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QUANTIFIED ASYMPTOTIC BEHAVIOUR OF BANACH

SPACE OPERATORS AND APPLICATIONS TO

ITERATIVE PROJECTION METHODS

CATALIN BADEA AND DAVID SEIFERT

Abstract. We present an extension of our earlier work [Ritt operators
and convergence in the method of alternating projections, J. Approx.
Theory, 205:133–148, 2016] by proving a general asymptotic result for
orbits of an operator acting on a reflexive Banach space. This result is
obtained under a condition involving the growth of the resolvent, and
we also discuss conditions involving the location and the geometry of
the numerical range of the operator. We then apply the general re-
sults to some classes of iterative projection methods in approximation
theory, such as the Douglas-Rachford splitting method and, under suit-
able geometric conditions either on the ambient Banach space or on the
projection operators, the method of alternating projections.

1. Introduction

Many problems in approximation theory can be formulated in terms of
operators acting on suitable Banach or Hilbert spaces. Two particularly sim-
ple yet powerful methods in approximation theory are the Douglas-Rachford
splitting method and the method of alternating projections (for two or more
subspaces). These two iterative projection methods play important roles in
convex optimisation, differential equations and signal processing; see for in-
stance the references in [6]. In both cases one is led to consider a bounded
linear operator T acting on a Hilbert space X, and one is interested in the
asymptotic behaviour of the orbits (Tnx)n≥0 as n → ∞ for different initial
vectors x ∈ X. It is now well known (see for instance the survey [18]) that in
situations such as these one expects a dichotomy for the rate of convergence:
either the sequence (Tnx)n≥0 converges exponentially fast for all x ∈ X or it
converges arbitrarily slowly for suitably chosen initial vectors x ∈ X. It was
recently shown by the authors in [3] that one can say more in the case of the
method of alternating projections, namely that even when the convergence
is arbitrarily slow there exists a rich supply of initial vectors x ∈ X for which
the sequence (Tnx)n≥0 converges to a limit at a rate faster than any poly-
nomial rate. The purpose of this paper is to present a general result in the
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2 C. BADEA AND D. SEIFERT

Banach space situation which extends the approach in [3] so as to be appli-
cable to a wider class of iterative schemes, including the Douglas-Rachford
splitting method, and to more general ambient Banach spaces.

The paper is organised as follows. In Section 2 we present a general result,
Theorem 2.1, describing the rate of convergence of orbits of certain opera-
tors acting on a Banach space under an assumption involving the growth
of the resolvent. Then in Section 3 we obtain conditions on the location
and the geometry of the numerical range of the operator which ensure that
the required resolvent growth condition in Theorem 2.1 is satisfied. Fi-
nally, in Sections 4 and 5 we show how the general theory can be applied to
particular methods in approximation theory, namely the Douglas-Rachford
splitting method and the method of alternating projections. For the method
of alternating projections we discuss, in particular, products of orthoprojec-
tions in uniformly convex and uniformly smooth Banach spaces, while for
the Douglas-Rachford splitting method we discuss a variant of the original
result for several subspaces of a given reflexive Banach space.

The notation we use is standard. Given a Banach space X, assumed to
be complex throughout, we write B(X) for the algebra of bounded linear
operators T : X → X. The identity operator on X is denoted by IX , or
simply by I if the space X is clear from the context. Given an operator
T ∈ B(X) we write KerT for the kernel of T and RanT for the range of T ,
and we let FixT = Ker(I − T ). An operator T is said to be power-bounded
if supn≥1 ‖Tn‖ < ∞. Moreover, given T ∈ B(X) we let σ(T ) denote the
spectrum of T , r(T ) its spectral radius and we let R(λ, T ) be the resolvent
operator (λI − T )−1 when λ ∈ C \ σ(T ). The dual of X is denoted by
X∗ and we write 〈x, φ〉 = φ(x) for φ ∈ X∗ and x ∈ X. If X is a Hilbert
space and T ∈ B(X) we write W (T ) = {(Tx, x) : x ∈ X, ‖x‖ = 1} for the
numerical range (field of values) of T . An extension of the numerical range
to the Banach space situation will be introduced in Section 3. Furthermore,
we let D = {λ ∈ C : |λ| < 1} and T = {λ ∈ C : |λ| = 1}, and we use ‘big O’
and ‘little o’ notation in the usual way. Other notation and definitions will
be introduced when needed.

2. A general dichotomy result for the rate of convergence

Let X be a Banach space and suppose that Tn ∈ B(X), n ≥ 0, are
operators such that ‖Tnx‖ → 0 as n → ∞ for all x ∈ X. We say that the
convergence is arbitrarily slow if for every sequence (rn)n≥0 of non-negative
scalars satisfying rn → 0 as n→∞ there exists x ∈ X such that ‖Tnx‖ ≥ rn
for all n ≥ 0. We say that the convergence is weakly arbitrarily slow if for
every sequence (rn)n≥0 of non-negative scalars satisfying rn → 0 as n→∞
there exist x ∈ X and φ ∈ X∗ such that Re〈Tnx, φ〉 ≥ rn for all n ≥ 0. We
say that the convergence is superpolynomially fast for a particular x ∈ X if
‖Tnx‖ = o(n−k) as n→∞ for all k ≥ 1.

Theorem 2.1. Let X be a reflexive Banach space and suppose that T ∈
B(X) is a power-bounded operator such that σ(T ) ∩ T ⊆ {1} and, for some
α ≥ 1,

(2.1) ‖R(eiθ, T )‖ = O(|θ|−α), θ → 0.
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Then X = FixT ⊕ Z, where Z denotes the closure of Ran(I − T ), and for
all x ∈ X we have

(2.2) ‖Tnx− PTx‖ → 0, n→∞,

where PT denotes the projection onto FixT along Z. Moreover, there is a
dichotomy for the rate of convergence. Indeed, if Ran(I − T ) is closed then
there exist C > 0 and r ∈ [0, 1) such that

(2.3) ‖Tn − PT ‖ ≤ Crn, n ≥ 0,

whereas if Ran(I − T ) is not closed then the convergence in (2.2) is arbi-
trarily slow and weakly arbitrarily slow. In either case there exists a dense
subspace X0 of X such that for all x ∈ X0 the convergence in (2.2) is su-
perpolynomially fast.

Proof. Since T is assumed to be power-bounded and X is reflexive it follows
from classical ergodic theory that X = FixT ⊕ Z; see for instance [26,
Section 2.1]. Let Y = Ran(I−T ). Since T is power-bounded and σ(T )∩T ⊆
{1}, it follows from the Katznelson-Tzafriri theorem [25, Theorem 1] that
‖Tnx‖ → 0 as n → ∞ for all x ∈ Y . By a simple density argument the
same is true for all x ∈ Z. Since Tnx = x for all x ∈ FixT and n ≥ 0, we
may deduce (2.2).

Note that both of the spaces FixT and Z are invariant under T . Thus
if we let S denote the restriction of T to Z, then it is easy to see that
σ(S) ⊆ σ(T ) ⊆ D ∪ {1}, and in particular σ(S) ∩ T ⊆ {1}. Note also that
IZ − S maps Z bijectively onto Y . It follows from the Inverse Mapping
Theorem that 1 ∈ σ(S) if and only if Y 6= Z, which is to say if and only if
Y is not closed. Thus if Y is closed then r(S) < 1 and we may find, for each
r ∈ (r(S), 1) a suitable constant C > 0 such that

‖Tn − PT ‖ ≤ ‖Sn‖‖I − PT ‖ ≤ Crn, n ≥ 0,

so (2.3) holds. On the other hand, if Y is not closed then r(S) = 1 and it
follows from [29, Theorem 1] that the convergence in (2.2) is arbitrarily slow.
Furthermore, the space X, being reflexive, does not contain an isomorphic
copy of c0, so it follows from [30, Theorem 1] that the convergence in (2.2) is
weakly arbitrarily slow. Now using [38, Theorem 2.5] or [39, Theorem 2.11]
it follows from assumption (2.1) that

(2.4) ‖Snx‖ = O

(
(log n)1/α

n1/α

)
, n→∞,

for all x ∈ Y . If we let Yk = Ran(I−T )k, k ≥ 1, then iterating the estimate
in (2.4) shows that for x ∈ Yk, k ≥ 1, we have

‖Snx‖ = O

(
(log n)k/α

nk/α

)
, n→∞.

Let Xk = FixT ⊕ Yk, k ≥ 1. Then each Xk is dense in X and, for k ≥ 1
and x ∈ Xk, we have

‖Tnx− PTx‖ = O

(
(log n)k/α

nk/α

)
, n→∞.
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Now let X0 =
⋂∞
k=1Xk. It follows from the Esterle-Mittag-Leffler theorem

[22, Theorem 2.1] that X0 is a dense subspace of X, and it is clear that for
all x ∈ X0 the convergence in (2.2) is superpolynomially fast. �

Remark 2.2. Given a Banach space X and an operator T ∈ B(X) with
r(T ) ≤ 1, the resolvent condition (2.1) is equivalent to having ‖R(λ, T )‖ =
O(|λ−1|−α) as λ→ 1 with |λ| > 1; see [14, Lemma 3.3] and [39, Lemma 3.9].
If these equivalent conditions are satisfied for α = 1 then T is said to be a
Ritt operator. It was shown in [28, 31] that T is a Ritt operator if and only
if T is power-bounded and satisfies ‖Tn(I −T )‖ = O(n−1) as n→∞. Thus
for the case of Ritt operators the proof of Theorem 2.1 can be simplified, and
in particular the logarithmic terms are not needed. By [39, Theorem 3.10]
the logarithmic factors are also redundant if X is a Hilbert space.

3. The numerical range and generalised Stolz domains

Theorem 2.1 gives a detailed description of the asymptotic behaviour
of orbits of certain bounded linear operators T in terms of the growth of
the resolvent. In general, when estimating the growth of the resolvent one
needs precise spectral information about T . One important case in which
such information is available is when the location and the geometry of the
numerical range of T are known.

We begin by recalling the notion of numerical range for a bounded linear
operator T acting on a Banach space X; see [8] for more information. Let
J : X → X∗ be an isometry with the property that 〈x, φx〉 = ‖x‖2 for
all x ∈ X, where φx = J(x); note that the existence of such maps is a
straightforward consequence of the Hahn-Banach theorem. We define the
numerical range of T ∈ B(X) as

W (T ) = {〈Tx, φx〉 : ‖x‖ = 1}.
Although the numerical range of T depends on the choice of the map J , its
closed convex hull coW (T ) does not. Indeed, according to [43, Theorem 6]
(see also [8]) we have coW (T ) = W0(T ), where

W0(T ) = {φ(T ) : φ ∈ B(X)∗, ‖φ‖ = φ(IX) = 1}.
If X is a Hilbert space then W0(T ) coincides with the closure of the usual
numerical range W (T ) of T ; see [43, page 420].

Our main aim in this section is to obtain a version of Theorem 2.1 under
conditions involving geometric assumptions on the numerical range of the
operator T . We say that a non-empty closed set Ω ⊆ D∪{1} is a generalised
Stolz domain if there exist constants c, ε > 0 and α ≥ 1 such that

(3.1) 1− |λ| ≥ c|λ− 1|α

for all λ ∈ Ω with |λ−1| ≤ ε. In particular, any closed subset of a generalised
Stolz domain is itself a generalised Stolz domain. If (3.1) holds for a set Ω
then we say that Ω is a generalised Stolz domain with (Stolz) parameter α.
Note that if Ω is a generalised Stolz domain with parameter α, then Ω is
also a generalised Stolz domain with parameter β for any β ≥ α. If Ω is the
convex hull of the set {λ ∈ C : |λ| ≤ r} ∪ {1} for some r ∈ (0, 1), then Ω is
said to be a Stolz domain; note, however, that there is some inconsistency in
the use of this terminology throughout the literature. Any Stolz domain is a
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generalised Stolz domain with parameter α = 1. Other important examples
of generalised Stolz domains are sets of the form {λ ∈ C : |λ − r| ≤ 1 − r}
for some r ∈ (0, 1). In the language of hyperbolic geometry such sets (or,
more precisely, their boundaries) are examples of horocycles, and they are
generalised Stolz domains with parameter 2. Another class of regions closely
related to generalised Stolz domains are so-called quasi-Stolz domains; see
[14, 34] for details.

Remark 3.1. If Ω is a Stolz domain with parameter α ≥ 1, then in the
terminology of [40, 41, 42] we have that 1 is a point of contact of type α− 1
between Ω and the unit circle T. More general subsets of the closed unit
disc, even ones touching the unit circle in a finite number of points, have
been considered in [40, 41, 42] in relation to stability of step-by-step methods
for the numerical solution of differential equations. We refer to these three
papers for more information and to [36, Ch.II.4] for the similar notion of
order of contact between curves.

Proposition 3.2. Let X be a Banach space and suppose that T ∈ B(X)
is a power-bounded operator such that W0(T ) is a generalised Stolz domain
with parameter α ≥ 1. Then σ(T ) ∩ T ⊆ {1} and (2.1) holds.

Proof. Since σ(T ) ⊆W0(T ) by [43, Theorem 1] we have that σ(T )∩T ⊆ {1}.
It follows from [43, Lemma 1] that

(3.2) ‖R(eiθ, T )‖ ≤ 1

dist(eiθ,W0(T ))
, 0 < |θ| ≤ π.

By [40, Lemma 5.1] there exists a constant c > 0 such that

dist(eiθ,W0(T )) ≥ c|θ|α, 0 < |θ| ≤ π,
which together with (3.2) immediately implies (2.1). �

Remark 3.3. If X is a Hilbert space then it follows from the inclusion
of the numerical range in the closed unit disc that supn≥0 ‖Tn‖ ≤ 2 ([32,
Ch.1,§11]), so the condition of power-boundedness holds automatically in
this case. Hilbert space contractions with numerical range included in a Stolz
domain were called quasi-sectorial in [13]. It was proved in [3] that a Hilbert
space operator is a so-called unconditional Ritt operator if and only if it is
similar to an operator whose numerical range is contained in a Stolz domain.
If r ∈ (0, 1) and ‖T − rI‖ ≤ 1− r, then W0(T ) ⊆ {λ ∈ C : |λ− r| ≤ 1− r}
and in particular (2.1) holds for α = 2. Note also that ‖T − rI‖ ≤ 1 − r
implies that ‖T‖ ≤ 1. Hilbert space operators satisfying ‖T − rI‖ ≤ 1 − r
for some r ∈ (0, 1) are characterised in [20, 21].

The next result gives a sufficient condition in the Hilbert space setting
for the resolvent growth condition in Theorem 2.1 to be satisfied.

Proposition 3.4. Let X be a Hilbert space and let T ∈ B(X). Suppose that
the closure Ω of the numerical range W (T ) of T is contained in the closed
unit disc and that there exist constants C > 0 and β ∈ (0, 1] such that

sup{|λn(1− λ)| : λ ∈ Ω} ≤ Cn−β, n ≥ 1.

Then T is power-bounded, σ(T ) ∩ T ⊆ {1} and (2.1) holds for α = 1/β.
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Proof. Since Ω is contained in the closed unit disc, the operator T is power-
bounded. Suppose that λ ∈ Ω ∩ T. Then

|λ− 1| = |λn(λ− 1)| ≤ Cn−β

for all n ≥ 1 and hence λ = 1. Thus Ω ∩ T ⊆ {1}, and since σ(T ) ⊆ Ω we
deduce that σ(T ) ∩ T ⊆ {1}. Now let K = 1 +

√
2. By [15] the set Ω is

a K-spectral set for T , in the sense that for every rational function u with
poles outside Ω we have

‖u(T )‖ ≤ K sup{|u(λ)| : λ ∈ Ω}.
In particular, choosing u(λ) = λn(λ− 1) shows that

‖Tn(I − T )‖ ≤ CKn−β, n ≥ 1.

The result now follows from [39, Theorem 3.10]. �

Remark 3.5. The above argument shows that in the setting of Proposi-
tion 3.4 the proof of Theorem 2.1 can be simplified; see also Remark 2.2.
Note furthermore that it is possible to use Proposition 3.4 to give an alter-
native proof of Proposition 3.2 for Hilbert space operators.

4. Applications to the method of alternating projections

In this section we apply the general results of the previous sections to
Banach space versions of the method of alternating projections. Recall that,
given a Banach space X, a linear operator P : X → X is said to be a
projection if P 2 = P or, equivalently, if KerP = Ran(I − P ). It is clear
that if P ∈ B(X) is a bounded projection then either P = 0 or ‖P‖ ≥ 1. A
bounded projection P ∈ B(X) is said to be an orthoprojection if ‖P‖ ≤ 1.
If X is a Hilbert space then a projection P ∈ B(X) is an orthoprojection if
and only if KerP and RanP are mutually orthogonal.

Remark 4.1. Note that the projection PT appearing in Theorem 2.1 satis-
fies ‖PT ‖ ≤ supn≥0 ‖Tn‖, as can be seen from (2.2). In particular, PT is an
orthoprojection whenever T is a contraction.

Let X be a Hilbert space, N ≥ 2, and suppose that M1, . . . ,MN are
closed subspaces of X. For 1 ≤ k ≤ N we let Pk denote the orthogonal
projection onto Mk, and we write PM for the orthogonal projection onto
the intersection M = M1 ∩ . . . ∩MN . In many applications one wishes to
study sequences in X which are obtained by picking a starting vector x ∈ X
and then projecting x cyclically onto the subspaces M1, . . . ,MN ; see for
instance [16] and [17, Chapter 9]. One is naturally led therefore to consider
the operator T ∈ B(X) given by T = PN · · ·P1, and it is a classical result
due to Halperin [24] that

(4.1) ‖Tnx− PMx‖ → 0, n→∞,
for all x ∈ X; see [1, 3, 37] for a discussion of the rate of convergence in (4.1)
and its dependence on the geometric relationship between the subspaces
M1, . . . ,MN .

Our main interest here is in obtaining quantified versions of Halperin’s
theorem for Banach spaces with special geometric properties. Recall that a
Banach space X is said to be uniformly convex if for every ε ∈ (0, 2] there
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exists δ > 0 such that for any two vectors x, y ∈ X with ‖x‖ ≤ 1 and ‖y‖ ≤ 1
the inequality ‖x + y‖/2 > 1 − δ implies ‖x − y‖ < ε. Halperin’s theorem
was generalised to products of orthoprojections in uniformly convex Banach
spaces by Bruck and Reich [12]; see also [2] and the references therein. Our
aim now is to obtain a quantified result of this type, and for this we require
some further terminology. Recall therefore that, given a Banach space X,
the increasing function δX : [0, 2]→ [0,∞) given by

δX(ε) = inf

{
1− ‖x+ y‖

2
: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
is called the modulus of convexity of the space X. Thus a Banach space X
is uniformly convex if and only if δX(ε) > 0 for all ε ∈ (0, 2]. Any uniformly
convex Banach space is reflexive and every Hilbert space is uniformly convex.
Indeed, if X is a Hilbert space then δX(ε) = δ(ε) for all ε ∈ [0, 2], where

δ(ε) = 1−
(

1− ε2

4

)1/2

∼ ε2

8
, ε→ 0.

For any Banach space X we have δX(ε) ≤ δ(ε) for all ε ∈ [0, 2]; see [33].
For q ≥ 2 we say that a Banach space X is q-uniformly convex if there
exists a constant c > 0 such that δX(ε) ≥ cεq for all ε ∈ [0, 2]. For instance,
any Lp-space is q-uniformly convex for q = max{2, p} when 1 < p < ∞.
According to a result of Pisier every uniformly convex Banach space can
be renormed to be q-uniformly convex for some suitable q ≥ 2. We refer
for instance to [27, Ch. 1.e] and [35, Ch. 10] for these results and for more
information about uniformly convex Banach spaces. The first main result
of this section is the following quantified version of Halperin’s theorem for
products of projections acting on uniformly convex Banach spaces.

Theorem 4.2. Let X be a Banach space which is q-uniformly convex for
some q ≥ 2 and suppose that T = PN · · ·P1 for certain orthoprojections
P1, . . . , PN ∈ B(X). Furthermore, let M = RanP1 ∩ . . . ∩ RanPN . Then
X = M ⊕ Z, where Z denotes the closure of Ran(I − T ). Furthermore, for
all x ∈ X we have

(4.2) ‖Tnx− Px‖ → 0, n→∞,
where P denotes the orthoprojection onto M along Z. Moreover, there is a
dichotomy for the rate of convergence. Indeed, if Ran(I − T ) is closed then
there exist C > 0 and r ∈ [0, 1) such that

‖Tn − P‖ ≤ Crn, n ≥ 0,

whereas if Ran(I − T ) is not closed then the convergence in (4.2) is arbi-
trarily slow and weakly arbitrarily slow. In either case there exists a dense
subspace X0 of X such that for all x ∈ X0 the convergence in (4.2) is su-
perpolynomially fast.

We begin with the following lemma.

Lemma 4.3. In the setting of Theorem 4.2 there exists C > 0 such that

(4.3) ‖x− Tx‖ ≤ C (1− ‖Tx‖)1/q
N

for all x ∈ X with ‖x‖ = 1.
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Proof. The proof is by induction. Suppose first that N = 1 and that T = P
is an orthoprojection. Suppose now that ‖x‖ = 1 and let ε = 1 − ‖Px‖.
Then ε ∈ [0, 1] and we have

(4.4)
1

2
‖x+ Px‖ ≥ 1

2
‖P (x+ Px)‖ = ‖Px‖ = 1− ε.

Consider the function βX : [0, 1]→ [0,∞) defined for 0 ≤ s ≤ 1 by

βX(s) = sup

{
‖x− y‖ : ‖x‖ ≤ 1, ‖y‖ ≤ 1,

‖x+ y‖
2

≥ 1− s
}
.

Since X is uniformly convex, we have that βX is continuous and increasing
on [0, 1], with βX(0) = 0 and βX(1) = 2; see [4]. We also have δX(βX(s)) = s

for all s ∈ [0, 1] by [4, Theorem 3.4]. It follows in particular that βX(s) . s1/q

for 0 ≤ s ≤ 1. Using (4.4) and the definition of βX we obtain

(4.5) ‖x− Px‖ ≤ βX(ε) . ε1/q.

Here and in what follows we write a . b if a ≤ Cb for some C > 0 which is
independent of all parameters which are free to vary in the given situation.
Thus (4.3) is proved for N = 1.

Now assume that (4.3) is true for a product S ∈ B(X) of N ≥ 1 ortho-
projections and let P ∈ B(X) be a further orthoprojection. Set T = PS.
Suppose that ‖x‖ = 1 and let ε = 1−‖Tx‖. Using the induction hypothesis,
we have

(4.6) ‖x− Tx‖ ≤ ‖x− Px‖+ ‖P (x− Sx)‖ . ‖x− Px‖+ ε1/q
N
,

using the fact that 1− ‖Sx‖ ≤ ε. In order to estimate ‖x− Px‖ we use the
induction hypothesis to obtain

1− ‖Px‖ ≤ 1− ‖Tx‖+ ‖P (x− Sx)‖ . ε+ ε1/q
N
. ε1/q

N
,

so that by (4.5) we have

‖x− Px‖ ≤ βX(1− ‖Px‖) . ε1/qN+1
.

Using this inequality in (4.6) we see that

‖x− Tx‖ . ε1/qN+1
+ ε1/q

N
. ε1/q

N+1
,

which completes the proof. �

Lemma 4.3 leads to the following result, which is a key ingredient in the
proof of Theorem 4.2 but is also of independent interest.

Theorem 4.4. Let X be a Banach space which is q-uniformly convex for
some q ≥ 2 and suppose that T = PN · · ·P1 for certain orthoprojections
P1, . . . , PN ∈ B(X). Then the numerical range W0(T ) of T is a generalised
Stolz domain with parameter qN .

Proof. Fix an isometry J : X → X∗ with the property that 〈x, φx〉 = ‖x‖2
for all x ∈ X. Here and subsequently we let φx := J(x) for x ∈ X. Consider
an element λ ∈ W (T ) of the form λ = 〈Tx, φx〉 with ‖x‖ = 1. Then
|λ| ≤ ‖Tx‖ ≤ 1 and thus W (T ) is contained in the closed unit disc. By
Lemma 4.3 we have

|λ− 1| = |〈Tx− x, φx〉| ≤ ‖x− Tx‖ . (1− ‖Tx‖)1/qN ≤ (1− |λ|)1/qN .
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Using the concavity and monotonicity properties of the functions t 7→ (1−
t)1/q

N
and t 7→ t1/q

N
we see that in fact

|λ− 1| . (1− |λ|)1/qN

for all λ ∈W0(T ), the closed convex hull of W (T ). It follows that W0(T ) is
a generalised Stolz domain with parameter qN . �

Proof of Theorem 4.2. The result follows at once from Proposition 3.2 and
Theorem 4.4, noting that FixT = M as a consequence of Lemma 4.3. The
fact that that P is an orthoprojection is clear by Remark 4.1. �

A notion closely related to uniform convexity, and in some sense dual to
it, is that of uniform smoothness. A Banach space X is said to be uniformly
smooth if for every ε > 0 there exists δ > 0 such that the inequality

‖x+ y‖+ ‖x− y‖ < 2 + ε‖y‖
holds for any two vectors x, y ∈ X with ‖x‖ = 1 and ‖y‖ ≤ δ. An equivalent
definition is that

lim
t→0

ρX(t)

t
= 0,

where ρX is the modulus of smoothness of X defined for t ≥ 0 by

ρX(t) = sup

{
‖x+ ty‖+ ‖x− ty‖

2
− 1 : x, y ∈ X, ‖x‖ = 1, ‖y‖ = 1

}
.

A Banach space X is uniformly smooth if and only if its dual X∗ is uniformly
convex, and vice versa. In particular, any uniformly smooth space is reflexive
and every Hilbert space is uniformly smooth. Indeed, if X is a Hilbert space
then ρX(t) = ρ(t) for all t ≥ 0, where

ρ(t) = (1 + t2)1/2 − 1 ∼ t2

2
, t→ 0.

For any Banach space X we have ρX(t) ≥ ρ(t) for all t ≥ 0. For p ∈ (1, 2]
we say that X is p-uniformly smooth if there is a constant C > 0 such that
ρX(t) ≤ Ctp for all t ≥ 0. For instance, any Lq-space is p-uniformly smooth
for p = min{2, q} when 1 < q <∞. We refer again to [27, Ch. 1.e] and [35,
Ch. 10] for more information. The next result is an analogue of Theorem 4.2
for uniformly smooth spaces.

Theorem 4.5. Let X be a Banach space which is p-uniformly smooth for
some p ∈ (1, 2] and suppose that T = PN · · ·P1 for certain orthoprojections
P1, . . . , PN ∈ B(X). Furthermore, let M = RanP1 ∩ . . . ∩ RanPN . Then
X = M ⊕ Z, where Z denotes the closure of Ran(I − T ). Furthermore, for
all x ∈ X we have

(4.7) ‖Tnx− Px‖ → 0, n→∞,
where P denotes the orthoprojection onto M along Z. Moreover, there is a
dichotomy for the rate of convergence. Indeed, if Ran(I − T ) is closed then
there exist C > 0 and r ∈ [0, 1) such that

‖Tn − P‖ ≤ Crn, n ≥ 0,

whereas if Ran(I − T ) is not closed then the convergence in (4.7) is arbi-
trarily slow and weakly arbitrarily slow. In either case there exists a dense
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subspace X0 of X such that for all x ∈ X0 the convergence in (4.7) is su-
perpolynomially fast.

Proof. Let q ∈ [2,∞) be the Hölder conjugate of p, so that p−1 + q−1 = 1.
Since X is uniformly smooth, its dual space X∗ is uniformly convex. Let

γX∗(ε) = sup
t≥0

(
tε

2
− ρX(t)

)
, 0 ≤ ε ≤ 2.

Then by [35, Lemma 10.20] we have δX∗(ε) ≥ γX∗(ε) for 0 ≤ ε ≤ 2, and
hence

δX∗(ε) ≥ sup
t≥0

(
tε

2
− Ctp

)
≥ cεq, 0 ≤ ε ≤ 2,

for c = 4−qC1−q, as can be seen by considering t = (ε/4C)q−1. Thus X∗ is
q-uniformly convex. By considering the dual operator T ∗ of T , which itself
is a product of orthoprojections, and observing that ‖R(λ, T )‖ = ‖R(λ, T ∗)‖
for all λ ∈ C \ σ(T ) we deduce from Theorem 4.4 and Proposition 3.2 that
condition (2.1) of Theorem 2.1 is satisfied for α = qN . The result now
follows as in the case of Theorem 4.2. �

We conclude this section with another application of Theorem 2.1 to prod-
ucts of orthoprojections, this time involving assumptions on the projections
rather than the space. Given a Banach space X and a projection P ∈ B(X)
we shall say, in loose accordance with the terminology of [2], that P is a type-
D projection if P 6= 0 and there exists r ∈ (0, 1) such that ‖P − rI‖ ≤ 1− r.
In particular, any type-D projection is an orthoprojection. Loosely follow-
ing [23], a type-D projection P ∈ B(X) will be called a type-U projection if
‖P − 1

2I‖ ≤
1
2 . For instance, any orthogonal projection on a Hilbert space is

a type-U projection. Note that by Remark 3.3 that for a type-D projection
P we have W0(P ) ⊆ {λ ∈ C : |λ− r| ≤ 1− r} for some r ∈ (0, 1), and hence
W0(P ) is a generalised Stolz domain with parameter α = 2.

Theorem 4.6. Let X be a reflexive Banach space and suppose that T ∈
B(X) is a convex combination of products of certain type-D projections
P1, . . . , PN . Then the conclusions of Theorem 2.1 hold and the projection
PT onto FixT along the closure of Ran(I − T ) is an orthoprojection. Fur-
thermore, if RanPk = {x ∈ X : ‖Pkx‖ = ‖x‖} for 1 ≤ k ≤ N and if all
of the N projections P1, . . . , PN actually appear in the decomposition of T ,
then FixT = RanP1 ∩ . . . ∩ RanPN .

Proof. Note first that T , being a convex combination of products of ortho-
projections, is a contraction. It was proved in [2, Lemma 3.5] that the
set of contractions Q ∈ B(X) for which there exists r ∈ (0, 1) such that
‖Q− rI‖ ≤ 1− r is a convex multiplicative semigroup. It follows in partic-
ular that ‖T − rI‖ ≤ 1 − r for some r ∈ (0, 1). Hence the numerical range
W0(T ) of T is contained a generalised Stolz domain. The first part of the
result now follows form Theorem 2.1, and the rest is proved in [2]. �

Remark 4.7. If X is a Hilbert space and T = PN · · ·P1, where Pk is the
orthogonal projection onto the closed subspace Mk of X, 1 ≤ k ≤ N , then
Ran(I − T ) is closed if and only if M⊥1 + · · ·+M⊥N is closed, and moreover
FixT = M , where M = M1∩. . .∩MN . By contractivity of T we deduce that
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PT coincides with the orthogonal projection PM onto M . It was shown in [3,
Theorem 4.3] that it is possible to obtain explicit values for the numbers C
and r appearing in (2.3) in terms of the Friedrichs number of the subspaces
M1, . . . ,MN . In fact, [3, Theorem 4.3] goes beyond the present theorem in
other ways too by exploiting the theory of (unconditional) Ritt operators.
Indeed, it is known that in the Hilbert space case the numerical range W (T )
of T is contained in a Stolz domain, which by means of (3.2) leads to (2.1)
with α = 1 rather than α = 2. For a closer analysis of the asymptotic
behaviour in the method of alternating projections see for instance [1, 3, 37].

5. The Douglas-Rachford splitting method

Let X be a Hilbert space and suppose that M1,M2 are closed subspaces
of X. If for k = 1, 2 we let Pk denote the orthogonal projection onto Mk

then we may consider the operator T ∈ B(X) given by

T = P2P1 + (I − P2)(I − P1).

If we let Qk = 2Pk − I, k = 1, 2, then we may write T as T = 1
2(I +Q2Q1).

The operator T is known as the Douglas-Rachford operator and plays an im-
portant role in the Douglas-Rachford splitting method. Here one is usually
interested in the asymptotic behaviour of sequences of the form (P1T

nx)n≥0
for different initial vectors x ∈ X, but in order to understand such sequences
one needs first to understand the sequences (Tnx)n≥0 with x ∈ X; see [5, 19]
for further details. A generalisation to several subspaces (the cyclic Douglas-
Rachford iteration scheme) has been proposed recently in [9, 10]. The fol-
lowing result is a Banach space version of the Douglas-Rachford splitting
method with several reflection operators arising from type-U projections.

Theorem 5.1. Let X be a reflexive Banach space and let P1, . . . , PN ∈ B(X)
be type-U projections on X. For 1 ≤ k, ` ≤ N let

Tk` = PkP` + (I − Pk)(I − P`)

and suppose that T ∈ B(X) is a convex combination of products of the
operators Tk`, 1 ≤ k, ` ≤ N . Then the conclusions of Theorem 2.1 hold
and the projection PT onto FixT along the closure of Ran(I − T ) is an
orthoprojection.

Proof. If we let Qk = 2Pk − I, 1 ≤ k ≤ N , then we may write Tk` as
Tk` = 1

2(I +QkQ`) for 1 ≤ k, ` ≤ N . Now

‖Qk‖ = 2
∥∥∥Pk − 1

2
I
∥∥∥ ≤ 1

for 1 ≤ k ≤ N and hence∥∥∥Tk` − 1

2
I
∥∥∥ =
‖QkQ`‖

2
≤ 1

2

for 1 ≤ k, ` ≤ N . Using [2, Lemma 3.5] as in the proof of Theorem 4.6 the
result now follows from Theorem 2.1 and Remark 4.1. �

We conclude with the following new result on the Douglas-Rachford split-
ting method for the classical case of two subspaces of a Hilbert space.
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Theorem 5.2. Let X be a Hilbert space and let

T = P2P1 + (I − P2)(I − P1)

be the Douglas-Rachford operator corresponding to the orthogonal projections
P1, P2 onto two closed subspaces M1,M2 of X. Then for all x ∈ X we have

(5.1) ‖Tnx− Px‖ → 0, n→∞,

where P denotes the orthogonal projection onto (M1 ∩M1) ⊕ (M⊥1 ∩M⊥2 ).
Moreover, there is a dichotomy for the rate of convergence. Indeed, if M1 +
M2 is closed then there exist C > 0 and r ∈ [0, 1) such that

(5.2) ‖Tn − P‖ ≤ Crn, n ≥ 0,

whereas if M1 +M2 is not closed then the convergence in (5.1) is arbitrarily
slow and weakly arbitrarily slow. In either case there exists a dense subspace
X0 of X such that for all x ∈ X0 the convergence in (5.1) is superpolyno-
mially fast.

Proof. It is shown in [5, Proposition 3.6] that

FixT = (M1 ∩M1)⊕ (M⊥1 ∩M⊥2 ).

The result now follows from Theorem 5.1 and the observation that (5.2)
holds for some C > 0 and r ∈ [0, 1) if and only if M1 +M2 is closed; see [5,
Fact 2.3 and Theorem 4.1]. �

Remark 5.3. (a) Note that by [5, Theorem 4.1] we may choose C = 1 and
r = c(M1,M2) in (5.2), where c(M1,M2) is the Friedrichs number of the
subspaces M1,M2.

(b) We would like to mention that the Hilbert space results obtained in Sec-
tions 4 and 5 easily extend to closed affine subspaces. As a final remark,
we note that the methods of this paper can be applied to other projec-
tion algorithms and that, on certain classes of problems, various iterative
projection methods coincide with each other. For example, if the sets
are closed affine subspaces, then the method of alternating projections
coincides with Dykstra’s method [11]. Applied to the phase retrieval
problem, the method of alternating projections coincides with the er-
ror reduction method and the Douglas-Rachford method coincides with
Fienup’s hybrid input-output algorithm [7]. For other such coincidences
(in the cases of hyperplanes and half-spaces), see [9].
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