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Model-based Clustering

with Missing Not At Random Data

Aude Sportisse, Matthieu Marbac, Fabien Laporte, Gilles Celeux,
Claire Boyer, Julie Josse, Christophe Biernacki

Abstract

Model-based unsupervised learning, as any learning task, stalls as soon as missing
data occurs. This is even more true when the missing data are informative, or said
missing not at random (MNAR). In this paper, we propose model-based cluster-
ing algorithms designed to handle very general types of missing data, including
MNAR data. To do so, we introduce a mixture model for different types of data
(continuous, count, categorical and mixed) to jointly model the data distribution
and the MNAR mechanism, remaining vigilant to the relative degrees of freedom
of each. Several MNAR models are discussed, for which the cause of the missing-
ness can depend on both the values of the missing variable themselves and on the
class membership. However, we focus on a specific MNAR model, called MNARz,
for which the missingness only depends on the class membership. We first under-
line its ease of estimation, by showing that the statistical inference can be carried
out on the data matrix concatenated with the missing mask considering finally a
standard MAR mechanism. Consequently, we propose to perform clustering using
the Expectation Maximization algorithm, specially developed for this simplified
reinterpretation. Finally, we assess the numerical performances of the proposed

methods on synthetic data and on the real medical registry TraumaBase® as
well.

Keywords: Model-based Clustering, Informative Missing Values, EM and Stochastic
EM Algorithms, Medical Data

1 Introduction

Clustering remains a crucial tool for the comprehensive analysis of large datasets,
providing a concise summary through the grouping of observations. Notably, the
model-based paradigm [1, 2] facilitates clustering by yielding interpretable models
that enhance our understanding of the relationships between the formed clusters and
the features at play. This parametric framework exhibits flexibility in handling high-
dimensionality problems [3, 4], mixed datasets [5], and even time series and dependent
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data [6, 7]. However, the challenge accompanying this multifaceted model-based clus-
tering lies in the requisite modeling efforts to design mixture models tailored to the
data structure.

In large-scale data analysis, the problem of missing data is ubiquitous, data collec-
tion being never perfect (e.g. machines which fail, non-responses in a study). Classical
approaches for dealing with missing data consist of working on a complete dataset [8],
either by using only complete individuals, or by imputing missing values. However,
both methods can cause huge problems in the analysis, either by reducing too dras-
tically the dataset to a possibly biased subsample, or by distorting the distribution
of the completed samples, respectively. Furthermore, it’s crucial to note that both of
these strategies are essentially preprocessing steps and are not specifically tailored for
the final clustering task. Alternatively, one can explore likelihood-based approaches,
employing methods like Expectation Maximization (EM) algorithms [9]. In this paper,
we adopt such an approach to enable model-based clustering to effectively handle
informative missing data in an efficient manner.

We assume that the missing data are missing not at random (MNAR) [10–12].
More specifically, we consider that the cause of the missingness can be explained by the
membership to a class, which is not observed, and we call this specific MNAR model
MNARz. As the MNAR mechanism is neither ignorable for the density estimation
(parameters estimation), nor for the clustering (partition estimation), dealing with
such data does require the specific modeling effort for the distribution of the missing-
data pattern, indicating where are the missing values in the data. An example of
MNAR data includes clinical data collected in emergency situations, where doctors
may choose to treat patients suffering from severe trauma before taking measurements.
This intrinsically leads to more missing data in this class.

Related works on clustering despite missing values

In order to handle missing values in a model-based clustering framework, Hunt and
Jorgensen [13] implement the standard EM algorithm [9] based on the observed like-
lihood and Serafini et al. [14] propose to perform multiple imputations (with Monte
Carlo methods) in the E-step. However, both works only consider MCAR data, when
the cause of the missingness is completely independent from the data values.

Different clustering methods have been developed to deal with MNAR mecha-
nisms. In a partition-based framework, Chi et al. [15] propose an extension of k-means
clustering for missing data, called k-Pod, without requiring the missing-data pat-
tern to be modelled. However, like k-means clustering, the k-Pod algorithm relies on
strong assumptions as equal proportions between clusters. Du Roy De Chaumaray and
Marbac [16] perform clustering via a semiparametric mixture model using the pattern-
mixture approach to formulate the joint distribution, which makes the method not
suitable for estimating the density parameters or imputing missing values. For longitu-
dinal data, Beunckens et al. [17] and Kuha et al. [18] jointly model the measurements
and the dropout process by using an extension of the shared-parameter model.
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Contributions

We first present the considered MNARz mechanism, in which the missingness depends
on class membership, within the context of unsupervised classification based on mix-
ture models for different types of data (continuous, count, categorical, and mixed). We
then demonstrate that, under MNARz, statistical inference can be conducted on the
augmented matrix formed from the concatenation of the data matrix and the missing-
data pattern (binary mask indicating where are the missing values) by considering a
missing at random (MAR) mechanism instead. In other words, the cause of the miss-
ingness can be explained by the observed variables, making it ignorable. This offers
a significant advantage, as there is no need to model the missing-data mechanism in
such cases. This also provides theoretical insights into an approach commonly used
in practice without theoretical foundations, wherein working on the augmented data
matrix under a MAR assumption is usually suggested to facilitate efficient learning,
despite a more complex underlying missing mechanism [19]. We then propose an EM
algorithm, which has been implemented and is available for reproducibility1. More
general MNAR models are also discussed, for which the cause of the missingness can
depend on the values of the missing variable themselves, as well as identifiability and
estimation strategies. However, they are empirically shown to be well apprehended by
the more simple MNARz model. Finally, we assess the numerical performance of our

method on synthetic data and the real medical registry TraumaBase®.

2 Missing-data in model-based clustering

Set the dataset Y = (y1| . . . |yn)T consisting of n individuals, where each observation
yi = (yi1, . . . , yid)

T belongs to a space Y, depending on the type of data, defined by
d features. The pattern of missing data is denoted by C = (c1| . . . |cn)T ∈ {0, 1}n×d,
with ci = (ci1, . . . , cid)

T ∈ {0, 1}d: cij = 1 indicates that the value yij is missing and
cij = 0 otherwise. The values of the observed (resp. missing) variables for individual i
are denoted by yobs

i (resp. ymis
i ). The objective of clustering is to estimate an unknown

partition Z = (z1| . . . |zn)T ∈ {0, 1}n×K that groups the full dataset Y into K classes,
with zi = (zi1, . . . , ziK)T ∈ {0, 1}K and where zik = 1 if yi belongs to cluster k,
zik = 0 otherwise. Consequently, in a clustering context, the missing data are not only
the values ymis

i but also the partition labels zi.

2.1 Mixture models

Mixture models allow for clustering by modeling the distribution of the observed data
(yobs
i , ci). Assuming an underlying mixture model withK components, the probability

distribution function (pdf) of the couple (yi, ci) reads as

f(yi, ci; θ) =

K∑
k=1

πkfk(yi;λk)fk(ci | yi;ψk), (1)

1The code is available on https://github.com/AudeSportisse/Clustering-MNAR/tree/main.
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where θ = (γ, ψ) gathers all the model parameters, γ = (π, λ) groups the parameters
related to the marginal distribution of yi, π = (π1, . . . , πK) is the vector of proportions

with
∑K

k=1 πk = 1 and πk > 0 for all k ∈ {1, . . . ,K}. Given λ = (λ1, . . . , λK),
fk(· ;λk) is the pdf of the k-th component parameterized by λk, ψ = (ψ1, . . . , ψK)
groups the parameters of the missingness mechanisms and fk(ci | yi;ψk) is the pdf
related to the missingness mechanism under component k (i.e., fk(ci | yi;ψk) =
f(ci | yi, zik = 1;ψk)). In many cases, the parameter ψ is interpreted as a nuisance
parameter. However, when the mechanism is not ignorable, i.e. can not be ignored
when performing inferences for λ, we need to consider the whole parameter θ to achieve
clustering, since the pdf of the observed data is

f(yobs
i , ci; θ) =

∫
f(yi, ci; θ)dy

miss
i . (2)

Different types of pdf fk(· ;λk) can be considered, depending on the types of fea-
tures at hand. Thus, if yi is a vector of continuous variables, the pdf of a d-variate
Gaussian distribution [1, 20] can be considered for fk(yi;λk) and thus λk groups
the mean vector and the covariance matrix. Moreover, if some components of yi are
discrete or categorical, the latent class model (see [21, 22]) defining fk(yi;λk) =∏d
j=1 fkj(yij ;λkj) can be used, with λk = (λk1, . . . , λkd). In such a case, fkj could

be the pdf of a Poisson (resp. multinomial) distribution with parameter λkj if yij is
an integer (resp. categorical) variable. The choice of the modeling for the missingness
mechanism (i.e., the distribution fk(ci | yi;ψk)) is discussed in the following.

To formulate the joint distribution of the data and the missing-data pattern, we
consider in this paper the selection model [23], which factorizes it into the product of
the marginal data density and the missing-data mechanism (1). This approach has the
great advantage of allowing imputation of the missing values and density estimation
throughout the parameter estimation of the mixture model. Another approach, called
the pattern-mixture model [24], can be used, involving the product of the marginal
density of C and the conditional density of Y given C; it has been considered by [25]
for a clustering purpose.

2.2 The MNARz model

To handle MNAR data in selection models, the distribution of the missing-data pattern
given the data and the partition should be specified. We consider that the elements
of ci are conditionally independent given (yi, zi). By the categorical nature of the
mask ci, this independence assumption is a quite natural hypothesis in the context of
clustering [15, 16].

In the MNARz model, we consider that the only effect of missingness is on the
class membership k, being the same for all variables. More specifically, the conditional
distribution of cij given (yi, zi) is assumed to be a generalized linear model with link
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Fig. 1: Illustration of dependency between ci and yi in a MNARz model by drawing
P(ci | yi;π, λ, ψ) for a three component univariate Gaussian model with mixing pro-
portions π1 = π2 = 0.3 and π3 = 0.4, with centers µ1 = µ3 = −5 and µ2 = 0, and
with variances σ2

k = k (k ∈ {1, 2, 3}). The MNARz parameters are fixed to α1 = 2,
α2 = 0 and α3 = 1.

function ρ, so that finally

fk(ci | yi;ψk) =

d∏
j=1

ρ(αk)cij (1− ρ(αk))
1−cij , (3)

where ψk = αk, in this case. The MNARz model is the simplest of the MNAR models
we can propose (see Section 3.3 for more general ones). Roughly speaking, this model
assumes that the proportion of missing values can vary among the clusters. Although
MNARz does not directly involve yi in its ground definition (3), it does not mean
that the pattern ci does not depend on yi since zi depends itself on yi; see Figure 1
for an illustration.

3 Proposal

3.1 Reinterpretation of the MNARz model as a MAR strategy

Interestingly, the MNARz model can be turned into a MAR-like one by working on the
augmented matrix formed from the concatenation of the data matrix and the missing-
data pattern. This is the purpose of the next theorem, proven in Appendix A.
Theorem 1. Consider the augmented dataset (ỹobs

1 , . . . , ỹobs
n ), ỹobs

i = (yobs
i , ci) for

i ∈ {1, . . . , n}. Assume that all ỹobs
i arise i.i.d. from the mixture model with a MAR

mechanism

f̃(ỹobs
i ; θ) =

K∑
k=1

πkfk(yobs
i ;λk)

d∏
j=1

ρ(αk)cij (1− ρ(αk))
1−cij . (4)
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Then for fixed parameter θ = (π, λ, ψ), the mixture model for ỹobs
i is the same as the

distribution for yobs
i with the mixture model (1) under the MNARz mechanism (3).

Theorem 1 implies that the maximum likelihood estimate of θ is the same consid-
ering ỹobs

i under the MAR assumption and yobs
i under the MNARz assumption (3).

This implies that if the mechanism is MNARz, an (EM) algorithm designed for MAR
data can be used on the augmented data set instead, capitalizing on efficient imple-
mentations dedicated to such a well-studied setting (see Section 4). In fact, Theorem
1 is the first theoretical result in unsupervised learning in line with the intuition devel-
oped in [19] for supervised learning and in [26] for estimation in low-rank models, that
working with MAR strategies on the data set augmented by the missing pattern can
actually tackle certain types of MNAR settings.

Furthermore, the identifiability of the model parameters when considering MNARz
data follows directly from this reinterpretation as a MAR model. Indeed, identifiability
in the complete case implies identifiability when MCAR or MAR values occur.

3.2 Associated EM algorithm

Assuming identifiability, we estimate parameters via likelihood maximization using
the EM algorithm specifically designed for Gaussian, Poisson, multinomial and mixed
data with MNAR data. Details of the algorithm are given in Appendix B. Assuming
that the number K of clusters is known (its choice in practice is discussed in Section
4) and that the samples (yi, zi, ci)i=1,...,n are i.i.d., the complete-data log-likelihood
can be written as

`comp(θ;Y,Z,C) =

n∑
i=1

K∑
k=1

zik log (πkfk(yi;λk)fk(ci | yi;ψk)) . (5)

The EM algorithm [9] is an iterative algorithm that permits to maximize the
likelihood function under missingness. Initialized at the point θ[0], its iteration [r] con-
sists, at the E-step, in computing the expectation of the complete-data log-likelihood
Q(θ; θ[r−1]) = Eθ[r−1]

[
`comp(θ;Y, Z,C) | Yobs,C

]
, then, at the M-step, updating the

parameters by maximizing this function θ[r] = arg max
θ

Q(θ; θ[r−1]). Note that

Q(θ; θ[r−1]) =

n∑
i=1

K∑
k=1

tik(θ[r−1])
[
log(πk) + τy(λk;yobs

i , ci, θ
[r−1]) + τc(ψk;yobs

i , ci, θ
[r−1])

]
,

where tik(θ[r−1]) =
1

f(yobs
i , ci; θ[r−1])

∫
π

[r−1]
k fk(yi;λ

[r−1]
k )fk(ci | yi;ψ[r−1]

k )dymiss
i ,

τy(λk;yobs
i , ci, θ

[r−1]) = Eθ[r−1]

[
log fk(yi;λk) | yobs

i , ci, zik = 1
]
,

τc(ψk;yobs
i , ci, θ

[r−1]) = Eθ[r−1]

[
log fk(ci | yi;ψk) | yobs

i , ci, zik = 1
]
.

Thus, the iteration [r] of the EM algorithm is defined by
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• E-step: Computation of tik(θ[r−1]), τy(λk;yobs
i , ci, θ

[r−1]) and τc(ψk;yobs
i , ci, θ

[r−1]).
• M-step: Updating the parameters

λ
[r]
k = arg max

λk

n∑
i=1

tik(θ[r−1])τy(λk;yobs
i , ci, θ

[r−1])

π
[r]
k =

1

n

n∑
i=1

tik(θ[r−1])

ψ
[r]
k = arg max

ψk

n∑
i=1

tik(θ[r−1])τc(ψk;yobs
i , ci, θ

[r−1]).

The E-step requires to be able to integrate the distribution of ymis
i given

(yobs
i , zik = 1, ci) and the M-step requires to maximize the resulting function. This is

straightforward under the MNARz model, because the effect of the missingness does
not depend on yi (see Appendix B.1 for computation details in the case of Gaussian
or categorical data).

3.3 Beyond the MNARz model

In Section 2.2, we proposed the MNARz model in (3). A more general model, called
MNARykzj , can be considered, when the effect of missingness is on both the class
membership and the variable itself:

fk(ci | yi;ψk) =

d∏
j=1

(ρ(αkj + βkjyij))
cij (1− ρ(αkj + βkjyij))

1−cij , (6)

where ψk = (αk1, βk1, . . . , αkK , βkK). The parameter αkj represents a mean effect of
missingness on the k-th class membership for the variable j (note that within a same
class k, αkj is not necessarily equal to αkj′ for j 6= j′). The parameter βkj represents
the direct effect of missingness on the variable j which depends on the class k as well.

Simpler models can also be derived from (6) by imposing equal parameters either
across the class membership, or across the variables likely to be missing. First, we intro-
duce three models, with a lower complexity than (6), that still allow the probability
of being missing to depend on both the variable itself and the class membership:

• MNARyzj model: when β1j = . . . = βKj , ∀j, the effect of missingness on a
variable is the same regardless of the class (while keeping different mean effects
αkj on the class membership).

• MNARykz model: when αk1 = . . . = αkd, ∀k, the missingness has a same mean
effect on class membership shared by all variables (while allowing different self-
masked and class-wise parameters βkj).

• MNARyz model: when β1j = . . . = βKj , ∀j and αk1 = . . . = αkd, ∀k, the
effects on a particular variable and on the class membership can be respectively
the same for all the classes and for all the variables.

Secondly, the probability to be missing can also depend only on the variable itself:
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• MNARy model2: when α11 = . . . = α1d = α21 = . . . = αKd and β1j = . . . =
βKj ∀j, the only effect of missingness is thus on the variable j, being the same
regardless of the class membership.

• MNARyk model: when α11 = . . . = α1d = α21 = . . . = αKd, the effect of
missingness on the variable j depends on the class k.

Thirdly, the probability to be missing can also depend only on the class member-
ship, so that the missingness is class-wise only. This is the case of the MNARz model
given in 3, but we can also consider a slightly more general case:

• MNARzj model: when βkj = 0, ∀(k, j), the effect of missingness on the class
membership k is not the same for all the variables.

Finally, the simplest model is the missing completely at random (MCAR) one,
characterized by no dependence on variables, neither on class membership, i.e., each
variable has the same probability of missing,

MCAR: βkj = 0, ∀(k, j) and α1j = . . . = αKj , ∀j. (7)

For each of these MNAR models, we have studied the identifiability and have pro-
posed a specific algorithm (EM or Stochastic EM); all the details are given in the
accompanying note available here. Note that for MNAR data, beyond the cluster-
ing task, the main challenge to overcome consists in proving the identifiability of the
parameters of the data and the missing-data pattern distributions [28]. The identifia-
bility study showed that the most general models lead to non-identifiable parameters
for categorical data (but the identifiability holds only for the MCAR, MNARz and
MNARzj mechanisms).

Despite the possibility of defining a large number of MNAR models, we have chosen
to focus on the MNARz mechanism, which is a good compromise, clearly outper-
forming methods that do not consider MNAR data, while limiting the computational
cost of the estimation in regard of more general MNAR mechanisms. Moreover, the
MNARz model is robust to model mispecification (see Section 4, Figure 3).

4 Numerical experiments on synthetic data

To assess the quality of the clustering, it is possible to use an information criterion
such as the Bayesian Information Criterion (BIC) [29] or the Integrated Complete-
data Likelihood (ICL) [30]. The BIC criterion is expected to select a relevant mixture
model from a density estimation perspective, while the ICL is expected to select a
relevant mixture model for a clustering purpose [31]. Thus, we consider the latter in
the following. As the ICL involves an integral which is generally not explicit, we can
use an approximate version [31] that we adapt with missing data. For a modelM with
νM parameters, the ICL reads as

ICL(M) = `(θ̂M;Y obs, C)− νM
2

log n+

n∑
i=1

K∑
k=1

zMAP
ik (θ̂M) log(P(zik = 1|yobs

i , ci; θ̂M)),

2This is actually a particular case of MNAR mechanims, widely used in practice [27].
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Fig. 2: Relative effect of both the separation strength ∆µ of the mixture component
and the MNAR evidence ∆perc on theoretical ARI (e.g. if ∆perc = 10% (green line),
the second class has 10% more missing values).

where θ̂M is a maximum likelihood estimator, `(θ;Y obs, C) is the observed log-
likelihood, and with

zMAP
ik (θ) = argmax

k∈{1,...,K}
P(zik = 1|yobs

i , ci; θ). (8)

In addition, the Adjusted Rand Index (ARI) [32] can be computed between the
true partition Z and the estimated one.

4.1 Leveraging from MNAR data in clustering

MNAR data are often considered as a real obstacle for statistical processing. Yet,
the following numerical experiment illustrates that the MNAR mechanism may help
performing the clustering task. Let us consider a bivariate isotropic Gaussian mix-
ture model with two components and equal mixing proportions, under the MNARz
mechanism (3) with a probit link function. The difference between the centers of both
mixture components is taken as ∆µ = µ21 − µ11 = µ22 − µ12 ∈ {0.5, 1, . . . , 3}. This
cluster overlap controls the mixture separation, which can vary from a low separation
(∆µ = 0.5) to a high separation (∆µ = 3). We also make the discrepancy between
inter-cluster missing proportions ∆perc = |perc2 − perc1|, vary in {0, 0.1, 0.2, 0.3}3
corresponds to emphasize the MNAR evidence: indeed, ∆perc = 0 corresponds to a
MCAR model, whereas a high value of ∆perc corresponds to a high difference of miss-
ing pattern proportions between clusters. For all possible values of (∆µ,∆perc), 15%
missing values are introduced. Figure 2 gives the theoretical ARI (i.e., we compute the
ARI with the theoretical parameters) as a function of the cluster overlap ∆µ and the
MNAR evidence ∆perc. Although the good classification rate is mainly influenced by
center separation ∆µ, it also increases with the MNAR evidence ∆perc. When classifi-
cation is difficult because the mixture is not well separated (∆µ = 0.5), the fact that
the data is MNAR helps clustering: the theoretical ARI for ∆perc = 30 (MNAR data)

3The value ∆perc means that if the percentage of missing values in the first cluster is perc1, the percentage
of missing values in the second cluster is perc2 = (perc1 + ∆perc).
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is significantly higher than the one for ∆perc = 0 (MCAR data). This toy example
illustrates how clustering can leverage from MNAR values, rather generally considered
a true hindrance for any statistical analysis.

4.2 Generic experiments

We consider a Gaussian mixture with three components having unequal proportions
(π1 = 0.5, π2 = π3 = 0.25) and independent variables:

∀j ∈ {1, . . . , d}, yij = δ

3∑
k=1

ϕkjzik + εij , (9)

with εij ∼ N (0, 1) the noise term, ϕk ∈ {0, 1}d and δ > 0. Thus, each entry yij follows

a Gaussian distribution with variance 1 and mean δ
∑3

k=1 ϕkjzik. The values of ϕkj
are arbitrary chosen and highlight the interations between the variable j and the class
membership k. This formulation allows to control, in any scenario, the theoretical
rate of misclassification through the value of δ (and hence the theoretical ARI). We
introduce missing values with a MNAR model (6), using a probit link function and
control the rates of missingness through the value of ψk. For each experiment, the
values of δ, ψ and φ are given in Appendix D. When not specified, the simulations
have been performed for a theoretical rate of misclassification of 10% and a theoretical
missing rate in the whole dataset of 30%.

Comparison of MNARz with other MNAR settings

We first vary the number of variables (d = 3, 6, 9) and consider n = 100 observations.
The missing values are sequentially introduced with a MNAR setting. We compare the
method considering the true mechanism (the one used to generate the missing values)
with the EM algorithm for MCAR and MNARz values and the two-step heuristic
based on Mice. This latter consists of first imputing the missing values using multiple
imputations by chained equations [33] to get M completed datasets. Then, classical
model-based clustering is performed on each completed dataset, for which the ARI
is computed, Figure 3 shows the boxplot of the ARI for each scenario. First, the
methods that consider a MNAR mechanism (MNAR?) always outperform those that
consider the MCAR mechanism and the two-step procedure based on Mice. Finally,
the MNARz model remains a good compromise, clearly outperforming methods that
do not consider MNAR data.

Moreover, in Appendix C, Figure C1 and C2 show the computation times for these
numerical experiments; while the MNAR models considering that the probability of
being missing depends on the variable itself are computationally very costly, MNARz
model clearly limits the computational cost of the estimation.

Focus on the MNARz mechanism

Considering the setting (9) and under a MNARz mechanism, we then evaluate the
impact of misspecification of the link function (Figure 4(a)), the misspecification of
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Fig. 3: Boxplot of the ARI obtained for 50 samples composed of d = 3, 6, 9 vari-
ables (rows) and n = 100 observations. Missing values are introduced with MNARy,
MNARykzj MNARyz or MNARzj settings (columns). The boxplot in green is the
one for the algorithm considering the true MNAR? setting; the boxplot in blue (resp.
in gray) is the one for the EM algorithm considering the MNARz setting (resp. the
MCAR setting); the boxplot in red in the two-step heuristic (Mice). The red dashed
line indicates the theoretical ARI.

the data distribution (Figure 4(b)) and the percentage of missing values (Figure 4(c))
by comparing the ARI for the MNARz setting and the MCAR one.

In Figure 4(a), our algorithm always considering a probit function gives the
best ARI (outperforming strategies assuming only MCAR data) regardless of the
link function (Laplace distribution, logit, probit) used to introduce missing values
under a MNARz model. This highlights the robustness of the MNARz setting to
the link function. In Figure 4(b), we consider a three-component Gaussian mix-
ture with non-diagonal covariance matrices. For each component, the diagonal terms
of the covariance matrix are Σii = 1 and the other terms Σij = `, i 6= j, with
` ∈ {0, 0.1, 0.25, 0.5}, while the algorithms assume ` = 0. If the EM algorithm designed
for MNARz data suffers from a huge deviation (` = 0.5) regarding the data distribu-
tion, it remains competitive for smaller ones (` = 0.1, 0.25). Finally, Figure 4(c) shows
the boxplots of the ARI for 10%, 30% and 50% of missing values in the entire dataset.
As the percentage of missing data increases, the gap between algorithms considering
MCAR and MNARz data is widening, proving the relevancy of our algorithm even
with high missing-data rates (50%). In Appendix C, we also provide the experiments
for a theoretical rate of misclassification of 15%. Same conclusions hold.

When the number K of clusters is not known a priori, it can be automatically
chosen using the ICL criterion: the idea is to run algorithms with several values for
K (K = 1, 2, 3, 4 here), and to choose the model with the highest resulting ICL. To
our knowledge, no method proposes an automatic choice of the number of clusters in
unsupervised classification for the two-step heuristics, which is also a major drawback.
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Fig. 4: Boxplot of the ARI obtained for 50 samples of dimension d = 6 variables. The
missing values are introduced using a MNARz setting. The red dashed line indicates
the theoretical ARI.

Table 1: Proportion of good selections of
K (K = 3) using the ICL criterion for the
EM algorithm, over 50 repetitions (d = 6).

MCAR MNARz
Sample size n 100 500 100 500
10 % NA 94% 100% 94% 100%
30 % NA 8% 96% 56% 100%
50 % NA 0% 0% 20% 98%

Table 1 gathers the percentages of times (over 50 repetitions) the correct number of
classes (K = 3) is chosen by the ICL criterion for different missing-data rates (10,
30, 50%) and different sample sizes (n = 100, 500). In any case, the EM algorithm for
MNARz data always outperforms the algorithm for MCAR data in terms of accurate
model selection. The EM algorithm for MNARz data manages also to select the best
model despite a high percentage of missing data (50%) provided that the sample size
is large enough (n = 500).

We also illustrate in Appendix C (Figure C2) the findings of Theorem 1, by com-
paring our algorithm considering MCAR or MNARz data with the algorithm of the
RMixtComp package [34] considering MCAR data and using the augmented data
matrix (Y |C). As expected, both approaches give similar results.

5 TraumaBase® dataset

In this section, we illustrate our approach on a public health application with the

TraumaBase® Group (https://www.traumabase.eu/en US) on the management of
traumatized patients. This dataset contains 41 mixed variables (continuous, quanti-
tative) on 8, 248 polytraumatized patients who suffer from a major trauma (injuries
from cycle or car accident). Data have been collected from 15 different hospitals. In
this dataset, 11% of the data are missing and only 1.4% of the individuals are fully
observed. More information on the variables can be found in Appendix E. The purpose
of this real data analysis is twofold: (i) we want to know if considering the missingness
process has an impact on the estimated partition, (ii) we compare our method with
the classical imputation methods in Appendix E.
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(a) ICL values for different K in the
mixed case.

MCAR
MNARz

Class 1 Class 2 Class 3

Class 1 0.03 0.47 0.61
Class 2 0.45 0.05 0.25
Class 3 0.63 0.23 0.03

(b) Total variation distance between
the marginal distribution of the variable
Shock.index.ph considering MNARz data and
the one considering MCAR data.

MCAR
MNARz

Class 1 Class 2 Class 3

Class 1 2.43 26.5 37.6
Class 2 26.2 3.40 20.1
Class 3 39.3 19.2 2.05

(c) Euclidean distance between condi-
tional probabilities of the cluster member-
ships given observed values of the vari-
able Shock.index.ph, considering MNARz or
MCAR data (more details in Appendix E).

Fig. 5: Comparison of the MCAR and MNARz mechanism on Traumabase dataset.

After discussion with doctors, some variables can be considered to have MNAR
values, such as Shock.index.ph, which denotes the ratio between heart rate and systolic
arterial pressure. In fact, if this rate has a value that indicates that the patient’s
condition is critical, doctors cannot measure heart rate or systolic arterial pressure in
emergency situations. Therefore, we expect that considering a MNAR mechanism can
improve the classification.

We compare our algorithm designed for the MNARz data (3) and the MCAR data
(7). Figure 5a presents the ICL values in the Traumabase dataset for different numbers
of classes. If both algorithms select K = 3 number of classes, the ICL of the algorithm
which considers MNARz data is nonetheless always significantly higher than that
of the algorithm for MCAR data. Their corresponding ARI between classifications
obtained assuming either MNARz or MCAR mechanisms is about 0.90. Thus, both
partitions are close but not equal, which may reflect the influence of the mechanism.
To deepen this issue, we focus on the variable Shock.index.ph. Table 5b and 5c compare
the performances of the algorithm considering MNARz data with the one considering
MCAR data in terms of modelling of the marginal distribution of Shock.index.ph and
partition estimation. As the values can be compared only up to label swapping, we
notice that the minimum values (on the diagonals) are significantly higher than zero,
which indicates that there is an influence of the MNARz mechanism on the modeling
of the data and on the classification rules.

In Appendix E, we assess also the results by using the function catdes of the R
package FactoMineR [35] which allows to see how the cluster of the classification is
described by the variables. The three groups described with our algorithm assuming
MNARz data seem to be described by the same characteristics than those given by the
doctors: the first group is formed by patients with a higher mortality rate and more
severe injuries than the average population and the third group by a lower mortality
rate and less serious injuries, whereas the second group may correspond to other cases.
Note that this classification was done without using variables related to patient death
and that it is quite striking to retrieve the same characteristics. This reinforces the
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idea that the classification obtained makes sense and may provide other information
than the one of the doctors, taking into account more variables.

6 Concluding remarks

This paper addresses model-based unsupervised learning when MNAR values occur.
We propose to cluster individuals via an estimation of the mixture model parame-
ters in play. A by-product of such an approach is that the missing values can be also
imputed, once the distribution is estimated. To this end, we have proposed an approach
which embeds MNAR data directly within model-based clustering algorithms, in par-
ticular the EM algorithm. We have discussed several possible MNAR specifications.
However, the numerical experiment leads us to recommend using algorithms consid-
ering a simple missing-data mechanism, the MNARz mechanism, which models the
probability of being missing only depending on the class membership. By its very sim-
plicity, the latter is indeed able to straightforwardly deal with any kind of data. In
addition to being interpretable (which is especially important for real applications),
this MNARz mechanism can be apprehended as a MAR one on the augmented matrix
[Y |C], including the missing-data pattern C (Theorem 1). This echoes a widely-used
approach in practice, not theoretically studied so far.

The seminal motivation of this work was clustering patients of the Traumabase
dataset, in particular to assist doctors in their medical care. After a first conclusive
application, there are still key challenges to make this work entirely applicable to real
datasets. First, if our methodology can be applied to mixed data (categorical/quan-
titative), a straightforward extension of the proposed approach should be doable to
handle variables that are not necessarily of the same type (MCAR, MAR and MNAR
variables are indeed often coupled). Without any prior help from experts, this actually
remains an open question to automatically evaluate the missing type of variables. Note
however that one can arbitrate between the presented MNAR mechanisms using the
ICL criterion, at the price of running multiple times the algorithm for the different
MNAR scenarios.
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Appendix A Proof of Theorem 1

Proof of Theorem 1. We denote by (c̃1, . . . , c̃n) the patterns of missing data associ-
ated to the observed data ỹobs. It is thus the concatenation c̃i = (ci,0d) of ci with
the zero vector 0d = (0, . . . , 0) of length d. Since all ci values are observed in ỹobs

i , it
is the reason why the last d values in c̃i are fixed to zero. Then, the MAR assumption
indicates that P(c̃i | ỹi, zi; ζ) = P(c̃i | ỹobs

i ; ζ), with ζ the related parameter. Conse-
quently, using the MAR assumption and the i.i.d. assumption of all uplets (ỹi, zi, c̃i),
the whole likelihood can be decomposed into two likelihoods, one has

L(θ, ζ; ˜Y obs, C) =

n∏
i=1

∫
f(ỹi, c̃i; θ, ζ)dỹmis

i

=

n∏
i=1

∫
f(ỹi;π, λ, ψ)f(c̃i|ỹi; ζ)dỹmis

i

=

n∏
i=1

[
f(c̃i|ỹobs

i ; ζ) ×
∫
Ymis

i

f(ỹi;π, λ, ψ)dỹmis
i

]

=

n∏
i=1

L(ζ; c̃i | ỹobs
i ) ×

n∏
i=1

L(π, λ, ψ; ỹobs
i ).

L(π, λ, ψ, ζ; ỹobs
i , c̃i) = L(ζ; c̃i | ỹobs

i )× L(π, λ, ψ; ỹobs
i ). (A1)

Providing that (π, λ, ψ) and ζ are functionally independent (ignorability of the MAR
mechanism), the maximum likelihood estimate of θ = (π, λ, ψ) is obtained by maximiz-
ing only L(π, λ, ψ; ỹobs

i ), and does not depend on L(ζ; c̃i | ỹobs
i ). Finally, by using (4),

the observed likelihood L(π, λ, ψ; ỹobs
i ) is

L(π, λ, ψ; ỹobs
i ) =

K∑
k=1

πkfk(yobs
i ;λk)

d∏
j=1

ρ(αk)cijρ(αk)(1−cij) (A2)

=

K∑
k=1

πkfk(yobs
i ;λk)

d∏
j=1

f(cij | zik = 1;ψ). (A3)

As P(cij | zik = 1;ψ) corresponds to the MNARz definition (3), the observed likelihood
L(π, λ, ψ; ỹobs

i ) is equal to the full observed likelihood L(π, λ, ψ;yobs
i , ci) associated to

the MNARz model,

L(π, λ, ψ;yobs
i , ci) =

K∑
k=1

πkfk(yobs
i ;λk)

d∏
j=1

f(cij | zik = 1;ψ).
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Appendix B Detail on EM algorithm

The EM algorithm consists on two steps iteratively proceeded: the E-step and M-step.
For the E-step, one has

Q(θ; θ[r−1]) = E[`comp(θ;Y,Z,C)|yobs
i , ci; θ

[r−1]]

=

n∑
i=1

K∑
k=1

E
[
zik log(πkfk(yi;λ)f(ci | yi, zik = 1;ψ)) | yobs

i , ci;π
[r−1], λ[r−1], ψ[r−1]

]

=

n∑
i=1

K∑
k=1

tik(θ[r−1])E
[
log(πkfk(yi;λ)f(ci | yi, zik = 1;ψ)) | yobs

i , ci, zik = 1;π[r−1], λ[r−1], ψ[r−1]
]

with tik(θ[r−1]) = f(zik = 1 | yobs
i , ci; θ

[r−1]).

It leads to the decomposition

Q(θ; θ[r−1]) =

n∑
i=1

K∑
k=1

tik(θ[r−1])
[
log(πk) + τy(λk;yobs

i , ci, θ
[r−1]) + τc(ψk;yobs

i , ci, θ
[r−1])

]
,

where the terms involved in this decomposition are now detailed.
(a) the expectation of the data mixture part over the missing values given the avail-

able information (i.e., the observed data and the indicator pattern), the class
membership and the current value of the parameters:

τy(λk;yobs
i , ci, θ

[r−1]) = Eθ[r−1]

[
log fk(yi;λk) | yobs

i , zik = 1, ci
]
,

(b) the expectation of the missing mechanism part over the missing values given
the available information, the class membership and the current value of the
parameters:

τc(ψk;yobs
i , ci, θ

[r−1]) = Eθ[r−1]

[
log fk(ci | yi;ψk) | yobs

i , zik = 1, ci
]
.

(c) the conditional probability for an observation i to belong to the class k given the
available information and the current value of the parameters:

tik(θ[r−1]) = f(zik = 1 | yobs
i , ci; θ

[r−1]).

Terms (a) and (b) require to integrate over the distribution f(ymis
i | yobs

i , zik =
1, ci; θ

[r−1]). For Term (a), one has

f(ymis
i | yobs

i , zik = 1, ci; θ
[r−1])

=
f(ymis

i ,yobs
i , zik = 1, ci; θ

[r−1])

f(yobs
i , zik = 1, ci; θ[r−1])

(B4)

=
f(ci | ymis

i ,yobs
i , zik = 1;ψ[r−1])f(ymis

i ,yobs
i , zik = 1;λ[r−1])∫

Ymis
i

f(ci | ymis
i ,yobs

i , zik = 1;ψ[r−1])f(ymis
i ,yobs

i , zik = 1;λ[r−1])dymis
i

. (B5)
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Term (c) corresponds to the conditional probability for an observation i to arise from
the kth mixture component with the current values of the model parameter. More
particularly, one has

tik(θ[r−1]) =
f(zik = 1,yobs

i , ci; θ
[r−1])

f(yobs
i , ci; θ[r−1])

=
f(zik = 1,yobs

i , ci; θ
[r−1])∑K

h=1 f(zih = 1,yobs
i , ci; θ[r−1])

=
π

[r−1]
k f(yobs

i | zik = 1;λ
[r−1]
k )f(ci | yobs

i , zik = 1; θ[r−1])∑K
h=1 π

[r−1]
h )f(yobs

i | zih = 1;λ
[r−1]
h )f(ci | yobs

i , zih = 1; θ[r−1])

=
π

[r−1]
k fk(yobs

i ;λ
[r−1]
k )f(ci | yobs

i , zik = 1; θ[r−1])∑K
h=1 π

[r−1]
h fh(yobs

i ;λ
[r−1]
h )f(ci | yobs

i , zih = 1; θ[r−1])
(B6)

B.1 Gaussian mixture for continuous data

The pdf fk(yi;λ) = φ(yi;µk,Σk) is assumed to be a Gaussian distribution with mean
vector µk and covariance matrix Σk. First, let us detail the terms of the E-step. Term
(a) is written as follows:

E
[
log(φ(yi;µk,Σk)) | yobs

i , zik = 1, ci; θ
[r−1]

]
= −1

2
[n log(2π) + log((| Σk |))]

− 1

2
E
[
(yi − µk)T (Σk)−1(yi − µk) | yobs

i , zik = 1, ci; θ
[r−1]

]
.

This last term could be expressed using the commutativity and linearity of the trace
function:

E
[
(yi − µk)T (Σk)−1(yi − µk) | yobs

i , zik = 1, ci; θ
[r−1]

]
= tr(E

[
(yi − µk)(yi − µk)T | yobs

i , zik = 1, ci; θ
[r−1]

]
(Σk)−1).

Finally note that only E
[
(yi − µk)(yi − µk)T | yobs

i , zik = 1, ci; θ
[r−1]

]
has to be

calculated.
For the MNARz model, the effect of the missingness is only due to the class

membership.
• For Term (a), note that

f(ymis
i | yobs

i , zik = 1, ci; θ
[r−1]) = f(ymis

i | yobs
i , zik = 1;λ[r−1]),

which makes the computation easy. Indeed, using (B5),

f(ymis
i | yobs

i , zik = 1, ci; θ
[r−1])
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=

∏d
j=1 ρ(α

[r−1]
k )cij (1− ρ(α

[r−1]
k ))1−cijf(ymis

i ,yobs
i , zik = 1;λ[r−1])∫

Ymis
i

∏d
j=1 ρ(α

[r−1]
k )cij (1− ρ(α

[r−1]
k ))1−cijf(ymis

i ,yobs
i , zik = 1;λ[r−1])dymis

i

=
f(ymis

i ,yobs
i , zik = 1;λ[r−1])∫

Ymis
i

f(ymis
i ,yobs

i , zik = 1;λ[r−1])dymis
i

= f(ymis
i | yobs

i , zik = 1;λ[r−1]),

since
∏d
j=1 ρ(α

[r−1]
k )cij (1 − ρ(α

[r−1]
k ))1−cij does not depend on ymis

i and is sim-

plified with the numerator. The law of (ymis
i | yobs

i , zik = 1) is Gaussian (up to a
reorganization of the variables associated to individual i). Noting that

(
yi | zik = 1;λ[r−1]

)
=

((
yobs
i

ymis
i

)
| zik = 1;λ[r−1]

)
∼ N

((
(µobs
ik )[r−1]

(µmis
ik )[r−1]

)
,

(
(Σobs,obs

ik )[r−1] (Σobs,mis
ik )[r−1]

(Σmis,obs
ik )[r−1] (Σmis,mis

ik )[r−1]

))
,

one obtains(
ymis
i | yobs

i , zik = 1;λ[r−1]
)
∼ N

(
(µ̃mis
ik )[r−1], (Σ̃mis

ik )[r−1]
)
. (B7)

with (µ̃mis
ik )[r−1] and (Σ̃mis

ik )[r−1] the standard expression of the mean vector and
covariance matrix of a conditional Gaussian distribution (see for instance [36])
detailed as follows

(µ̃mis
ik )[r−1] = (µmis

ik )[r−1] + (Σmis,obs
ik )[r−1]

(
(Σobs,obs

ik )[r−1]
)−1 (

yobs
i − (µobs

ik )[r−1]
)
,

(B8)

(Σ̃mis
ik )[r−1] = (Σmis,mis

ik )[r−1] − (Σmis,obs
ik )[r−1]

(
(Σobs,obs

ik )[r−1]
)−1

(Σobs,mis
ik )[r−1].

(B9)

Note also that we have

(yi−µk)(yi−µk)T =

(
(yobs
i − µobs

ik )T (yobs
i − µobs

ik ) (yobs
i − µobs

ik )T (ymis
i − µmis

ik )
(ymis
i − µmis

ik )T (yobs
i − µobs

ik ) (ymis
i − µmis

ik )T (ymis
i − µmis

ik )

)
.

Therefore, the expected value of each block for the current parameter value is

E
[
(yobs
i − µobs

ik )T (yobs
i − µobs

ik ) | yobs
i , zik = 1;λ[r−1]

]
= (yobs

i − µobs
ik )T (yobs

i − µobs
ik )

E
[
(yobs
i − µobs

ik )T (ymis
i − µmis

ik ) | yobs
i , zik = 1;λ[r−1]

]
= (yobs

i − µobs
ik )T ((µ̃mis

ik )[r−1] − µmis
ik )

E
[
(ymis
i − µmis

ik )T (ymis
i − µmis

ik ) | yobs
i , zik = 1;λ[r−1]

]
= ((µ̃mis

ik )[r−1] − µmis
ik )T ((µ̃mis

ik )[r−1] − µmis
ik ) + (Σ̃mis

ik )[r−1].
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• For Term (b), f(ci | yi, zik = 1;ψ) is independent of yi, which implies

log(f(ci | zik = 1;ψ)) =

d∑
j=1

cij log ρ(αk) + (1− cij) log(1− ρ(αk)) (B10)

• For Term (c), one first remark that

P(ci | yobs
i , zik = 1; θ[r−1]) =

d∏
j=1

P(cij = 1 | yobs
i , zik = 1; θ[r−1])cijP(cij = 0 | yobs

i , zik = 1; θ[r−1])1−cij .

In particular, for MNARz, by independence of yi, one has

P(cij = 1 | yobs
i , zik = 1; θ[r−1]) = P(cij = 1 | zik = 1; θ[r−1]) = ρ(αk)

Using (B6), one obtains

t
[r−1]
ik (θ[r−1]) =

π
[r−1]
k φ(yobs

i ; (µobs
ik )[r−1], (Σobs,obs

ik )[r−1])
∏d
j=1 ρ(α

[r−1]
k )cij (1− ρ(α

[r−1]
k ))1−cij∑K

h=1 π
[r−1]
h φ(yobs

i ; (µobs
ih )[r−1], (Σobs,obs

ih )[r−1])
∏d
j=1 ρ(α

[r−1]
h )cij (1− ρ(α

[r−1]
h ))1−cij

(B11)
If ρ is the logistic distribution, the expression can be written more simply

tik(θ[r−1]) ∝ π[r−1]
k φ(yobs

i ;λ
[r−1]
k )

d∏
j=1

(
1 + exp(−δijα[r−1]

k )
)−1

where δij =

{
1 if cij = 1
−1 otherwise.

Finally, the E-step and the M-step can be sketched as follows in the Gaussian
mixture case.

E-step The E-step for Term (a) consists of computing for k = 1, . . . ,K and i =
1, . . . , n

(µ̃mis
ik )[r−1] = (µmis

ik )[r−1] + (Σmis,obs
ik )[r−1]

(
(Σobs,obs

ik )[r−1]
)−1 (

yobs
i − (µobs

ik )[r−1]
)

(Σ̃mis
ik )[r−1] = (Σmis,mis

ik )[r−1] − (Σmis,obs
ik )[r−1]

(
(Σobs,obs

ik )[r−1]
)−1

(Σobs,mis
ik )[r−1]

(ỹi,k)[r−1] = (yobs
i , (µ̃mis

ik )[r−1])

Σ̃
[r−1]
ik =

(
0obs,obs
i 0obs,mis

i

0mis,obs
i (Σ̃mis

ik )[r−1]

)
.

Note that whenever the mixture covariance matrices are supposed diagonal then
(Σ̃mis

ik )[r−1] is also a diagonal matrix. Term (c) also requires the computation of
tik(θ[r−1]) given in (B11) for k = 1, . . . ,K and i = 1, . . . , n.
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M-step The maximization of Q(θ; θ[r−1]) over (π, λ) leads to, for k = 1, . . . ,K,

π
[r]
k =

1

n

n∑
i=1

tik(θ[r−1])

µ
[r]
k =

∑n
i=1 tik(θ[r−1])(ỹk,i)

[r−1]∑n
i=1 tik(θ[r−1])

Σ
[r]
k =

∑n
i=1

[
tik(θ[r−1])

(
(ỹi,k)[r−1] − µrk)((ỹi,k)[r−1] − µrk)T + Σ̃

[r−1]
ik

)]
∑n

i=1 tik(θ[r−1])
.

Then, the maximization of Q(θ; θ[r−1]) over ψ can be performed using a Newton
Raphson algorithm. For k = 1, . . . ,K, it remains to fit a generalized linear model
with the binomial link function for the matrix (JMNARz

k )[r] and by giving tik(θ[r−1])
as prior weights to fit the process.

(JMNARz
k )[r] =

 c.1 1
...

...
c.d 1

 . (B12)

The EM algorithm for the MNARz model is described in Algorithm 1 for Gaussian
mixture.

B.2 Latent class model for categorical data

For categorical data, we have φ(yi;λk) =
∏d
j=1 φ(yij ;λkj) =

∏d
j=1

∏`j
`=1(λ`kj)

y`ij .
Term (a) is

E
[
log(φ(yi; pk)) | yobs

i , zik = 1, ci;λ
[r−1]

]
=

∑
j,cij=0

`j∑
`=1

y`ij +
∑

j,cij=1

`j∑
`=1

log(λ
y`ij
kj )

(B13)
Term (b) is the same as in the Gaussian case given in (B10). Finally, the EM algorithm
can be summarized as follows

E step: For k = 1, . . . ,K and i = 1, . . . , n, compute

tik(θ[r−1]) =
π

[r−1]
k

∏
j,cij=0

∏`j
`=1(λ`kj)

y`ijρ(αk)∑K
h=1 π

[r−1]
h

∏
j,cij=0

∏`j
`=1(λ`hj)

y`ijρ(αh)

(ỹ`ij,k)[r−1] = cij(θ
`
kj)

[r−1] + (1− cij)y`ij , ∀j = 1, . . . , d, ∀` = 1, . . . , `j .
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Algorithm 1 EM algorithm for Gaussian mixture and MNARz model

1: Input: Y ∈ Rn×d (matrix containing missing values), K ≥ 1, rmax.
2: Initialize π0

k, µ0
k,Σ

0
k and ψ0

k, for k ∈ {1, . . . ,K}.
3: for r = 0 to rmax do
4: E-step:
5: for i = 1 to n, k = 1 to K do

6: (µ̃mis
ik )[r−1] = (µmis

ik )[r−1]+(Σmis,obs
ik )[r−1]

(
(Σobs,obs

ik )[r−1]
)−1 (

yobs
i − (µobs

ik )[r−1]
)
.

7: (Σ̃mis
ik )[r−1] = (Σmis,mis

ik )[r−1]−(Σmis,obs
ik )[r−1]

(
(Σobs,obs

ik )[r−1]
)−1

(Σobs,mis
ik )[r−1].

8: (ỹi,k)[r−1] = (yobs
i , (µ̃mis

ik )[r−1]).

9: Σ̃
[r−1]
ik =

(
0obs,obs
i 0obs,mis

i

0obs,mis
i (Σ̃mis

ik )[r−1]

)
, where 0obs,obs

i and 0obs,mis
i are the null

matrix of size nobs
i ×nobs

i and nobs
i ×nmis

i , with nobs
i (resp. nmiss

i ) the number
of observed (reps. missing) variables for individual i.

10: tik(θ[r−1]) ∝ π
[r−1]
k φ(yobs

i ; (µobs
ik )[r−1], (Σobs,obs

ik )[r−1])
∏d
j=1 ρ(α

[r−1]
k )cij (1 −

ρ(α
[r−1]
k ))1−cij

11: end for
12: M-step:
13: for k = 1 to K do

14: π
[r]
k = 1

n

∑n
i=1 tik(θ[r−1]), µ

[r]
k =

∑n
i=1 tik(θ[r−1])(ỹk,i)

[r−1]∑n
i=1 tik(θ[r−1])

15: Σ
[r]
k =

∑n
i=1

[
tik(θ[r−1])

(
(ỹi,k)[r−1]−µ[r]

k )((ỹi,k)[r−1]−µ[r]
k )T +Σ̃

[r−1]
ik

)]
∑n

i=1 tik(θ[r−1])

16: Let ψ
[r]
k be the coefficients of a GLM with a binomial link function, by giving

prior weights tik(θ[r−1]). In particular, the optimization problem is

(JMNARz
k )[r]ψ

[r]
k = log

(
1− E[c|(JMNARz

k )[r]])

E[c|(JMNARz
k )[r]]

)
,

for a matrix (JMNARz
k )[r] given in (B12) and c = (c.1, . . . , c.d) the concate-

nated missing data patterns for the variables 1, . . . , d.
17: end for
18: end for

M step: The maximization of Q(θ; θ[r−1]) over θ leads to, for k = 1, . . . ,K,

πrk =
1

n

n∑
i=1

tik(θ[r−1])

(θ`kj)
r =

∑n
i=1 tik(θ[r−1])(ỹ`ij,k)[r−1]∑n

i=1 tik(θ[r−1])
, ∀j = 1, . . . , d, ∀` = 1, . . . , `j .
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d ϕ
3 ϕ11 = ϕ22 = ϕ33 = 1
6 ϕ11 = ϕ22 = ϕ33 = ϕ14 = ϕ36 = 1
9 ϕ11 = ϕ22 = ϕ33 = ϕ14 = ϕ36 = ϕ17 = ϕ27 = ϕ39 = 1

Table D1: Choice of the values of ϕ and α for all the
experiments of Section 4.2. Other values ϕkj are null.

The M-step for ψ consists of performing a GLM with a binomial link for the following
matrix:

(HMNARz)[r] =

 c.1 z.1 . . . z.K
...

...
...

...
c.d z.1 . . . z.K

 =



c11 z
[r]
11 . . . z

[r]
1K

...
...

...
...

cn1 z
[r]
n1 . . . z

[r]
nK

...
...

...
...

c1d z
[r]
11 . . . z

[r]
1K

...
...

...
...

cnd z
[r]
n1 . . . z

[r]
nK

.


(B14)

B.3 Combining Gaussian mixture and latent class model for
mixed data

If the data are mixed (continuous and categorical), the formulas can be extended
straightforwardly if the continuous and the categorical variables are assumed to be
independent knowing the latent clusters.

Appendix C Additional numerical experiments on
synthetic data

Note that in Figure C2, the differences for n = 100 can be explained by the difference
in initialization of the algorithms, which can play an important role for small sample
sizes.

Appendix D Complements on generic experiments

This section gives the values of δ (see (9)) ψ (see (6)) and ϕ (see (9)) used during
the different experiments. As explained in Section 4.2, their choice allows to control
the rates of misclassification and missingness, as well as the interation between the
variables and the class membership. To estimate these values, we have generated a
large sample (n = 105) and compute the misclassification rate and the missingness
rate for several values of δ and ψ and pick the ones which correspond to the setting
of the experiment.

Appendix E Traumabase dataset

22



K % NA link rate of misclassification l δ α

3 30% probit 90% 0 2.6
(
−1 −0.3 0

)
3 30% logit 90% 0 2.76

(
−1.5 −0.8 0.1

)
3 30% Laplace 90% 0 2.85

(
−1.1 0.3 0

)
3 30% probit 85% 0 2.27

(
−1 −0.3 0

)
3 30% logit 85% 0 2.44

(
−1.5 −0.8 0.1

)
3 30% Laplace 85% 0 2.46

(
−1.1 0.3 0

)
3 30% probit 90% 0.1 2.3

(
−1.16 0.3 −0.42

)
3 30% probit 90% 0.25 2.17

(
−1.16 0.3 −0.4

)
3 30% probit 90% 0.5 1.85

(
−1.16 0.3 −0.4

)
3 30% probit 85% 0.1 1.97

(
−1.16 0.3 −0.42

)
3 30% probit 85% 0.25 1.86

(
−1.16 0.3 −0.4

)
3 30% probit 85% 0.5 1.57

(
−1.16 0.3 −0.4

)
3 10% probit 90% 0 2.18

(
−1.65 −1.2 −0.9

)
3 50% probit 90% 0 3.3

(
−0.55 0.25 1.7

)
3 10% probit 85% 0 1.95

(
−1.65 −1.2 −0.9

)
3 50% probit 85% 0 2.62

(
−0.55 0.25 1.7

)
Table D2: Choice of the values of δ and α for all the experiments of Section
4.2 and Appendix C for the MNARz mechanism. K denotes the number of
class, the column denoted as % NA gives the rate of missingness, the column
called link gives the link function of the missing-data mechanism used in the
introduction of the missing values, l is the coefficient of correlation (anti-
diagonal terms), δ is given in (9) and α in (6).

d δ α

3 20

−0.4 −0.65 −0.65
−1.1 −1 −1
−0.6 0.4 0.4


6 2.5

−1.4 −1.4 −1.2 −1.1 −1 −0.9
−0.6 0.4 0.4 0.3 0.1 0.1
−0.2 −0.2 −0.2 −0.2 −0.2 −0.2


9 1.78

−0.5 −0.65 −0.65 −1.1 −1.7 −1.7 −1.4 −1.4 −1.4
−0.6 0.4 0.4 −0.2 0.3 0.4 0.3 0.3 0.3
−0.4 −0.4 −0.4 −0.4 −0.4 −0.4 −0.4 −0.4 −0.4


Table D3: Choice of the values of δ and α for all the experi-
ments of Section 4.2 for the MNARzj mechanism.

d δ α β

3 3.5 -1.56
(
1.45 0.2 −3

)
6 2.25 -0.7

(
−3 0.3 −3 −3 −2 1

)
9 1.98 -0.68

(
0.5 0.1 −1.2 0.4 −0.1 −1.3 0.3 −0.1 −1

)
Table D4: Choice of the values of δ, α and β for all the
experiments of Section 4.2 for the MNARy mechanism.

d δ α β

3 4.72
(
−1.2 −0.8 −0.5

) (
−3 0.3 1

)
6 2.12

(
−1.35 −0.29 0

) (
−3 0.3 −3 −3 −2 1

)
9 1.71

(
−1.34 −0.34 0

) (
−3 0.3 −3 −2.8 −2 1 0.2 0.1 0.4

)
Table D5: Choice of the values of δ, α and β for all the exper-
iments of Section 4.2 for the MNARyz mechanism.
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Fig. C1: Boxplot of the computational times (in seconds) obtained for 50 samples
composed of d = 6 variables.

d δ α β

3 2.55

 −1 −0.95 −0.9
0.75 0.7 0.8
−0.2 −0.2 −0.2

 −3 0.3 −3
0.3 −3 0.3
−3 0.3 −3


6 1.96

−1.2 −1 −0.9 −0.9 −0.7 −0.8
−0.6 0.4 0.4 0.3 0.1 0.1
−0.4 −0.4 −0.4 −0.4 −0.4 −0.4

 −3 0.3 −3 −3 −2 1
0.3 −3 0.3 −0.3 −2 0.2
−3 0.3 −3 −3 −2 1


9 1.45

(−1.4 −1 −1.1 −1.1 −0.9 −0.8 −1.2 −1 −1.1
0.3 0.5 0.2 −0.6 0.4 0.4 0.3 0.1 0.1
−0.4 −0.4 −0.4 −0.4 −0.4 −0.4 −0.4 −0.4 −0.4

) (−3 0.3 −3 −3 −2 1 −3 0.3 0.2
0.3 −3 0.3 −0.3 −2 0.2 0.2 0.3 −0.3
−3 0.3 −3 −3 −2 1 −1 −2 −3

)
Table D6: Choice of the values of δ, α and β for all the experiments of Section 4.2 for the MNARykzj

mechanism.
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Fig. C2: Left graphic: Boxplot of the ARI obtained for 50 samples composed of
d = 6 variables and n ∈ {100, 250, 500}. In grey: our EM implementation for MCAR
data, in blue: our EM implementation for MNARz data, in green: SEM algorithm
of RMixtComp for MCAR data using the augmented data matrix. Right graphic:
associated computational times (in seconds).
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Fig. C3: Boxplot of the ARI obtained for 50 samples composed of d = 6 variables.
The missing values are introduced using a MNARz setting. The misclassification rate
is of 15%. Impact of the misspecification of the link function.

E.1 Impact of the MNARz process on the estimated partition

Table 5c gives the Euclidean distance between the conditional probabilities of the
cluster memberships given the observed values of the variable Shock.index.ph obtained
using the algorithm considering MNARz data and those obtained using the algorithm
considering MCAR data. For clarity, the latter quantity is reported here,√√√√ n∑

i=1

(P(zik = 1|yobs
is ; θMCAR)− P(zik̃ = 1|yobs

is ; θMNAR))2,∀k, k̃ ∈ {1, 2, 3}
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Fig. C4: Boxplot of the ARI obtained for 50 samples composed of d = 6 variables.
The missing values are introduced using a MNARz setting. The misclassification rate
is of 15%. Impact of the misspecification of the data distribution.
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Fig. C5: Boxplot of the ARI obtained for 50 samples composed of d = 6 variables.
The missing values are introduced using a MNARz setting. The misclassification rate
is of 15%. Impact of the percentage of missing values.

with s the index of the variable Shock.index.ph, θMCAR (resp. θMNAR) the estimator
returned by the algorithm considering MCAR data (resp. MNAR data).
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E.2 Imputation performances in the Traumabase dataset

We perform now simulations on the real dataset in order to be able to measure the
quality of the imputation of our method compared to the multiple imputation [33]
(Mice). We introduce some additional missing values in three quantitative variables
(TCD.PI.max, Shock.index.ph, FiO2 ) by using the MNARz mechanism (3). The vari-
ables contain initially 51%, 31%, 7% and finally 63%, 50% and 32% missing values.
The algorithm for continuous data specifically designed for MNARz data for K = 3
classes is compared with mean imputation and multiple imputation in terms of mean
squared error (MSE). Denoting by Ŷ ∈ Rn×d the imputed dataset and C̃ ∈ Rn×d the
indicator pattern of missing data newly introduced, the mean squared error is given by

E[(Ŷ − Y )� C̃]2F
/
E[Y � C̃]2F ,

where � is the Hadamard product and E[]2F = E[‖.‖2F ] denotes the expectation of the
Frobenius norm squared. In particular, to impute missing values using our clustering
algorithm, we use the conditional expectation of the missing values given the observed
ones, given that the data are assumed to be Gaussian and that all the parameters of
the distribution are given by our algorithm. Imputation is carried out by taking the
mean over 104 draws. In Figure E7, our clustering algorithm, designed for the MNAR
setting, gives a significantly smaller error than other methods.

0.30

0.33

0.36

0.39

Mean Mice MNARz

Method

M
S

E

Fig. E7: Mean squared error of the imputation task for the Traumabase dataset.

E.3 Description of the variables in the Traumabase dataset

A description of the variables which are used in Section 5 is given. Figure E8 gives
the percentage of missing values per variable. The indications given in parentheses ph
(pre-hospital) and h (hospital) mean that the measures have been taken before the
arrival at the hospital and at the hospital.

• Trauma.center (categorical, integers between 1 and 16, no missing values): name
of the trauma center (ph & h).

• Anticoagulant.therapy (categorical, binary variable, 4.3% NA): oral anticoagulant
therapy before the accident (ph).
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• Antiplatelet.therapy (categorical, binary variable, 4.4% NA): anti-platelet therapy
before the accident (ph).

• GCS.init, GCS (ordinal, integers between 3 and 15, 2% NA & 42% NA): Initial
Glasgow Coma Scale (GCS) on arrival on scene of enhanced care team and on
arrival at the hospital (GCS = 3: deep coma; GCS = 15: conscious and alert) (ph
& h).

• GCS.motor.init, GCS.motor (ordinal, integers between 1 and 6, 7.6% NA &
43%): Initial Glasgow Coma Scale motor score (GCS.motor = 1: no response;
GCS.motor = 6: obeys command/purposeful movement) (ph % h).

• Pupil.anomaly.ph, Pupil.anomaly (categorical, 3 categories: Non, Anisocoire (uni-
laterale), Mydriase Bilaterale, 2% NA & 1.7%): pupil dilation indicating brain
herniation (ph & h).

• Osmotherapy.ph, Osmotherapy (categorical, 4 categories: Pas de mydriase, SSH,
Mannitol, Rien, 1.7% NA and no missing values): administration of osmother-
apy to alleviate compression of the brain (either Mannitol or hypertonic saline
solution) (ph & h)

• Improv.anomaly.osmo (categorical, 3 categories: Non testé, Non, Oui, no missing
values): change of pupil anomaly after ad- ministration of osmotherapy (ph).

• Cardiac.arrest.ph (categorical, binary variable, 2.3% NA): cardiac arrest during
pre-hospital phase (ph).

• SBP.ph, DBP.ph, HR.ph (continuous, 29.3% NA & 29.6% NA & 29.5% NA):
systolic and diastolic arterial pressure and heart rate during pre-hospital phase
(ph).

• SBP.ph.min, DBP.ph.min (continuous, 12.8% NA & 13% NA): minimal systolic
and diastolic arterial pressure during pre-hospital phase (ph).

• HR.ph.max (continuous, 13.7 % NA): maximal heart rate during pre-hospital
phase (ph).

• Cristalloid.volume (continuous, positive values, 30% NA): total amount of
prehospital adminis- tered cristalloid fluid resuscitation (volume expansion) (ph).

• Colloid.volume (continuous, positive values, 31.3% NA): total amount of prehos-
pital administered colloid fluid resuscitation (volume expansion) (ph).

• HemoCue.init (continuous, 34.9% NA): prehospital capillary hemoglobin con-
centration (the lower, the more the patient is probably bleeding and in shock);
hemoglobin is an oxygen carrier molecule in the blood (ph).

• Delta.hemoCue (continuous, 37.2% NA): difference of hemoglobin level between
arrival at the hospital and arrival on the scene (h).

• Vasopressor.therapy (continuous, no missing values): treatment with cate-
cholamines in case of physical or emotional stress increasing heart rate, blood
pres- sure, breathing rate, muscle strength and mental alertness (ph).

• SpO2.min (continuous, 11.7% NA): peripheral oxygen saturation, measured by
pulse oxymetry, to estimate oxygen content in the blood (95 to 100%: considered
normal; inferior to 90% critical and associated with considerable trauma, danger
and mortality) (ph).
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• TCD.PI.max (continuous, 51.2% NA): pulsatility index (PI) measured by
echodoppler sonographic examen of blood velocity in cerebral arteries (PI ¿ 1.2:
indicates altered blood flow maybe due to traumatic brain injury) (h).

• FiO2 (categorical, in {1, 2, 3, 4, 5}, 6.8% NA): inspired concentration of oxygen on
ventilatory support (the higher the more critical; Ventilation = 0: no ventilatory
support) (h).

• Neurosurgery.day0 (categorical, binary variable, no missing values): neurosurgical
intervention performed on day of admission (h).

• IGS.II (continuous, positive values, 2% NA): Simplified Acute Physiology Score
(h).

• Tranexomic.acid (categorical, binary variable, no missing values): administration
of the tranexomic acid (h).

• TBI (categorical, binary variable, no missing values): indicates if the patient
suffers from a traumatic brain injury (h).

• IICP (categorical, binary variable, 70.9% NA): at least one episode of increased
intracranial pressure; mainly in traumatic brain injury; usually associated with
worse prognosis (h).

• EVD (categorical, binary variable, no missing values): external ventricular
drainage (EVD); mean to drain cerebrospinal fluid to reduce intracranial pressure
(h).

• Decompressive.craniectomie (categorical, binary variable, no missing values):
surgical intervention to reduce intracranial hypertension (h).

• Death (categorical, binary variable, no missing values): death of the patient (h).
• AIS.head, AIS.face (ordinal, discrete, integers between 0 and 6 and 4 1.7% NA &

1.7% NA): Abbreviated Injury Score, describing and quantifying facial and head
injuries (AIS = 0: no injury; the higher the more critical) (h).

• AIS.external (continuous, discrete, integers between 0 and 5, 1.7% NA): Abbre-
viated Injury Score for ex- ternal injuries, here it is assumed to be a proxy of
information avail- able/visible during pre-hospital phase (ph/h).

• ISS (continuous, discrete, integers between 0 and 75, 1.6% NA): Injury Severity
Score, sum of squares of top three AIS scores (h).

• Activation.HS.procedure (categorical, binary variable, 3.7% NA): activation of
hemorragic shock procedure in case of HS suspicio (h).

• TBI Death (categorical, binary variable, no missing values): death of the patients
suffering from a traumatic brain injury (h).

• TBI Death 30d (categorical, binary variable, no missing values): death of the
patients suffering from a traumatic brain injury in the 30 days (h).

• TBI 30d (categorical, binary variable, no missing values): traumatic brain injury
in the 30 days (h).

• Death 30d (categorical, binary variable, no missing values): death in the 30 days
(h).

• Shock.index.ph (continuous, positive values, 30.5% NA): ratio of heart rate and
systolic arterial pressure during pre-hospital phase (ph).

• majorExtracranial (categorical, binary variable, no missing values): major
extracranial lesion (h).
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Fig. E8: Percentage of missing values per variable for the Traumabase dataset.

• lesion.class (no missing values): partition given by the doctors with K = 4 classes:
axonal, extra, other, intra.

• lesion.grade (no missing values): partition given by the doctors with K = 3
classes: high, low, other.
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