 H n are orthogonal, and the linear span of the incomplete tensor products  A ně1 H n , where A runs over all equivalence classes of C 0 -sequences, is dense in the complete tensor product  ně1 H n . If A is an equivalence class of C 0 -sequences,  A ně1 H n admits another, more transparent description, which runs as follows [32, Lem. 4.1.2], see also

  1) makes sense in  a a a ně1 H n if and only if the series (A.2) ÿ ně1 ˇˇ1 ´xπ n pgqa n , a n y ˇǐs convergent for every g P G. Under this condition π π πpgq " b ně1 π n pgq is a unitary operator on  a a a ně1 H n for every g P G, and π π πpghq " π π πpgq π π πphq for every g, h P G. If the group G is discrete, this tensor product representation is of course automatically strongly continuous. It is also the case if G is supposed to be locally compact. Proposition A.1. -Suppose that G is a locally compact group, and that the series ř ně1 |1 ´xπ n pgqa n , a n y| is convergent for every g P G. Then π π π " b ně1 π n is strongly continuous, and is hence a unitary representation of G on  a a a ně1 H n . Proof. -Since all the spaces H n , n ě 1, are separable,  a a a ně1 H n is separable too, and by [6, Lem. A.6.2] it suffices to show that g / / xπ π πpgq ξ ξ ξ, ξ ξ ξy is a measurable map from G into C for every vector ξ ξ ξ P  a a a ně1 H n . Since the linear span of the elementary vectors is dense in  a a a ně1 H n , standard arguments show that it suffices to prove this for elementary vectors x x x " b ně1 x n of  a a a ně1 H n . Since each map g / / xπ n pgqx n , x n y is continuous on G, it is clear that g / / xπ π πpgqx x x, x x xy " ś ně1 xπ n pgqx n , x n y is measurable on G.

  2 " 2p1 ´Rexπ π πpgqx x x, x x xyq " 2 ˆ1 ´ź ně1

	since ||x x x|| "	ź	||x n ||=1. Thus				
		ně1							
	||π π πpgqx x x ´x x x|| 2 ď 2	ÿ ně1	ˇˇ1 ´xπ n pgq	x n ||x n ||	,	x n ||x n ||	y ˇď
			2	N ÿ n"1	ˇˇ1 ´xπ n pgq	x n ||x n ||	,	x n ||x n ||	y ˇˇ`2	ně1 ÿ	|1 ´xπ n pgqa
									Rexπ n pgq	x n ||x n ||	,	||x n || x n	y ˙

n , a n y|.

  2 " 

						ź kě1	ˇˇAπ k pgq	x k ||x k ||	,	y k ||y k ||	Eˇˇˇ2	ď ˇˇAπ n pgq	x n ||x n ||	,	||y n || y n	Eˇˇˇ2
	for every n ě 1 and every g P G. But				
	ˇˇAπ n pgq	x n ||x n ||	,	y n ||y n ||	Eˇˇˇď	|xπ n pgqa n , a n y|	`ˇˇˇˇˇˇx n ||x n ||	´an ˇˇˇˇˇˇ`ˇˇˇˇˇˇy n ||y n ||	´an ˇˇˇˇˇˇ.
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Appendix A. Infinite tensor products of Hilbert spaces

We briefly describe in this appendix some constructions of tensor products of infinite families of Hilbert spaces, and of tensor products of infinite families of unitary representations. These last objects play an important role in the proof of Theorem 2.3. We review here the properties and results which we need, following the original works of von Neumann [START_REF] Neumann | On infinite direct products[END_REF] and Guichardet [START_REF] Guichardet | Produits tensoriels infinis et représentations des relations d'anticommutation[END_REF].

A.1. The complete and incomplete tensor products of Hilbert spaces. -The original construction of the complete and incomplete tensor products of a family pH α q αPI of Hilbert spaces is due to von Neumann [START_REF] Neumann | On infinite direct products[END_REF]. It was later on taken up by Guichardet in [START_REF] Guichardet | Produits tensoriels infinis et représentations des relations d'anticommutation[END_REF] under a somewhat different point of view, and the incomplete tensor products of von Neumann are rather known today as the Guichardet tensor products of Hilbert spaces. Although these constructions can be carried out starting from an arbitrary family pH α q αPI of Hilbert spaces, we will present them here only in the case of a countable family pH n q ně1 of (complex) Hilbert spaces.

The complete infinite tensor product  ně1 H n of the Hilbert spaces H n is defined in [32, Part II, Ch. 3] in the following way: the elementary infinite tensor products are the elements x x x " b ně1 x n , where x n belongs to H n for each n ě 1 and the infinite product ś ně1 ||x n || is convergent in the sense of [32, Def. 2.2.1], which by [32, Lem. 2.4.1] is equivalent to the fact that either x n " 0 for some n ě 1 or the series ř ně1 maxp||x n ||´1, 0q is convergent. Sequences px n q ně1 with this property are called by von Neumann in [START_REF] Neumann | On infinite direct products[END_REF] C-sequences. A scalar product is then defined on the set of finite linear combinations of elementary tensor products by setting xx x x, y y yy " ź ně1 xx n , y n y for any elementary tensor products x x x " b ně1 x n and y y y " b ně1 y n , and extending the definition by linearity to finite linear combinations of such elements. The product defining xx x x, y y yy for two elementary vectors x x x and y y y is quasi-convergent in the sense of [32, Def. 2.5.1], i.e. ś ně1 |xx n , y n y| is convergent. The value of this quasi-convergent product is ś ně1 xx n , y n y if the product is convergent in the usual sense, and 0 if it is not. That this is indeed a scalar product which turns the set of finite linear combinations of elementary tensor products into a complex prehilbertian space is proved in [START_REF] Neumann | On infinite direct products[END_REF]Lem. 3 The incomplete tensor products are closed subspaces of the complete tensor product. They are defined by von Neumann using an equivalence relation between sequences px n q ně1