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Abstract

Traditional ways for handling missing values are not designed for the clustering purpose
and they rarely apply to the general case, though frequent in practice, of Missing Not At Ran-
dom (MNAR) values. This paper proposes to embed MNAR data directly within model-based
clustering algorithms. We introduce a mixture model for different types of data (continuous,
count, categorical and mixed) to jointly model the data distribution and the MNAR mechanism.
Eight different MNAR models are proposed, which may depend on the underlying (unknown)
classes and/or the values of the missing variables themselves. We prove the identifiability of
the parameters of both the data distribution and the mechanism, whatever the type of data
and the mechanism, and propose an EM or Stochastic EM algorithm to estimate them. The
code is available on https://github.com/AudeSportisse/Clustering-MNAR. We also prove
that MNAR models for which the missingness depends on the class membership have the nice
property that the statistical inference can be carried out on the data matrix concatenated with
the mask by considering a MAR mechanism instead. Finally, we perform empirical evaluations
for the proposed sub-models on synthetic data and we illustrate the relevance of our method on
a medical register, the TraumaBase® dataset.

Keywords. Model-based Clustering, Missing Not At Random (MNAR) Data, Identifiability,
EM and Stochastic EM Algorithms, Medical Data.
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1 Introduction

Clustering remains a pivotal tool for readable analysis of large datasets, offering a consistent sum-
mary of datasets by grouping individuals. In particular, the model-based paradigm [McLachlan and
Basford, 1988, Zhong and Ghosh, 2003, Bouveyron et al., 2019] allows to perform clustering, by pro-
viding interpretable models that are valuable to understand the connections between the constructed
clusters and the features in play. This parametric framework provides a certain plasticity by han-
dling high-dimensionality problems [Bouveyron et al., 2007, Bouveyron and Brunet-Saumard, 2014],
mixed datasets [Marbac et al., 2017], or even time series and dependent data [Ramoni et al., 2002,
Xiong and Yeung, 2004]. The counterpart to performing this multifaceted model-based clustering
is the modeling work involved to design mixture models appropriate to the data structure.

In large-scale data analysis, the problem of missing data is ubiquitous, since the more data we
have, the more missing values we can expect to have. Classical approaches for dealing with missing
data consist of working on a complete dataset [Little and Rubin, 2019], either by using only complete
individuals, or by imputing missing values. However, both methods can cause huge problems in
the analysis. On the one hand, if we delete the individuals having missing values, the remaining
observations can form a small sample subset which increases the variance of the estimates. Moreover,
this subsample can be a biased subset of the population that lead to bias estimator when it is used for
inference. On the other hand, if single imputation is used, the additional variability due to missing
values is not taken account into subsequent analysis. Furthermore, neither of both strategies is
specifically designed for the final clustering task. As an alternative, one can consider likelihood
approaches, using, for instance, Expectation Maximization (EM) type algorithms [Dempster et al.,
1977]. We detail such an approach in this paper and develop some clustering methods able to deal
with informative missing data in an efficient way.

Notations and typology of the missing values mechanisms To correctly define the missing
values mechanisms, some notations must be introduced. The full dataset consists of n individuals
Y = (y1| . . . |yn)T , where each observation yi = (yi1, . . . , yid)

T belongs to a space Y, depending on
the type of data, defined by d features. The pattern of missing data for the full dataset is denoted by
C = (c1| . . . |cn)T ∈ {0, 1}n×d, ci = (ci1, . . . , cid)

T ∈ {0, 1}d being the indicator pattern of missing
data for the individual i ∈ {1, . . . , n}: cij = 1 indicates that the value yij is missing and cij = 0
otherwise. The values of the observed variables for individual i are denoted by yobs

i . Similarly, the
values of the missing variables for individual i are denoted by ymis

i . In addition, in a clustering
context, the target is to estimate an unknown partition Z = (z1| . . . |zn)T ∈ {0, 1}n×K that groups
the full dataset Y into K classes, with zi = (zi1, . . . , ziK)T ∈ {0, 1}K and where zik = 1 if yi belongs
to cluster k, zik = 0 otherwise. Consequently, in a clustering context, the missing data are not only
the values ymis

i but also the partition labels zi.
Rubin [1976] distinguishes three missing value mechanisms, namely Missing Completely at Ran-

dom (MCAR), Missing at Random (MAR) and Missing not at Random (MNAR). Missing data
are MCAR when the missingness is independent of all the values, missing or not, and thus can be
formalized by P(ci | yi, zi;ψ) = P(ci;ψ), for all (missing or observed) values (yi, zi), ψ generically
designating a parameter of the multinomial pdf on ci. Missing data are MAR when missingness is
independent of missing values, even if possibly depending on some (or all) observed values, which
means that P(ci | yi, zi;ψ) = P(ci | yobs

i ;ψ) for all missing values (ymis
i , zi). The M(C)AR mech-

anisms are said to be ignorable, because estimating the parameter of the data distribution Y does
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not require the modelisation of P(ci | yi, zi;ψ), considering that ψ is a nuisance parameter. Finally,
MNAR corresponds to a missing-data mechanism that is not MCAR or MAR. For such missing
data, the observed variables are not representative of the population. It is well known that the
MNAR mechanism is nonignorable when the goal is to estimate the parameters of the mixture
model [Little and Rubin, 2019]. The MNAR mechanism is actually also not-ignorable when the aim
is to recover the partition of the data. Therefore, as the MNAR mechanism is neither ignorable
for the density estimation, nor for the clustering, dealing with such data does require the specific
modeling effort of P(ci | yi, zi;ψ).

MNAR data In this paper, the data are supposed to be MNAR, which is very frequent in practice
[Ibrahim et al., 2001, Mohan et al., 2018]. Examples may include surveys where rich people would be
less willing to disclose their income or clinical data collected in emergency situations, where doctors
may choose to treat patients before measuring heart rate. In both cases, the missingness of income
or heart rate depends on the missing values themself. The missing-data mechanism must generally
be taken into account [Little and Rubin, 2019] by considering the joint distribution of the data and
the missing-data pattern. There are mainly two approaches to formulate the joint distribution of
the data and the missing-data pattern: (i) the selection model [Heckman, 1979] which factorizes
it into the product of the marginal data density and the conditional density of the missing-data
pattern given the data i.e. P(yi, ci|zi) = P(yi|zi)P(ci|yi, zi) (ii) the pattern-mixture model [Little,
1993] which uses the product of the marginal density of the missing-data pattern and the conditional
density of the data given the missing-data pattern i.e. P(yi, ci|zi) = P(ci|zi)P(yi|ci, zi). In this
paper, we adopt the selection model strategy, as it is more intuitive in our setting to model the
distribution of the data (as usually done in parametric clustering approaches) and the cause of
the lack according to the data. Although this point of view requires to model the missing-data
mechanism, it permits imputation of the missing values and density estimation throughout the
parameter estimation of the mixture model.

Related works In order to handle missing values in a model-based clustering framework, Hunt
and Jorgensen [2003] have implemented the standard EM algorithm [Dempster et al., 1977] based
on the observed likelihood. More recently, Serafini et al. [2020] also propose an EM algorithm
to estimate Gaussian mixture models in the presence of missing values by performing multiple
imputations (with Monte Carlo methods) in the E-step. However, both works only consider M(C)AR
data.

Different clustering methods have been developed to deal with MNAR mechanisms. In a
partition-based framework, Chi et al. [2016] propose an extension of k-means clustering for miss-
ing data, called k-Pod, without requiring the missing-data pattern to be modelled. However, like
k-means clustering, the k-Pod algorithm cannot identify difficult cluster structures, since it relies
on strong assumptions as equal proportions between clusters. De Chaumaray and Marbac [2020]
have proposed to perform clustering via a semiparametric mixture model using the pattern-mixture
approach to formulate the joint distribution, which makes the method not suitable for estimating
the density parameters or imputing missing values. For longitudinal data, Beunckens et al. [2008],
Kuha et al. [2018] jointly model the measurements and the dropout process by using an extension
of the shared-parameter model, which is specific approach to deal with MNAR mechanisms, by
assuming that both the data and the dropout process depend on shared latent variables. They
introduce for this a latent-class mixture model allowing classification of the subjects into latent
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groups. However, the MNAR model is restricted to the case where the missingness may depend on
the latent variables but not on the missing variables themselves.

For MNAR data, and specifically in selection models, the main challenge to overcome consists
in proving the identifiability of the parameters of both the data and the missing-data pattern
distributions. In particular, Molenberghs et al. [2008] prove that identifiability does not hold when
the models are not fixed, i.e. when there is no prior information on the type of distribution for
the missing-data pattern. For fixed models, Miao et al. [2016] provide identifiability results of
Gaussian mixture and t-mixture models with MNAR data. However, their identifiability results are
restricted to specific missing scenarios in a univariate case (one variable) and no estimation strategy
is proposed. In this paper, their idenfiability results are extended to more complex missing scenario
and to the multivariate case.

Contributions We present and illustrate a relevant inventory of distributions for the MNAR
missingness process in the context of unsupervised classification based on mixture models for dif-
ferent types of data (continuous, count, categorical and mixed). We then provide the identifiability
of the mixture model parameters and missingness process parameters under certain conditions (in-
cluding the data type and the link functions governing the missingness mechanism distribution).
This is a real issue in the context of MNAR data, as models often lead to unidentifiable parameters.
When all variables are continuous or count, all models lead to identifiable parameters. In the cat-
egorical and mixed cases, only the models for which missingness depends on the class membership
have identifiable parameters. For each model or submodel, an EM or Stochastic EM algorithm is
proposed, implemented, and made available for reproducibility. We also prove that, with respect
to MNAR models for which missingness depends on class membership, statistical inference can be
conducted on the augmented matrix [Y,C] considering the MAR mechanism instead; this is a real
advantage, especially since the missing-data mechanism does not have to be modeled in this case.
This also gives a theoretical interpretation of this approach often used in practice.

Outline of the paper The rest of the article is organized as follows. We introduce the model-
based clustering in the presence of missing data in Section 2 and propose an exhaustive zoology of
the possible MNAR specifications in this framework, for which the identifiability issue is addressed.
We propose an estimation strategy in Section 3. Section 4 is devoted to numerical experiments
with synthetic data in order to assess the performance of our methods. In Section 5, our method is
finally illustrated on a public health application, the TraumaBase® dataset. Section 6 concludes
this paper and provides some perspectives.

2 Missing data in model-based clustering

2.1 Mixture models

Mixture models permit to achieve the clustering aim by modeling the distribution of the observed
data (yobs

i , ci). This distribution can be obtained from the distribution of the couple (yi, ci) that is
supposed to be a mixture model withK components. Thus, using the model selection decomposition
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for each component, the probability distribution function (pdf) of the couple (yi, ci) is

f(yi, ci; θ) =
K∑
k=1

πkfk(yi;λk)fk(ci | yi, zik = 1;ψk), (1)

where θ = (γ, ψ) gathers all the model parameters, γ = (π, λ) groups the parameters related to
the marginal distribution of Yi, π = (π1, . . . , πK) is the vector of proportions with

∑K
k=1 πk = 1

and πk > 0 for all k ∈ {1, . . . ,K}, λ = (λ1, . . . , λK), fk(· ;λk) is the pdf of the k-th component
parameterized by λk, ψ = (ψ1, . . . , ψK) groups the parameters of the missingness mechanisms and
fk(ci | yi;ψk) is the pdf related to the missingness mechanism under component k. In many cases,
the parameter ψ is interpreted as a nuisance parameter. However, when the mechanism is not
ignorable, we need to consider the whole parameter θ to achieve clustering since the pdf of the
observed data is

f(yobs
i , ci; θ) =

∫
f(yi, ci; θ)dy

miss
i . (2)

Different types of pdf fk(· ;λk) can be considered, depending on the types of features at hand.
Thus, if yi is a vector of continuous variables, the pdf of a d-variate Gaussian distribution [McLach-
lan and Basford, 1988, Banfield and Raftery, 1993] can be considered for fk(yi;λk) and thus λk
groups the mean vector and the covariance matrix. Moreover, if some components of yi are discrete
or categorical, the latent class model (see [Geweke et al., 1994, McParland and Gormley, 2016])
defining fk(yi;λk) =

∏d
j=1 fkj(yij ;λkj) can be used. In such case, fkj could be the pdf of a Poisson

(resp. multinomial) distribution with parameter λkj if yij is an integer (resp. categorical) variable.
One may expect that the individual data Y convey more information on the partition Z than

the pattern C of missing data. Thus, it is hazardous to allow the missing data modeling to be
more complex than the mixture model itself. Consequently, we assume that the elements of ci
are conditionally independent given (yi, zi) and that the cij and yij′ are conditionally independent
given (yij , zi) for j 6= j′. This amounts to considering self-masked class-wise MNAR mechanisms
for each variable: the missingness of the variable j may depend on its value itself (self-masked) and
on the class membership (class-wise). In addition, the conditional distribution of cij given (yi, zi)
is assumed to be a generalized linear model with link function ρ, so that finally

fk(ci | yi, zik = 1;ψk) =

d∏
j=1

(ρ(αkj + βkjyij))
cij (1− ρ(αkj + βkjyij))

1−cij , (3)

where ψk = (αk1, βk1, . . . , αkK , βkK). The parameter αkj represents a mean effect of missingness on
the k-th class membership for the variable j (note that within a same class k, αkj is not necessarily
equal to αkj′ for j 6= j′). The parameter βkj represents the direct effect of missingness on the
variable j (hence the name of self-masked mechanisms) which depends on the class k as well.

The most general model that we consider is called MNARykzj and is defined by (3). We now
propose some gradual variants of this core model by decreasing their complexity, while always
highlighting their associated interpretation.

2.2 Decreasing the complexity of the missingness mechanism models

Simpler models can be derived from (3) by imposing equal parameters either across the class mem-
bership, or across the variables likely to be missing. First, we introduce three models, with a lower
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complexity than (3), that still allow the probability of being missing to depend on both the variable
itself and the class membership. For the MNARyzj model, the effect of missingness on a variable is
the same regardless of the class (while keeping different mean effects αkj on the class membership),
so that

MNARyzj : β1j = . . . = βKj , ∀j. (4)

For the MNARykz model, the missingness has a same mean effect on class membership shared by
all variables (while allowing different self-masked and class-wise parameters βkj)

MNARykz: αk1 = . . . = αkd, ∀k. (5)

We can consider that the effects on a particular variable and on the class membership are respectively
the same for all the classes and for all the variables, entailing the so-called MNARyz model:

MNARyz: β1j = . . . = βKj , ∀j and αk1 = . . . = αkd, ∀k. (6)

Secondly, the probability to be missing can also depend only on the variable itself; the miss-
ing mechanism therefore becomes self-masked only. This is actually a particular case of MNAR
mechanims, widely used in practice [Mohan, 2018], that we call MNARy here. The only effect of
missingness is thus on the variable j, being the same regardless of the class membership,

MNARy: α11 = . . . = α1d = α21 = . . . = αKd and β1j = . . . = βKj ∀j. (7)

A slightly more general case can be considered by allowing the effect of missingness on the variable
j to depend on the class, as in the following MNARyk model,

MNARyk: α11 = . . . = α1d = α21 = . . . = αKd. (8)

Thirdly, the probability to be missing can also depend only on the class membership, so that the
missingness is class-wise only. In the MNARz model, we consider that the only effect of missingness
is on the class membership k, being the same for all variables,

MNARz: βkj = 0, ∀(k, j) and αkj = . . . = αkd, ∀k. (9)

The MNARzj model is a slightly more general case than the MNARz model, because the effect of
missingness on the class membership k is not the same for all the variables,

MNARzj : βkj = 0, ∀(k, j). (10)

Finally, the simplest model is the one with no dependence on the variables, neither on the class
membership, which boils down to MCAR values, i.e. each value has the same probability to be
missing,

MCAR: βkj = 0, ∀(k, j) and α1j = . . . = αKj , ∀j. (11)

2.3 About the specificity of some proposed models

The MNARz model given in (9) is the simplest of the MNAR models previously listed. Generally
speaking, this model assumes that the proportion of missing values can vary among clusters. How-
ever, behind its apparent simplicity, it benefits from interesting properties. Although MNARz does
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Figure 1: Illustration of the dependency between ci and yi in a MNARz model by drawing P(ci |
yi;π, λ, ψ) for a three-component univariate Gaussian model with mixing proportions π1 = π2 = 0.3
and π3 = 0.4, with centers µ1 = µ3 = −5 and µ2 = 0, and with variances σ2

k = k (k ∈ {1, 2, 3}).
The MNARz parameters are fixed to α1 = 2, α2 = 0 and α3 = 1..

not directly involve yi in its ground definition (9), the pattern ci can be related to yi through zi.
This is illustrated in Figure 1.

Finally, it is important to mention that MNARz and MNARzj can be turned into a MAR-like
strategy, commonly used in the machine learning community [Josse et al., 2019], by working on
the concatenated dataset Ỹobs = (Yobs,C). In Proposition 1, we prove that the mixture model
associated to this augmented dataset Ỹobs with a MAR missing mechanism is equivalent to the
mixture model for Yobs given in (1) assuming a MNARz or MNARzj model for C. The proof of
this proposition is given in Appendix A.

Proposition 1. Consider the dataset (ỹobs
1 , . . . , ỹobs

n ) such that ỹobs
i = (yobs

i , ci) for i ∈ {1, . . . , n}.
Assume that all ỹobs

i arise i.i.d. from the mixture model with a MAR mechanism

f̃(ỹobs
i ; θ) =

K∑
k=1

πkfk(y
obs
i ;λk)

d∏
j=1

ρ(αkj)
cij (1− ρ(αkj))

1−cij . (12)

Then for fixed parameters (π, λ, ψ), the mixture model for ỹobs
i is the same than the distribution for

yobs
i with the mixture model (1) under the MNARz assumption (9) and MNARzj assumption (10).

In particular, Proposition 1 implies that the maximum likelihood estimate of (π, λ, ψ) is the same
considering ỹobs

i under the MAR assumption and yobs
i under the MNARz assumption (9) or MNARzj

assumption (10). This implies that if the mechanism is MNARz or MNARzj , an (EM) algorithm
designed for MAR data can be used on the augmented data set instead, capitalizing on efficient
implementations dedicated to such a well-studied setting (see Section 4). As a matter of fact, Propo-
sition 1 is the first theoretical result in unsupervised learning in line with the intuition, developed
in Josse et al. [2019] for supervised learning, that working with MAR strategies on the data set
augmented by the missing patterns can actually tackle certain types of MNAR settings.
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2.4 Impact of the missingness mechanism on the clustering

MNAR is strictly speaking non-ignorable with the classical definition [Little and Rubin, 2019] but
one could check whether it is ignorable for clustering, which is the task of interest. A necessary and
sufficient condition to have an ignorable missing process for clustering is that the distributions of
ci are equal among the mixture components. Thus, the missingness process is said to be ignorable
for clustering if

∀(yobs
i , ci), P(zik = 1|yobs

i , ci = 1; θ) = P(zik = 1|yobs
i ; θ).

This is equivalent to having

∀(yobs
i , ci),

πk
∫
fk(yi;λk)fk(ci | yi;ψk)dymis

i∫ ∑K
`=1 π`f`(yi;λ`)f`(ci | yi;ψ`)dymis

i

=
πkfk(y

obs
i ;λk)∑K

`=1 π`f`(y
obs
i ;λ`)

.

The MCAR mechanism is trivially ignorable for clustering since P(ci | yi, zik = 1;ψ) = P(ci;ψ).
However, under the MNAR assumption, the missingness mechanism is no longer ignorable, even for
clustering, and a specific estimation process for the vector parameter (π, θ, ψ) is needed. Obviously,
it depends on the MNAR model at hand, i.e. on the missing-pattern distribution P(ci | yi, zi;ψ).

2.5 Identifiability of the model parameters

This section gives sufficient conditions for the generic identifiability of the parameters for continuous,
count, categorical, and mixed data (i.e., the space where the parameters are not identifiable has a
Lebesgue measure equal to zero; see Allman et al. [2009]).

Proposition 2. Define the conditions:

C1 The variables correspond to continuous or count data, A1. and A2. hold true,

C2 All the variables are categorical, A4. and A5. hold true and that the mechanism is stated by
(9), (10) or (11),

C3 At least one variable is continuous or count data and has a marginal distribution that satisfy
A1. and A2., A4. hold true,

C4 At least one variable is categorical and its associated mechanism is stated by (9), (10) or (11),
A4. and A5. hold true.

Assume that Assumption A3. holds and that at least one of conditions C1-C4 is satisfied, then the
parameters of the model in (2) are generically identifiable, up to label swapping.

The whole proof and assumptions are detailed in Appendix B. For continuous data, Assumptions
A1. and A2. require that the parameters of the marginal mixture are identifiable and that a
total ordering of the mixture densities holds. For categorical data, Assumption A4. requires the
conditional independence of the features given the group membership and Assumption A5. links
the minimum number of dimensions and the number of classes. Finally, in both cases, Assumption
A3., which requires that the missing data mechanism is strictly monotone, is made.

The proof for continuous and count variables follows the reasoning used by Teicher [1963, The-
orem 2] which proves the identifiability of univariate finite mixtures. For categorical variables, the
generic identifiability holds only for the MCAR, MNARz and MNARzj mechanisms. The proof
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uses Corollary 5 of Allman et al. [2009] which gives the identifiability of finite mixtures of Bernoulli
products. The identifiability of mixed data directly follows from the identifiability of continuous
and categorical components.

3 Estimation of the proposed MNAR models

The parameters identifiability makes the estimation procedure possible and sound. However, MNAR
models are not ignorable and they require thus a specific inference procedure for estimating the
parameters π, λ and ψ. This section gathers the description of the EM and SEM algorithms for
Gaussian, Poisson, multinomial and mixed data with MNAR models in view of maximum likelihood
estimation. Details of the algorithms are given in Appendix C. These iterative algorithms require
to introduce the complete-data log-likelihood defined by

`comp(θ;Y,Z,C) =

n∑
i=1

log

(
K∑
k=1

πkfk(yi;λk)fk(ci | yi;ψk)

)
. (13)

3.1 The EM algorithm

The EM algorithm [Dempster et al., 1977] is an iterative algorithm that permits to maximize
the likelihood function under missingness. Initialized at the point θ[0], its iteration [r] consists,
at the E-step, in computing the expectation of the complete-data log-likelihood Q(θ; θ[r−1]) =
Eθ[r−1]

[
`comp(θ;Y,Z,C) | Yobs,C

]
, then, at the M-step, updating the parameters by maximizing

this function θ[r] = arg max
θ

Q(θ; θ[r−1]). Note that

Q(θ; θ[r−1]) =
n∑
i=1

K∑
k=1

tik(θ
[r−1])

[
log(πk) + τy(λk;y

obs
i , ci, θ

[r−1]) + τc(ψk;y
obs
i , ci, θ

[r−1])
]
,

where
tik(θ

[r−1]) =
1

f(yobs
i , ci; θ[r−1])

∫
π

[r−1]
k fk(yi;λ

[r−1]
k )fk(ci | yi;ψ

[r−1]
k )dymiss

i ,

τy(λk;y
obs
i , ci, θ

[r−1]) = Eθ[r−1]

[
ln fk(yi;λk) | yobs

i , ci, zik = 1
]
,

and
τc(ψk;y

obs
i , ci, θ

[r−1]) = Eθ[r−1]

[
ln fk(ci | yi;ψk) | yobs

i , ci, zik = 1
]
.

Thus, the iteration [r] of the EM algorithm is defined by

• E-step: Computation of

tik(θ
[r−1]), τy(λk;y

obs
i , ci, θ

[r−1]) and τc(ψk;yobs
i , ci, θ

[r−1]).

• M-step: Updating the parameters

π
[r]
k =

1

n

n∑
i=1

tik(θ
[r−1]), λ

[r]
k = arg max

λk

n∑
i=1

tik(θ
[r−1])τy(λk;y

obs
i , ci, θ

[r−1]),

and

ψ
[r]
k = arg max

ψk

n∑
i=1

tik(θ
[r−1])τc(ψk;y

obs
i , ci, θ

[r−1]).
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Note that the difficulty of the computation of quantities defined at the E-step as well as the difficulty
of the maximization problem leading to λ[r]

k and ψ[r]
k , depend on the MNAR model at hand. These

steps are straightforward with the MNARz and MNARzj models (see (9) and (10)) but more difficult
with all the other MNAR models called in the sequel MNARy∗ (modelling the effect of missingness
depending on y).

Note that computing τy(λk;yobs
i , ci, θ

[r−1]) requires to integrate over ymis
i by considering its con-

ditional distribution given (yobs
i , zik = 1, ci) and the parameter θ[r−1]. For MNARz and MNARzj

models, this conditional distribution is equal to the conditional distribution of ymis
i by the depen-

dence of y given (yobs
i , zik = 1) and the parameter θ[r−1]. This makes τy(λk;yobs

i , ci, θ
[r−1]) easy

to be computed in most cases (see Appendix C.1.1 and C.1.2 for both Gaussian and categorical
data). The MNARy∗ models consider the effect of the missingness depending on y and lead then
to unfeasible computations. The conditional distribution of ymis

i given (yobs
i , zik = 1, ci) and the

parameter θ[r−1] is explicit in some cases (if the variables are Gaussian, it is a truncated Gaussian
as shown in Appendix C.2.1) if the missing-data distribution ρ is probit but it is not a known distri-
bution if ρ is logistic (it would require the use of sampling algorithm, as the Sampling Importance
Resampling algorithm Gordon et al. [1993], that are time costly). However, to our knowledge, for
both forms of missing-data distributions, τc(ψk;yobs

i , ci, θ
[r−1]) and tik(θ

[r−1]) do not have closed
forms. In addition, the maximization problem leading to ψ[r]

k is a delicate issue because the function
involved is not concave.

3.2 The SEM algorithm for overpassing the EM intractability’s

Some distributions lead to computation of untractable integrals at the E-step (e.g., gaussian compo-
nents with MNARy∗ mechanism defined with logit link). In such case, the SEM algorithm [Celeux
and Diebolt, 1985] could avoid this difficulty, by imputing missing values using a Gibbs sampling
instead of integrating over them. In addition, it has another possible advantage over the EM al-
gorithm since it is not trapped by the first local maximum encountered of the likelihood function
[Celeux and Diebolt, 1985]. The SEM algorithm modifies the E-step of the EM algorihtm by con-
sidering a stochastic-E step (SE-step) while the M-step is unchanged. Thus, at the iteration [r], the
E-step is replaced by the following SE-step:
SE-step: Draw the missing data (z

[r]
i ,y

mis [r]
i ) according to their conditional distribution given the

observed data (yobs
i , ci) and the current parameter θ[r−1]. Since it is not convenient to simulate this

conditional distribution, we simulate instead the following two easier conditional probabilities using
a Gibbs sampling approach:

z
[r]
i ∼ zi | y[r−1]

i , ci; θ
[r−1] and y

mis [r]
i ∼ ymis

i | yobs
i , z

[r]
i , ci; θ

[r−1], (14)

where y
[r]
i = (yobs

i ,y
mis[r]
i ).

The sampling of z[r]
i is performed by a multinomial distribution whose probabilities of events

are defined by π[r−1]
k fk(yi;λ

[r−1]
k )fk(ci | yi;ψ

[r−1]
k )/f(yi, ci; θ

[r−1]) for k = 1, . . . ,K.
Note that the conditional distribution of ymis

i given (yobs
i , z

[r]
ik = 1, ci) parameterized by θ[r−1] is

defined by

fk(y
mis
i | yobs

i , ci; θ
[r−1]) =

fk(y
mis
i | yobs

i ; θ[r−1])fk(ci | ymis
i ,yobs

i ;ψ[r−1])∫
fk(y

mis
i | yobs

i ; θ[r−1])fk(ci | ymis
i ,yobs

i ;ψ[r−1])dymis
i

.
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This distribution may not be classical, in general. For the MNARy∗ models, the conditional dis-
tribution ymis

i given (yobs
i , z

[r]
ik = 1, ci) is not explicit if the components are Gaussian and if the

missing data distribution ρ is logistic (since the product of logistic and Gaussian distributions is not
a standard law). Therefore, the SEM algorithm cannot be easily applied. However, if ρ is the probit
function, we can make the distribution of interest explicit (it is a truncated Gaussian distribution
when the variables are Gaussian). For MNARz and MNARzj models, all the computations remain
feasible. In Appendix C, Table 4 gives the cases for which the EM or SEM algorithm is feasible.

4 Numerical experiments on synthetic data

The performances of our methods are first illustrated by some numerical experiments on synthetic
data. In Section 4.1, we show that clustering can leverage from MNAR missing values, by using
the percentage of missing values per class. Section 4.2 focuses on the MNARz mechanism. Its
robustness to misspecification of the link function, the data distribution, and the percentage of
missing values, alternatively, is then addressed in Section 4.3.

Measuring the performance To assess the quality of the clustering, it is possible to use an infor-
mation criterion such as the Bayesian Information Criterion (BIC) [Schwarz, 1978] or the Integrated
Complete-data Likelihood (ICL) [Biernacki et al., 2000]. The BIC criterion is expected to select a
relevant mixture model from a density estimation perspective, while the ICL is expected to select
a relevant mixture model for a clustering purpose. Thus, we consider the latter in the following.
As the ICL involves an integral which is generally not explicit, we can use an approximate version
[Baudry et al., 2015] that we detail when missing data. For a modelM with νM parameters, the
maximum likelihood estimators are denoted as θ̂M and `(θ;Yobs,C) is the observed log-likelihood.
One has

ICL(M) = `(θ̂M;Yobs,C)− νM
2

lnn+
n∑
i=1

K∑
k=1

zMAP
ik (θ̂M) log(P(zik = 1|yobs

i , ci; θ̂M)), (15)

with zMAP
ik (θ) = argmax

k∈{1,...,K}
P(zik = 1|yobs

i , ci; θ).

In addition, the Adjusted Rand Index (ARI) [Hubert and Arabie, 1985] can be computed between
the true partition Z and the estimated one. Obviously other strategies are possible to select a useful
mixture model (see Celeux et al. [2019]).

4.1 Leveraging from MNAR data in clustering illustration

MNAR data are often considered a real obstacle for statistical processing. Yet, this first numerical
experiment illustrates that the MNAR mechanism may help performing the clustering task. Indeed,
let us consider a bivariate isotropic Gaussian mixture model with two components and equal mixing
proportions. The difference between the centers of both mixture components is taken as ∆µ = µ21−
µ11 = µ22 − µ12 ∈ {0.5, 1, . . . , 3}. This cluster overlap controls the mixture separation, which can
vary from a low separation (∆µ = 0.5) to a high separation (∆µ = 3). By considering the MNARz
mechanism (9), one can play on the discrepancy between inter-cluster missing proportions ∆perc =
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Figure 2: Relative effect of both the separation strength ∆µ of the mixture component and the
MNAR evidence ∆perc on theoretical ARI. For example, if ∆perc = 10% (green line), it means that
the second class has 10% more missing values than the first class.

|perc2 − perc1|, by making it varies in {0, 0.1, 0.2, 0.3}1. Increasing values of ∆perc correspond to
an increase in the MNAR evidence: indeed, ∆perc = 0 corresponds to a MCAR model, whereas
a high value of ∆perc corresponds to a high difference of missing pattern proportions between
clusters. Finally, 15% missing values are introduced regardless of MNAR evidence ∆perc and mixture
separation ∆µ. Figure 2 gives the theoretical ARI (i.e. we compute the ARI with the theoretical
parameters) as a function of the cluster overlap ∆µ and the MNAR evidence ∆perc. Although
the good classification rate is mainly influenced by center separation ∆µ, it also increases with
the MNAR evidence ∆perc. This toy example illustrates how clustering can leverage from MNAR
missing values, generally considered a true hindrance for any statistical analysis.

4.2 Generic experiments

To perform clustering with missing data, we consider the following methods:

• the EM algorithm (designed for the MCAR, MNARz and MNARzj settings, resp. defined in
(11), (9) and (10)),

• the SEM algorithm (designed for MNARy, MNARyk, MNARykzj , MNARyz, MNARykz and
MNARyzj settings, resp. defined in (7), (8), (3), (6), (5) and (4)),

• a two-step heuristics which consists of first imputing the missing values using multiple impu-
tations by chained equations [Buuren and Groothuis-Oudshoorn, 2010] to get M completed
datasets. This algorithm is called Mice. Then, classical model-based clustering is performed
on each completed dataset, for which the performance is measured. The final performance of
this method is computed with the mean. In simulations, we do not systematically consider
this method, which is not specifically designed for clustering.

To compare the methods presented above, we consider a Gaussian mixture with three com-
ponents having unequal proportions (π1 = 0.5, π2 = π3 = 0.25) and independent variables such

1The value ∆perc means that if the percentage of missing values in the first cluster is perc1, the percentage of
missing values in the second cluster is perc2 = (perc1 + ∆perc).
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that:

∀j ∈ {1, . . . , d}, yij = δ

3∑
k=1

ϕkjzij + εij , (16)

with εij ∼ N (0, 1) the noise term, ϕk ∈ {0, 1}d and δ > 0. We introduce missing values with a
MNAR model (see (3)), using a probit link function and its associated parameters. The choice of the
parameters ψk of the missing-data mechanism and δ allows to control the rates of misclassification
and missingness (their values for each experiment are given in Appendix F). All the simulations
have been performed for a theoretical rate of misclassification of 10% and a theoretical missing rate
in the whole dataset of 30%.

Consistency of the estimators We first assess the consistency of the estimators for each of
the MNAR settings. We consider d = 6 variables and we vary the number of observations n =
100, 250, 500. For d = 6, we fix ϕ11 = ϕ22 = ϕ33 = ϕ14 = ϕ25 = ϕ36 = 1 and the others ϕkj = 0.
Figure 3 (left graphic) presents the boxplot of the ARI for each scenario. First, as expected, consid-
ering the mechanism always gives better results than using the MCAR model. This is especially true
for models with many parameters and larger sample sizes (as the MNARyz, MNARykzj , MNARykz,
MNARyzj settings for n = 250 and n = 500). Finally, consistency seems satisfactory in each sce-
nario, indicating that our tuning parameters for the algorithm (starting values, stopping rules) are
quite suitable. Figure 4 focuses on the MNARz mechanism. We compare the EM algorithm coded
by us considering MCAR or MNARz data with the SEM algorithm of the RMixtComp package
[Biernacki et al., 2015] considering MCAR data and using the augmented data matrix (Y|C). As
expected (see Proposition 1), the SEM algorithm designed for MNARz data and the one designed
for MCAR data using the augmented data matrix give similar results. The differences for n = 100
can be explained by the difference in initialization of the algorithms, which can play an important
role for small sample sizes.

Computation time The computation times for these numerical experiments are given in Figure
5 and Figure 4 (right graphic), which focuses on the MNARz mechanism. There is a huge difference
of computation times between the settings using the EM algorithm (MCAR, MNARz, MNARzj)
and the ones requiring the SEM algorithm, these latter being expansively time-consuming. We see
that the SEM algorithm of RMixtComp is the fastest method, which makes Proposition 1 a key
result. Indeed, it opens the way to the use of an already optimized (coded in C) algorithm.

Impact of the dimension In this experiment, we vary the number of variables (d = 3, d = 6 and
d = 9) and consider n = 100 observations. For d = 3, we fix ϕ11 = ϕ22 = ϕ33 = 1 and the others
ϕkj = 0. For d = 6, we retrieve the previous parameter setting dedicated to this case. For d = 9, we
fix ϕ11 = ϕ22 = ϕ33 = ϕ14 = ϕ25 = ϕ36 = ϕ17 = ϕ28 = ϕ39 = 1 and the others ϕkj = 0. The missing
values are sequentially introduced with a MNARzj , MNARy, MNARy, MNARyz and MNARykzj

model. We compare the method considering the true mechanism (the one used to generate the
missing values) with the EM algorithm for MCAR and MNARz values and the two-step heuristic
(Mice). Figure 6 shows the boxplot of the ARI for each scenario. First, the methods considering an
MNAR mechanism (MNAR?) always outperform the competing methods, the one considering the
MCAR mechanism and the two-step procedure based on Mice. Note that comparing the MNARz
setting with the real MNAR setting that generated the missing data is difficult, because it is not
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Figure 3: Boxplot of the ARI obtained for 50 samples composed of d = 6 variables with a misclassi-
fication rate of 10% and a missing-data rate of 30% in the whole dataset. The sample size varies by
{100,250,500}. The missing values are introduced with a MNARy, MNARyk MNARz or MNARzj

mechanism (top) and a MNARykz, MNARykzj MNARyz or MNARyzj mechanism (bottom). The
boxplot in green is the one for the algorithm considering the true MNAR? setting (noted "True" in
the legend). The red line indicates the theoretical ARI.

15



0.5

0.6

0.7

0.8

0.9

1.0

100 250 500
Sample size

A
R

I

MNARz

0

50

100

150

200

100 250 500
Sample size

T
im

e 
(in

 s
ec

on
ds

)

Mechanism

MCAR

MNARz

RMixtComp

Figure 4: Left graphic: Boxplot of the ARI obtained for 50 samples composed of d = 6 variables
with a misclassification rate of 10% and a missing-data rate of 30% in the whole dataset. Sample
size varies in {100,250,500}. The missing values are introduced with a MNARz mechanism. ARI
are showed in the left graphic and computational times (in seconds) in the right one (in grey: EM
algorithm coded by us for MCAR data, in blue: EM algorithm coded by us for MNARz data, in
green: SEM algorithm of RMixtComp for MCAR data using the augmented data matrix). The
red line indicates the theoretical ARI. Right graphic: associated computational times (in seconds).

clear how much the MNARz setting deviates from the hypothesis (depending on the parameters
chosen for the mechanism). However, the MNARz setting seems to be a compromise: It is clearly
better than methods that do not consider MNAR data. It is sometimes not as good as the real
setting that generated the missing data, but it allows one to overcome expansive computation time.

4.3 Focus on the MNARz mechanism

We consider the same setting as in Section 4.2 and focus now on the MNARz mechanism, because
it is an interesting compromise between all the proposed MNAR mechanisms, as just discussed at
the end of the previous section.

Impact of the misspecification of the link function Figure 7 shows the boxplots of the ARI
for the MNARz setting and the MCAR one. The missing values are introduced using an MNARz
model with different link functions (the Laplace density distribution, the logit link, and the probit
link), whereas the estimation algorithm considers the probit one. The MNARz setting seems to be
robust to the link function.

Impact of the misspecification of the data distribution Figure 8 shows the boxplots of the
ARI for the MNARz setting and the MCAR one in another context. We consider a three-components
Gaussian mixture with non-diagonal covariance matrices. For each component, the diagonal terms
of the covariance matrix are Σii = 1 and the other terms Σij = l, i 6= j, with l ∈ {0, 0.1, 0.25, 0.5},
whereas the algorithms assume l = 0. Figure 8 shows the boxplot of the ARI for each scenario.
Here, it is clear that the EM algorithm designed for MNARz data is not robust to a huge deviation
(l = 0.5) from the hypothesis on the data distribution. For smaller deviations (l = 0.1, 0.25), the
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Figure 5: Boxplot of the computational times (in seconds) obtained for 50 samples composed of
d = 6 variables with a misclassification rate of 10% and a missing-data rate of 30% in the whole
dataset (see experiment on the consistency of the estimators illustrated by Figure 3).

17



MNARy MNARykzj MNARyz MNARzj

3
6

9

MCAR Mice MNARz True MCAR Mice MNARz True MCAR Mice MNARz True MCAR Mice MNARz True

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

A
R

I

Mechanism

MCAR

Mice

MNARz

True

Figure 6: Boxplot of the ARI obtained for 50 samples composed of d = 3, 6, 9 variables and n = 100
observations with a misclassification rate of 10% and a missing-data rate of 30% in the whole
dataset. Missing values are introduced with MNARy, MNARykzj MNARyz or MNARzj settings.
The boxplot in green is the one for the algorithm considering the true MNAR? setting (noticed
"True" in the legend); the boxplot in blue (resp. in gray) is the one for the EM algorithm considering
the MNARz setting (resp. the MCAR setting); the boxplot in red in the two-step heuristic (Mice).
The red line indicates the theoretical ARI.
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Figure 7: Boxplot of the ARI obtained for 50 samples composed of d = 6 variables with a misclas-
sification rate of 10% and a missing-data rate of 30% in the whole dataset. The missing values are
introduced using a MNARz setting with different link functions but only the probit link is involved
for the estimation step. The red line indicates the theoretical ARI.

18



l=0 l=0.1 l=0.25 l=0.5

MCAR MNARz MCAR MNARz MCAR MNARz MCAR MNARz

0.25

0.50

0.75

1.00

A
R

I
Mechanism

MCAR

MNARz

Figure 8: Boxplot of the ARI obtained for 50 samples composed of d = 6 variables with a misclassi-
fication rate of 10% and a missing-data rate of 30% in the whole dataset. The correlation coefficient
of the covariance matrices in each component (k = 1, 2, 3) is l = 0, l = 0.1, l = 0.25 and l = 0.5,
whereas the algorithms consider the diagonal case. The red line indicates the theoretical ARI.

results are still satisfactory and clearly outperform the ones given by the EM algorithm for the
MCAR setting.

Impact of the percentage of missing values Figure 9 shows the boxplots of the ARI for
the MNARz setting and the MCAR one for 10%, 30% and 50% of the missing-data rate in the
entire dataset. As the percentage of missing data increases, the difference between the algorithms
considering MCAR and MNARz data is greater. Even if the percentage of missing data has an
impact on the algorithm considering MNARz data, it still gives results close to the theoretical ARI
for a missing-data rate of 50%.

Choice of K The number of clusters was considered known until now, but it can be automatically
chosen using the ICL criterion. The algorithms run with several values of the number of clusters
K = 1, 2, 3, 4. The cluster number for the model with the highest ICL is then chosen. To our
knowledge, no method proposes an automatic choice of the number of clusters in unsupervised
classification for the two-step heuristics, which is also a major drawback. Therefore, only the EM
algorithm designed for MNARz and MCAR data can be compared. Table 5 gives the percentages of
times the correct number of classes (K = 3) is chosen by the ICL criterion for different missing-data
rates (10%, 30%, 50%) and different sample sizes (n = 100, 500) for 50 repetitions. In any case,
the EM algorithm for MNARz data selects the right number of classes more often. For n = 100, it
clearly outperforms the results of the EM algorithm for MCAR data, but it has a poor percentage of
selection of the right number of classes for a missing-data rate of 50%. For n = 500, the algorithm
almost always selects the right number of classes.
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Figure 9: Boxplot of the ARI obtained for 50 samples composed of d = 6 variables with a misclas-
sification rate of 10% and a missing-data rate of 10%, 30% and 50% in the whole dataset. The red
line indicates the theoretical ARI.

MCAR MNARz
n = 100 n = 500 n = 100 n = 500

10% NA 94% 100% 94% 100%
30% NA 8% 96% 56% 100%
50% NA 0% 0% 20% 98%

Table 1: Choice of K using the ICL criterion for the EM algorithm considering MCAR data and
MNARz data for a missing-data rate of 10%, 30% and 50%, n = 100, 500 and d = 6 variables.
The percentages in the table indicate the number of times the correct number of classes (K = 3) is
chosen by the ICL criterion.

Impact of the theoretical misclassification All previous experiments were conducted with a
theoretical rate of misclassification of 10%. In Appendix D, we show the experiments of this section
for a theoretical rate of misclassification of 15%. The same conclusions can be drawn.

5 Real medical dataset

In this section, we illustrate our approach on a public health application with the TraumaBase®

Group (https://www.traumabase.eu/en_US) on the management of traumatized patients. This
dataset contains 32 quantitative and 15 categorical variables on measured on 8, 248 polytraumatized
patients who suffer from a major trauma (injuries from cycle or car accident). Data have been
collected from 15 different hospitals. In this dataset, 11% of the data are missing and only 1,4% of
the individuals are fully observed. More information on the variables can be found in Appendix E.
The purpose of this real data analysis is twofold: (i) we first want to know if considering the
missingness process has an impact on the estimated partition, (ii) we compare our method with the
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classical imputation methods.

5.1 Classifications comparison

After discussion with doctors, some variables can be considered to have informative missing values,
such as the variable Shock.index.ph, which denotes the ratio between heart rate and systolic arterial
pressure. In fact, if this rate has a value that indicates that the patient’s condition is critical,
doctors cannot measure heart rate or systolic arterial pressure in emergency situations. Therefore,
we expect that considering an MNAR mechanism can improve the classification.

In this section, the variables related to the patient death and also the hand-made classifications
made by the doctors (one considers 3 groups, the other 4) are not taken into account for running
the algorithms, as they were considered too informative for the classification. A total of 41 mixed
variables (continuous, quantitative) can thus be used. We compare our algorithm designed for the
MNARz data (9) and the MCAR data (11). Figure 10 presents the ICL values in the Traumabase
dataset for different numbers of classes.

The algorithms designed for the MNARz data and MCAR data both selectK = 3 for the number
of classes. However, note that the ICL of the algorithm which considers MNARz data is always
higher than the one of the algorithm for MCAR data. For K = 3 classes, the ARI between the
classifications obtained assuming MNARz and MCAR mechanisms is 0.90. Thus, both partitions are
close but not equal, which may reflect the influence of the mechanism. To deepen this issue, we focus
on the variable Shock.index.ph, which has been identified as MNAR by doctors. Table 2 gives the
total variation distance between the marginal distribution of the variable Shock.index.ph obtained by
the algorithm considering MNARz data and the one obtained by the algorithm considering MCAR
data, and Table 3 gives the Euclidean distance between the conditional probabilities of the cluster
memberships given the observed values of the variable Shock.index.ph obtained using the algorithm
considering MNARz data and those obtained using the algorithm considering MCAR data. For
clarity, the latter quantity is reported here,√√√√ n∑

i=1

(P(zik = 1|yobs
is ; θMCAR)− P(zik̃ = 1|yobs

is ; θMNAR))2,∀k, k̃ ∈ {1, 2, 3}

with s the index of the variable Shock.index.ph, θMCAR (resp. θMNAR) the estimator returned by
the algorithm considering MCAR data (resp. MNAR data). In both cases, we can only compare the
values up to label swapping. We notice that the minimum values (on the diagoals) are significantly
higher than zero, which indicates that there is an influence of the MNARz mechanism both on the
modeling of the data and on the classification rules.
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Figure 10: ICL values in the Traumabase dataset for different number of classes in the mixed case.

MCAR
MNARz Class 1 Class 2 Class 3

Class 1 0.03 0.47 0.61
Class 2 0.45 0.05 0.25
Class 3 0.63 0.23 0.03

Table 2: Total variation distance between the marginal distribution of the variable Shock.index.ph
in the Traumabase dataset of the algorithm considering MNARz data and the one of the algorithm
considering MCAR data.

MCAR
MNARz Class 1 Class 2 Class 3

Class 1 2.43 26.5 37.6
Class 2 26.2 3.40 20.1
Class 3 39.3 19.2 2.05

Table 3: Euclidean distance between the conditional probabilities of the cluster memberships given
the observed values of the variable Shock.index.ph in the Traumabase dataset, obtained using the
algorithm considering MNARz data, and the ones obtained with the algorithm considering MCAR
data.

5.2 Imputation performances

We perform now simulations on the real dataset in order to be able to measure the quality of the
imputation of our method compared to the multiple imputation [Buuren and Groothuis-Oudshoorn,
2010] (Mice). We introduce some additional missing values in three quantitative variables (TCD.PI.max,
Shock.index.ph, FiO2 ) by using the MNARz mechanism (9). The variables contain initially 51%,
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Figure 11: Mean squared error of the imputation task for the Traumabase dataset.

31%, 7% and finally 63%, 50% and 32% missing values. The algorithm for continuous data specifi-
cally designed for MNARz data for K = 3 classes is compared with mean imputation and multiple
imputation in terms of mean squared error (MSE). Denoting by Ŷ ∈ Rn×d the imputed dataset and
C̃ ∈ Rn×d the indicator pattern of missing data newly introduced, the mean squared error is given
by

E[(Ŷ −Y)� C̃]2F
/
E[Y � C̃]2F ,

where � is the Hadamard product and E[]2F = E[‖.‖2F ] denotes the expectation of the Frobenius
norm squared. In particular, to impute missing values using our clustering algorithm, we use the
conditional expectation of the missing values given the observed ones, given that the data are
assumed to be Gaussian and that all the parameters of the distribution are given by our algorithm.
Imputation is carried out by taking the mean over 104 draws. In Figure 11, our clustering algorithm,
designed for the MNAR setting, gives a significantly smaller error than other methods.
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6 Concluding remarks

This paper addresses unsupervised learning when MNAR values occur. The aim was two-fold: (i)
to cluster individuals and (ii) to estimate the parameters of the distributions for each cluster (which
can be used in turn to impute missing values). To this end, we have proposed an approach which
embeds MNAR data directly within model-based clustering algorithms, in particular the EM and
SEM algorithms. This work also includes an exhaustive catalog of possible MNAR specifications.
The identifiability study showed that the most general models lead to non-identifiable parameters
for categorical data. This combined with the numerical experiments leads us to recommend using
algorithms considering simple missing-data mechanisms, as the MNARz mechanism, which models
the probability of being missing only depending on the class membership. By their very simplic-
ity, the model-based clustering algorithms considering the MNARz mechanism are indeed able to
straightforwardly deal with any kind of data. Moreover, in Proposition 1, we have proven that the
statistical inference may be conducted either on MNARz data on Y or on MAR data considering
the augmented matrix [Y|C], with C the missing-data pattern. It is worth noticing that this ap-
proach was widely used in practice but not theoretically studied. Finally, this mechanism has the
advantage of being easily interpretable, which is especially important for real data applications.

The motivation of this work was the application on the Traumabase dataset, which can be
extremely interesting, as it is genuinely useful to form groups of similarly-behaving patients for
helping doctors in their decisions. To make this work entirely applicable to real datasets, there
are still key challenges. First, in most datasets, the variables are not all of the same type (MCAR,
MAR and MNAR variables are often coupled). There is probably no theoretical obstacle to consider
such a case, but the implementation has not been done yet. There is no available method to decide
whether a variable is M(C)AR or MNAR, this challenging question is out of the scope of this paper.
On the other hand, we can choose between the different MNAR mechanisms proposed using the
ICL criterion. However, since each algorithm has to be tested, this approach is not recommended
due to time constraints. Therefore, by default, we recommend considering an MNARz mechanism.

Finally, note that our methodology can be applied in the case of mixed data (categorical/quan-
titative) by assuming that the features are independently drawn conditionally to the group mem-
bership.
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A Proof of Proposition 1

Proof of Proposition 1. We denote by (c̃1, . . . , c̃n) the patterns of missing data associated to the
observed data ỹobs. It is thus the concatenation c̃i = (ci,0d) of ci with the zero vector 0d = (0, . . . , 0)
of length d. Since all ci values are observed in ỹobs

i , it is the reason why the last d values in c̃i are
fixed to zero. Then, the MAR assumption indicates that P(c̃i | ỹi, zi; ζ) = P(c̃i | ỹobs

i ; ζ), with ζ
the related parameter. Consequently, using the MAR assumption and the i.i.d. assumption of all
uplets (ỹi, zi, c̃i), the whole likelihood can be decomposed into two likelihoods, one has

L(θ, ζ; Ỹobs,C) =

∫
f(ỹi, c̃i; θ, ζ)dỹmis

i

=

∫
f(ỹi;π, λ, ψ)f(c̃i|ỹi; ζ)dỹmis

i (17)

=
n∏
i=1

[
f(c̃i|ỹobs

i ; ζ) ×
∫
Ymis
i

f(ỹi;π, λ, ψ)dỹmis
i

]
(18)

=
n∏
i=1

L(ζ; c̃i | ỹobs
i ) ×

n∏
i=1

L(π, λ, ψ; ỹobs
i ). (19)

L(π, λ, ψ, ζ; ỹobs
i , c̃i) = L(ζ; c̃i | ỹobs

i )× L(π, λ, ψ; ỹobs
i ). (20)

Providing that (π, λ, ψ) and ζ are functionally independent (ignorability of the MAR mechanism),
the maximum likelihood estimate of θ = (π, λ, ψ) is obtained by maximizing only L(π, λ, ψ; ỹobs

i ),
and does not depend on L(ζ; c̃i | ỹobs

i ). Finally, by using (12), the observed likelihood L(π, λ, ψ; ỹobs
i )

is

L(π, λ, ψ; ỹobs
i ) =

K∑
k=1

πkfk(y
obs
i ;λk)

d∏
j=1

ρ(αkj)
cijρ(αkj)

(1−cij) (21)

=
K∑
k=1

πkfk(y
obs
i ;λk)

d∏
j=1

P(cij | zik = 1;ψ). (22)

As P(cij | zik = 1;ψ) corresponds to the MNARz definition (9), the observed likelihood L(π, λ, ψ; ỹobs
i )

is equal to the full observed likelihood L(π, λ, ψ;yobs
i , ci) associated to the MNARz model,

L(π, λ, ψ;yobs
i , ci) =

K∑
k=1

πkfk(y
obs
i ;λk)

d∏
j=1

P(cij | zik = 1;ψ).

B Identifiability

B.1 Continuous and count data

A1. The parameters (π, λ) of the marginal mixture defined by the density
∑K

k=1 πkfk(yi;λk) are
identifiable;

28



A2. There exists a total ordering � of Fj×R, for j ∈ {1, . . . , d} fixed, where Fj is the family of the
data densities {f1j , . . . , fKj} and R is the family of the mechanism densities {ρ1, . . . , ρK} =
{ρ(.;ψ1), . . . , ρ(.;ψK)}, where ρ is the cumulative distribution function of any continuous
distribution function and (ψk)k∈{1,...,K} its parameter. The total ordering is such that ∀k <
` ∈ {1, . . . ,K}, ∀j ∈ {1, . . . , d}, Fkj � F`j (denoting Fkj = ρkfkj and F`j = ρ`f`j) implies
limu→+∞

ρ`(u)f`j(u)
ρk(u)fkj(u) = 0;

A3. The missing-data distribution ρ is assumed to be strictly monotone.

Assumption A1. means that the identifiability of the parameters (π, λ, ψ) of the model (2) requires
the identifiability of the parameters (π, λ) of the marginal mixture of (Y,Z) (i.e. considering the case
without missing values). Some authors have already studied the identifiability of the mixture models,
when no missing values in Y occur, especially Teicher [1963] for Gaussian mixtures (continuous
variables) and Yakowitz and Spragins [1968] for Poisson mixtures (count variables). Assumption
A2. is the core ingredient to prove the identifiability of the parameters and we illustrate it by
considering concrete examples in the following. Note that under Assumption A3. the probit and
the logistic functions may be considered, which are the most widely used for MNAR specifications.

Proof of Proposition 2, continuous case. Suppose there exist two sets of parameters {γ, ψ} and
{γ′, ψ′} which have the same observed distribution, i.e. f(yobs

i , ci; γ, ψ) = f(yobs
i , ci; γ

′, ψ′). More
precisely, one has

∀yi ∈ Rd, ∀ci ∈ {0, 1}d,
K∑
k=1

∫
Ymis
i

πkfk(yi;λk)
d∏
j=1

ρ(αkj + βkjyij)
cij [1− ρ(αkj + βkjyij)]

1−cijdy

=
K′∑
k=1

∫
Ymis
i

π′kfk(yi;λ
′
k)

d∏
j=1

ρ((α′)kj + (β′)kjyij)
cij [1− ρ((α′)kj + (β′)kjyij)]

1−cijdy

Let us consider the case when cij = 1 for all j = 1, . . . , d. One has

K∑
k=1

πkfk(yi;λk)
d∏
j=1

ρ(αkj + βkjyij) =
K′∑
k=1

π′kfk(yi;λ
′
k)

d∏
j=1

ρ((α′)kj + (β′)kjyij).

By using the identifiability of the marginal mixture, one obtains λk = λ′k. In addition, integrating
out over all the elements but the j-th element, one has for all yij ∈ R,

K∑
k=1

πkfkj(yij ;λkj)ρ(αkj + βkjyij) =
K′∑
k=1

π′kfkj(yij ;λkj)ρ((α′)kj + (β′)kjyij).

In the sequel, we use the same reasoning of Theorem 2 in [Teicher, 1963].
Let us denote Fk(yij) = fkj(yij ;λkj)ρ(αkj+βkjyij) and F ′k(yij) = fkj(yij ;λkj)ρ((α′)kj+(β′)kjyij).

Without loss of generality, assume that Fk ≺ Fl and F ′k ≺ F ′l for k < l. If F1 6= F ′1, we assume
also without loss of generality that F1 � F ′1. Then, F1 ≺ F ′k for 1 ≤ k ≤ K ′. For u ∈ T1, where
T1 = SF1 ∩ {u : F1(u) 6= 0} is the domain of definition of F1 such that f1j(u;λ1j)ρ(α1j + β1ju) 6= 0,
one has

π1 +

K∑
k=1

πk
Fk(u)

F1(u)
=

K′∑
k=1

π′k
F ′k(u)

F1(u)
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Letting u → +∞, π1 = 0 which is in contradiction with the mixture model (where πk > 0, ∀k =
1, . . . ,K. It implies that F1 = F ′1. For any u ∈ T1, one has

π1 +

K∑
k=2

πk
Fk(u)

F1(u)
= π′1 +

K′∑
k=2

π′k
F ′k(u)

F1(u)

Letting again u → +∞, one obtains π1 = π′1 and
∑K

k=2 πk
Fk(u)
F1(u) =

∑K′

k=2 π
′
k
F ′k(u)

F1(u) . We repeat
this argument to conclude that Fk = F ′k and πk = π′k for k = 1, . . . ,min{K,K ′}. Finally, if
K 6= K ′, say K > K ′,

∑K
k=K′+1 πkFk(u) = 0 implies πk = 0 for K ′ + 1 ≤ k ≤ K which is in

contradiction with the definition of the mixture model. Thus K = K ′. Note that Fk = F ′k implies
that ρ(αkj + βkjyij) = ρ((α′)kj + (β′)kjyij) and thus αkj = (α′)kj and βkj = (β′)kj , since ρ is an
injective function. Indeed, ρ is assumed to be strictly monotone.

On identifiability of the Gaussian mixture Finite Gaussian mixtures are identifiable and, for
any variable j, there is a total ordering defined by σ2

kj > σ2
(k+1)j and µkj > µ(k+1)j if σ2

kj = σ2
(k+1)j ,

where µkj and σ2
kj are respectively the mean and the variance of variable j under component k.

Example 1 shows that the identifiability holds for Gaussian mixtures when there are missing values
and that the distribution of the MNAR mechanism is a probit one.

Example 1 (Gaussian + Probit). Let us consider that ρ is the probit function and fk (respectively
fk+1) the Gaussian density with parameters (µk, σk) (respectively (µk+1, σk+1)). Suppose without
loss of generality that βk ≥ βk+1. One want to prove that

lim
u→+∞

Eu := lim
u→+∞

∫ αk+1+βk+1u
−∞ e−t

2/2dt∫ αk+βku
−∞ e−t2/2dt

σk exp− (u−µk+1)2

2σ2
k+1

σk+1 exp− (u−µk)2

2σ2
k

= 0

Let us denote φ(u) = 1√
2π

∫ u
−∞ e

−t2/2dt. One has

lim
u→+∞

φ(u) =


1 if u > 0
1/2 if u = 0
0 if u < 0

(23)

• If βk+1 > 0 (and βk > 0):

lim
u→+∞

Eu = lim
u→+∞

exp−

(
u2

(
1

2σ2
k+1

− 1

2σ2
k

)
+ u

(
µk
σk
− µk+1

σk+1

))
= 0

assuming without loss of generality that σ2
k > σ2

k+1 or µk > µk+1 if σ2
k = σ2

k+1.

• If βk+1 ≤ 0 (and βk ≥ 0):
lim

u→+∞
Eu = 0

since

lim
u→+∞

exp−

(
u2

(
1

2σ2
k+1

− 1

2σ2
k

)
+ u

(
µk
σk
− µk+1

σk+1

))
= 0
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and

lim
u→+∞

∫ αk+1+βk+1u
−∞ e−t

2/2dt∫ αk+βku
−∞ e−t2/2dt

=


0 if βk+1 < 0
1/2 if βk+1 = 0 and βk > 0
1 if βk+1 = 0 and βk = 0

(24)

• If βk+1 < 0 and βk < 0: One uses the upper and lower bounds for the probit function.

1

−t+
√
t2 + 4

<

√
π

2
exp

t2

2
φ(t) <

1

−t+
√
t2 + 8/π

,

i.e. φ(t) <
√

2
π

1

−t+
√
t2+8/π

exp− t2

2 and 1
φ(t) < (−t +

√
t2 + 4)

√
π
2 exp t2

2 Thus, noting that

limu→+∞ φ(αk+1 + βk+1u) = limu→+∞ φ(βk+1u),∫ αk+1+βk+1u
−∞ e−t

2/2dt∫ αk+βku
−∞ e−t2/2dt

=
u→+∞

φ(βk+1u)

φ(βku)
<

u→+∞
exp

((
β2
k

2
−
β2
k+1

2

)
u2

)
(25)

As βk+1 ≤ βk < 0, one has β2
k/2− β2

k+1/2 < 0 and it implies

lim
u→+∞

∫ αk+1+βk+1u
−∞ e−t

2/2dt∫ αk+βku
−∞ e−t2/2dt

= 0.

Given that

lim
u→+∞

exp−

(
u2

(
1

2σ2
k+1

− 1

2σ2
k

)
+ u

(
µk
σk
− µk+1

σk+1

))
= 0,

assuming without loss of generality that σ2
k > σ2

k+1 or µk > µk+1 if σ2
k = σ2

k+1, one has

lim
u→+∞

Eu = 0.

This result has been already stated, in the case of univariate distributions, by Miao et al. [2016].
In particular, the identifiability conditions in Miao et al. [2016] (conditions 1 and 2 of their paper)
imply the existence of the total ordering defined in Assumption A2.. However, these conditions
excludes the case of Gaussian mixture with a logistic missing-data distribution, which is very used
in practice. In Corollary 1, we therefore extend this result to the multivariate case with a logistic
missing-data distribution.

Note first that with a logistic distribution, a total ordering cannot be defined. Indeed, for variable
j, such an ordering cannot be defined if the two univariate variances are equal (i.e., σ2

kj = σ2
(k+1)j)

and µkj − βkj − µ(k+1)j + β(k+1)j = 0. However, for the specific case of Gaussian mixture where
all the univariate variances are different between the components, then conditions of Proposition 2
hold true with a logistic missing-data distribution and so does its identifiability. In addition, for
more parsimonious MNAR models for which the effect on the variable j does not depend on the
class membership k (i.e. βkj = β(k+1)j), the conditions of Proposition 2 hold true with a logistic
missing-data distribution. Finally, as stated by Corollary 1 below, the condition on the covariance
matrices (including the case of homoscedastic Gaussian mixture) can be relaxed to obtain the
generic identifiability of the model (i.e., all not-identifiable parameter choices lie within a proper
submanifold, and thus form a set of Lebesgue zero measure; Allman et al. [2009]).
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Corollary 1. Assume that
∑K

k=1 πkfk(yi;λk) is a multivariate Gaussian mixture, ρ is the logistic
function and that the missingness scenario is defined by (3), (5) or (8), then, the parameters (π, λ, ψ)
of the model given by (2) are generically identifiable up to label swapping, i.e. all not-identifiable
parameter choices lie within a proper submanifold, and thus form a set of Lebesgue zero measure.

For the other MNAR models given in (4), (6), (7), (9) and (10), the parameters (π, λ, ψ) of the
model given by (2) are identifiable up to label swapping.

Proof of Corollary 1. We use Proposition 2. We fix j. By abuse of notation, αk, βk, µk and σk
correspond to the parameters αkj , βkj , µkj and Σkj of the variable j. Let us first consider the
missing scenarios (3), (5) and (8) for which βk 6= βk+1. To obtain the total ordering, we need to
prove that

lim
u→+∞

Eu =
(1 + e−αk−βku)e

−
(u−µk+1)

2

2σ2
k+1

(1 + e−αk+1−βk+1u)e
− (u−µk)2

2σ2
k

σk
σk+1

= 0.

• If σ2
k > σ2

k+1, limu→+∞ Eu = limu→+∞ exp−1
2( 1
σ2
k+1
− 1

σ2
k
)u2 = 0.

• If σ2
k = σ2

k+1, one has limu→+∞ Eu = limu→+∞ exp ((µk − βk)− (µk+1 − βk+1))u = 0 discard-
ing the case where (µk−βk)− (µk+1−βk+1) = 0 and assuming without loss of generality that
(µk−βk) > (µk+1−βk+1). The set of nonidenfiable parameters is {µk, βk, µk+1, βk+1 s.t.(µk−
βk)− (µk+1 − βk+1) = 0}k=1,...,K and is of Lebesque zero measure.

Finally, for the missing scenarios (9) and (10), note that βk = βk+1 = 0. For the missing
scenarios (4), (6) and (7), one has βk = βk+1. Following the same reasoning as above, in the case
where σ2

k+1 = σ2
k+1, one obtains the set of nonindentifiable parameters such that µk = µk+1, which

is empty since µk 6= µk+1 if σ2
k = σ2

k+1.

On identifiability of the Poisson mixture Proposition 1 can also be applied for variables with
integer value (i.e. count data), as shown below in Examples 2 and 3 for the Poisson mixture with
probit or logistic missing-data distributions.

Example 2 (Poisson + Probit). Considering that ρ is the probit function and fk (respectively fk+1)
the Poisson distribution with parameters λk (respectively λk+1). Suppose without loss of generality
that βk > βk+1 and λk > λk+1. One want to prove

lim
u→+∞

Eu := lim
u→+∞

∫ αk+1+βk+1u
−∞ e−t

2/2dt∫ αk+βku
−∞ e−t2/2dt

λuk+1e
−λk+1

λuke
−λk

= 0.

• If βk+1 > 0 (and βk > 0): using (23), one has

lim
u→+∞

Eu = lim
u→+∞

expu ln
λk+1

λk
= 0.

• If βk+1 ≤ 0 (and βk ≥ 0): one has
lim

u→+∞
Eu = 0.
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using

lim
u→+∞

expu ln
λk+1

λk
= 0

and (24) for the missing distribution part.

• If βk+1 < 0 and βk < 0: using (25), one obtains

lim
u→+∞

Eu < lim
u→+∞

exp

((
β2
k

2
−
β2
k+1

2

)
u2

)
expu ln

λk+1

λk
= 0,

because β2
k/2− β2

k+1/2 < 0.

Example 3 (Poisson + Logistic). Considering that ρ is the logistic function and fk (respectively
fk+1) the Poisson distribution with parameters λk (respectively λk+1). One want to prove that

lim
u→+∞

Eu = lim
u→+∞

1 + e−αk−βku

1 + e−αk+1−βk+1u
expu ln

λk+1

λk
= 0.

Assume that λk > λk+1 without loss of generality.

• For the missing scenarios (3), (5) and (8) for which βk 6= βk+1, one obtains the generic iden-
tifiability where the set of non-identifiable parameters is {αk, βk, λk s.t.(lnλk−βk)− (lnλk+1−
βk+1) = 0}k=1,...,K and is of Lebesque zero measure.

• For the missing scenarios (9) and (10), note that βk = βk+1 = 0. For the missing scenarios
(4), (6) and (7), one has βk = βk+1. It implies that idenfiability holds since

lim
u→+∞

Eu = lim
u→+∞

expu ln
λk+1

λk
= 0.

B.2 Categorical data

We assume the following:

A4. The feature are independently drawn conditionally to the group membership, i.e.

fk(·; θk) =

d∏
j=1

fkj(· ; θkj); (26)

A5. The dimension d of the observations is related to the number K of clusters so that

d ≥ 2dlog2Ke+ 1,

with dxe the least integer greater than or equal to x.

Assumptions A4. and A5. are classical in the categorical case, even without missing values
[Allman et al., 2009]. Proposition 2 states that generic identifiability holds only for the MNARz
and the MNARzj missing scenarios and that the other missing scenarios lead to non-identifiable
models. The proof uses Corollary 5 of Allman et al. [2009] which gives the identifiability of finite
mixtures of Bernoulli products.

33



Proof of Proposition 2, categorical case. Let us first consider the case where βkj = (0, . . . , 0) ∈
R`j ,∀k = 1, . . . ,K, ∀j = 1, . . . , d. Suppose there exists two sets of parameters {γ, ψ} and {γ′, ψ′}
which have the same observed distribution.

∀yi ∈ Rd, ∀ci ∈ {0, 1}d,
K∑
k=1

∫
Ymis
i

πkfk(yi;λk)
d∏
j=1

ρ(αkj)
cij [1− ρ(αkj)]

1−cijdy

=
K′∑
k=1

∫
Ymis
i

π′kfk(yi;λ
′
k)

d∏
j=1

ρ((α′)kj)
cij [1− ρ(α′kj)]

1−cijdy

Identifiability of ψ This implies that the marginal distributions of the pattern of missing data
for the two sets of parameters ψ and ψ′ are equal.

K∑
k=1

πk

d∏
j=1

ρ(αkj)
cij [1− ρ(αkj)]

1−cij =
K′∑
k=1

π′k

d∏
j=1

ρ(α′kj)
cij [1− ρ(α′kj)]

1−cij

One recognizes the finite mixture of K different Bernoulli products with d components and with
parameters (ρ(αk1), . . . , ρ(αkd)))k=1,...,K and (ρ(α′k1), . . . , ρ(α′kd)))k=1,...,K . The generic identifiabil-
ity up to a label swapping of these parameters is given by Corollary 5 in Allman et al. [2009]. As
the function ρ is strictly monotone, the equality ρ(αkj) = ρ(α′kj) implies αkj = α′kj .

Identifiability of γ Let us consider the case where all the elements of yi are observed, i.e.
cij = 1, ∀j = 1, . . . , d. One has

K∑
k=1

πkfk(yi;λk)
d∏
j=1

ρ(αkj) =
K′∑
k=1

π′kfk(yi;λ
′
k)

d∏
j=1

ρ(α′kj),

i.e. by independence to the group membership,

K∑
k=1

πk

d∏
j=1

fkj(yij ;λkj)ρ(αkj) =

K′∑
k=1

π′k

d∏
j=1

fkj(yij ;λ
′
kj)ρ(α′kj),

⇔
K∑
k=1

πk

d∏
j=1

ρ(αkj)

`j∏
h=1

(λhkj)
yhij =

K′∑
k=1

π′k

d∏
j=1

ρ(αkj)

`j∏
h=1

((λ′kj)
h)y

h
ij .

We recognize the finite mixture of K multinomial distributions with d components for yij =

(y1
ij , . . . , y

`j
ij ), j = 1, . . . , d with paramaters (λkj) = (λ1

kj , . . . , λ
`j
kj), j = 1, . . . , d and proportions

(πk
∏d
j=1 ρ(αkj))k=1,...,K . We can thus apply Theorem 4 [Allman et al., 2009] with the model

M(K; `1, . . . , `d) which gives the generic identifiability of the model paramaters up to a label swap-
ping, i.e.

∀k, ∀j, λhkj = (λ′kj)
h

∀k, πk
d∏
j=1

ρ(αkj) = π′k

d∏
j=1

ρ(α′kj)
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The second equality implies πk = π′k using the generic identifiability of ρ(αkj), ∀k, ∀j stated above. If
K 6= K ′, sayK > K ′,

∑K
k=K′+1 πk

∏d
j=1 ρ(αkj)

∏`j
h=1(λhkj)

yhij = 0 implies πk = 0 forK ′+1 ≤ k ≤ K.
We consider now the missing scenarios for which βkj 6= 0. The identifiability does not hold. We

can present a counter-example. The set of parameters ψ = {α = (1, . . . , 1), β = (1, . . . , 1)} has the
same observed distribution than another set of parameters ψ′ = {α′ = (0, . . . , 0), β′ = (2, . . . , 2)}.
Indeed, in the case where yij = (1, . . . , 1), ρ(αkj + βkjyij) = ρ(α′kj + β′kjyij).

C Detailed algorithms

The algorithms for the different missing scenarios and type of data are given. In particular, for
continuous data, we derive the formulae assuming Gaussian data.

C.1 EM algorithm

The EM algorithm consists on two steps iteratively proceeded: the E-step and M-step. For the
E-step, one has

Q(θ; θ[r−1]) = E[`comp(θ;y, z, c)|yobsi , ci; θ
[r−1]]

=

n∑
i=1

K∑
k=1

E
[
zik log(πkfk(yi;λ)f(ci | yi, zik = 1;ψ)) | yobsi , ci;π

[r−1], λ[r−1], ψ[r−1]
]

=

n∑
i=1

K∑
k=1

tik(θ[r−1])E
[
log(πkfk(yi;λ)f(ci | yi, zik = 1;ψ)) | yobsi , ci, zik = 1;π[r−1], λ[r−1], ψ[r−1]

]
with tik(θ[r−1]) = f(zik = 1 | yobs

i , ci; θ
[r−1]).

It leads to the decomposition

Q(θ; θ[r−1]) =
n∑
i=1

K∑
k=1

tik(θ
[r−1])

[
log(πk) + τy(λk;y

obs
i , ci, θ

[r−1]) + τc(ψk;y
obs
i , ci, θ

[r−1])
]
,

where the terms involved in this decomposition are now detailed.

(a) the expectation of the data mixture part over the missing values given the available information
(i.e. the observed data and the indicator pattern), the class membership and the current value
of the parameters:

τy(λk;y
obs
i , ci, θ

[r−1]) = Eθ[r−1]

[
ln fk(yi;λk) | yobs

i , zik = 1, ci

]
,

(b) the expectation of the missing mechanism part over the missing values given the available
information, the class membership and the current value of the parameters:

τc(ψk;y
obs
i , ci, θ

[r−1]) = Eθ[r−1]

[
ln fk(ci | yi;ψk) | yobs

i , zik = 1, ci

]
.

(c) the conditional probability for an observation i to belong to the class k given the available
information and the current value of the parameters:

tik(θ
[r−1]) = f(zik = 1 | yobs

i , ci; θ
[r−1]).
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Terms (a) and (b) require to integrate over the distribution f(ymis
i | yobs

i , zik = 1, ci; θ
[r−1]). For

Term (a), one has

f(ymis
i | yobs

i , zik = 1, ci; θ
[r−1]) =

f(ymis
i ,yobs

i , zik = 1, ci; θ
[r−1])

f(yobs
i , zik = 1, ci; θ[r−1])

=
f(ci | ymis

i ,yobs
i , zik = 1;ψ[r−1])f(ymis

i ,yobs
i , zik = 1;λ[r−1])∫

Ymis
i

f(ci | ymis
i ,yobs

i , zik = 1;ψ[r−1])f(ymis
i ,yobs

i , zik = 1;λ[r−1])dymis
i

(27)

Term (c) corresponds to the conditional probability for an observation i to arise from the kth
mixture component with the current values of the model parameter. More particularly, one has

tik(θ
[r−1]) =

f(zik = 1,yobs
i , ci; θ

[r−1])

f(yobs
i , ci; θ[r−1])

=
f(zik = 1,yobs

i , ci; θ
[r−1])∑K

h=1 f(zih = 1,yobs
i , ci; θ[r−1])

=
π

[r−1]
k f(yobs

i | zik = 1;λ
[r−1]
k )f(ci | yobs

i , zik = 1; θ[r−1])∑K
h=1 π

[r−1]
h )f(yobs

i | zih = 1;λ
[r−1]
h )f(ci | yobs

i , zih = 1; θ[r−1])

=
π

[r−1]
k fk(y

obs
i ;λ

[r−1]
k )f(ci | yobs

i , zik = 1; θ[r−1])∑K
h=1 π

[r−1]
h fh(yobs

i ;λ
[r−1]
h )f(ci | yobs

i , zih = 1; θ[r−1])
(28)

The quantity that can cause numerical difficulties is the probability f(ci | yobs
i , zik = 1; θ[r−1]).

C.1.1 Gaussian mixture for continuous data

The pdf fk(yi;λ) = φ(yi;µk,Σk) is assumed to be a Gaussian distribution with mean vector µk and
covariance matrix Σk. First, let us detail the terms of the E-step. Term (a) is written as follows:

E
[
log(φ(yi;µk,Σk)) | yobs

i , zik = 1, ci; θ
[r−1]

]
= −1

2
[n log(2π) + log((| Σk |))]

− 1

2
E
[
(yi − µk)T (Σk)

−1(yi − µk) | yobs
i , zik = 1, ci; θ

[r−1]
]
.

This last term could be expressed using the commutativity and linearity of the trace function:

E
[
(yi − µk)T (Σk)

−1(yi − µk) | yobs
i , zik = 1, ci; θ

[r−1]
]

= tr(E
[
(yi − µk)(yi − µk)T | yobs

i , zik = 1, ci; θ
[r−1]

]
(Σk)

−1).

Finally note that only E
[
(yi − µk)(yi − µk)T | yobs

i , zik = 1, ci; θ
[r−1]

]
has to be calculated.

MNARz and MNARzj models For the MNARz and MNARzj models, the effect of the miss-
ingness is only due to the class membership. Term (a) is the same for both models but (b) and (c)
differ. Let us first detail these terms.
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• For Term (a), note that

f(ymis
i | yobs

i , zik = 1, ci; θ
[r−1]) = f(ymis

i | yobs
i , zik = 1;λ[r−1]),

which makes the computation easy. Indeed, using (27),

f(ymis
i | yobs

i , zik = 1, ci; θ
[r−1]) =

∏d
j=1 ρ(α

[r−1]
kj )cij (1− ρ(α

[r−1]
kj ))1−cijf(ymis

i ,yobs
i , zik = 1;λ[r−1])∫

Ymis
i

∏d
j=1 ρ(α

[r−1]
kj )cij (1− ρ(α

[r−1]
kj ))1−cijf(ymis

i ,yobs
i , zik = 1;λ[r−1])dymis

i

=
f(ymis

i ,yobs
i , zik = 1;λ[r−1])∫

Ymis
i

f(ymis
i ,yobs

i , zik = 1;λ[r−1])dymis
i

= f(ymis
i | yobs

i , zik = 1;λ[r−1]),

since
∏d
j=1 ρ(α

[r−1]
kj )cij (1− ρ(α

[r−1]
kj ))1−cij does not depend on ymis

i and is simplified with the
numerator. The law of (ymis

i | yobs
i , zik = 1) is Gaussian (up to a reorganization of the variables

associated to individual i). Noting that(
yi | zik = 1;λ[r−1]

)
=

((
yobs
i

ymis
i

)
| zik = 1;λ[r−1]

)
∼ N

((
(µobs
ik )[r−1]

(µmis
ik )[r−1]

)
,

(
(Σobs,obs

ik )[r−1] (Σobs,mis
ik )[r−1]

(Σmis,obs
ik )[r−1] (Σmis,mis

ik )[r−1]

))
,

one obtains (
ymis
i | yobs

i , zik = 1;λ[r−1]
)
∼ N

(
(µ̃mis
ik )[r−1], (Σ̃mis

ik )[r−1]
)
. (29)

with (µ̃mis
ik )[r−1] and (Σ̃mis

ik )[r−1] the standard expression of the mean vector and covariance
matrix of a conditional Gaussian distribution (see for instance Anderson [2003]) detailed as
follows

(µ̃mis
ik )[r−1] = (µmis

ik )[r−1] + (Σmis,obs
ik )[r−1]

(
(Σobs,obs

ik )[r−1]
)−1 (

yobs
i − (µobs

ik )[r−1]
)
, (30)

(Σ̃mis
ik )[r−1] = (Σmis,mis

ik )[r−1] − (Σmis,obs
ik )[r−1]

(
(Σobs,obs

ik )[r−1]
)−1

(Σobs,mis
ik )[r−1]. (31)

Note also that we have

(yi − µk)(yi − µk)T =

(
(yobs
i − µobs

ik )T (yobs
i − µobs

ik ) (yobs
i − µobs

ik )T (ymis
i − µmis

ik )
(ymis
i − µmis

ik )T (yobs
i − µobs

ik ) (ymis
i − µmis

ik )T (ymis
i − µmis

ik )

)
.

Therefore, the expected value of each block for the current parameter value is

E
[
(yobs
i − µobs

ik )T (yobs
i − µobs

ik ) | yobs
i , zik = 1;λ[r−1]

]
= (yobs

i − µobs
ik )T (yobs

i − µobs
ik )

E
[
(yobs
i − µobs

ik )T (ymis
i − µmis

ik ) | yobs
i , zik = 1;λ[r−1]

]
= (yobs

i − µobs
ik )T ((µ̃mis

ik )[r−1] − µmis
ik )

E
[
(ymis
i − µmis

ik )T (ymis
i − µmis

ik ) | yobs
i , zik = 1;λ[r−1]

]
= ((µ̃mis

ik )[r−1] − µmis
ik )T ((µ̃mis

ik )[r−1] − µmis
ik ) + (Σ̃mis

ik )[r−1]

• For Term (b), f(ci | yi, zik = 1;ψ) is independent of yi, which implies

log(f(ci | zik = 1;ψ)) =

{ ∑d
j=1 cij log ρ(αk) + (1− cij) log(1− ρ(αk)) (MNARz)∑d

j=1 cij log ρ(αkj) + (1− cij) log(1− ρ(αkj)) (MNARzj)
(32)
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• For Term (c), one first remark that

P(ci | yobs
i , zik = 1; θ[r−1]) =

d∏
j=1

P(cij = 1 | yobs
i , zik = 1; θ[r−1])cijP(cij = 0 | yobs

i , zik = 1; θ[r−1])1−cij .

In particular, for MNARz and MNARzj , by independence of yi, one has

P(cij = 1 | yobs
i , zik = 1; θ[r−1]) = P(cij = 1 | zik = 1; θ[r−1]) =

{
ρ(αk) (MNARz)

ρ(αkj) (MNARzj)

Using (28), one obtains

t
[r−1]
ik (θ[r−1]) =


π
[r−1]
k φ(yobs

i ;(µobsik )[r−1],(Σobs,obs
ik )[r−1])

∏d
j=1 ρ(α

[r−1]
k )cij (1−ρ(α

[r−1]
k ))1−cij∑K

h=1 π
[r−1]
h φ(yobs

i ;(µobsih )[r−1],(Σobs,obs
ih )[r−1])

∏d
j=1 ρ(α

[r−1]
k )cij (1−ρ(α

[r−1]
k ))1−cij

(MNARz)

π
[r−1]
k φ(yobs

i ;(µobsik )[r−1],(Σobs,obs
ik )[r−1])

∏d
j=1 ρ(α

[r−1]
kj )cij (1−ρ(α

[r−1]
kj ))1−cij∑K

h=1 π
[r−1]
h φ(yobs

i ;(µobsih )[r−1],(Σobs,obs
ih )[r−1])

∏d
j=1 ρ(α

[r−1]
kj )cij (1−ρ(α

[r−1]
kj ))1−cij

(MNARzj)

(33)

If ρ is the logistic distribution, the expression can be written more simply

tik(θ
[r−1]) ∝ π[r−1]

k φ(yobs
i ;λ

[r−1]
k )

d∏
j=1

(1 + exp(−δijα[r−1]
kj ))−1 where δij =

{
1 if cij = 1
−1 otherwise.

Finally, the E-step and the M-step can be sketched as follows in the Gaussian mixture case.

E-step The E-step for Term (a) consists of computing for k = 1, . . . ,K and i = 1, . . . , n

(µ̃mis
ik )[r−1] = (µmis

ik )[r−1] + (Σmis,obs
ik )[r−1]

(
(Σobs,obs

ik )[r−1]
)−1 (

yobs
i − (µobs

ik )[r−1]
)

(Σ̃mis
ik )[r−1] = (Σmis,mis

ik )[r−1] − (Σmis,obs
ik )[r−1]

(
(Σobs,obs

ik )[r−1]
)−1

(Σobs,mis
ik )[r−1]

(ỹi,k)
[r−1] = (yobs

i , (µ̃mis
ik )[r−1])

Σ̃
[r−1]
ik =

(
0obs,obs
i 0obs,mis

i

0mis,obs
i (Σ̃mis

ik )[r−1]

)

Note that whenever the mixture covariance matrices are supposed diagonal then (Σ̃mis
ik )[r−1] is also a

diagonal matrix. Term (c) also requires the computation of tik(θ[r−1]) given in (33) for k = 1, . . . ,K
and i = 1, . . . , n.

M-step The maximization of Q(θ; θ[r−1]) over (π, λ) leads to, for k = 1, . . . ,K,

π
[r]
k =

1

n

n∑
i=1

tik(θ
[r−1])

µ
[r]
k =

∑n
i=1 tik(θ

[r−1])(ỹk,i)
[r−1]∑n

i=1 tik(θ
[r−1])

Σ
[r]
k =

∑n
i=1

[
tik(θ

[r−1])
(

(ỹi,k)
[r−1] − µrk)((ỹi,k)[r−1] − µrk)T + Σ̃

[r−1]
ik

)]
∑n

i=1 tik(θ
[r−1])
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Then, the maximization of Q(θ; θ[r−1]) over ψ can be performed using a Newton Raphson algorithm.
For k = 1, . . . ,K, it remains to fit a generalized linear model with the binomial link function for
the matrix (JMNARz

k )[r] (if the model is MNARz) or for the matrices (JMNARzj
kj )

[r]
j=1,...,d (for the

MNARz model) and by giving tik(θ[r−1]) as prior weights to fit the process.

(JMNARz
k )[r] =

c.1 1
...

...
c.d 1

. (34)

(JMNARzj
kj )[r] = c.j 1 (35)

The EM algorithm for the MNARzj model is described in Algorithm 1 for Gaussian mixture.

Algorithm 1 EM algorithm for Gaussian mixture and MNARzj model

Input: Y ∈ Rn×d (matrix containing missing values), K ≥ 1, rmax.
Initialize π0

k, µ
0
k,Σ

0
k and ψ0

k, for k ∈ {1, . . . ,K}.
for r = 0 to rmax do
E-step:
for i = 1 to n, k = 1 to K do

(µ̃mis
ik )[r−1] = (µmis

ik )[r−1] + (Σmis,obs
ik )[r−1]

(
(Σobs,obs

ik )[r−1]
)−1 (

yobs
i − (µobs

ik )[r−1]
)
.

(Σ̃mis
ik )[r−1] = (Σmis,mis

ik )[r−1] − (Σmis,obs
ik )[r−1]

(
(Σobs,obs

ik )[r−1]
)−1

(Σobs,mis
ik )[r−1].

(ỹi,k)
[r−1] = (yobs

i , (µ̃mis
ik )[r−1]).

Σ̃
[r−1]
ik =

(
0obs,obs
i 0obs,mis

i

0obs,mis
i (Σ̃mis

ik )[r−1]

)
, where 0obs,obs

i and 0obs,mis
i are the null matrix of size

nobs
i × nobs

i and nobs
i × nmis

i , with nobs
i (resp. nmiss

i ) the number of observed (reps. missing)
variables for individual i.
tik(θ

[r−1]) ∝ π[r−1]
k φ(yobs

i ; (µobs
ik )[r−1], (Σobs,obs

ik )[r−1])
∏d
j=1 ρ(α

[r−1]
kj )cij (1− ρ(α

[r−1]
kj ))1−cij

end for
M-step:
for k = 1 to K do
π

[r]
k = 1

n

∑n
i=1 tik(θ

[r−1]), µ
[r]
k =

∑n
i=1 tik(θ[r−1])(ỹk,i)

[r−1]∑n
i=1 tik(θ[r−1])

Σ
[r]
k =

∑n
i=1

[
tik(θ[r−1])

(
(ỹi,k)[r−1]−µ[r]k )((ỹi,k)[r−1]−µ[r]k )T+Σ̃

[r−1]
ik

)]
∑n
i=1 tik(θ[r−1])

Let ψ[r]
k be the coefficients of a GLM with a binomial link function, by giving prior weights

tik(θ
[r−1]). In particular, the optimization problem is, ∀j ∈ {1, . . . , d},

Mkjψ
[r]
k = log

(
1− E[c.j |Mkj ])

E[c.j |Mkj ]

)
,

for a matrix Mkj depending on the MNAR model (see (34) and (35)) and c.j the missing
data pattern for the variable j.

end for
end for
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MNARy∗ models For missing scenarios which model the effect of the missingness depending on
the variable, the computations are more difficult.

• Because of the dependence of y, f(ymis
i | yobs

i , zik = 1, ci; θ
[r−1]) = f(ymis

i | yobs
i , zik =

1; θ[r−1]) does not hold anymore. Here, one has

f(ymis
i | yobs

i , zik = 1, ci; θ
[r−1])

=

∏d
h=1 ρ(α

[r−1]
kh + β

[r−1]
kh ymis

ih )cih(1− ρ(α
[r−1]
kh + β

[r−1]
kh yobs

ih ))1−cihf(ymis
i ,yobs

i , zik = 1; θ[r−1])∫
Ymis
i

∏d
h=1 ρ(α

[r−1]
kh + β

[r−1]
kh ymis

ih )cih(1− ρ(α
[r−1]
kh + β

[r−1]
kh yobs

ih ))1−cihf(ymis
i ,yobs

i , zik = 1; θ[r−1])dymis
i

=

∏
h,cih=1 ρ(α

[r−1]
kh + β

[r−1]
kh ymis

ih )f(ymis
i | yobs

i , zik = 1; θ[r−1])∫
Ymis
i

∏
h,cih=1 ρ(α

[r−1]
kh + β

[r−1]
kh ymis

ih )f(ymis
i | yobs

i , zik = 1; θ[r−1])dymis
i

. (36)

which implies that Term (a) requires difficult computations if this distribution is not classical.

• For Term (b), it is the same problem, since f(ci | yi, zik = 1;ψ) is no longer independent of
y, then it requires a specific numerical integration. Using (36),

τc(ψk;y
obs
i , ci, θ

[r−1]) =E

log

 d∏
j=1

ρ(αkj + βkjyij)
cij (1− ρ(αkj + βkjyij))

1−cij

 |yobs
i , zik = 1, ci; θ

[r−1]


=

d∑
j=1

cij

∫
Ymis
ij

log(ρ(αkj + βkjy
mis
ij ))f(ymis

ij | yobs
i , zik = 1, ci; θ

[r−1])dymis
ij

+ (1− cij) log(1− ρ(αkj + βkjy
obs
ij ))

where

f(ymis
ij | yobs

i , zik = 1, ci; θ
[r−1])

=
ρ(α

[r−1]
kj + β

[r−1]
kj ymis

ij )cij (1− ρ(α
[r−1]
kj + β

[r−1]
kj ymis

ij ))1−cijf(ymis
ij | yobs

i , zik = 1; θ[r−1])∫
Ymis
ij

ρ(α
[r−1]
kj + β

[r−1]
kj ymis

ij )cij (1− ρ(α
[r−1]
kj + β

[r−1]
kj ymis

ij ))1−cijf(ymis
ij | yobs

i , zik = 1; θ[r−1])dymis
ij

.

Therefore,

τc(ψk;y
obs
i , ci, θ

[r−1])

=
d∑
j=1

cij

∫
Ymis
ij

log(ρ(αkj+βkjy
mis
ij ))

ρ(α
[r−1]
kj + β

[r−1]
kj ymis

ij )cijf(ymis
ij | yobs

i , zik = 1; θ[r−1])∫
Ymis
ij

ρ(α
[r−1]
kj + β

[r−1]
kj x)cijf(x | yobs

i , zik = 1; θ[r−1])dx
dymis
ij

+ (1− cij) log(1− ρ(αkj + βkjy
obs
ij ))

• There is no closed-form expression for Term (c).

f(cij | yobs
i , zik = 1; θ[r−1])

=

∫
Ymis
ij

f(cij | yobs
i , ymis

ij , zik = 1;ψ[r−1])f(ymis
ij | yobs

i , zik = 1; θ[r−1])dymis
ij

= cij

∫ +∞

−∞
ρ(α

[r−1]
kj + β

[r−1]
kj ymis

ij )φ(ymis
ij ; (µ̃mis

ik )
[r−1]
j , (Σ̃mis

ik )
[r−1]
jj )dymis

ij + (1− cij)(1− ρ(α
[r−1]
kj + β

[r−1]
kj yobs

ij ))

(37)
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Using (28), the probabilities tik(θ[r−1]) can be deduced from Equation (37).

Let us detail the difficulties for two particular cases, if ρ is logistic or probit.

• ρ is logistic: Equation (36) leads to none classical distribution because

f(ymis
i | yobs

i , zik = 1, ci; θ
[r−1]) ∝

∏
h,cih=1

1

exp(−(α
[r−1]
kh + β

[r−1]
kh ymis

ih ))
φ(ymis

i ; (µ̃mis
ik )[r−1], (Σ̃mis

ik )[r−1])

Term (b) is

τc(ψk;yobs
i , ci, θ

[r−1])

∝
d∑

j=1

cij

∫
Ymis

ij

− log(1+exp(−(αkj+βkjy
mis
ij )))

1

1 + exp(−(α
[r−1]
kj + β

[r−1]
kj ymis

ij ))
φ(ymis

ij ; (µ̃mis
ik )

[r−1]
j , (Σ̃mis

ik )
[r−1]
jj )dymis

ij

− (1− cij) log(1 + exp(αkj + βkjy
obs
ij )),

which amounts to compute the Gaussian moment of log(1+exp(−u))
1+exp(−u) , but it has no closed form

to our knowledge.

Finally, Equation (37) does not have a closed form either because it requires the computation
of ∫ +∞

−∞

1

1 + exp(−(α
[r−1]
kj + β

[r−1]
kj ymis

ij ))
φ(ymis

ij ; (µ̃mis
ik )

[r−1]
j , (Σ̃mis

ik )
[r−1]
jj )dymis

ij ,

i.e. the computation of the Gaussian moment of 1
1+exp(−u) .

• ρ is Probit: One can prove (presented in Appended C.2.1) that the conditional distribution
(ymis
i | yobs

i , zik = 1, ci) is a truncated Gaussian, which makes possible the computation of
Term (a). Term (b) has no closed form to our knowledge

τc(ψk;y
obs
i , ci, θ

[r−1])

∝
d∑
j=1

cij

∫
Ymis
ij

log

(∫ αkj+βkjy
mis
ij

−∞
e−t

2
dt

)
1

1 + exp(α
[r−1]
kj + β

[r−1]
kj ymis

ij )
φ(ymis

ij ; (µ̃mis
ik )

[r−1]
j , (Σ̃mis

ik )
[r−1]
jj )dymis

ij

− (1− cij) log

(
1−

∫ αkj+βkjy
obs
ij

−∞
e−t

2
dt

)
,

Equation (37) does not have a closed form either because it requires the computation of∫ +∞

−∞

(∫ αkj+βkjy
mis
ij

−∞
e−t

2
dt

)
φ(ymis

ij ; (µ̃mis
ik )

[r−1]
j , (Σ̃mis

ik )
[r−1]
jj )dymis

ij .

C.1.2 Latent class model for categorical data

For categorical data, we have φ(yi;λk) =
∏d
j=1 φ(yij ;λkj) =

∏d
j=1

∏`j
`=1(λ`kj)

y`ij .
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MNARz and MNARzj models Term (a) is

E
[
log(φ(yi; pk)) | yobs

i , zik = 1, ci;λ
[r−1]

]
=
∑
j,cij=0

`j∑
`=1

y`ij +
∑
j,cij=1

`j∑
`=1

log(λ
y`ij
kj ) (38)

Term (b) is the same as in the Gaussian case given in (32). Finally, the EM algorithm can be
summarized as follows

E step: For k = 1, . . . ,K and i =, . . . , n, compute

tik(θ
[r−1]) =

π
[r−1]
k

∏
j,cij=0

∏`j
`=1(λ`kj)

y`ij
∏d
j=1 ρ(αkj)∑K

h=1 π
[r−1]
h

∏
j,cij=0

∏`j
`=1(λ`hj)

y`ij
∏d
j=1 ρ(αhj)

(ỹ`ij,k)
[r−1] = cij(θ

`
kj)

[r−1] + (1− cij)y`ij , ∀j = 1, . . . , d, ∀` = 1, . . . , `j

M step: The maximization of Q(θ; θ[r−1]) over θ leads to, for k = 1, . . . ,K,

πrk =
1

n

n∑
i=1

tik(θ
[r−1])

(θ`kj)
r =

∑n
i=1 tik(θ

[r−1])(ỹ`ij,k)
[r−1]∑n

i=1 tik(θ
[r−1])

, ∀j = 1, . . . , d, ∀` = 1, . . . , `j

The M-step for ψ consists of performing a GLM with a binomial link and has already been given
in detail in Appendix C.1.1 (see (51) and (52)).

C.1.3 Combining Gaussian mixture and latent class model for mixed data

If the data are mixed (continuous and categorical), the formulas can be extended straightforwardly
if the continuous and the categorical variables are assumed to be independent knowing the latent
clusters.

C.2 SEM algorithm

The SEM algorithm consists on two steps iteratively proceeded as presented in Section 3.2. The key
issue is to draw the missing data (ymis

i )r and zri according to their current conditional distribution
f(ymis

i , zi | yobs
i , ci;π

[r−1], λ[r−1], ψ[r−1]). By convenience, we use a Gibbs sampling and simulate
two easier probabilities recalled here

z
[r]
i ∼ f(· | y[r−1]

i , ci;π
[r−1], λ[r−1], ψ[r−1]) and (ymis

i )[r] ∼ f(· | yobs
i , zri , ci;λ

[r−1], ψ[r−1]),

where y
[r−1]
i = (yobs

i , (ymis
i )[r−1]). For the latter distribution, the membership k of z[r]

i is drawn
from the multinomial distribution with probabilities (P(zik = 1 | y[r−1]

i , ci;λ
[r−1], ψ[r−1]))k=1,...,K
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detailed as follows

P(zik = 1 | y[r−1]
i , ci; θ

[r−1]) =
P(zik = 1,y

[r−1]
i , ci;π

[r−1], λ[r−1], ψ[r−1])

P(y
[r−1]
i , ci;π[r−1], λ[r−1], ψ[r−1])

=
P(ci | y[r−1]

i , zik = 1;ψ[r−1])P(y
[r−1]
i | zik = 1;λ[r−1])P(zik = 1;π[r−1])∑K

h=1 P(ci | y[r−1]
i , zih = 1;ψ[r−1])P(y

[r−1]
i | zih = 1;λ[r−1])P(zih = 1;π[r−1])

=
P(ci | y[r−1]

i , zik = 1;ψ[r−1])P(y
[r−1]
i | zik = 1;λ[r−1])π

[r−1]
k∑K

h=1 P(ci | y[r−1]
i , zih = 1;ψ[r−1])P(y

[r−1]
i | zih = 1;λ[r−1])π

[r−1]
h

(39)

The conditional distribution of ((ymis
i )[r] | yobs

i , z
[r]
ik = 1, ci) has already been detailed in Equation

(36) and recalled here

f(ymis
i | yobs

i , z
[r]
ik = 1, ci; θ

[r−1])

=

∏
j,cij=1 f(cij = 1 | ymis

i ,yobs
i , z

[r]
ik = 1;ψ[r−1])f(ymis

i | yobs
i , z

[r]
ik = 1;λ[r−1])∫

Ymis
i

∏
j,cij=1 f(cij = 1 | ymis

i ,yobs
i , z

[r]
ik = 1;ψ[r−1])f(ymis

i | yobs
i , z

[r]
ik = 1;λ[r−1])dymis

i

(40)

C.2.1 Gaussian mixture for continuous data

First note that the probabilities of the multinomial distribution for drawing z[r]
i given in (39) can

be easily computed for all cases.

P(zik = 1 | y[r−1]
i , ci; θ

[r−1])

=

∏d
j=1 f(cij = 1 | y[r−1]

i , z
[r−1]
ik = 1;ψ[r−1])cijf(cij = 0 | y[r−1]

i , z
[r−1]
ik = 1;ψ[r−1])1−cijφ(y

[r−1]
i ;λ

[r−1]
k )π

[r−1]
k∑K

h=1

∏d
j=1 f(cij = 1 | y[r−1]

i , z
[r−1]
ih = 1;ψ[r−1])cijf(cij = 0 | y[r−1]

i , z
[r−1]
ih = 1;ψ[r−1])1−cijφ(y

[r−1]
i ;λ

[r−1]
h )π

[r−1]
h

,

where φ(yi;λk) = φ(yi;µk,Σk) is assumed to be a Gaussian distribution with mean vector µk and
covariance matrix Σk, and f(cij = 1 | y[r−1]

i , z
[r−1]
ih = 1;ψ[r−1]) is specified depending the MNAR

model and the distribution ρ. The only difficulty of the SE-step is thus to draw from the distribution
(ymis
i | yobs

i , z
[r]
ik = 1, ci).

In the sequel, we detail the distribution (ymis
i | yobs

i , z
[r]
ik = 1, ci) and the M-step for ψ depending

the MNAR model.

MNARy∗ models The conditional distribution (ymis
i | yobs

i , z
[r]
ik = 1, ci) depends on the distri-

bution ρ at hand. For the MNARy∗ models, we will consider two classical distributions for ρ: the
logistic function and probit one.

Logistic distribution: For the logistic function, the distribution given in (40) is not classical
and drawing ymis

i from it seems complicated. Indeed, one has

f(ymis
i | yobs

i , z
[r]
ik = 1, ci; θ

[r−1]) ∝
∏

j=1,cij=1

1

1 + exp(α
[r−1]
kj + β

[r−1]
kj ymis

ij )
φ(ymis

i ; (µ̃mis
ik )[r−1], (Σ̃mis

ik )[r−1]),
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where (µ̃mis
ik )[r−1] and (Σ̃mis

ik )[r−1] are given in (30) and (31). We could use the Sampling Importance
Resampling (SIR) algorithm which simulates a realization of (ymis

i | yobs
i , z

[r]
ik = 1, ci) with a known

instrumental distribution (for example: (ymis
i | yobs

i , z
[r]
ik = 1)) and includes a re-sampling step.

However, this algorithm may be computationnaly costly.
Probit distribution: For the probit function, the distribution in (40) can be made explicit by

using a latent variable Li.
More particularly, let Li such that Li = α

[r−1]
k + β

[r−1]
k yi + εi, with εi ∼ N (0d, Id×d). Then, ci

can be viewed as an indicator for whether this latent variable is positive, i.e. for all j = 1, . . . , d,

cij =

{
1 if Lij > 0
0 otherwise. (41)

Thus, indeed to draw (ymis
i )[r] and z

[r]
i according to f(ymis

i , zi | yobs
i , ci; θ

[r−1]), we draw L
[r]
i , (ymis

i )[r]

and z
[r]
i according to f(Li,y

mis
i , zi | yobs

i , ci; θ
[r−1] by using a Gibbs sampling.

First, we have to draw L
[r]
i according to f(. | y[r−1]

i , z
[r−1]
ik = 1, ci;ψ

[r−1]). One has

f(Li | y[r−1]
i , z

[r−1]
ik = 1, ci) ∝ f(Li, ci | y[r−1]

i , z
[r−1]
ik = 1;ψ[r−1])

∝ f(ci | L[r]
i ,y

[r−1]
i , z

[r−1]
ik = 1;ψ[r−1])f(L

[r]
i | y

mis
i ,yobs

i , z
[r−1]
ik = 1;ψ[r−1])

(i)
∝ f(ci | L[r]

i ;ψ[r−1])f(L
[r]
i | y

[r−1]
i , z

[r−1]
ik = 1;ψ[r−1])

(ii)
= 1{ci=1}∩{L[r]

i >0}f(L
[r]
i | y

mis
i ,yobs

i , z
[r−1]
ik = 1;ψ[r−1])

where we use that L[r]
i is a function of ymis

i ,yobs
i , zik = 1 in step (i). Step (ii) is obtained by using (41).

By abuse of notation, {ci = 1} ∩ {L[r]
i > 0} means that for all j = 1, . . . , d, {cij = 1} ∩ {L[r]

ij > 0}.
Finally the conditional distribution (Li | y[r−1]

i , z
[r−1]
ik = 1, ci) is a multivariate truncated Gaussian

distribution denoted as Nt, as detailed here

(Li | y[r−1]
i , z

[r−1]
ik = 1, ci) ∼ Nt(α[r−1]

k + β
[r−1]
k yi, Id×d; a, b), (42)

with a ∈ Rd and b ∈ Rd the lower and upper bounds such that for all j = 1, . . . , d,

aj =

{
0 if cij = 1,
−∞ otherwise.

bj =

{
+∞ if cij = 1,
0 otherwise.

Secondly, we draw the membership k of z[r]
i from the multinomial distribution with probabilities,

for all k = 1, . . . ,K detailed as follows

P(zik = 1 | L[r]
i ,y

[r−1]
i , ci; θ

[r−1]) =
P(zik = 1,L

[r]
i ,y

[r−1]
i , ci; θ

[r−1])∑K
k=1 P(zik = 1,L

[r]
i ,y

[r−1]
i , ci; θ[r−1])

(43)

=
f(L

[r]
i |zik = 1,y

[r−1]
i , ci;ψ

[r−1])f(zik = 1,y
[r−1]
i , ci; θ

[r−1])∑K
k=1 f(L

[r]
i |zik = 1,y

[r−1]
i , ci;ψ[r−1])f(zik = 1,y

[r−1]
i , ci; θ[r−1])
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The part involving f(zik = 1,y
[r−1]
i , ci; θ

[r−1]) is given in (39) and f(L
[r]
i |zik = 1,y

[r−1]
i , ci;ψ

[r−1])
is only the density of the multivariate truncated Gaussian distribution described in (42) evaluated
in L[r]

i .
Finally, y[r]

i is drawn according to f(.|L[r]
i , z

[r]
ik = 1,yobs

i , ci; θ
[r−1]). One has

f(ymis
i | L[r]

i , z
[r]
ik = 1,yobs

i , ci; θ
[r−1])

∝ f(ci,L
[r]
i | y

mis
i ,yobs

i , z
[r]
ik = 1;ψ[r−1])f(ymis

i | yobs
i , z

[r]
ik = 1; θ[r−1])

∝ f(ci | L[r]
i ,y

mis
i ,yobs

i , z
[r]
ik = 1;ψ[r−1])f(L

[r]
i | y

mis
i ,yobs

i , z
[r]
ik = 1;ψ[r−1])f(ymis

i | yobs
i , z

[r]
ik = 1; θ[r−1])

∝ f(ci | L[r]
i ;ψ[r−1])f(L

[r]
i | y

mis
i ,yobs

i , z
[r]
ik = 1;ψ[r−1])f(ymis

i | yobs
i , z

[r]
ik = 1; θ[r−1])

∝ f(L
[r]
i | y

mis
i ,yobs

i , z
[r]
ik = 1;ψ[r−1])f(ymis

i | yobs
i , z

[r]
ik = 1; θ[r−1]),

Yet, one has

f(L
[r]
i | y

mis
i ,yobs

i , z
[r]
ik = 1;ψ[r−1]) ∝ exp

(
−1

2

[
(L

[r]
i − (α

[r−1]
k + β

[r−1]
k yi))

T (L
[r]
i − (α

[r−1]
k + β

[r−1]
k yi))

])
f(ymis

i | yobs
i , z

[r]
ik = 1; θ[r−1]) ∝ exp

(
−1

2

[
(ymis
i − (µ̃mis

ik )[r])T ((Σ̃mis
ik )[r−1])−1(ymis

i − (µ̃mis
ik )[r])

])
,

with µ̃mis
ik and (Σ̃mis

ik )[r−1] given in (29).
Finally combining these two equations one obtains(

ymis
i | L[r]

i , z
[r]
ik = 1,yobs

i , ci

)
∼ N

(
µSEM
ik ,ΣSEM

ik

)
, (44)

where
ΣSEM
ik =

(
((Σ̃mis

ik )[r−1])−1 + ((βmis
k )[r−1])T (βmis

k )[r−1]
)−1

,

µSEM
ik = ΣSEM

ik

[
((Σ̃mis

ik )[r−1])−1µ̃mis
ik + ((βmis

k )[r−1])T (Lmis
i )[r] − ((βmis

k )[r−1])T (αmis
k )[r−1]

]
,

with (βmis
k )[r−1] (resp. (Lmis

i )[r] and (αmis
k )[r−1]) the vector βk (resp. (Li)

[r] and (αk)
[r−1]) restricted

to the coordinates j ∈ Ymis
i .

Finally, for fully describing the SEM-algorithm, in the M-step, ψ[r−1] is computed using a GLM
with a binomial link function for a matrix depending on the MNAR model. In particular,

• For MNARy, the coefficient obtained with a GLM for the matrix (HMNARy
j )[r] are α0 and

β
[r]
1 , . . . , β

[r]
d , with

(HMNARy)[r] =

c.1 1 y
[r]
.1 0 . . . 0

c.2 1 0 y
[r]
.2 . . . 0

...
...

. . . . . .
c.d 1 0 0 . . . y

[r]
.d

. (45)
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• For MNARyk, the coefficient obtained with a GLM for the matrix (HMNARyk
kj )[r] is α0 and

β
[r]
11 , . . . , β

[r]
K1, . . . , β

[r]
Kd with

(HMNARyk
kj )[r] =

(cu1)
u,z

[r]
u1=1

1 (y
[r]
u1)

u,z
[r]
u1=1

0 . . . 0

...
...

. . .
...

(cu1)
u,z

[r]
uK=1

1 0 (y
[r]
u1)

u,z
[r]
uK=1

0

...
...

...
. . .

(cud)u,z[r]uK=1
1 0 0 (y

[r]
ud)u,z[r]uK=1

. (46)

• For MNARyz, the coefficients obtained with a GLM for the matrix (HMNARyz)[r] are β[r]
1 , . . . , β

[r]
d

and α[r]
1 , . . . , α

[r]
K , with

(HMNARyz)[r] =

c.1 y
[r]
.1 0 . . . 0 z

[r]
.1 . . . z

[r]
.K

c.2 0 y
[r]
.2 . . . 0 z

[r]
.1 . . . z

[r]
.K

...
. . . . . .

...
...

...
c.d 0 0 . . . y

[r]
.d z

[r]
.1 . . . z

[r]
.K

. (47)

• For MNARyzj , the coefficients obtained with a GLM for the matrix (HMNARyzj
j )[r] are β[r]

j , α
[r]
1j , . . . , α

[r]
Kj ,

with
(HMNARyzj

j )[r] = c.j y
[r]
.j z

[r]
.1 . . . z

[r]
.K

. (48)

• For MNARykz, the coefficients obtained with a GLM for the matrix (HMNARykz
k )[r] are

β
[r]
k1 , . . . , β

[r]
kd, α

[r]
k , with

(HMNARykz
k )[r] =

(cu1)
u,z

[r]
uk=1

(y
[r]
u1)

u,z
[r]
uk=1

0 . . . 0 1

(cu2)
u,z

[r]
uk=1

0 (y
[r]
u2)

u,z
[r]
uk=1

. . . 0 1

...
. . . . . . 1

(cud)u,z[r]uk=1
0 0 . . . (y

[r]
ud)u,z[r]uk=1

1

. (49)

• For MNARykzj , the coefficients obtained with a GLM for the matrix (HMNARykzj
kj )[r] are

βkj , αkj , with
(HMNARykzj

kj )[r] = (cuj)u,z[r]uk=1
(y

[r]
uj )u,z[r]uk=1

1 (50)

• For MNARz, the coefficients obtained with a GLM for the matrix (HMNARz)[r] are α1, . . . , αK ,
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with

(HMNARz)[r] =

c.1 z.1 . . . z.K
...

...
...

...
c.d z.1 . . . z.K

=

c11 z
[r]
11 . . . z

[r]
1K

...
...

...
...

cn1 z
[r]
n1 . . . z

[r]
nK

...
...

...
...

c1d z
[r]
11 . . . z

[r]
1K

...
...

...
...

cnd z
[r]
n1 . . . z

[r]
nK

. (51)

• For MNARzj , the coefficients obtained with a GLM for the matrix (HMNARzj
j )[r] are α1j , . . . , αKj ,

with
(HMNARzj

j )[r] = c.j z
[r]
.1 . . . z

[r]
.K

(52)

When ρ is the probit function, the SEM algorithm can be derived, see Algorithm 2. The
initialization and the stopping criterion are discussed in Section 4.

Algorithm 2 SEM algorithm for Gaussian mixture, MNARy∗ models, ρ is probit

Input: Y ∈ Rn×d (matrix containing missing values), K ≥ 1, rmax.
Initialize Z0, π0

k, µ
0
k,Σ

0
k and ψ0

k, for k ∈ {1, . . . ,K}.
for r = 0 to rmax do
SE-step:
for i = 1 to n do
Draw (Li)

[r] from the multivariate truncated Gaussian distribution given in (42).
Draw z

[r]
i from the multinomial distribution with probabilities detailed in (43).

Draw (ymis
i )[r] from the multivariate Gaussian distribution given in (44).

end for
Let Y[r] = (y

[r]
1 | . . . |y

[r]
n ) be the imputed matrix.

Let Z[r] = (z
[r]
1 | . . . |z

[r]
n ) be the partition.

M-step:
for k = 1 to K do
Let π[r]

k be the proportion of rows of Y[r] belonging class k.
Let µ[r]

k ,Σ
[r]
k be the mean and covariance matrix of rows of Y[r] belonging to class k.

Let ψ[r]
k be the resulted coefficients of a GLM with a binomial link function, i.e. the opti-

mization problem is ∀j ∈ {1, . . . , d},

Mkjψ
[r]
k = log

(
1− E[c.j |Mkj ])

E[c.j |Mkj ]

)
,

for a matrixMkj depending on the MNAR model (see (45),(46),(47),(52),(50) and (51)) and
c.j the missing data pattern for the variable j.

end for
end for
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EM SEM
Gaussian Categorical Gaussian Categorical

Appendix C.1.1 Appendix C.1.2 Appendix C.2.1 Appendix C.1.2
MNARz
MNARzj X X X X

Probit Logit Probit Logit

MNARy∗ no closed
form

no closed
form,
optim. pb

not identifiable X

require
algorithms
as SIR
(costly)

not identifiable

Table 4: Summary of the cases for which the EM and the SEM lead to feasable (or not feasable)
computations. The symbol X means that the computations are feasable and that they are derived
in Appendix.

MNARz and MNARzj models For the MNARz and MNARzj models, the effect of the miss-
ingness is only due to the class membership. We have already proved in Appendix C.1.1 that

f(ymis
i | yobs

i , z
[r−1]
i , ci; θ

[r−1]) = f(ymis
i | yobs

i , z
[r−1]
i ;λ[r−1]),

and that this conditional distribution is Gaussian given in (29). The M-step for ψ has been specified
in the previous paragraph with (51) and (52).

C.2.2 Latent class model for categorical data

For categorical data, we have φ(yi;λk) =
∏d
j=1 φ(yij ;λkj) =

∏d
j=1

∏`j
`=1(λ`kj)

y`ij .

MNARz andMNARzj models For drawing from the conditional distribution (ymis
i | yobs

i , z
[r]
ik =

1), by independence of the features conditionally to the membership, we can draw for j = 1, . . . , d

ymis
ij = ((ymis

ij )1, . . . , (ymis
ij )lj ) from the conditional distribution (ymis

ij | yobs
i , z

[r]
ik = 1). This latter is a

multinomial distribution with probabilities (λ`kj)`=1,...,`j .

48



D Additional numerical experiments on synthetic data

Laplace logit probit

MCAR MNARz MCAR MNARz MCAR MNARz
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MNARz

Figure 12: Boxplot of the ARI obtained for 50 samples composed of d = 6 variables with a
misclassification rate of 15% and a missing-data rate of 30% in the whole dataset. The missing
values are introduced using a MNARz setting with different link functions. The red line indicates
the theoretical ARI.

l=0 l=0.1 l=0.25 l=0.5
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Figure 13: Boxplot of the ARI obtained for 50 samples composed of d = 6 variables with a
misclassification rate of 15% and a missing-data rate of 30% in the whole dataset. The correlation
coefficient of the covariance matrices in each component (k = 1, 2, 3) is l = 0, l = 0.1, l = 0.25 and
l = 0.5, whereas the algorithms consider the diagonal case. The red line indicates the theoretical
ARI.
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Figure 14: Boxplot of the ARI obtained for 50 samples composed of d = 6 variables with a
misclassification rate of 15% and a missing-data rate of 10%, 30% and 50% in the whole dataset.
The red line indicates the theoretical ARI.

E Description of the variables in the Traumabase dataset

A description of the variables which are used in Section 5 is given. Figure 15 gives the percentage of
missing values per variable. The indications given in parentheses ph (pre-hospital) and h (hospital)
mean that the measures have been taken before the arrival at the hospital and at the hospital.

• Trauma.center (categorical, integers between 1 and 16, no missing values): name of the trauma
center (ph & h).

• Anticoagulant.therapy (categorical, binary variable, 4.3% NA): oral anticoagulant therapy be-
fore the accident (ph).

• Antiplatelet.therapy (categorical, binary variable, 4.4% NA): anti-platelet therapy before the
accident (ph).

• GCS.init, GCS (ordinal, integers between 3 and 15, 2% NA & 42% NA): Initial Glasgow
Coma Scale (GCS) on arrival on scene of enhanced care team and on arrival at the hospital
(GCS = 3: deep coma; GCS = 15: conscious and alert) (ph & h).

• GCS.motor.init, GCS.motor (ordinal, integers between 1 and 6, 7.6% NA & 43%): Initial
Glasgow Coma Scale motor score (GCS.motor = 1: no response; GCS.motor = 6: obeys
command/purposeful movement) (ph % h).

• Pupil.anomaly.ph, Pupil.anomaly (categorical, 3 categories: Non, Anisocoire (unilaterale),
Mydriase Bilaterale, 2% NA & 1.7%): pupil dilation indicating brain herniation (ph & h).

• Osmotherapy.ph, Osmotherapy (categorical, 4 categories: Pas de mydriase, SSH, Mannitol,
Rien, 1.7% NA and no missing values): administration of osmotherapy to alleviate compression
of the brain (either Mannitol or hypertonic saline solution) (ph & h)
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• Improv.anomaly.osmo (categorical, 3 categories: Non testé, Non, Oui, no missing values):
change of pupil anomaly after ad- ministration of osmotherapy (ph).

• Cardiac.arrest.ph (categorical, binary variable, 2.3% NA): cardiac arrest during pre-hospital
phase (ph).

• SBP.ph, DBP.ph, HR.ph (continuous, 29.3% NA & 29.6% NA & 29.5% NA): systolic and
diastolic arterial pressure and heart rate during pre-hospital phase (ph).

• SBP.ph.min, DBP.ph.min (continuous, 12.8% NA & 13% NA): minimal systolic and diastolic
arterial pressure during pre-hospital phase (ph).

• HR.ph.max (continuous, 13.7 % NA): maximal heart rate during pre-hospital phase (ph).

• Cristalloid.volume (continuous, positive values, 30% NA): total amount of prehospital adminis-
tered cristalloid fluid resuscitation (volume expansion) (ph).

• Colloid.volume (continuous, positive values, 31.3% NA): total amount of prehospital admin-
istered colloid fluid resuscitation (volume expansion) (ph).

• HemoCue.init (continuous, 34.9% NA): prehospital capillary hemoglobin concentration (the
lower, the more the patient is probably bleeding and in shock); hemoglobin is an oxygen carrier
molecule in the blood (ph).

• Delta.hemoCue (continuous, 37.2% NA): difference of hemoglobin level between arrival at the
hospital and arrival on the scene (h).

• Vasopressor.therapy (continuous, no missing values): treatment with catecholamines in case
of physical or emotional stress increasing heart rate, blood pres- sure, breathing rate, muscle
strength and mental alertness (ph).

• SpO2.min (continuous, 11.7% NA): peripheral oxygen saturation, measured by pulse oxymetry,
to estimate oxygen content in the blood (95 to 100%: considered normal; inferior to 90% crit-
ical and associated with considerable trauma, danger and mortality) (ph).

• TCD.PI.max (continuous, 51.2% NA): pulsatility index (PI) measured by echodoppler sono-
graphic examen of blood velocity in cerebral arteries (PI > 1.2: indicates altered blood flow
maybe due to traumatic brain injury) (h).

• FiO2 (categorical, in {1, 2, 3, 4, 5}, 6.8% NA): inspired concentration of oxygen on ventilatory
support (the higher the more critical; Ventilation = 0: no ventilatory support) (h).

• Neurosurgery.day0 (categorical, binary variable, no missing values): neurosurgical interven-
tion performed on day of admission (h).

• IGS.II (continuous, positive values, 2% NA): Simplified Acute Physiology Score (h).

• Tranexomic.acid (categorical, binary variable, no missing values): administration of the tranex-
omic acid (h).

• TBI (categorical, binary variable, no missing values): indicates if the patient suffers from a
traumatic brain injury (h).
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• IICP (categorical, binary variable, 70.9% NA): at least one episode of increased intracranial
pressure; mainly in traumatic brain injury; usually associated with worse prognosis (h).

• EVD (categorical, binary variable, no missing values): external ventricular drainage (EVD);
mean to drain cerebrospinal fluid to reduce intracranial pressure (h).

• Decompressive.craniectomie (categorical, binary variable, no missing values): surgical inter-
vention to reduce intracranial hypertension (h).

• Death (categorical, binary variable, no missing values): death of the patient (h).

• AIS.head, AIS.face (ordinal, discrete, integers between 0 and 6 and 4 1.7% NA & 1.7% NA):
Abbreviated Injury Score, describing and quantifying facial and head injuries (AIS = 0: no
injury; the higher the more critical) (h).

• AIS.external (continuous, discrete, integers between 0 and 5, 1.7% NA): Abbreviated Injury
Score for ex- ternal injuries, here it is assumed to be a proxy of information avail- able/visible
during pre-hospital phase (ph/h).

• ISS (continuous, discrete, integers between 0 and 75, 1.6% NA): Injury Severity Score, sum
of squares of top three AIS scores (h).

• Activation.HS.procedure (categorical, binary variable, 3.7% NA): activation of hemorragic
shock procedure in case of HS suspicio (h).

• TBI_Death (categorical, binary variable, no missing values): death of the patients suffering
from a traumatic brain injury (h).

• TBI_Death_30d (categorical, binary variable, no missing values): death of the patients suf-
fering from a traumatic brain injury in the 30 days (h).

• TBI_30d (categorical, binary variable, no missing values): traumatic brain injury in the 30
days (h).

• Death_30d (categorical, binary variable, no missing values): death in the 30 days (h).

• Shock.index.ph (continuous, positive values, 30.5% NA): ratio of heart rate and systolic arterial
pressure during pre-hospital phase (ph).

• majorExtracranial (categorical, binary variable, no missing values): major extracranial lesion
(h).

• lesion.class (no missing values): partition given by the doctors with K = 4 classes: axonal,
extra, other, intra.

• lesion.grade (no missing values): partition given by the doctors with K = 3 classes: high, low,
other.
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Figure 15: Percentage of missing values per variable for the Traumabase dataset.
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F Complements on generic experiments

This section gives the values of δ (see (16)) and ψ (see 3) used during the different experiments.
As exemplained in Section 4.2, their choice allows to control the rates of misclassification and
missingness. To estimate these values, we have generated a large sample (n = 105) and compute
the misclassification rate and the missingness rate for several values of δ and ψ and pick the ones
which correspond to the setting of the experiment.

K % NA link rate of misclassification l δ α

3 30% probit 90% 0 2.6
(
−1 −0.3 0

)
3 30% logit 90% 0 2.76

(
−1.5 −0.8 0.1

)
3 30% Laplace 90% 0 2.85

(
−1.1 0.3 0

)
3 30% probit 85% 0 2.27

(
−1 −0.3 0

)
3 30% logit 85% 0 2.44

(
−1.5 −0.8 0.1

)
3 30% Laplace 85% 0 2.46

(
−1.1 0.3 0

)
3 30% probit 90% 0.1 2.3

(
−1.16 0.3 −0.42

)
3 30% probit 90% 0.25 2.17

(
−1.16 0.3 −0.4

)
3 30% probit 90% 0.5 1.85

(
−1.16 0.3 −0.4

)
3 30% probit 85% 0.1 1.97

(
−1.16 0.3 −0.42

)
3 30% probit 85% 0.25 1.86

(
−1.16 0.3 −0.4

)
3 30% probit 85% 0.5 1.57

(
−1.16 0.3 −0.4

)
3 10% probit 90% 0 2.18

(
−1.65 −1.2 −0.9

)
3 50% probit 90% 0 3.3

(
−0.55 0.25 1.7

)
3 10% probit 85% 0 1.95

(
−1.65 −1.2 −0.9

)
3 50% probit 85% 0 2.62

(
−0.55 0.25 1.7

)
Table 5: Choice of the values of δ and α for all the experiments of Section 4.2 and Appendix D for
the MNARz mechanism. K denotes the number of class, the column denoted as % NA gives the rate
of missingness, the column called link gives the link function of the missing-data mechanism used
in the introduction of the missing values, l is the coefficient of correlation (anti-diagonal terms), δ
is given in (16) and α in (3).
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d δ α

3 20

−0.4 −0.65 −0.65
−1.1 −1 −1
−0.6 0.4 0.4


6 2.5

−1.4 −1.4 −1.2 −1.1 −1 −0.9
−0.6 0.4 0.4 0.3 0.1 0.1
−0.2 −0.2 −0.2 −0.2 −0.2 −0.2


9 1.78

−0.5 −0.65 −0.65 −1.1 −1.7 −1.7 −1.4 −1.4 −1.4
−0.6 0.4 0.4 −0.2 0.3 0.4 0.3 0.3 0.3
−0.4 −0.4 −0.4 −0.4 −0.4 −0.4 −0.4 −0.4 −0.4



Table 6: Choice of the values of δ and α for all the experiments of Section 4.2 for the MNARzj

mechanism.

d δ α β

3 3.5 -1.56
(
1.45 0.2 −3

)
6 2.25 -0.7

(
−3 0.3 −3 −3 −2 1

)
9 1.98 -0.68

(
0.5 0.1 −1.2 0.4 −0.1 −1.3 0.3 −0.1 −1

)
Table 7: Choice of the values of δ, α and β for all the experiments of Section 4.2 for the MNARy
mechanism.

d δ α β

3 4.72
(
−1.2 −0.8 −0.5

) (
−3 0.3 1

)
6 2.12

(
−1.35 −0.29 0

) (
−3 0.3 −3 −3 −2 1

)
9 1.71

(
−1.34 −0.34 0

) (
−3 0.3 −3 −2.8 −2 1 0.2 0.1 0.4

)
Table 8: Choice of the values of δ, α and β for all the experiments of Section 4.2 for the MNARyz
mechanism.

d δ α β

3 2.55

 −1 −0.95 −0.9
0.75 0.7 0.8
−0.2 −0.2 −0.2

 −3 0.3 −3
0.3 −3 0.3
−3 0.3 −3


6 1.96

−1.2 −1 −0.9 −0.9 −0.7 −0.8
−0.6 0.4 0.4 0.3 0.1 0.1
−0.4 −0.4 −0.4 −0.4 −0.4 −0.4

 −3 0.3 −3 −3 −2 1
0.3 −3 0.3 −0.3 −2 0.2
−3 0.3 −3 −3 −2 1


9 1.45

−1.4 −1 −1.1 −1.1 −0.9 −0.8 −1.2 −1 −1.1
0.3 0.5 0.2 −0.6 0.4 0.4 0.3 0.1 0.1
−0.4 −0.4 −0.4 −0.4 −0.4 −0.4 −0.4 −0.4 −0.4

 −3 0.3 −3 −3 −2 1 −3 0.3 0.2
0.3 −3 0.3 −0.3 −2 0.2 0.2 0.3 −0.3
−3 0.3 −3 −3 −2 1 −1 −2 −3



Table 9: Choice of the values of δ, α and β for all the experiments of Section 4.2 for the MNARykzj

mechanism.
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d δ α β

6 1.92 -0.75

−3 0.3 −3 −3 −2 1
0.5 −2 1 1 1 0.5
1 1 0.5 0.5 0.5 2



Table 10: Choice of the values of δ, α and β for all the experiments of Section 4.2 for the MNARyk

mechanism.

d δ α β

6 1.91
(
−0.9 −0.15 0

) −3 0.3 −3 −3 −2 1
0.3 −3 0.3 −0.3 −2 0.2
−3 0.3 −3 −3 −2 1



Table 11: Choice of the values of δ, α and β for all the experiments of Section 4.2 for the MNARykz
mechanism.

d δ α β

6 2.15

−1.4 −1.4 −1.2 −1.1 −1 −0.9
−0.6 0.4 0.4 0.3 0.1 0.1
−0.8 −0.8 0.8 −0.8 −0.8 0.8

 (
−3 0.3 −3 −3 −2 1

)

Table 12: Choice of the values of δ, α and β for all the experiments of Section 4.2 for the MNARyzj

mechanism.
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