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SETS OF INTEGERS DETERMINED BY

OPERATOR-THEORETICAL PROPERTIES: JAMISON AND

KAZHDAN SETS IN THE GROUP Z

by

Catalin Badea & Sophie Grivaux

Abstract. — The aim of this partly expository paper is to present and discuss two classes
of sets of integers (Jamison and Kazhdan sets) whose definition and/or properties are deter-
mined or inspired by operator-theoretical properties. Jamison sets first appeared in the study
of the relationship between the growth of the sequence of norms of iterates of a bounded
linear operator on a separable Banach space and the size of its unimodular point spectrum.
Kazhdan subsets of Z are particular cases of Kazhdan sets in general topological groups,
which are especially important as they appear in the definition of Property (T). This paper
is also intended as a companion to the authors’ paper [3], which undertakes a study of Kazh-
dan subsets of some classical groups without Property (T). We present here in detail the
case of the group Z, which is one of the most natural examples of groups without Property
(T), and which may be useful to build an intuition of some of the main results of [3]. Also,
the proofs in the case of the group Z rely solely on tools from basic operator theory and
harmonic analysis. Some crucial links between Jamison and Kazhdan sets in Z are exhibited,
and many examples are given.

Résumé (Ensembles d’entiers déterminés par des propriétés opératorielles : en-
sembles de Jamison et de Kazhdan dans le groupe Z.)

Nous présentons dans ce texte deux classes de sous-ensembles de Z (les ensembles de
Jamison et les ensembles de Kazhdan) dont la définition et/ou les propriétés sont motivées
et/ou inspirées par des propriétés de nature opératorielle. Les ensembles de Jamison sont
apparus dans l’étude des relations entre, d’une part, la croissance des normes des itérés
d’un opérateur borné sur un espace de Banach séparable et, d’autre part, la taille de son
spectre ponctuel unimodulaire. Les ensembles de Kazhdan dans Z sont des cas particuliers
d’ensembles de Kazhdan dans les groupes généraux; ces derniers sont particulièrement im-
portants puisqu’ils apparaissent dans la définition de la Propriété (T). Ce texte complémente
également notre article [3], dans lequel nous étudions les sous-ensembles de Kazhdan de cer-
tains groupes classiques n’ayant pas la Propriété (T). Nous présentons ici en détail le cas
du groupe Z, qui est l’un des exemples les plus élémentaires de groupes ne possédant pas
la Propriété (T), et qui peut être utile pour appréhender certains des résultats principaux
de [3]. De plus, les preuves dans ce cas particulier reposent exclusivement sur des outils
de théorie des opérateurs élémentaire et d’analyse harmonique. Nous présentons également
certains liens importants entre les ensembles de Jamison et les ensembles de Kazhdan, et
donnons de nombreux exemples.
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sequences.
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1. Introduction

Our aim in this partly expository paper is to present a study of two particular classes
of subsets of Z, defined by operator-theoretic conditions: Jamison sets and Kazhdan sets
in Z. Our study fits into the general framework of the investigation of sets of integers
defined by properties coming from various fields of mathematics: combinatorics, dynamical
systems and ergodic theory, harmonic analysis... or operator theory. Well-known examples
of such classes of sets are recurrence sets for dynamical systems in various contexts, or
pointwise convergence sets (see for instance the accounts [14], [13] or [7], among many
other works on the subject), van der Corput sets (see for instance [9] and the references
therein), Bohr sets ([8], [20], [17]), Rajchman and Riesz sets, Sidon sets ([18]), and (very)
many others. In several of these settings, the original definition admits a reformulation in
operator-theoretic terms. We consider here classes of sets originally defined in operator-
theoretic terms, motivated either by natural problems in operator or representation theory,
or by questions pertaining to the study of geometry of groups via representation theory.
In the two cases on which we focus here – namely Jamison sets and Kazhdan sets in Z –
one of our aims is to obtain characterizations of such classes of sets in terms of measures,
which are much more tractable than the initial definitions and allow a thorough study of
the aforementioned classes.

Jamison sets were first defined in operator theory as subsets of N, in the study of the
relationship between the growth of the norms of the iterates of a bounded linear operator on
a separable complex Banach space and the size of its peripheral point spectrum. Kazhdan
sets in Z are particular cases of Kazhdan sets in general topological groups. This class of
sets is especially important, as it is involved in the definition of the famous Property (T): a
topological group has Kazhdan’s Property (T), or is a Kazhdan group, if it admits a compact
Kazhdan set. As any other non-compact locally compact amenable group, Z does not have
Property (T), and thus admits no compact (i.e. finite in this case) Kazhdan set. Still, it
makes sense to investigate the structure of Kazhdan sets in groups which do not have
Property (T), and several questions along these lines were proposed in [6, Sec. 7.12]. Some
of them were solved in the authors’ paper [3], where a new characterization of Kazhdan sets
in general topological groups was obtained which yielded a characterization of Kazhdan
sets in many classical groups. This approach also yielded an answer to a question proposed
by Shalom in [6, Sec. 7.12] concerning the links between equidistribution properties of
sequences pnkθqkě0 for irrational numbers θ and the fact that the set tnk ; k ě 0u is a
Kazhdan subset of Z. Although the results of [3] hold in a much more general framework,
understanding the case of the group Z proved to be a crucial step towards the general
results. In particular, as we will see, Jamison sets play a key role in the proof of the
results of [3] specialized to the group Z.

Thus, besides being a survey paper about Jamison and Kazhdan sets in Z, the present
article is also intended as a companion to [3], in which we present independent proofs
of some of the results of [3] in the case of the group Z. The proofs in this particular
setting rely only on classical tools from harmonic analysis, whereas the general proofs of
[3] involve more sophisticated tools from abstract harmonic analysis, ergodic theory and
representation theory. Also, the case of the group Z is extremely useful to build a good
intuition of what is likely to happen in the study of Kazhdan sets in arbitrary groups. The
reader familiar with [3] will realize easily enough that the proof of Theorem 2.3 of [3] relies
on the same ideas as the proof of Theorem 4.12 below: convolution of measures become
tensor product of representations in the proof of [3, Th. 2.3], continuous measures are
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replaced by weakly mixing representations, and although Jamison sets do not appear in
the proof of [3, Th. 2.3], the dichotomy between Case 1 and Case 2 reflects the dichotomy
between Jamison and non-Jamison sets in the case of Z.

The paper is organized as follows: we first present in Section 2 below the definition and
the main properties of Jamison sets in the original setting of [1] and [2], namely that of
subsets of N. We introduce Jamison subsets of Z in Section 3, and briefly indicate how
the known results about Jamison subsets of N extend to this setting. We also give in
this section several examples of Jamison and non-Jamison subsets of Z. In Section 4, we
consider Kazhdan subsets of Z as a particular case of the more general notion of Kazhdan
sets in topological groups, and we characterize them in several ways. The two most useful
characterizations are given in terms of Fourier coefficients of probability measures on the
unit circle. While the first of these two characterizations (Theorem 4.6) follows from rather
standard arguments, the second one (Theorem 4.12) is far less obvious, and actually forms
the core of our study of Kazhdan subsets of Z. After giving several examples of Kazhdan
and non-Kazhdan subsets of Z, we prove Theorem 4.12 in Section 6. Section 7 deals
with the link between equidistribution properties modulo one and Kazhdan sets in Z. In
particular, we re-obtain the answer of [3] to the above mentioned question of Shalom ([6,
Sec. 7.12]).

2. Jamison sets: the origins

Let us first fix some notation, which will be used throughout the paper. We will denote
by T the unit circle in C and by D the open unit disk: T “ tλ P C : |λ| “ 1u and
D “ tλ P C : |λ| ă 1u. If T P BpXq is a bounded linear operator on a complex Banach
space X, we denote by σppT q the point spectrum of T (i.e. the set of eigenvalues of T ).
The set σppT qXT of eigenvalues of T of modulus 1 is called the unimodular point spectrum
of T . We say that T P BpXq is power bounded if supně0 }T

n} is finite. Observe that the
spectrum of a power bounded operator is always included in the closed unit disc. Lastly,
a set is said to be countable if it stands in one-to-one correspondence with a subset of N.

2.1. Definition of Jamison sequences. — The study of Jamison sequences of positive
integers originated in the following question: how is the growth of the sequence p}Tn}qně0

of the norms of the iterates of T influenced by the size of the (unimodular) point spectrum
of T and by the geometry of the ambient space X?

A basic result in this direction is due to Jamison [19], who proved in 1965 that if
X is separable and T is power bounded, the unimodular point spectrum σppT q X T of
T is countable. Jamison’s result is optimal in several senses: suitable unitary diagonal
operators on a (separable or non-separable) Hilbert space show that σppT qXT may be any
countable set under the hypotheses of the result, and that one cannot drop the assumption
that X be separable. Also, nothing can be said in general about the size of the set of
eigenvalues of a power-bounded operator which are not on the unit circle. For instance,
the backward shift B on `2pCq given by Bpx0, x1, ¨ ¨ ¨ q “ px1, x2, ¨ ¨ ¨ q, x “ pxnqně0 P `

2pCq,
has any λ P D as an eigenvalue but has empty unimodular point spectrum. Jamison [19]
gave an example of an operator of spectral radius one on a separable Hilbert space which
has uncountably many unimodular eigenvalues.

In view of the result of Jamison, it was natural to investigate whether, given a strictly
increasing sequence pnkqkě0 of integers, the condition supkě0 }T

nk} ă `8 (where T is a
bounded operator on a separable Banach space X) implies that σppT q X T is countable.
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When X is a general Banach space and σppT qXT is assumed to be uncountable, Ransford
[29] proved that the norms ||Tn|| of the iterates of T tend to infinity along a subset of
density 1 of N. This last result was complemented in the paper [30], where Ransford and
Roginskaya showed that the norms }Tn} do not necessarily tend to infinity under such
assumptions, even for separable Banach spaces. More precisely, they constructed, for each
sequence pnkqkě0 of integers such that nk divides nk`1 for each k ě 0 and pnkqkě0 grows
fast enough, a separable Banach space X and an operator T on X with uncountable
unimodular point spectrum such that the sequence p}Tnk}qkě0 is nonetheless bounded.
This motivates the following definition.

Definition 2.1 ([30]). — Let X be a separable Banach space. Let pnkqkě0 be a strictly
increasing sequence of positive integers and let T be a bounded linear operator on X. We
say that T is partially power bounded with respect to the sequence pnkqkě0 if supkě0 }T

nk}

is finite.

The question to know for which sequences of integers partial power-boundedness implies
countable unimodular point spectrum was investigated further in [1] and [2], where the
following definition was introduced:

Definition 2.2. — Let pnkqkě0 be a strictly increasing sequence of positive integers.
We say that pnkqkě0 is a Jamison sequence if for any separable Banach space X and any
bounded operator T on X, σppT qXT is countable as soon as T is partially power-bounded
with respect to pnkqkě0.

2.2. A characterization of Jamison sequences. — We shall see that being a Jamison
sequence or not depends not only on the growth of the sequence but also on its arithmetical
properties. Our aim now is to present a complete characterization of Jamison sequences
which was obtained in [2]. In order to formulate this characterization we need to introduce
a distance on the unit circle T associated to a given sequence pnkqkě0 with n0 “ 1: for
λ, µ P T, let us define

dpnkqpλ, µq “ sup
kě0

|λnk ´ µnk |.

This distance is used in [30] as well as in [1, 2] for the construction of non-Jamison
sequences. The assumption that n0 “ 1 comes into play in order to ensure that dpnkq
is indeed a distance on T. It could be replaced by the weaker assumption that the set
tnk ; k ě 0u generates the group Z, but we will for simplicity’s sake keep the hypothesis
that n0 be equal to 1. Observe also that the property of being a Jamison sequence remains
unchanged by the addition or the removal of finitely many terms of the sequence. Assuming
that the first term is equal to 1 is thus no real restriction.

Theorem 2.3 ([2]). — Let pnkqkě0 be a strictly increasing sequence of positive integers
with n0 “ 1. The following assertions are equivalent:

(1) the sequence pnkqkě0 is a Jamison sequence;
(2) for every uncountable subset K of T, the metric space pK, dpnkqq is non-separable;
(3) for every uncountable subset K of T, there exists ε ą 0 such that K contains an

uncountable ε-separated family for the distance dpnkq;
(4) there exists ε ą 0 such that every uncountable subset K of T contains an uncountable

ε-separated family for the distance dpnkq;
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(5) there exists ε ą 0 such that any two distinct points λ and µ in T are ε-separated for
the distance dpnkq:

for every λ ­“ µ, sup
kě0

|λnk ´ µnk | ě ε.

We obtain in particular the following characterization of Jamison sequences, which is
the most useful one for practical as well as theoretical applications.

Theorem 2.4 ([2]). — Let pnkqkě0 be a strictly increasing sequence of integers with
n0 “ 1. The following assertions are equivalent:

(1) pnkqkě0 is a Jamison sequence;
(2) there exists a positive real number ε such that for every λ P Tz t1u,

sup
kě0

|λnk ´ 1| ě ε.

Indeed, condition p2q in Theorem 2.4 can be reformulated in terms of the distance dpnkq
by saying that distinct points of T are uniformly separated for dpnkq.

Remark 2.5. — Let θ P R. Let us denote by

}θ} :“ min ptθu, 1´ tθuq “ inft|θ ´ n| : n P Zu
the distance of θ to the nearest integer (tθu denotes here the fractional part of θ). Then

4}θ} ď |e2iπθ ´ 1| ď 2π}θ} for every θ P R.
The condition (2) of Theorem 2.4 can be thus expressed as follows: there exists a positive
real number ε1 such that for every θ P p0, 1{2s we have

sup
kě0

}nkθ} ě ε1.

The most difficult part of the proof of Theorem 2.3 is that of the implication p1q ñ
p2q. Assuming that a sequence pnkqkě0 does not satisfy (2), and that there exists an
uncountable subset K of T such that pK, dpnkqq is separable, we have to construct an
operator on a separable Banach space which is partially power bounded with respect to
pnkqkě0 and has uncountable unimodular point spectrum. Starting from the Hilbert space
of complex sequences

H “ tx “ pxjqjě0 ; ||x|| “

˜

ÿ

jě0

|xj |
2

j2 ` 1

¸
1
2

ă `8u,

we consider the backward shift S on H. For every λ P T, eλ “ pλ, λ2, λ3, . . .q is an
eigenvector of S associated to the eigenvalue λ. A new norm on this space H is defined
by setting

||x||new “ max

¨

˝||x|| , sup
jě0

2´pj`1q sup
nk0 ,...,nkj Ptnku

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j
ź

l“0

pSnkl ´ Iqx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˛

‚

and we set Xnew “ tx P X ; ||x||new ă `8u. Notice that eλ belongs to Xnew for every
λ P T. Indeed, we have

||eλ||new “ max

¨

˝1, sup
jě0

2´pj`1q sup
nk0 ,...,nkj Ptnku

j
ź

l“0

|λnkl ´ 1|

˛

‚ ||eλ|| “ ||eλ||.
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If T denotes the operator induced by S on Xnew, we have supkě0 ||T
nk ||new ď 3. Thus,

with respect to the new norm, T is partially power bounded with respect to pnkqkě0.
The proof goes on by establishing the existence of a constant C ą 0 such that for every
λ, µ P T,

||eλ ´ eµ||new ď C dpnkqpλ, µq.

Our assumption that pK, dpnkqq is separable then implies that the space

XK
new “ span|| . ||new reλ ; λ P Ks

is separable, and the unimodular point spectrum of the operator induced by T on XK
new

is uncountable, as it contains K.

The proof of the implication p3q ñ p5q in Theorem 2.3 shows that assertions p3q and
p4q actually admit “infinite” instead of “uncountable” versions which are equivalent to
pnkqkě0 being a Jamison sequence:

Corollary 2.6. — The assertions of Theorem 2.3 are also equivalent to the following:

(3’) for every uncountable subset K of T, there exists ε ą 0 such that K contains an
infinite ε-separated family for the distance dpnkq;

(4’) there exists ε ą 0 such that every uncountable subset K of T contains an infinite
ε-separated family for the distance dpnkq.

For a fixed sequence pnkqkě0 with n0 “ 1, we denote, for each ε ą 0, by Λε the subset
of T defined by

(2.1) Λε “ tλ P T : sup
kě0

|λnk ´ 1| ă εu.

Theorem 2.3 and [30, Prop. 2.1] imply the following result:

Corollary 2.7. — The assertions of Theorem 2.3 are also equivalent to:

(6) there exists ε ą 0 such that Λε is countable.

Thus, as soon as each one of the sets Λε has at least two elements, all of them are
automatically uncountable.

2.3. Universal Jamison spaces. — The assertion that pnkqkě0 is not a Jamison se-
quence means that there exists a separable Banach space X and a bounded operator
T P BpXq such that supkě0 ||T

nk || ă `8 and σppT q X T is uncountable. But the space
X may very well be extremely complicated: as was briefly sketched above, in the original
proof of Theorem 2.3 the space is obtained by a rather involved renorming argument.
See also [4, Chapter 6] for a slightly modified description of this construction. We now
introduce the following definition.

Definition 2.8. — Let X be a separable infinite-dimensional complex Banach space.
We say that X is a universal Jamison space if the following property holds true: for
any increasing sequence of positive integers pnkqkě0 which is not a Jamison sequence,
there exists a bounded operator T on X which is partially power-bounded with respect to
pnkqkě0 and whose unimodular point spectrum σppT q X T is uncountable.

Eisner and Grivaux proved in [12] that a separable infinite-dimensional complex Hilbert
space is a universal Jamison space. The proof of [12] is completely explicit: the operators T
with supkě0 ||T

nk || ă `8 and σppT qXT uncountable constructed there are perturbations
by a weighted backward shift on `2pNq (endowed with its canonical basis) of a diagonal
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operator with unimodular diagonal coefficients. For other Banach spaces, the following
results are known.

Theorem 2.9 ([12]). — The space `ppNq is a universal Jamison space for every 1 ď p ă
`8.

Using the ideas of [12], this was generalized by Devinck in [10] to a larger class of
Banach spaces.

Theorem 2.10 ([10]). — Any separable Banach space which admits an unconditional
Schauder decomposition is a universal Jamison space.

We recall here that a separable Banach space X admits an unconditional Schauder de-
composition if there exists a sequence pX`q`ě1 of closed subspaces of X (different from
t0u) such that any vector x of X can be written in a unique way as an unconditionally
convergent series

ř

`ě1 x`, where x` belongs to X` for all ` ě 1. There are many exam-
ples of Banach spaces which admit an unconditional Schauder decomposition, like spaces
possessing an unconditional Schauder basis. Additional examples are Cpr0, 1sq, the James
space and all spaces containing a copy of c0pNq. On the other hand (see [10]), a hereditar-
ily indecomposable Banach space is not a universal Jamison space since the unimodular
point spectrum of any operator on such a space is countable (see [24] for details)).

2.4. Examples of Jamison sequences. — Using the characterization of Jamison se-
quences given by Theorem 2.4, it is easy to obtain many examples of such sequences. We
present here some of them, following [2]. We have chosen to present the complete proofs
whenever they are not too long.

Example 2.11. — Let pnkqkě0 be the sequence of all positive integers: nk “ k ` 1 for
every k ě 0. Then pnkqkě0 is a Jamison sequence.

Proof. — This is the classical result of Jamison. It is also a folklore result in character
theory (or a simple exercise about the geometric aspects of complex numbers) that pnkqkě0

satisfies condition (2) of Theorem 2.4. It can even be proved that ε “
?

3 is the best
Jamison constant for pnkqkě0 in the following sense: if z P T is such that |zk`1 ´ 1| ă

?
3

for all k ě 0, then z “ 1, and this constant
?

3 is optimal. Here is a possible proof of this
statement. Let z P Tzt1u. If z is not a root of unity, then the subgroup generated by z is
dense in the unit circle. In particular, there exists k ě 0 such that |zk`1 ´ 1| ě

?
3. If z

is a root of unity of even minimal order 2n then zn “ ´1. The last case that we need to
consider is when z is a root of unity of odd minimal order 2n ` 1 for some n ě 1. It is
then enough to consider the case when z “ e2iπ{p2n`1q. We have 2nπ

2n`1 “ π ´ π
2n`1 ě

2π
3 .

Therefore
ˇ

ˇ

ˇ

ˇ

expp
2inπ

2n` 1
q ´ 1

ˇ

ˇ

ˇ

ˇ

2

“ 2´ 2 cosp
2nπ

2n` 1
q ě 2´ 2 cosp

2π

3
q “ 3.

The example λ “ e2iπ{3 shows that the constant
?

3 appearing in this statement cannot
be improved.

Example 2.12 ([30]). — Let pnkqkě0 be a strictly increasing sequence of positive integers
such that

sup
kě0

nk`1

nk
ă `8.
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Then pnkqkě0 is a Jamison sequence. For instance, the sequence defined by nk “ 2k, k ě 0,
is a Jamison sequence.

Proof. — Without loss of generality, we can assume that n0 “ 1. Let

κ “ sup
kě0

nk`1

nk
¨

We are going to show that condition (2) of Theorem 2.4 is satisfied with ε “ 2 sin π
2κ . Let

λ P Tzt1u, which we write as λ “ eiθ, 0 ă θ ă 2π. Without loss of generality we suppose
that 0 ă θ ď π. Since pnkqkě0 is a strictly increasing sequence with n0 “ 1, there exists a

(unique) integer k ě 0 such that π
2nk`1

ă θ
2 ď

π
2nk

. Hence π
2κ ă

nkθ
2 ď π

2 so that for this

special choice of k,

|λnk ´ 1| “ 2| sin
nkθ

2
| ě 2 sin

π

2κ
¨

This proves our statement.

Example 2.13. — Let pnkqkě0 be a strictly increasing sequence of integers such that
the set tnk ; k ě 0u contains intervals of arbitrary length. Then pnkqkě0 is a Jamison
sequence.

Proof. — We suppose as usual that n0 “ 1. Let δ0 be such that 0 ă δ0 ă 2. We are
going to show that for every λ “ eiθ P Tzt1u, 0 ă θ ď π, with θ{π irrational, there exists
k ě 0 such that λnk “ einkθ lies outside the arc Iδ0 “ tλ P T ; |λ ´ 1| ă δ0u. For each
p ě 1, let rNp, . . . , Np` p´ 1s be an interval of length p contained in the set tnk ; k ě 0u.
Since θ{π is irrational, there exists an integer p ě 1 such that the numbers λn, 0 ď n ă p,
form a p2 ´ δ0q-net of T (for the distance on T induced by the absolute value on C). In
particular there exists 0 ď n ă p such that |λn`λ´Np | ă 2´ δ0, i.e. |λNp`n` 1| ă 2´ δ0.
Then λNp`n does not belong to the arc Iδ0 . Since the integer Np ` n has the form nk for
some k ě 1, and since the reasoning above holds true for any 0 ă δ0 ă 2, we obtain that
supkě0 |λ

nk ´ 1| “ 2 for every λ “ eiθ with θ{π irrational. Hence the set Λ2 (see (2.1)
for the definition) is countable, and by Corollary 2.7 we obtain that pnkqkě0 is a Jamison
sequence.

Example 2.14. — ([29]) If pnkqkě0 is a strictly increasing sequence of integers such that
the set tnk ; k ě 0u has positive upper density, pnkqkě0 is a Jamison sequence.

Proof. — We suppose again that n0 “ 1. Since D “ tnk ; k ě 0u has positive upper
density, there exists δ P p0, 1q and a strictly increasing sequence pNrqrě1 of integers such
that #r1, Nrs XD ě δ Nr for every r ě 1. Fix 0 ă θ0 ă δπ, and let γ ą 0 be such that
θ0`γ ă δπ. For any λ P T with λ “ eiθ, 0 ă θ ă π, θ{π irrational, we have by the uniform
distribution of the sequence pλnqně0 in T that

#t1 ď n ď Nr ; λn P pe´iθ0 , eiθ0qu ď Nr
2θ0 ` 2γ

2π
for r sufficiently large. Hence

#t1 ď n ď Nr ; λn R pe´iθ0 , eiθ0qu ě Nr
2π ´ 2θ0 ´ 2γ

2π
“ Nrp1´

θ0 ` γ

π
q ą Nrp1´ δq

for all r sufficiently large. It follows from the fact that #r1, Nrs XD ě δ Nr that for all
such r there exists 1 ď n ď Nr belonging to D such that λn does not belong to the arc
pe´iθ0 , eiθ0q. We have thus proved that supkě0 |λ

nk ´ 1| ě |eiθ0 ´ 1| ą 0 for every λ “ eiθ

with θ{π irrational. By Corollary 2.7, pnkqkě0 is a Jamison sequence.
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Condition p6q of Corollary 2.7, which is weaker than Condition p5q in Theorem 2.3, is
already used in [30] and [1] in order to obtain Jamison sequences. We use it again in the
following example (cf. [2]). Recall that a set Σ “ pσkqkě0 of real numbers is said to be
dense modulo 1 if the set Σ`Z “ tσk`n : k ě 0, n P Zu is dense in R. For any η ą 0, the
set Σ is said to be η-dense modulo 1 if the set Σ` Z intersects every open sub-interval of
R of length greater than η.

Example 2.15. — Let pnkqkě0 be a strictly increasing sequence of integers. If there
exists a number 0 ă η ă 1 such that the set

Dη “ tθ P R : pnkθqkě0 is not η-dense modulo 1u

is countable, then pnkqkě0 is a Jamison sequence.

Proof. — We can suppose that n0 “ 1. Let I be a closed sub-arc of T, not containing the
point 1, of length 2πη ă 2π. If λ “ e2iπθ is such that θ does not belong to Dη, there exists
a k ě 0 such that λnk belongs to I. Hence there exists ε ą 0 such that supkě0 |λ

nk´1| ě ε
for every such λ. The set Λε defined in (2.1) is thus countable for this particular choice of
ε, and hence pnkqkě0 is a Jamison sequence.

In particular, if pnkθqkě0 is dense modulo 1 for every irrational θ (for instance, if
pnkθqkě0 is uniformly distributed modulo 1 for every irrational θ), then pnkqkě0 is a Jami-
son sequence.

2.5. Sequences which are not Jamison sequences. — The fact that all the sets
Λε, ε ą 0, are uncountable as soon as all of them are non-trivial greatly simplifies the
task of exhibiting non-Jamison sequences, in the sense that we only have to construct one
non-trivial point belonging to each one of the sets Λε instead of uncountably many ones.
We recall below the following example of non-Jamison sequences:

Example 2.16 ([1]). — Let pnkqkě0 be a strictly increasing sequence of integers such
that

nk`1

nk
tends to infinity as k tends to infinity. Then pnkqkě0 is not a Jamison sequence.

Proof. — A first proof is given in [1], and a simplified new proof in [2].

In view of Example 2.13 above, it is natural to ask whether a sequence pnkqkě0 contain-
ing arithmetic progressions of arbitrary length is necessarily a Jamison sequence. It is not
so, as shown in the next example which was pointed out to us independently by Evgeny
Abakumov and Vladimir Müller.

Example 2.17. — If pnkqkě0 is the strictly increasing sequence of integers defined by
the condition

tnk ; k ě 0u “
ď

rě1

tpr!q2, 2pr!q2, . . . , rpr!q2u,

then pnkqkě0 is not a Jamison sequence, but it contains arithmetic progressions of arbitrary
length.

Proof. — Since n0 “ 1, it suffices by Theorem 2.4 to exhibit for each ε ą 0 a number

λ P Tzt1u such that supkě0 |λ
nk ´ 1| ă ε. Let r0 be an integer such that ppr0`1q!q2

r0pr0!q2
ą 2π

ε ,
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and let λ “ eiθ, where θ “ 2π
ppr0`1q!q2

. Then λppr0`1q!q2 “ 1 so that λnk “ 1 for every k such

that nk ě pr0 ` 1q!2. Now if nk ă ppr0 ` 1q!q2, i.e. nk ď r0pr0!q2, λnk “ einkθ and

|λnk ´ 1| ď 2π
nk

ppr0 ` 1q!q2
ď 2π

r0pr0!q2

ppr0 ` 1q!q2
ă ε,

so that supkě0 |λ
nk ´ 1| ă ε.

The same kind of proof shows that the following conditions suffice for a sequence to be
non-Jamison:

Example 2.18. — Let pnkqkě0 be a strictly increasing sequence of integers such that nk
divides nk`1 for every k ě 0, and lim kÑ`8

nk`1

nk
“ `8. Then pnkqkě0 is not a Jamison

sequence.

Proof. — Again we can assume that n0 “ 1. Fix ε ą 0, and let k0 ě 1 be such that
nk0`1

nk0
ą 2π

ε . If λ “ eiθ, where θ “ 2π
nk0`1

, then the divisibility assumption on the integers

nk implies that λnk “ 1 for every k ą k0. Also, λnk “ einkθ for every 0 ď k ď k0, and we
obtain in the same way as in Example 2.17 above that supkě0 |λ

nk ´ 1| ă ε.

As a corollary, we obtain our last example in this section:

Example 2.19. — Let pnkqkě0 be a strictly increasing sequence of integers such that nk
divides nk`1 for every k ě 0. Then pnkqkě0 is a Jamison sequence if and only if supkě0

nk`1

nk
is finite.

The notion of Jamison sequence can be extended, in a natural way, to that of Jamison
subset of Z. As Jamison sets will play an important role in our forthcoming study of
Kazhdan subsets of Z, we give briefly in Section 3 below the definitions and results which
will be needed.

3. Jamison sets in Z

Taking into account that power bounded operators are nothing but bounded represen-
tations of the semigroup N, the following definition of Jamison sets in Z is quite natural.
This definition first appeared in [11], in the more general context of the study of Jamison
subsets of certain abelian groups.

Definition 3.1. — A subset Q of Z is said to be a Jamison set in Z if it has the following
property: whenever T is a bounded invertible operator on a complex separable Banach
space X such that supnPQ ||T

n|| is finite, the unimodular point spectrum σppT q X T of T
is countable.

Jamison subsets Q of Z can be characterized in exactly the same way as Jamison
sequences were characterized in Theorem 2.4 above. We will need to assume in what
follows that 1 belongs to Q (or, more generally, that the subgroup generated by Q is the
whole of Z).

Theorem 3.2. — Let Q be a subset of Z containing the point 1. The following assertions
are equivalent:

(1) Q is a Jamison set in Z;
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(2) there exists a positive real number ε such that for every λ P Tz t1u,
sup
nPQ

|λn ´ 1| ě ε.

Proof. — The proof of Theorem 3.2 is very similar to that of Theorem 2.4, as given in [2].
Let Q be a subset of Z containing 1. The easy implication is the following: if we have,
for some ε ą 0, supnPQ |λ

n ´ 1| ě ε whenever λ P Tzt1u, then Q is a Jamison set in Z.
Indeed, let X be a separable Banach space, and let T P BpXq be an invertible operator
which is partially power-bounded with respect to Q. We set M “ supnPQ ||T

n||. If λ and
µ are two different eigenvalues of T , let eλ and eµ be two associated eigenvectors of T with
||eλ|| “ ||eµ|| “ 1. Then T peλ “ λpeλ for every p P Z. We have

||eλ ´ eµ|| ě
1

M ` 1
|λnk ´ µnk |

for every k ě 0. Since λ ­“ µ,

||eλ ´ eµ|| ě
ε

M ` 1
by our assumption, and the separability of X implies that σppT q X T is countable.

The proof of the converse implication follows the same method as in [2]. We present
only the (very minor) necessary changes. Starting from the Hilbert space

H “ tpxjqjPZ ; ||x|| “

˜

ÿ

jPZ

|xj |
2

j2 ` 1

¸
1
2

ă `8u,

we consider the bilateral shift S on H and its eigenvectors eλ “ p. . . , λ
´2, λ´1, 1, λ, λ2, . . .q,

λ P T. We define a new norm on this space H by setting

||x||new “ max

˜

||x|| , sup
jě0

2´pj`1q sup
n0,...,njPQ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j
ź

l“0

pSnl ´ Iqx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¸

,

and define Xnew “ tx P X ; ||x||new ă `8u. Then eλ belongs to Xnew for every λ P T, and
the invertible operator T induced by S on a suitable closed subspace of Xnew produces the
desired example of a partially power-bounded operator with respect to Q on a separable
Banach space with uncountable unimodular point spectrum.

A constant ε ą 0 for which assertion (2) of Theorem 3.2 above holds true is called a
Jamison constant for Q. The same proof as that of [2, Th. 2.1] shows the following result:

Theorem 3.3. — If Q is a subset of Z containing 1 which is not a Jamison set, there
exists for every ε ą 0 an (uncountable) perfect compact set of elements λ P T such that
supnPQ |λ

n ´ 1| ă ε.

An important consequence of Theorem 3.3 is the following: suppose that Q is a subset
of Z containing 1 which has the following property: there exists ε ą 0 such that the set
of λ P T such that supnPQ |λ

n ´ 1| ă ε is countable. Then Q is a Jamison set. Thanks to
this, one can show easily, in the same way as in [1, Cor. 2.3] or Example 2.15 above, the
following result:

Example 3.4. — Let pnkqkě0 be a sequence of elements of Z such that n0 “ 1 and
pnkθqkě0 is uniformly distributed modulo 1 for every θ P RzQ. Then Q “ tnk ; k ě 0u is
a Jamison set in Z.
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We will come back to this example in Section 6.

4. Kazhdan sets in Z

Before starting to discuss the particular case of the group Z, let us say some words
about Kazhdan sets in general topological groups.

4.1. Kazhdan sets in topological groups. — We start by recalling briefly the rele-
vant definitions, and refer the reader to [6] for more information. All the Hilbert spaces
that we consider in this paper are complex, and all the unitary representations of topo-
logical groups are assumed to be strongly continuous.

Definition 4.1. — Let Q be a subset of a topological group G, and let ε ą 0.

(i) If π is a unitary representation of G on a Hilbert space H, a vector x P H is said to
be pQ, εq-invariant for π if supgPQ ||πpgqx´ x|| ă ε||x||. In particular x is non-zero.
A G-invariant vector for π is a vector x P H such that πpgqx “ x for every g P G;

(ii) the pair pQ, εq is called a Kazhdan pair in G if any unitary representation π of G on
a Hilbert space H which admits a pQ, εq-invariant vector has a non-zero G-invariant
vector;

(iii) the set Q is a Kazhdan set in G if there exists ε ą 0 such that pQ, εq is a Kazhdan
pair in G. Such an ε ą 0 is called a Kazhdan constant for Q;

(iv) the group G has Property (T) if it admits a compact Kazhdan set.

Property (T) is a rigidity property of topological groups which has been introduced by
Kazhdan [21] in order to show that certain lattices in locally compact groups are finitely
generated. It has striking applications to many subjects, as shown in the authoritative
monograph [6] by Bekka, de la Harpe and Valette. Typical examples of groups with
Property (T) are the groups SLnpKq for n ě 3, where K is a local field. As a lattice in a
locally compact group has Property (T) if and only if the group itself has it, SLnpZq has
Property (T) for n ě 3. Property (T) and amenability are two opposite properties, and
the only locally compact amenable groups with Property (T) are the compact ones.

It is not an easy task to exhibit explicit Kazhdan pairs in groups with Property (T),
as pointed out by Serre and de la Harpe and Valette [6]. Discrete groups with Property
(T) are finitely generated, and Kazhdan sets in such groups can be completely described:
these are the generating subsets of the group [6, Prop. 1.3.2]. See the references [31],
[21], [5] or [26] for some examples of constructions of explicit Kazhdan sets in groups
with Property (T). When the group does not have Property (T), it is also an interesting
and difficult problem to exhibit “small” –although non-compact– Kazhdan subsets of the
group (we remind that the pair pG,

?
2q is always a Kazhdan pair in a topological group

G, see [6, Prop. 1.1.5]). This problem is mentioned in [6, Sec. 7.12], where, more precisely,
the following two questions are stated. The second question is attributed in [6, Sec. 7.12]
to Y. Shalom.

Question 4.2 ([6, Sec. 7.12]). — Given a non-compact amenable group G, is it possible
to characterize the Kazhdan sets in G? What are the Kazhdan sets in the groups Zd or
Rd, d ě 1?

Question 4.3 (Shalom, [6, Sec. 7.12]). — Given a sequence pnkqkě0 of elements of Z,
what are the relations between the equidistribution properties modulo 1 of the sequences
pnkθqkě0, θ P RzQ, and the fact that tnk ; k ě 0u is a Kazhdan set in Z?
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In the paper [3], we answered Question 4.3 by showing that if pnkqkě0 is a sequence of
elements of Z such that pnkθqkě0 is uniformly distributed modulo 1 for every irrational
number θ, then tnk ; k ě 0u is a Kazhdan set in Z as soon as the subgroup it generates is
Z itself. This result is a particular case of a much more general statement ([3, Th. 2.1]),
valid in any second countable locally compact Moore group G: if pgkqkě0 is a sequence
of elements of G satisfying a suitable equidistribution condition which generalizes that of
Question 4.3, tgk ; k ě 0u is a Kazhdan set in G as soon as it generates G. Concerning
Question 4.2, we study in [3, Sec. 6] Kazhdan sets in locally compact abelian groups,
and provide a complete characterization of Kazhdan sets in such groups, as well as in the
Heisenberg groups, and the group Aff`pRq of orientation-preserving homeomorphisms of
R.

The proofs of our main results in [3] rely on a new criterion for a subsetQ of a topological
group G to admit a “small perturbation” which is a Kazhdan set in G ([3, Th. 2.3]). As
a particular case, we obtain the following necessary and sufficient condition for subsets of
a locally compact group which generate the group to be Kazhdan sets:

Theorem 4.4 ([3, Th. 2.5]). — Let G be a locally compact group, and let Q be a subset
of G which generates G. Then Q is a Kazhdan set in G if and only if the following property
holds true: there exists ε ą 0 such that any unitary representation π of G on a Hilbert
space H with a pQ, εq-invariant vector has a finite-dimensional subrepresentation.

As the results of [3] hold in a very general framework, their proofs involve some abstract
tools: a key ingredient is an abstract version of the classical Wiener Theorem ([3, Th. 3.7])
which, given a unitary representation π of an arbitrary group G on a Hilbert space H,
yields an explicit expression for the quantities mGp|xπp . qx, yy|

2q, where x and y are two
vectors of H. The notation mG represents here the unique invariant mean on the space
WAP pGq of weakly almost-periodic functions of G. The proof of Theorem 2.5 in [3]
proceeds by contradiction, and uses this general version of the Wiener Theorem to show
that certain infinite tensor products of unitary representations are weakly mixing. The
spaces supporting these representations are incomplete tensor products of Hilbert spaces,
which were first constructed by von Neumann in [27], and whose study was later on taken
up by Guichardet in [15].

4.2. Characterizing Kazhdan sets in Z. — The definition of a Kazhdan set in Z can
immediately be reformulated in the following way:

Fact 4.5. — Let Q be a subset of Z. The following assertions are equivalent:

(a) Q is a Kazhdan set in Z;
(b) there exists ε ą 0 such that any unitary operator U acting on a complex separable

Hilbert space H satisfies the following property: if there exists a vector x P H with
||x|| “ 1 such that supnPQ ||U

nx´ x|| ă ε, then there exists a non-zero vector y P H
such that Uy “ y (i.e. 1 is an eigenvalue of U).

As any cyclic unitary operator lives on a separable Hilbert space, it suffices to consider in
(b) separable Hilbert spaces. Suppose indeed that (b) holds true, and let U be a unitary
operator acting on a complex (possibly non-separable) Hilbert space H. Decomposing
U as a direct sum of cyclic unitary operators, we can write H as H “ ‘iPIHi, where
Hi is separable for every i P I, on which U acts as U “ ‘iPIUi, Ui being a unitary
operator on Hi for every i P I. Suppose that x “ ‘iPIxi P H is such that ||x|| “ 1
and supnPQ ||U

nx ´ x|| ă ε{2 (where ε ą 0 is given by (b) above). This means that
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ř

iPI ||xi||
2 “ 1 and supnPQ

ř

iPI ||U
n
i xi ´ xi||

2 ă ε2{4. Let I0 be a finite subset of I

(depending of course on x) such that
ř

iPI0
||xi||

2 ą 1´ ε2{16. Then
ÿ

iPI0

||Uni xi ´ xi||
2 ď

ÿ

iPI

||Uni xi ´ xi||
2 ` 4

ÿ

iPIzI0

||xi||
2 for every n P Z,

so that

sup
nPQ

ÿ

iPI0

||Uni xi ´ xi||
2 ă ε2{2 ă

ε2

2p1´ ε2{16q

ÿ

iPI0

||xi||
2 ă ε2

ÿ

iPI0

||xi||
2.

Hence we get that

sup
nPQ

˜

ÿ

iPI0

||Uni xi ´ xi||
2

¸
1
2

ă ε

˜

ÿ

iPI0

||xi||
2

¸
1
2

.

Since ‘iPI0Ui is a unitary operator on the separable Hilbert space ‘iPI0Hi, (b) applies, and
‘iPI0Ui has a non-zero fixed point. This implies that U itself has a non-zero fixed point.
We have thus proved that Q is a Kazhdan set in Z (this proof is actually a mere rewriting
of the well-known observation that if a topological group G is second-countable, Q is a
Kazhdan subset of G as soon as there exists ε ą 0 such that property (ii) of Definition 4.1
holds true for unitary representations of G on separable Hilbert spaces).

Applying property (b) of Fact 4.5 to multiplication operators and using the spectral
theorem for unitary operators, we first derive a characterization of Kazhdan subsets of Z
in terms of Fourier coefficients of probability measures on the unit circle.

Theorem 4.6. — Let Q be a subset of Z. The following assertions are equivalent:

(1) Q is a Kazhdan subset of Z;
(2) there exists ε ą 0 such that the following property holds true: any probability measure

σ on T such that supnPQ |pσpnq ´ 1| ă ε satisfies σpt1uq ą 0.

Proof. — We first prove the implication p1q ùñ p2q. Let δ ą 0 be a Kazhdan constant
for the set Q, and let σ be a probability measure on T such that supnPQ |pσpnq´ 1| ă δ2{2.
We denote by Mσ the multiplication operator by the independent variable λ on the space
L2pT, σq and by 1 the constant function equal to 1. Then ||Mn

σ 1´ 1||2 “ 2p1´ <e pσpnqq
for every n P Z, so that supnPQ ||M

n
σ 1 ´ 1|| ă δ. Since Mσ is a unitary operator and 1 a

unit vector in L2pT, σq, it follows from (b) of Fact 4.5 that there exists a non-zero function
f P L2pT, σq such that Mσf “ f , i.e. pλ ´ 1qfpλq “ 0 in L2pT, σq. Hence σpt1uq ą 0,
which proves (2).

Let us now prove the implication p2q ùñ p1q. Let U be a unitary operator on a
separable complex Hilbert space H. By the spectral theorem for normal operators, there
exists a finite or infinite sequence pσiqiPI of probability measures on T such that U is
similar, via an invertible isometry, to the direct sum operator M “

À

iPIMσi acting on

K “
À

iPI L
2pT, σiq. Let V : H // K be an invertible isometry such that U “ V ˚MV .

Let now ε ą 0 be a constant satisfying assumption (2) of Theorem 4.6, and suppose that
x P H is a unit vector such that supnPQ ||U

nx´ x|| ă ε. Setting V x “ f “
À

iPI fi, with

fi P L
2pT, σiq for each i P I, we have ||f ||2 “

ř

iPI ||fi||
2 “ 1 and

ˇ

ˇ

ˇ

ˇMnf ´ f
ˇ

ˇ

ˇ

ˇ

2
“

ÿ

iPI

ˇ

ˇ

ˇ

ˇMn
σifi ´ fi

ˇ

ˇ

ˇ

ˇ

2
“

ż

T

ˇ

ˇλn ´ 1
ˇ

ˇ

2
ÿ

iPI

ˇ

ˇfipλq
ˇ

ˇ

2
dσipλq for every n P Z.
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Let σ be the positive measure on T defined by

dσpλq “
ÿ

iPI

|fipλq|
2dσipλq, λ P T.

Since ||f ||2 “
ř

iPI ||fi||
2 “ 1, σ is a probability measure. It satisfies ||Mnf ´ f ||2 “

2p1´ <e pσpnqq for every n P Z, so that

sup
nPQ

|1´ pσpnq|2 “ 2 sup
nPQ

p1´ <e pσpnqq “ sup
nPQ

||Mnf ´ f ||2 “ sup
nPQ

||Unx´ x||2 ă ε2.

It follows that σpt1uq ą 0, so that σi0pt1uq ą 0 for some i0 P I. Set gi0 “ 1t1u (the
characteristic function of the set t1u), gi “ 0 for i P Izti0u, and g “

À

iPI gi. Then g is
a non-zero vector of K with Mg “ g. Since U “ V ˚MV , it follows that y “ V ˚g is a
non-zero vector of H which satisfies Uy “ y. Property (b) of Fact 4.5 is proved, so Q is a
Kazhdan set in Z.

Remark 4.7. — The above proof yields the following quantitative statements: if pQ, δq
is a Kazhdan pair for Z, then assertion (2) of Theorem 4.6 holds true with ε “ δ2{2;
conversely, if assertion (2) of Theorem 4.6 holds true with constant ε, then pQ, εq is a
Kazhdan pair for Z.

As we will use it repeatedly to exhibit non-Kazhdan sets in Z, we state separately the
following obvious reformulation of Theorem 4.6:

Corollary 4.8. — Let Q be a subset of Z. The following assertions are equivalent:

(1) Q is not a Kazhdan set in Z;
(2) for any ε ą 0, there exists a probability measure σ on T such that σpt1uq “ 0 and

supnPQ |pσpnq ´ 1| ă ε.

As a consequence of Theorem 4.6, we now show that whenever Q is a Kazhdan set in
Z, property (b) of Fact 4.5 above can be extended to arbitrary contractions on complex
Hilbert spaces. Recall that if T is a bounded operator on a complex Hilbert space H, we
denote by σpT q the spectrum of T , and by σppT q the point spectrum of T (i.e. the set
of eigenvalues of T ). A contraction on H is a bounded operator T on H with ||T || ď 1.
If T is a contraction on H, we set Tn “ Tn for n ě 0 and Tn “ T ˚n for n ă 0. For
every x P H, the sequence pxTnx, xyqnPZ is positive definite (see [32]), so that there exists
by Bochner’s theorem a positive measure µx on T which satisfies pµxpnq “ xTnx, xy for
every n P Z. If ||x|| “ 1, µx is a probability measure on T. Contractions (and, more
generally, power-bounded operators) on a Hilbert space satisfy the von Neumann mean
ergodic theorem: for every x P H,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

N

N´1
ÿ

j“0

T jx´ PKerpT´Iqx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

// 0 as N // `8,

where PKerpT´Iq denotes the orthogonal projection of H on the space KerpT ´ Iq of fixed
points for T .

Theorem 4.9. — Let Q be a subset of Z. The following assertions are equivalent:

(1) Q is a Kazhdan set in Z;
(2) there exists ε ą 0 such that for any contraction T on a complex Hilbert space H,

the following holds true: if there exists a vector x P H with ||x|| “ 1 such that
supnPQ |1´ xTnx, xy| ă ε, then 1 belongs to σppT q.
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Proof. — The implication p2q ùñ p1q follows immediately from Fact 4.5, observing that if
U is a unitary operator on H and x P H is a unit vector such that supnPQ ||U

nx´ x|| ă ε,
then supnPQ |xU

nx, xy ´ xx, xy| ă ε, i.e. supnPQ |xUnx, xy ´ 1| ă ε.

It remains to prove that p1q implies p2q. Let Q be a Kazhdan set in Z, and fix ε ą 0
satisfying property (2) of Theorem 4.6. Let T P BpHq be a contraction on a Hilbert space
H, let x be a unit vector in H with supnPQ |1´ xTnx, xy| ă ε, and let µx be a probability
measure on T which satisfies pµxpnq “ xTnx, xy for every n P Z. Our assumption implies
that supnPQ |1´ pµxpnq| ă ε, from which it follows that µxpt1uq ą 0. Since

ż

T

´ 1

N

N´1
ÿ

j“0

λj
¯

dµxpλq // µxpt1uq as N // `8,

and
ż

T

´ 1

N

N´1
ÿ

j“0

λj
¯

dµxpλq “
1

N

N´1
ÿ

j“0

xT jx, xy,

it follows from the mean ergodic theorem that µxpt1uq “ xPKerpT´Iqx, xy. Since µxpt1uq ą
0, KerpT ´ Iq is non-zero, which means exactly that 1 belongs to σppT q.

Remark 4.10. — The above proof gives the following relationships between the con-
stants: if pQ, δq is a Kazhdan pair for Z, then assertion (2) of Theorem 4.9 holds true
with ε “ δ2{2; if assertion (2) of Theorem 4.9 holds true with constant ε, then pQ, εq is a
Kazhdan pair for Z.

Remark 4.11. — Using unitary dilations, one can give a different proof of the implication
p1q ùñ p2q of Theorem 4.9. Suppose that pQ, δq is a Kazhdan pair in Z. Let T P

BpHq be a contraction on a Hilbert space H, and let h be a unit vector in H with
supnPQ |1 ´ xTnh, hy| ă δ2{2. Let U be the minimal unitary dilation of T (see [32] for
definitions), acting on a larger Hilbert space K “ H ‘ pK a Hq endowed with an inner
product x¨, ¨yK . Then xUnph, 0q, ph, 0qyK “ xTnh, hy for every n P Z, and therefore we
obtain

}Unph, 0q ´ ph, 0q}2 “ 2p1´ <exUnph, 0q, ph, 0qyKq
“ 2p1´ <exTnh, hyq ď 2|1´ xTnh, hy| ă δ2

for all n P Q. Hence supnPQ }U
nph, 0q ´ ph, 0q} ă δ, and by Fact 4.5 the point 1 belongs

to the point spectrum of the unitary operator U . Since U is the minimal unitary dilation
of T , we also have (see [32, Chapter 2]) that 1 belongs to σppT q.

The following characterization of Kazhdan sets will be very important in the sequel.
Rather surprisingly, it shows that the point 1 does not play a special role in the description
of Kazhdan sets (either as an eigenvalue of the operators involved in the statement of
Theorem 4.9 or as the point mass of the measures σ appearing in Theorem 4.6).

Theorem 4.12. — Let Q be a subset of Z which contains the point 1. The following
assertions are equivalent:

(1) Q is a Kazhdan subset of Z;
(2) there exists ε ą 0 such that the following property holds true: any probability measure

σ on T such that supnPQ |pσpnq ´ 1| ă ε has a discrete part.

Theorem 4.12 can obviously be reformulated as follows:
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Corollary 4.13. — Let Q be a subset of Z containing 1. Then Q is not a Kazhdan set
in Z if and only if there exists for any ε ą 0 a continuous probability measure σ on T such
that

sup
nPQ

|pσpnq ´ 1| ă ε.

We postpone the proof of Theorem 4.12 to the forthcoming Section 6 of the paper.

5. Examples of Kazhdan sets in Z

As Jamison sets are a crucial tool for the proof of Theorem 4.12, we begin this section
by studying the links between the classes of Jamison and Kazhdan sets in Z.

5.1. Kazhdan versus Jamison sets in Z. — A first reason why Jamison sets appear
naturally in our study of Kazhdan sets in Z is given by the following fact:

Fact 5.1. — If Q is a Kazhdan set in Z, Q is a Jamison set.

Proof. — Let ε ą 0 be a Kazhdan constant for Q. Let also λ P T be such that supnPQ |λ
n´

1| ă ε. Applying (2) of Theorem 4.6 to the measure σ “ δtλu, we obtain that σpt1uq ą 0,
i.e. that λ “ 1. Hence Q is a Jamison set in Z. This argument shows that if ε is a Kazhdan
constant for Q, then ε2{2 is a Jamison constant for Q (in the sense of the definition given
after Theorem 3.2). The following direct argument using operators shows that ε is also
a Jamison constant for Q. Indeed, if λ P T is such that supnPQ |λ

n ´ 1| ă ε, the unitary
operator U given by multiplication by λ on C satisfies supnPQ ||U

n1´ 1|| ă ε. Hence 1 is
an eigenvalue of U , and λ “ 1.

Fact 5.1 is actually a direct consequence of the observation that Jamison sets in Z are
exactly Kazhdan sets in Z for the class of irreducible unitary representations of Z (if C is
a certain class of representations of a topological group G, a subset Q of G is a Kazhdan
set for C if there exists ε ą 0 such that property (ii) of Definition 4.1 holds true for every
representation π of G belonging to C). Not all Jamison sets give rise to Kazhdan sets
though. This can be seen thanks to the following example:

Example 5.2. — Let pnkqkě0 be a sequence of positive integers such that n0 “ 1, and
such that nk divides nk`1 for every k ě 0. Then Q “ tnk ; k ě 0u is not a Kazhdan set in
Z. But (as shown in Example 2.19) if supkě0pnk`1{nkq is finite, then Q is a Jamison set
in Z.

Proof. — We will construct, for every ε ą 0, a continuous measure σ on T such that

sup
kě0

|pσpnkq ´ 1| ă ε.

The construction is essentially the same as the one given in [12, Prop. 3.9]. It uses infinite
convolution of two-points Dirac measures, following an argument communicated by Jean-
Pierre Kahane. Let pajqjě1 be a decreasing sequence of positive real numbers with a1 ă

ε{p2πq such that the series
ř

jě1 aj is divergent. Then the measure

σ “ ˚
jě1

`

p1´ ajqδt1u ` ajδte2iπ{nj u
˘
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is well-defined on T, and is a probability measure. Moreover, the assumption that the
series

ř

jě1 aj diverges implies that the measure σ is continuous. For every k ě 0,

pσpnkq “
ź

jě1

`

1´ aj ` aje
2iπnk{nj

˘

“
ź

jěk`1

`

1´ ajp1´ e
2iπnk{nj q

˘

since nj divides nk for every 0 ď j ď k. As |1´ ajp1´ e
2iπnk{nj q| ď 1, it follows that

|pσpnkq ´ 1| ď
ÿ

jěk`1

aj |1´ e
2iπnk{nj | ď 2π ak`1 nk

ÿ

jěk`1

1

nj
¨

But since nj divides nj`1 for all j ě 0, nj ě 2j´knk for all j ě k ` 1. Hence

|pσpnkq ´ 1| ď 2π ak`1 nk
1

nk

ÿ

jě1

2´j “ 2πak`1 ă ε for every k ě 0

by our assumption on the sequence pajqjě1. Thus, by Theorem 4.12, tnk ; k ě 0u is not a
Kazhdan set in Z.

5.2. Some examples of Kazhdan and non-Kazhdan sets in Z. — We are now
going to present a variety of examples of Kazhdan and non-Kazhdan sets in Z. For this, we
choose to use exclusively, and without further mention, the characterizations of Kazhdan
and non-Kazhdan sets provided by Theorem 4.6 and Corollary 4.8 respectively, although
several of these examples could be obtained from the original definition of Kazhdan sets
as given in Definition 4.1. Let us start our list of examples with the following obvious
observation:

Example 5.3. — The set N is a Kazhdan set in Z, as well as any subset Q “ tnk ; k ě 0u
of Z such that pnkθqkě0 is uniformly distributed modulo 1 for any θ P RzZ.

Proof. — Let pnkqkě0 be such that pnkθqkě0 is uniformly distributed modulo 1 for any
θ P RzZ, i.e. that

1

N

N
ÿ

k“1

λnk // 0 as N // `8

for every λ P Tzt1u. Let σ be a probability measure on T such that supkě1 |pσpnkq´1| ă 1.
Since

1

N

N
ÿ

k“1

pσpnkq “

ż

T

´ 1

N

N
ÿ

k“1

λnk
¯

dσpλq // σpt1uq as N // `8,

we have σpt1uq ą 0.

On the other hand, the sets aN, where a ě 2, are obviously never Kazhdan sets in Z
(they do not generate Z).

Example 5.4. — Let a ě 2 be an integer. The set aZ, as well as all infinite subsets of
aZ, are never Kazhdan sets in Z.

We next provide an example showing that tnk ; k ě 0u may be a Kazhdan set in Z
without pnkθqkě0 being uniformly distributed modulo 1 for every θ P RzQ.

Example 5.5. — The set t2k ` k ; k ě 0u is a Kazhdan set in Z, although there exists
an irrational number θ such that the sequence pp2k` kqθqkě0 is not dense in r0, 1s modulo
1, hence not uniformly distributed modulo 1.
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Proof. — The sequence pnkqkě0 defined by nk “ 2k ` k, k ě 0, satisfies the relation
2nk “ nk`1`k´1. Let σ be a probability measure on T such that supkě0 |pσpnkq´1| ă 1{18.
Since, by the Cauchy-Schwarz inequality,

|pσpkq ´ 1| ď

ż

T
|λk ´ 1|dσpλq ď

?
2 |pσpkq ´ 1|1{2 for every k P Z,

we have

|pσpk ´ 1q ´ 1| ď 2

ż

T
|λnk ´ 1|dσpλq `

ż

T
|λnk`1 ´ 1|dσpλq

ď 2
?

2 |pσpnkq ´ 1|1{2 `
?

2 |pσpnk`1q ´ 1|1{2

for all k ě 1, so that supkě0 |pσpkq ´ 1| ă 1. Hence σpt1uq ą 0 by the proof of Example
5.3. So tnk ; k ě 0u is a Kazhdan set in Z. But pnkqkě0 being lacunary, it follows from a
result due independently to Pollington [28] and De Mathan [23] that there exists a subset
A of r0, 1s of Hausdorff measure 1 such that for every θ in A, the set tnkθ ; k ě 0u is not
dense modulo 1. One of these numbers θ is irrational, and pp2k ` kqθqkě0 is of course not
uniformly distributed modulo 1 for this particular choice of θ.

The same kind of argument allows us to show the following result (which also follows
from Theorem 7.1):

Example 5.6. — The set P of prime numbers is a Kazhdan set in Z.

Proof. — A result of Vinogradov [33] states that any sufficiently large odd integer can
be written as a sum of at most three prime numbers; therefore every sufficiently large
integer can be written as a sum of at most four prime numbers. It follows from the same
reasoning as in Example 5.5 above that if σ is a probability measure on T such that
suppPP |pσppq ´ 1| ă 1{32, there exists an integer k0 such that supkěk0 |pσpkq ´ 1| ă 1. The
same argument as in Example 5.3 then implies that σpt1uq ą 0 and thus P is a Kazhdan
set in Z.

The above proof combined with Remark 4.7 implies that pP, 1{32q is a Kazhdan pair in
Z. A better Kazhdan constant for P, namely

?
2{4, can be obtained using Vinogradov’s

result and the following argument. Assume that U is a unitary operator acting on a
Hilbert space H and that x P H is a norm one vector such that suppPP }U

px´x} ă
?

2{4.
If pj , 1 ď j ď 4, are four prime numbers, then

}Up1`p2`p3`p4x´ x} ď
4
ÿ

j“1

}Upjx´ x} ă
?

2.

As every sufficiently large integer can be written as a sum of at most four prime numbers,
we obtain the existence of an integer k0 such that supkěk0 }U

kx´ x} ă
?

2. The classical

argument showing that pG,
?

2q is a Kazhdan pair for any topological group G (see [6,
Prop. 1.1.5]) applies in our situation. We obtain that 1 is an eigenvalue of U , and it thus
follows that pP,

?
2{4q is a Kazhdan pair in Z.

More generally:

Proposition 5.7. — Let pnkqkě0 be a sequence of elements of Z. Suppose that there
exist an integer a ě 2 and integers b0, . . . , bp P Z, not all zero, such that

(i) the set tb0nk ` b1nk`1` ¨ ¨ ¨ ` bpnk`p ; k ě 0u contains all sufficiently large multiples
of a;
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(ii) there exists k ě 0 such that nk and a have no non-trivial common divisor.

Then tnk ; k ě 0u is a Kazhdan set in Z.

Proof. — We can suppose without loss of generality that n0 and a have no non-trivial
common divisor. Let 1 ď r ď a ´ 1 be such that n0 ” rmod a, and let C denote the
set of all the a-th roots of 1 which are different from 1. Then λr ‰ 1 for every λ P C (if
λa “ λr “ 1 and λ ­“ 1, a and r have a non-trivial common divisor), and hence there exists
0 ă δ ă 1{2 such that 1 ´ <epλrq ą 12δpa ´ 1q for every λ P C. Let σ be a probability
measure on T such that

sup
kě0

|pσpnkq ´ 1| ă δ2 1

2p|b0| ` |b1| ` ¨ ¨ ¨ ` |bp|q2
.

Using again the chain of inequalities

|pσpjq ´ 1| ď

ż

T
|λj ´ 1|dσpλq ď

?
2 |pσpjq ´ 1|1{2, j P Z,

we obtain that
sup
kě0

|pσpb0nk ` ¨ ¨ ¨ ` bpnk`pq ´ 1| ă δ.

Suppose now that σpt1uq “ 0. Assumption (i) and an argument similar to the one em-
ployed in the proof of Example 5.3 imply that |σpCq ´ 1| ď δ, so that σpCq ě 1´ δ. Let
τ be the probability measure on T supported on C defined by τ “ σpCq´11Cσ. We write
τ as τ “

ř

λPC aλδtλu, where aλ ě 0 for each λ P C and
ř

λPC aλ “ 1. We have

pτpn0q “
ÿ

λPC

aλλ
n0 “

ÿ

λPC

aλλ
r

and

pτpn0q “ pσpn0q `

ˆ

1

σpCq
´ 1

˙

pσpn0q ´
1

σpCq

ż

TzC
λn0dσpλq.

Hence

|pτpn0q ´ 1| ď |pσpn0q ´ 1| ` 2
1´ σpCq

σpCq
ď |pσpn0q ´ 1| `

2δ

1´ δ
ď

3δ

1´ δ
ă 6δ

since δ ă 1{2. This implies that aλp1´ <epλrqq ă 6δ for every λ P C. Since
ř

λPC aλ “ 1
and C has cardinality a´ 1, there exists λ0 P C such that aλ0 ą p1´ δq{pa´ 1q. We thus
obtain that 1´<epλr0q ă 6δpa´1q{p1´ δq ă 12δpa´1q, which contradicts our assumption
on δ. Hence σpt1uq ą 0, and tnk ; k ě 0u is a Kazhdan set in Z.

As a consequence of Proposition 5.7, we obtain for instance:

Example 5.8. — The set of squares tk2 ; k ě 1u is a Kazhdan set in Z.

Proof. — It suffices to observe that pk` 2q2 ´ k2 “ 4pk` 1q, while there are some square
numbers which are not divisible by 4.

This last result will be generalized in Section 7 as a consequence of Theorem 7.1, see
Example 7.3 below.

Examples 5.6 and 5.8 above can also be derived from the following observation. A subset
Q of N is said to have positive Shnirel’man density if infNě1

1
N#r1, N s X Q is positive.

Any set Q with positive Shnirel’man density has the property that there exists an integer
d ě 1 such that every element of N can be written as a sum of at most d elements of Q
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(not necessarily distinct). See [25, Ch. 7] for more on this topic. We deduce from this
observation that

Example 5.9. — Any subset Q of N with positive Shnirel’man density is a Kazhdan set
in Z.

The set t0, 1u Y pP ` Pq “ t0, 1u Y tp ` q ; p, q P Pu has positive Shnirel’man density
(see [25, Th. 7.8]), and this implies again (see also [25, Th. 7.9]) that P is a Kazhdan set
in Z.

We finish this section with a last example along these lines. It immediately follows from
[25, Th. 7.10], which states that if Q is a set of primes containing a positive proportion of
the primes, every sufficiently large element of N can be written as the sum of a bounded
numbers of elements of Q.

Example 5.10. — Let Q be a set of primes that contains a positive proportion of the
primes, that is, there exists a constant θ P p0, 1q such that #pr1, N sXQq ą θ#pr1, N sXPq
for all N sufficiently large. Then Q is a Kazhdan set in Z.

6. Proof of Theorem 4.12

The implication p1q ùñ p2q being obvious, we prove that p2q implies p1q. Reasoning by
contradiction, we suppose that p2q holds true, but that Q is not a Kazhdan set in Z. We
have to consider separately two cases, depending on whether Q is a Jamison set in Z or
not.

Case 1. If Q is not a Jamison set in Z, Theorem 3.3 implies that there exists for
every ε ą 0 a perfect compact subset Kε of T such that supnPQ |λ

n ´ 1| ă ε for every
λ P Kε. Any continuous probability measure σ on T which is supported on Kε satisfies
supnPQ |pσpnq ´ 1| ď ε, and this violates our supposition that p2q of Theorem 4.12 holds
true.

Case 2. Suppose now that Q is a Jamison set in Z, and let ε0 be a Jamison constant
for Q (Jamison constants are defined after the proof of Theorem 3.2). The first step of
the proof in this case is to show the following lemma:

Lemma 6.1. — Under the assumptions above, there exists for every ε ą 0 a discrete
probability measure σ on T which has the following properties:

(a) supnPQ |pσpnq ´ 1| ă ε;
(b) σ is supported on a finite subset F of Tzt1u: σ “

ř

λPF aλδλ, with aλ ą 0 for every
λ P F and

ř

λPF aλ “ 1;
(c) 0 ă aλ ă ε{ε2

0 for every λ P F ;
(d) F is contained in the arc Γε “ tλ P T ; |λ´ 1| ă εu.

Proof of Lemma 6.1. — Since Q is not a Kazhdan set in Z, there exists for each p ě 1 a
probability measure µp on T with µppt1uq “ 0 such that supnPQ |pµppnq ´ 1| ă 2´p. We
denote by µp,d and µp,c respectively the discrete and continuous parts of the measure µp.
First, we have:

Claim 6.2. — We have lim pÑ`8µp,dpTq “ γ ą 0.
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Proof of Claim 6.2. — Suppose that lim pÑ`8µp,dpTq “ 0. By passing to a subsequence,
we can assume that µp,cpTq tends to 1 as p tends to infinity, and we denote for each p ě 1
by νp the measure νp “ µp,c{µp,cpTq; it is a continuous probability measure on T. For each
n P Z, we have

pνppnq ´ 1 “
1

µp,cpTq
`

pµp,cpnq ´ 1
˘

`
1

µp,cpTq
´ 1

so that

|pνppnq ´ 1| ď
1

µp,cpTq
|1´ pµp,cpnq| `

1

µp,cpTq
´ 1

ď
1

µp,cpTq
`

2´p ` µp,dpTq
˘

`
1

µp,cpTq
´ 1 .

Since the right-hand bound in this expression tends to zero as p tends to infinity, this
yields that there exists for every δ ą 0 a continuous probability measure ν on T such
that supnPQ |pνpnq ´ 1| ă δ, which contradicts assumption p2q of Theorem 4.12. So
lim pÑ`8µp,dpTq “ γ ą 0, as claimed.

Now, observe that for every n P Z and p ě 1,

<e pµppnq “ <e pµp,dpnq ` <e pµp,cpnq ď <e pµp,dpnq ` µp,cpTq ď <e pµp,dpnq ` 1´ µp,dpTq,
so that µp,dpTq ´ <e pµp,dpnq ď 1´ <e pµppnq. Hence

1´
1

µp,dpTq
<e pµp,dpnq ď

1

µp,dpTq
`

1´ <e pµppnq
˘

.

It follows that the discrete probability measures τp “ µp,d{µp,dpTq, p ě 1, satisfy

sup
nPQ

|1´ pτppnq|
2 ď

1

µp,dpTq
2´p`1.

Combining these inequalities with Claim 6.2, we obtain that there exists for every δ ą 0
a discrete probability measure τ on T with τpt1uq “ 0 such that supnPQ |1 ´ pτpnq| ă δ.
Without loss of generality, we can suppose that the measure τ is supported on a finite set.
Write τ as

τ “
ÿ

λPG

bλδtλu,

where G is a finite subset of Tzt1u, bλ ą 0 for every λ P G, and
ř

λPG bλ “ 1. We have for
every λ P G and n P Z

0 ď bλ
`

1´ <e λn
˘

ď 1´ <e pτpnq ď |1´ pτpnq|

so that supnPQp1 ´ <e λnq ă δ{bλ. It follows that supnPQ |1 ´ λn|2 ă p2δq{bλ, i.e. that

supnPQ |1 ´ λn| ă
a

p2δq{bλ. Now, recall that λ ‰ 1, and that Q is supposed to be a

Jamison set with Jamison constant ε0. This implies that ε0 ă
a

p2δq{bλ, i.e. that

0 ă bλ ă
2δ

ε2
0

for every λ P G.
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The assumption that 1 belongs to Q now comes into play. It implies that |pτp1q´1| ă δ,
so that

ż

T
|1´ λ|2dτpλq “ 2

ż

T
p1´ <epλqq dτpλq ă 2δ.

By the Markov inequality,
?
δ τpTzΓδ1{4q ă 2δ, where Γδ1{4 denotes the arc

Γδ1{4 “ tλ P T ; |λ´ 1| ă δ1{4u.

Thus τpΓδ1{4q ą 1´ 2
?
δ. Let now σ be the probability measure on T defined by

σ “ τ1Γ
δ1{4
{τpΓδ1{4q.

It is a discrete probability measure, supported on the set GX Γδ1{4 , which has the form

σ “
ÿ

λPGXΓ
δ1{4

aλδtλu,

with aλ “ bλ{τpΓδ1{4q for every λ P GX Γδ1{4 . Hence

0 ă aλ ă
δ

1´ 2
?
δ
¨

2

ε2
0

for every λ P GX Γδ1{4 .

Moreover, we have for every n P Z

|pσpnq ´ 1| ď
1

τpΓδ1{4q

ˇ

ˇ

ˇ

xτ1Γ
δ1{4
pnq ´ 1

ˇ

ˇ

ˇ
`

1

τpΓδ1{4q
´ 1

ď
1

τpΓδ1{4q
|pτpnq ´ 1| `

1

τpΓδ1{4q
τpTzΓδ1{4q `

1

τpΓδ1{4q
´ 1

so that

sup
nPQ

|pσpnq ´ 1| ă
δ ` 4

?
δ

1´ 2
?
δ
¨

Let now ε ą 0. If δ ą 0 is so small that pδ ` 4
?
δq{p1 ´ 2

?
δq ă ε, p2δq{p1 ´ 2

?
δq ă ε

and δ1{4 ă ε, the associated measure σ satisfies properties (a), (b), (c), and (d) of Lemma
6.1.

Our aim is now to use Lemma 6.1 in order to construct, for every ε ą 0, a contin-
uous probability measure σ on T such that supnPQ |pσpnq ´ 1| ă ε. This will contradict
assumption (2), and conclude the proof of Theorem 4.12.

Let us fix ε ą 0, and let pεpqpě1 be a sequence of positive real numbers decreasing very
fast to 0 (how fast will be specified in the sequel of the proof). Let pσpqpě1 be a sequence
of probability measures associated to pεpqpě1 given by Lemma 6.1. We write each measure
σp as

σp “
ÿ

λPFp

aλ,p δtλu,

where Fp is a finite subset of Tzt1u contained in Γεp , 0 ă aλ,p ă εp{ε
2
0 for every λ P Fp,

and
ř

λPFp
aλ,p “ 1. We have supnPQ |pσppnq ´ 1| ă εp for every p ě 1.

For each p ě 1, let us denote by F1 ¨ F2 ¨ ¨ ¨ Fp the set

F1 ¨ F2 ¨ ¨ ¨ Fp “ tλ1λ2 . . . λp ; λi P Fi for each i “ 1, . . . , pu.

We construct the numbers εp by induction on p ě 1 in such a way that they satisfy the
following condition:

inf
 

|λ´ λ1| ; λ, λ1 P F1 ¨ F2 ¨ ¨ ¨ Fp´1, λ ‰ λ1
(

ą 4 εp.
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Claim 6.3. — Under this assumption, we have #F1 ¨F2 ¨ ¨ ¨ Fp´1 “ #F1ˆ ¨ ¨ ¨ˆ#Fp for
every p ě 1. In other words, the numbers λ1 . . . λp, λi P Fi for each i “ 1, . . . , p, are all
distinct.

Proof of Claim 6.3. — The proof is a simple induction on p. Suppose that the assumption
is true for some p ě 1. If λ1 . . . λp and λ11 . . . λ

1
p are such that λi, λ

1
i P Fi for each i “ 1, . . . , p

and λ1 . . . λp “ λ11 . . . λ
1
p, we need to show that λi “ λ1i for every i “ 1, . . . , p. If λp “ λ1p,

then λ1 . . . λp´1 “ λ11 . . . λ
1
p´1, and our induction assumption implies that λi “ λ1i for

every i “ 1, . . . , p ´ 1. So let us suppose that λp ‰ λ1p. Writing λ “ λ1 . . . λp´1 and

λ1 “ λ11 . . . λ
1
p´1, we have λ ‰ λ1 and thus

|λλp ´ λ
1λ1p| ě |λ´ λ

1| ´ |λp ´ λ
1
p| ą 4εp ´ 2εp “ 2εp

since λp, λ
1
p P Γεp and λ, λ1 P F1¨F2 ¨ ¨ ¨ Fp´1 with λ ‰ λ1. So λλp ‰ λ1λ1p, which contradicts

our initial assumption. Hence #F1 ¨ F2 ¨ ¨ ¨ Fp´1 “ #F1 ˆ ¨ ¨ ¨ ˆ#Fp.

We now additionally require that the sequence pεpqpě1 decreases to zero in such a way
that the series

ř

pě1 εp is convergent. This implies that we can define a probability measure
σ as the infinite convolution product of the measures σp:

σ “ ˚
pě1

σp.

In order to prove that the measure σ is well-defined, it suffices to check that the infinite
product

ś

pě1 pσppnq converges for every n P Z, and this is straightforward using the facts
that

|pσppnq ´ 1| ď

ż

Fp

|λn ´ 1| dσppλq ď n sup
λPFp

|λ´ 1| ă nεp

for every p ě 1 and every n P Z and that the series
ř

pě1 εp is convergent. For every n P Z,
we have

pσpnq “
ź

pě1

pσppnq

and

sup
nPQ

|pσpnq ´ 1| ď sup
nPQ

ÿ

pě1

|pσppnq ´ 1| ď
ÿ

pě1

sup
nPQ

|pσppnq ´ 1| ď
ÿ

pě1

εp.

If we suppose that the sequence pεpqpě1 is such that
ř

pě1 εp ă ε, then the measure σ

satisfies supnPQ |pσpnq ´ 1| ă ε. In order to reach the contradiction we are looking for, it
remains to prove that:

Claim 6.4. — The measure σ is continuous.

Claim 6.4 follows from rather standard arguments which rely on the fact that σ is by
construction a Cantor-like measure.

Proof of Claim 6.4. — For every p ě 1, let τp be the partial convolution product

τp “ σ1 ˚ σ2 ˚ . . . ˚ σp “
ÿ

λ1PF1,...,λpPFp

aλ1,1aλ2,2 . . . aλp,p δtλ1...λpu.
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The support of τp consists of the Np “ #F1 ˆ#F2 ˆ ¨ ¨ ¨ ˆ#Fp distinct points of the set
F1 ¨ F2 ¨ ¨ ¨ Fp. Whenever λ and λ1 are two distinct elements of this set, |λ´ λ1| ą 4εp`1.
For each λ P F1 ¨ F2 ¨ ¨ ¨ Fp, let Γλ,p denote the arc

Γλ,p “
 

µ P T ; |µ´ λ| ă 2εp`1

(

¨

All the arcs Γλ,p, λ P F1 ¨ F2 ¨ ¨ ¨ Fp, are pairwise disjoint. We denote by Kp the following
compact subset of T:

Kp “
ď

λPF1¨F2 ¨¨¨Fp

Γλ,p.

If λ P F1 ¨ F2 ¨ ¨ ¨ Fp and λp`1 P Fp`1, |λλp`1 ´ λ| ă εp`1, and if 2εp`2 ă εp`1, it follows
that the arc Γλλp`1,p`1 is contained in Γλ,p. The sequence pKpqpě1 is hence decreasing,
and τqpKpq “ 1 for every q ě p.

We now aim to show that for every q ě p and every λ P F1 ¨ F2 ¨ ¨ ¨ Fp, which we write
as λ “ λ1 . . . λp with λi P Fi for every i “ 1, . . . , p, we have τqpΓλ,pq “ aλ1,1 . . . aλp,p. For
this it suffices to prove that for every λ1 P F1 ¨F2 ¨ ¨ ¨ Fp and every λi P Fi, i “ p` 1, . . . , q,
the point λ1λp`1 . . . λq belongs to Γλ,p if and only if λ “ λ1. Indeed, if this last statement
is true we will have

τqpΓλ,pq “
ÿ

λp`1PFp`1,...,λqPFq

aλ1,1 . . . aλq ,q

“ aλ1,1 . . . aλp,p

¨

˝

ÿ

λp`1PFp`1,...,λqPFq

aλp`1,p`1 . . . aλq ,q

˛

‚

“ aλ1,1 . . . aλp,p

q
ź

i“p`1

˜

ÿ

λiPFi

aλi,i

¸

“ aλ1,1 . . . aλp,p.

With the notation above, observe first that

|λλp`1 . . . λq ´ λ| ď

q
ÿ

i“p`1

|λi ´ 1| ă
ÿ

iěp`1

εi.

If the sequence pεpqpě1 decreases so fast that
ř

iěp εi ă 2εp for every p ě 1, the right-hand
bound in the display above is less than 2εp`1, so that λλp`1 . . . λq indeed belongs to the
arc Γλ,p. Conversely, suppose that λ ‰ λ1. Then λ1λp`1 . . . λq belongs to the arc Γλ1,p
which is disjoint from Γλ,p. This proves our claim that τqpΓλ,pq “ aλ1,1 . . . aλp,p for every
q ě p and λ “ λ1 . . . λp with λi P Fi for each i “ 1, . . . , p.

Observe now that if we endow the set PpTq of probability measures on T with the
topology of w˚-convergence of measures, the map m ÞÑ mpF q is upper semi-continuous
on PpTq for every closed subset F of T. The arcs Γλ,p being closed and disjoint, and
the measure σ being the w˚-limit of the sequence of measures pτqqqě1, it follows that
σpΓλ,pq “ aλ1,1 . . . aλp,p for every λ “ λ1 . . . λp with λi P Fi for every i “ 1, . . . , p, and also
that σpKpq “ 1. The measure σ is thus supported on the compact set K “

Ş

pě1Kp, and

there exists for every µ P K a unique sequence pλiqiě1 with λi P Fi for each i ě 1 such
that µ belongs to Γλ1...λp,p for every p ě 1. Thus

0 ď σptµuq ď σpΓλ1...λp,pq “ aλ1,1 . . . aλp,p for every p ě 1.
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It is at this point that we use our assumption that 0 ă aλi,i ă εi{ε
2
0 for every i ě 1: it

yields that

0 ď σptµuq ď

p
ź

i“1

εi

ε2
0

for every p ě 1.

If ε´2p
0 ε1 . . . εp tends to zero as p tends to infinity, which can always be assumed provided

εp tends to zero sufficiently quickly, then σptµuq “ 0. This being true for every µ P K, the
measure σ is continuous.

We have thus constructed, for every ε ą 0, a continuous probability measure σ on T
with the property that supnPQ |pσpnq´1| ă ε. This stands in contradiction with assumption
(2) of Theorem 4.12, and terminates the proof.

7. Equidistribution and Kazhdan sets in Z

As a straightforward consequence of Theorem 4.12, we obtain the following answer to
Question 4.3:

Theorem 7.1. — Let pnkqkě0 be a sequence of elements of Z with n0 “ 1. Suppose
that the sequence pnkθqkě0 is uniformly distributed modulo 1 for every θ P RzQ. Then
tnk ; k ě 0u is a Kazhdan set in Z.

Proof. — The proof uses the same idea as that of Example 5.3. Let 0 ă ε ă 1, and
suppose that σ is probability measure on T such that supkě0 |pσpnkq ´ 1| ă ε. Then

ˇ

ˇ

ˇ

ˇ

1

N

N´1
ÿ

k“0

pσpnkq ´ 1

ˇ

ˇ

ˇ

ˇ

ă ε for every N ě 1.

Our assumption that pnkθqkě0 is uniformly distributed modulo 1 for every θ P RzQ means
that

1

N

N´1
ÿ

k“0

λnk // 0 as N // `8 for every λ “ e2iπθ with θ P RzQ.

If we denote by C the set of all roots of unity, this implies that

σpCq ě lim
NÑ`8

ˇ

ˇ

ˇ

ˇ

ż

C

ˆ

1

N

N´1
ÿ

k“0

λnk
˙

dσpλq

ˇ

ˇ

ˇ

ˇ

ě 1´ ε ą 0,

and thus in particular σpCq ą 0. Hence σ has a discrete part, and Theorem 4.12 implies
that tnk ; k ě 0u is a Kazhdan set in Z.

More generally, we have:

Theorem 7.2. — Let pnkqkě0 be a sequence of elements of Z such that pnkθqkě0 is
uniformly distributed modulo 1 for every θ P RzQ. Then tnk ; k ě 0u is a Kazhdan set in
Z if and only if it generates Z.

Proof. — As observed already in Example 5.4, sets of the form aZ, where a ě 2 is an
integer, are not Kazhdan sets in Z, while they satisfy the assumption that pnkθqkě0 is
uniformly distributed modulo 1 for every θ P RzQ. So we only have to prove that if
tnk ; k ě 0u generates Z and satisfies the equidistribution assumption of Theorem 7.2,
tnk ; k ě 0u must be a Kazhdan set in Z. Suppose it is not the case. There exist then
r ě 2 and k1, . . . , kr ě 0 such that nk1 , . . . , nkr have no non-trivial common divisor, and
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hence integers a1, . . . , ar in Z such that a1nk1 ` ¨ ¨ ¨ ` arnkr “ 1. Since tnk ; k ě 0u is
not a Kazhdan set in Z, there exists for every ε ą 0 a probability measure σ on T with
σpt1uq “ 0 such that supkě0 |pσpnkq ´ 1| ă ε. Then

|pσp1q ´ 1| ď
r
ÿ

i“1

|ai| |pσpnkiq ´ 1| ă

ˆ r
ÿ

i“1

|ai|

˙

ε.

This being true for all ε ą 0, it implies that the sequence ppkqkě0 defined by the conditions
p0 “ 1 and tpk ; k ě 0u “ tnk ; k ě 0u Y t1u is such that tpk ; k ě 0u is a not Kazhdan
set in Z. But ppkθqkě0 is still uniformly distributed modulo 1 for every θ P RzQ, and this
contradicts Theorem 7.1.

As a direct corollary of Theorem 7.2, we obtain:

Example 7.3. — Let p P ZrXs be a non-constant polynomial. If the integers ppkq have
no non-trivial common divisor, tppkq ; k ě 0u is a Kazhdan set in Z.

Proof. — It is well-known (see for instance [22]) that for any non-constant polynomial
p P ZrXs the sequence pppkqθqkě0 is uniformly distributed modulo 1 for every θ P RzQ.
So Theorem 7.2 applies.

We finish this section with a remark concerning finite perturbations of Kazhdan sets.

Proposition 7.4. — Let Q be a subset of Z which generates Z. If Q is not a Kazhdan
set in Z, QY F is not a Kazhdan set in Z either, whatever the choice of the finite subset
F of Z.

Proposition 7.4 applies in particular when 1 belongs to Q. It obviously breaks down if
one discards the assumption that Q generates Z: the set 2N is not a Kazhdan set in Z,
while 2NY t1u is a Kazhdan set.

Proof. — The proof is essentially the same as that of Theorem 7.2. Under the assumptions
of Proposition 7.4, there exists for every ε ą 0 a probability measure σ on T with σpt1uq “ 0
such that supnPQ |pσpnq ´ 1| ă ε and |pσp1q ´ 1| ă ε. If follows that |pσpnq ´ 1| ă #F ε for
every n P F . This being true for all ε ą 0, QY F is not a Kazhdan set in Z.

Corollary 7.5. — Let Q be a Kazhdan set in Z such that 1 belongs to Q, and let F be
a finite subset of Q, not containing the point 1. Then QzF is still a Kazhdan set in Z.
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