
HAL Id: hal-03494611
https://hal.science/hal-03494611v1

Preprint submitted on 19 Dec 2021 (v1), last revised 25 May 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Affine Invariant Generation via Matrix Algebra
Yucheng Ji, Hongfei Fu, Bin Fang

To cite this version:
Yucheng Ji, Hongfei Fu, Bin Fang. Affine Invariant Generation via Matrix Algebra. 2022. �hal-
03494611v1�

https://hal.science/hal-03494611v1
https://hal.archives-ouvertes.fr

Affine Invariant Generation via Matrix Algebra

Yucheng Ji1,2, Hongfei Fu1, Bin Fang2

1 Shanghai Jiao Tong University, Shanghai, China
fuhf@cs.sjtu.edu.cn

2 OS Kernel Lab, Huawei Technologies, Shanghai, China
jiyucheng@huawei.com

Abstract. Loop invariant generation, which automates the generation of
assertions that always hold inside loops, has many important applications
such as safety analysis, reachability analysis and complexity-bound analysis.
However, automated invariant generation for arbitrary loops is an undecidable
problem. In this paper, we target at an important category of loops, namely
affine loops, which widely exist in many programs but still lack general
approach to invariant generation. We, however, provide a sound and complete
approach based on matrix algebra to automatically synthesizing inductive
invariants in the form of an affine inequality. Specifically, for the situation
when the loop guard is tautological (i.e., ‘true’), we show that the eigenvalues
and their eigenvectors generate all meaningful affine inductive invariants.
Moreover, when the loop guard consists of one or more affine inequalities, we
solve the invariant generation problem by (i) first establishing through matrix
inverse the relationship between the invariants and a key parameter in the
application of Farkas’ Lemma, then (ii) solving the feasible domain of the key
parameter, and finally (iii) showing that the key parameter can be addressed
by a finite set of values w.r.t a tightness condition on the constraints for the
invariants. Experimental results using existing and new cases show that our
approach can generate affine invariants over linear dynamic systems that
inherently involve the non-trivial choices (e.g., eigenvalues, boundary points
of the feasible domain, etc.) of the key parameter.

1 Introduction

Invariants. An assertion at a program location is called an invariant if it is always
satisfied whenever the location is reached in the execution of the program. Invariants
play a fundamental role in program analysis and verification as they act as over-
approximation for reachable program states. Applications of invariants include safety
analysis, reachability analysis, complexity analysis, etc. A detailed account for these
applications is as follows.
Safety Analysis. Given a program and a set of safety assertions that are expected
to hold at critical program locations, the task of safety analysis is to prove that
the assertions indeed hold or report that they might be violated by the program.
As invariants are over-approximation of the reachable program states, an effective
way for safety analysis is to generate invariants and check if they imply the safety
assertions, as adopted by many existing approaches (see e.g. [44, 50, 3]).
Reachability Analysis. Reachability is the most basic liveness property that investi-
gates whether a program location is reachable from a given set of initial program
states. For reachability to the termination program location, a principal approach is
to synthesize a ranking function [27] which require adequate invariants as input (see

2 Yucheng Ji et al.

e.g. [18, 7, 4, 51, 15]). Beyond termination, the reachability to erroneous program lo-
cations, resulting in static detection of program errors, requires danger invariants [24,
5] (intuitively as invariants extended with ranking functions) as a formal witness.
Recently, invariants have also been shown necessary in the reachability analysis of
probabilistic programs [9, 62, 13, 63].
Complexity-Bound Analysis. Another basic problem is to automatically infer asymp-
totic complexity bounds on the runtime of a program. Current algorithms for tackling
this problem, such as [11], rely heavily on adequate invariants.
Invariant Generation. Invariant generation is the classical problem that asks to
automatically generate invariants for an input program, and has been studied for
decades. Various approaches have been proposed, such as abstract interpretation [20,
22], constraint solving [38, 17, 12], recurrence analysis [42, 26, 37, 40], logical infer-
ence [32, 25, 57, 29, 45, 28], machine learning [30, 66, 34], dynamic analysis [23, 58, 47],
etc. To guarantee that an assertion is indeed an invariant, the widely-adopted way
is to generate a inductive invariant, which holds for the first visit to the location
and is preserved under every cyclic execution path to and from the location, that
strengthens it [17, 44].
Numerical Invariants. In this work, we consider an important subclass of invari-
ants called numerical invariants. Briefly, numerical invariants are assertions over
numerical values taken by the program variables and closely related to many common
failures of programs (such as array out-of-bound, division by zero, etc). In detail, we
consider affine inductive invariants in the form of an affine assertion over program
variables. To resolve the automated generation of affine inductive invariants, we
adopt the method of constraint solving as follows.
The Method of Constraint-Solving. Constraint-solving based approaches first
establish a template with unknown parameters for the target invariants, then collect
constraints from the inductive condition, and finally solve the unknown parameters
to get the desired invariants. For affine invariant generation, Farkas’ Lemma provides
a complete characterization of the inductive condition which has been studied in [17,
56] and further solved by quantifier elimination [17] and several heuristics [56]. The
StInG invariant generator [59] implements the approach in [56], and the INVGEN
invariant generator [33] integrates abstraction interpretation and the approach in [56].
Besides, an approach based on eigenvalues and eigenvectors for a restricted class
of invariants is proposed in [49]. Recently, probabilistic affine invariants have also
been considered in probabilistic programs through Farkas’ Lemma and Motzkin’s
Transposition Theorem [39, 14]. Compared with other methods (such as abstract
interpretation, machine learning, etc.), constraint solving has the advantage of a
theoretical guarantee on the accuracy of the generated invariants, but typically
requires higher runtime complexity.
Our Contribution. We propose matrix-based approaches for generating affine
inductive invariants of affine while loops without nested loops. Following [17, 56], we
base our approach on Farkas’ Lemma. However, we completely solve the constraints
obtained from Farkas’ Lemma by matrix methods which is beyond the scope of [17,
56]. For affine while loops with tautological guard, we prove that the invariants
are determined by the eigenvectors (of the transpose) of the transition matrix; for
affine while loops with non-tautological guard, we solve the invariants by adopting
a formula involving matrix inverse with a key parameter in the constraints that
leads to non-linearity, and determining the feasible domain of the key parameter
as well as showing that it suffices to choose a finite number of values for the key
parameter if one imposes a tightness condition on the constraints. In addition,

Affine Invariant Generation via Matrix Algebra 3

we generalize our results to affine loops with non-deterministic updates and to
bidirectional affine invariants. Furthermore, we prove the continuity of invariants
w.r.t. the key parameter and develop an algorithmic approach to approximate the
eigenvectors in high dimensions for implementing our methods.

2 Preliminaries

In this section, we specify the class of affine while loops considered in this work,
and define the affine-invariant-generation problem over such loops. Throughout the
paper, we use V = {x1, ..., xn} to denote the set of program variables in an affine
while loop; we abuse the notation V so that it also represents the current values
(before the execution of the loop body) of the original variables in V , and use the
primed variables V ′ := {x′ | x ∈ V } for the next values (after the execution of the
loop body). Furthermore, we denote by x = [x1, ..., xn]

T the vector variable that
represents the current values of the program variables, and by x′ = [x′1, ..., x

′
n]

T the
vector variable for the next values.

An affine while loop is a while loop without nested loops that has affine updates
in each assignment statement and possibly multiple conditional branches in the loop
body. To formally specify the syntax of it, we define affine inequalities and assertions,
program states and satisfaction relation between them as follows.
Affine Inequalities and Assertions. An affine inequality φ is an inequality of
the form cT · y+ d ≤ 0 where c is a real vector, y is a vector of real-valued variables
and d is a real scalar.

An affine assertion is a conjunction of affine inequalities. An affine assertion is
satisfiable if it is true under some assignment of real values to its variables. Given
an affine assertion ψ over vector variable x, we denote by ψ′ the affine assertion
obtained by substituting x in ψ with its next-value variable x′.
Program States. A program state v is a real vector v = [v1, ..., vn]

T such that each
vi is the concrete value for the variable xi (in the vector variable x). We say that a
program state v satisfies an affine inequality φ = cT · x+ d ≤ 0, written as v |= φ, if
it holds that cT · v + d ≤ 0. Likewise, v satisfies an affine assertion ψ if it satisfies
every conjunctive affine inequalities in ψ. Furthermore, given an affine assertion
ψ with both x and x′, we say that two program states v,v′ satisfy ψ, written as
v,v′ |= ψ, if ψ is true when one substitutes x by v and x′ by v′.

The syntax of (unnested) affine while loops is as follows.
Affine While Loops. We consider affine while loops that take the form:

initial condition θ : R · x+ f ≤ 0
while G : P · x+ q ≤ 0 do

case ψ1 : T1 · x−T′1 · x′ + b1 ≤ 0 (τ1) ;
...

case ψk : Tk · x−T′k · x′ + bk ≤ 0 (τk) ;
od

(†)

where (i) θ is an affine assertion that specifies the initial condition for inputs and
is given by the real matrix R and vector f , (ii) G is an affine assertion serving as
the loop guard given by the real matrix P and vector q, and (iii) each ψj is an
affine assertion that represents a conditional branch, with the relationship between
the current-state vector x and the next-state vector x′ given by affine assertion
τj := Tj ·x−T′j ·x′ +bj ≤ 0 with transition matrices Tj ,T

′
j and vector bj . In this

4 Yucheng Ji et al.

work, we always assume that the rows of R are linearly independent (this condition
means that every variable xi has one independent initial condition attached to it,
which holds in most situations such as a fixed initial program state), such that RT

is left invertible; we denote its left inverse as (RT)−1L .
The execution of an affine while loop is as follows. First, the loop starts with

an arbitrary initial program state v∗ that satisfies the initial condition θ. Then in
each loop iteration, the current program state v is checked against the loop guard
G. In the case that v |= G, the loop arbitrarily chooses a conditional branch ψi
satisfying v |= ψi, and sets the next program state v′ non-deterministically such
that v,v′ |= τi; the next program state v′ is then set as the current program state.
Otherwise (i.e., v 6|= G), the loop halts immediately.

Now we define affine invariants over affine while loops. Informally, an affine
invariant is an affine inequality satisfing the initiation and consecution conditions
which roughly mean that the inequality should hold at the start of the loop (initiation)
and be preserved under every iteration of the loop body (consecution).
Affine Invariants. An affine invariant for an affine while loop (†) is an affine
inequality Φ that satisfies the initiation and consecution conditions as follows:

– (Initiation) θ implies Φ, i.e., v |= θ implies v |= Φ for all program states v,;
– (Consecution) for all program states v,v′ and every ψj , τj (1 ≤ j ≤ k) in (†),

we have that (v |= G ∧ v |= Φ ∧ v,v′ |= τj)⇒ v′ |= Φ′.

It can be observed from the definition above that every program state traversed (as
a current state at the start or after one loop iteration) in some execution of the
underlying affine while loop will satisfy the invariant.
Problem Statement. In this work, we study the problem of automatically gen-
erating affine invariants over affine while loops. Our aim is to have a complete
mathematical characterization on all such invariants and develop efficient algorithms
for generating these invariants.

3 Affine Invariants via Farkas’ Lemma

Affine invariant generation through Farkas’ Lemma is originally proposed in [17, 56].
Farkas’ Lemma is a fundamental result in the theory of linear inequalities that leads
to a complete characterization for the affine invariants. Since our approach is based
on Farkas’ Lemma, we present a detailed account on the approaches [17, 56], and
then point out the weakness of each of the approaches.

We first present Farkas’ Lemma following the formulation in [17, 56].

Theorem 1 (Farkas’ Lemma). Consider the following affine assertion S over
real-valued variables y1, . . . , yn:

S :

a11y1 + ...+ a1nyn + b1 ≤ 0
...

ak1y1 + ...+ aknyn + bk ≤ 0

when S is satisfiable, it entails a given affine inequality

φ : c1y1 + ...+ cnyn + d ≤ 0

if and only if there exist non-negative real numbers λ0, . . . , λk such that (i) cj =∑k
i=1 λiaij for 1 ≤ j ≤ n and (ii) d = (

∑k
i=1 λibi)− λ0.

Affine Invariant Generation via Matrix Algebra 5

The application of Farkas’ Lemma can be visualized by a table form as follows:

λ0 −1 ≤ 0
λ1 a11y1 + ...+ a1nyn +b1 ≤ 0 (
...

...
... S

λk ak1y1 + ...+ aknyn +bk ≤ 0)
c1y1 + ...+ cnyn +d ≤ 0 (φ)

(‡)

The intuition of the table form above is that one first multiplies the λi’s on the left
to their corresponding affine inequalities (at the same row) on the right, and then
sums these affine inequalities together to obtain the affine inequality at the bottom.
In this paper, we will refer to call the table form as Farkas table.

Then we illustrate the application of Farkas’ Lemma in [17, 56]. Given an affine
while loop in the form of (†), they first establish a template Φ : c1x1+...+cnxn+d ≤ 0
for an affine invariant where c1, . . . , cn, d are the unknown coefficients. Second, they
establish constraints for the unknown coefficients from the initiation and consecution
conditions for an affine invariant, as follows.
Initiation. By Farkas’ Lemma, the initiation condition can be solved by the Farkas
table (‡) with S := θ and φ := Φ:

λI0 − 1 ≤ 0
λ R · x + f ≤ 0 (θ)

cT · x + d ≤ 0 (Φ)
(#)

Here we rephrase the affine inequalities in θ and Φ with the condensed matrix forms
R · x + f ≤ 0 and cT · x + d ≤ 0; we also use λ = [λ1, . . . , λk]

T to denote the
non-negative parameters in the left column of (‡).
Consecution. The consecution condition can be solved by handling each conditional
branch (specified by τj , ψj in (†)) separately. From Farkas’ Lemma, we solve each
conditional branch by the Farkas table (‡) with S := Φ ∧ G ∧ τj and φ := Φ′ as
follows:

µ cT · x + d ≤ 0 (Φ)
λC0 − 1 ≤ 0
ξ P · x + q ≤ 0 (G)
η T · x − T′ · x′ + b ≤ 0 (τ)

cT · x′ + d ≤ 0 (Φ′)

(∗)

Note that the Farkas table above contains quadratic constraints as we multiply an
unknown non-negative parameter µ to the unknown invariant Φ in the table. The
Farkas tables for all the conditional branches are grouped conjunctively together to
represent the whole consecution condition.

The weakness of the approaches [17, 56] lies at the treatment of the quadratic
constraints from the consecution condition. The approach in [17] addresses the
quadratic constraints by quantifier elimination that guarantees the theoretical com-
pleteness but typically has high runtime complexity. The approach in [56] solves
the quadratic constraints by several heuristics that guesses possible values for the
key parameter µ in (∗) that causes non-linearity, hence losing completeness. Our
approach considers to address the key parameter µ through matrix-based methods
(e.g., eigenvalues, matrix inverse, etc.), which is capable of efficiently generating
affine invariants (as compared with quantifier elimination [17]) while still ensuring
theoretical completeness (as compared with the heuristics in [56]).

6 Yucheng Ji et al.

4 Single-Branch Affine Loops with Deterministic Updates

For the sake of simplicity, we first consider the affine invariant generation for a
simple class of affine while loops where there is only one conditional branch in the
loop body and the update of the next-value vector x′ is deterministic.

Formally, an affine while loop with deterministic updates and a single conditional
branch takes the following form:

initial condition θ : R · x+ f ≤ 0
while G do x′ = T · x+ b.

For the loop above, we aim at non-trivial affine invariants, i.e., c 6= 0. We summarize
our results below.
1. When the loop guard is ‘true’, there are only finitely many non-trivial invariants

cT · x+ d ≤ 0 such that c is an eigenvector of the transpose of the transition
matrix TT.

2. When the loop guard is not a tautology, there can be infinitely many non-trivial
invariants cT · x+ d ≤ 0 with c given by a direct formula of µ (see (6) and (6′));
in this case we derive the feasible domain of µ (Proposition 4 and Proposition 7)
and select finitely many optimal ones (which we call tight choices) among them
(Proposition 5 and Proposition 8).

In Section 4.1, we first derive the constraints from the initiation (#) and consecution
(∗) conditions satisfied by the invariants. Then we solve these constraints for the
tautological loop guard case in Section 4.2 and the single-constraint loop guard case
in Section 4.3. Finally we generalize the results to the multi-constraint loop guard
case in Section 4.4.

4.1 Derived Constraints from the Farkas Tables
We first derive the constraints from the Farkas tables as follows:
Initiation. Recall the Farkas table for initiation in (#). We first compare the
coefficients of x above and below the horizontal line in (#), and obtain

λT ·R = cT ⇒ RT · λ = c. (1)

Then by comparing the constant terms in (#), we have:

−λI0 + λT · f = d ⇒ fT · λ− d = λI0 ≥ 0. (2)

Note that RT has left inverse (RT)−1L , thus constraint (1) is equivalent to λ =

(RT)−1L · c. Plugging it into (2) yields

fT · (RT)−1L · c− d = λI0 ≥ 0. (3)

Consecution. The Farkas table for consecution in the case of single-branch affine
loops with deterministic updates is as follows:

µ cT · x + d ≤ 0 (Φ)
λC0 − 1 ≤ 0
ξ P · x + q ≤ 0 (G)
η T · x − x′ + b = 0 (τ)

cT · x′ + d ≤ 0 (Φ′)

Affine Invariant Generation via Matrix Algebra 7

Here the transition matrix T is a n × n square matrix, and b is a n-dimensional
vector. Since τ contains only equalities, parameters η1, ..., ηn do not have to be
non-negative. In this table, by comparing the coefficients of x′ above and below the
horizontal line, we easily get −η = c. Then we substitute η by −c and compare the
coefficients of x above and below the horizontal line. We get

µ · cT + ξT ·P− cT ·T = 0T ⇒ µ · c−TT · c+PT · ξ = 0. (4)

We also compare the constant terms and get

µ · d− λC0 + ξT · q− bT · c = d ⇒ (µ− 1)d− bT · c+ qT · ξ = λC0 ≥ 0. (5)

The rest of this section is devoted to solving the invariants Φ : cT · x + d ≤ 0
which satisfy all constraints (1)–(5).

4.2 Loops with Tautological Guard
We first consider the simplest case where the loop guard is ‘true’:

initial condition θ : R · x+ f ≤ 0
while true do x′ = T · x+ b.

(�)

In order for completely solving the non-linear constraints, we take three steps:
1. choose the correct µ, thus turn the non-linear constraints into linear ones;
2. use linear algebra method to solve c up to some certain freedom;
3. with µ and c known, find out the feasible domain of d and determine the optimal

value of it. Here ‘optimality’ is defined by the fact that all invariants with other
d’s in this domain are implied by the invariant with ‘optimal’ d.

Step 1 and Step 2. We address the values of µ, c by eigenvalues and eigenvectors
in the following proposition:
Proposition 1. For any non-trivial invariant cT · x + d ≤ 0 of the loop (�), we
have that c must be an eigenvector of TT with a non-negative eigenvalue µ.

Proof. Since the loop guard is tautology, we take parameters ξ to be 0 in (4):

µ · c−TT · c = 0.

It’s obvious that µmust be a non-negative eigenvalue ofTT and c is the corresponding
eigenvector. ut
Example 1 (Fibonacci sequence). Consider sequence {sn} defined by initial condition
s1 = s2 = 1 and recursive formula sn+2 = sn+1 + sn for n ≥ 1. If we use variables
(x1, x2) to represent (sn, sn+1), then the sequence can be written as a loop:

initial condition θ : R · x+ f =

[
1 0
0 1

]
·
[
x1
x2

]
+

[
−1
−1

]
= 0

while true do
[
x′1
x′2

]
= T ·

[
x1
x2

]
+ b =

[
0 1
1 1

]
·
[
x1
x2

]
+ 0.

The eigenvalues of matrix TT are 1−
√
5

2 , 1+
√
5

2 ; only the second one is non-negative.
This eigenvalue µ = 1+

√
5

2 yields eigenvector c = [c1,
1+
√
5

2 c1]
T, here c1 is a free

variable, which could be fixed in the final form of the invariant. ut

8 Yucheng Ji et al.

Step 3. After solving µ and c, we illustrate the feasible domain of d and its optimal
value by the following proposition:

Proposition 2. For any µ and c given by Proposition 1, the feasible domain of d
is an interval determined by the two conditions below:

d ≤ fT · (RT)−1L · c and (µ− 1)d ≥ bT · c.

If the above conditions have empty solution set for d, then no invariant is available
from such µ and c; otherwise, the optimal value of d falls in one of the two choices:

d = fT · (RT)−1L · c or (µ− 1)d = bT · c.

Proof. Constraint (3) provides one condition for d:

fT · (RT)−1L · c− d = λI0 ≥ 0 ⇒ fT · (RT)−1L · c ≥ d;

while constraint (5) with ξ = 0 provides the other condition:

(µ− 1)d− bT · c = λC0 ≥ 0 ⇒ (µ− 1)d ≥ bT · c.

To obtain the strongest inequality cT · x + d ≤ 0 with c fixed, we need to take d
to be either minimal or maximal value, i.e. the boundary of the interval; thus the
invariant with this d would imply all invariants with the same c and other d’s in the
same interval. The boundary is achieved when one of the two conditions achieves
the equality. ut

Example 2 (Fibonacci sequence, Part 2). We continue Example 1. Recall that

µ =
1 +
√
5

2
, c =

[
c1

1+
√
5

2 c1

]
, b =

[
0
0

]
, R =

[
1 0
0 1

]
, f =

[
−1
−1

]
;

thus (3)(5) read − 3+
√
5

2 c1 ≥ d and −1+
√
5

2 d ≥ 0, hence yield 0 ≤ d ≤ − 3+
√
5

2 c1. The
free variable c1 must be negative here, so we choose c1 = −2 and then

c =

[
−2

−1−
√
5

]
, 0 ≤ d ≤ 3 +

√
5;

the two boundary values d = 0 and d = 3 +
√
5 yield invariants

−2x1 − (1 +
√
5)x2 ≤ 0; −2x1 − (1 +

√
5)x2 + 3 +

√
5 ≤ 0.

Obviously the latter is stronger; so we finally determine that d = 3 +
√
5:

µ = (1 +
√
5)/2 : −2x1 − (1 +

√
5)x2 + 3 +

√
5 ≤ 0. ut

4.3 Loops with Guard: Single-Constraint Case

Here we study the loops with non-tautological guard. First of all, the eigenvalue
method of Section 4.2 applies to this case as well; thus for the rest of Section 4, we
always assume that µ is not any eigenvalue of T (c is not any eigenvector of TT

either) and aim for new invariants.

Affine Invariant Generation via Matrix Algebra 9

Let us start with the case that the loop guard consists of only one affine con-
straint:

initial condition θ : R · x+ f ≤ 0

while pT · x+ q ≤ 0 do x′ = T · x+ b.
(�′)

where p is a real n-vector and q is a real number.
We again take three steps to compute new invariants; these steps are different

from the tautological guard case:

1. we derive a formula to compute c in terms of µ; so for any real value µ, we get
a corresponding c;

2. however, not all µ’s would produce invariants that satisfy all constraints (1)–(5).
We will determine the feasible domain of µ that do so;

3. we will select finitely many µ’s from its feasible domain which provide tight
invariants; the meaning of tightness will be defined later. For every single µ, we
will also determine the feasible domain of d and optimal value of it.

Step 1. We first establish the relationship between µ and c through the constraints.
The initiation is still (1)(2)(3), while the consecution (4)(5) becomes:

µ · c−TT · c+ ξ · p = 0 (4′)

(µ− 1)d− bT · c+ ξ · q = λC0 ≥ 0 (5′)

where the matrix P in (4) degenerates to vector pT and the vectors q, ξ in (5) both
have just one component q, ξ here.

In contrast to Section 4.2, we assume that µ is not any eigenvalue of T, and
ξ 6= 0. For such µ, we have a new formula to compute c:

Proposition 3. For any non-trivial invariant cT · x + d ≤ 0 of the loop (�′), we
have that c is given by

c = ξ · (TT − µ · I)−1 · p (6)

when µ is fixed, c’s with different ξ’s are proportional to each other and yield
equivalent invariants.

Proof. Since µ is not any eigenvalue of T, the matrix µ · I−TT is invertible; thus
(4′) is equivalent to

(µ · I−TT) · c = −ξ · p ⇒ c = ξ · (TT − µ · I)−1 · p. ut

Example 3 (Fibonacci sequence, Part 3). We add a loop guard to Example 1:

initial condition θ : R · x+ f =

[
1 0
0 1

]
·
[
x1
x2

]
+

[
−1
−1

]
= 0

while pT · x+ q = [1, 0] ·
[
x1
x2

]
− 10 ≤ 0 do[

x′1
x′2

]
= T ·

[
x1
x2

]
+ b =

[
0 1
1 1

]
·
[
x1
x2

]
+ 0.

and search for more invariants. The equation (6) here reads[
c1
c2

]
=

ξ

µ2 − µ− 1

[
1− µ −1
−1 −µ

]
·
[
1
0

]
=

ξ

µ2 − µ− 1

[
1− µ
−1

]
. ut

10 Yucheng Ji et al.

Step 2. With (6) in hand, every non-negative value µ would give us a vector c; the
next step is to find such µ’s that (1)(2)(3)(5′) are all satisfied. We call this set the
‘feasible domain’ of µ.

Notice that (3) and (5′) are two inequalities both containing d. When the value
of µ changes, there is a possibility that (3) and (5′) conflict each other, hence make
no invariant available. So the feasible domain consists of such µ’s that make the two
inequalities compatible with each other:

Proposition 4. For the loop (�′), any feasible µ falls in [0, 1) ∪
(
K ∩ [1,+∞)

)
,

where K is the solution set to the following rational inequality of µ (which we call
‘compatibility condition’):

bT · (TT − µ · I)−1 · p− q ≤ (µ− 1)fT · (RT)−1L (TT − µ · I)−1 · p. (7)

Proof. We multiple (µ− 1) on both sides of (3) and get

(µ− 1)fT · (RT)−1L · c ≤ (µ− 1)d when 0 ≤ µ < 1 (3′)

(µ− 1)fT · (RT)−1L · c ≥ (µ− 1)d when µ ≥ 1 (3′′)

compare them with (5′), we see: (3′)(5′) won’t conflict each other because they
are both about (µ− 1)d being ‘larger’ than something. However, (3′′)(5′) are two
inequalities of opposite directions, they must satisfy

bT · c− ξ · q ≤ (µ− 1)d ≤ (µ− 1)fT · (RT)−1L · c

to be compatible. Substitute c by (6) in the above inequality and cancel out ξ > 0,
we obtain the desired inequality:

bT · (TT − µ · I)−1 · p− q ≤ (µ− 1)fT · (RT)−1L (TT − µ · I)−1 · p.

Every µ from [0, 1) and K ∩ [1,+∞) would lead to non-trivial invariant satisfying
all constraints (1)(2)(3)(4′)(5′). ut

Example 4 (Fibonacci sequence, Part 4). Let us find out the feasible domain of µ for
the Fibonacci sequence with loop guard x1 ≤ 10. Inequality (5′) is (µ− 1)d ≥ 10ξ;
inequality (3′′) is

(µ− 1)[−1,−1] ·
[
1 0
0 1

]
· c =

ξ(µ− 1)µ

µ2 − µ− 1
≥ (µ− 1)d when µ ≥ 1.

We combine them to form the compatibility condition (7) as

10 ≤ (µ− 1)µ

µ2 − µ− 1
⇒ 0 ≤ −

9(µ− 5
3)(µ+ 2

3)

(µ− 1−
√
5

2)(µ− 1+
√
5

2)
when µ ≥ 1.

The solution domain of it is (1+
√
5

2 , 53]. Thus by Proposition 4, the feasible domain
of µ is [0, 1) ∪ (1+

√
5

2 , 53]. ut

Step 3. Proposition 4 provides us with a continuum of candidates for µ, thus
produces infinitely many legitimate invariants. We want to select finitely many
optimal ones among them: the ideal case is that there exists a basis consisting of
finitely many invariants, such that all invariants are non-negative linear combinations

Affine Invariant Generation via Matrix Algebra 11

of the basis; however, this idea doesn’t work out, where the reasons will be explained
thoroughly in Appendix A.1 and Appendix A.2. Instead, we impose a weaker form
of optimality called ‘tightness’ coming from the equality cases of constraints (3)(5′):

fT · (RT)−1L · c− d =λI0 = 0

(µ− 1)d− bT · c+ ξ · q =λC0 = 0

we call an invariant ‘tight’ and corresponding µ as ‘tight choice’ when both equalities
are achieved:

– λI0 = 0: The (inequality) invariant is tight at the initial state, i.e., the invariant
reaches equality at the initial state;

– λC0 = 0: The (inequality) invariant stays as close to being tight as much at later
iterations.

The tight choices are characterized by the following proposition:

Proposition 5. For the loop (�′), the tight choices of µ consist of 0 and the positive
roots of the following rational equation:

bT · (TT − µ · I)−1 · p− q = (µ− 1)fT · (RT)−1L (TT − µ · I)−1 · p. (8)

Note that these roots are also the boundary points of the intervals in K defined in
Proposition 4.

Proof. Recall Proposition 2, constraints (3)(5) form the two boundaries of the domain
of d, which can not be achieved simultaneously in the case of loops with tautological
guard. Nevertheless, in the case of loops with guard, we have an extra freedom on µ
which allows us to set λI0 = λC0 = 0:

fT · (RT)−1L · c = d ∧ (µ− 1)d = bT · c− ξ · q
⇒ bT · (TT − µ · I)−1 · p− q = (µ− 1)fT · (RT)−1L (TT − µ · I)−1 · p.

(8) is just the case that (7) achieves the equality, hence is a rational equation of µ
with finite number of roots. These roots are also the boundary points of K since
K is the solution domain to (7). Besides the roots of (8), µ = 0 is also a boundary
point of the feasible domain; its corresponding invariant reflects the feature of the
loop guard itself. Thus we add it into the list of tight choices. ut

With µ determined and c fixed up to a scaling factor, the last thing remains is
to determine the optimal d. The strategy here is similar to Proposition 2:

Proposition 6. Suppose µ is from the feasible domain. If µ is a root to (8), then d
is uniquely determined by:

bT · c− ξ · q = (µ− 1)d and fT · (RT)−1L · c = d;

otherwise, the optimal value of d is determined by one of the two choices below:

bT · c− ξ · q = (µ− 1)d or fT · (RT)−1L · c = d.

We omit the detailed proof and put it in Appendix A.3.

12 Yucheng Ji et al.

Example 5 (Fibonacci sequence, Part 5). Remember that[
c1
c2

]
=

ξ

µ2 − µ− 1

[
1− µ
−1

]
and the feasible domain of µ is [0, 1) ∪ (

1 +
√
5

2
,
5

3
].

We compute the tight choices of µ and tight invariants. The equation (8) here is

0 =
−9µ2 + 9µ+ 10

µ2 − µ− 1
= −

9(µ− 5
3)(µ+ 2

3)

(µ− 1−
√
5

2)(µ− 1+
√
5

2)

which has only one positive root µ = 5
3 . Thus by Proposition 5 and Proposition 6,

we have two new invariants:

µ = 0 : − x1 + x2 − 10 ≤ 0;

µ = 5/3 : − 2x1 − 3x2 + 5 ≤ 0. ut

4.4 Loops with Guard: Multi-Constraint Case

After settling the single-constraint loop guard case, we consider the more general
loop guard which contains the conjunction of multiple affine constraints:

initial condition θ : R · x+ f ≤ 0
while P · x+ q ≤ 0 do x′ = T · x+ b.

(�′′)

where the loop guard P · x+ q ≤ 0 contains m affine inequalities (m could be larger
than, equal to or less than n).

We can easily generalize the results of Section 4.3 to this case. First of all, we
generalize Proposition 3: modify the formula (6) for c in terms of µ into

c = (TT − µ · I)−1PT · ξ. (6′)

Next, we generalize Proposition 4 which describes the feasible domain of µ:
Proposition 7. For the loop (�′′), the feasible domain of µ is [0, 1)∪

(
K∩ [1,+∞)

)
,

where K is the solution set to the ‘generalized compatibility condition’:

u(µ) := bT · (TT − µ · I)−1PT − qT

≤ w(µ) := (µ− 1)fT · (RT)−1L (TT − µ · I)−1PT (7′)

where u(µ),w(µ) are two m-dimensional vector functions of µ. (7′) means that the
j-th component of u(µ) being no larger than the j-th component of w(µ) for all
1 ≤ j ≤ m; when m = 1, it goes back to (7).

Last but not least, we consider the tight choices of µ. The first idea comes up
to mind is repeating Proposition 5: set the generalized compatibility condition to
achieve equality, i.e. u(µ) = w(µ); however, this is the conjunction of m rational
equations and probably contains no solution.

Thus we use a different idea: recall that in the single-constraint case, the tight
choices consists of 0 and the (positive) boundary points of K; so we generalize this
to the multi-constraint case:

Proposition 8. For the loop (�′′), the tight choices of µ consist of 0 and the
(positive) boundary points of K.

Affine Invariant Generation via Matrix Algebra 13

Example 6. We consider the loop:

initial condition θ : R · x+ f =

[
1 0
0 1

]
·
[
x1
x2

]
+

[
−1
−1

]
= 0

while P · x+ q =

[
1 0
0 −1

]
·
[
x1
x2

]
+

[
−10
−5

]
≤ 0 do[

x′1
x′2

]
= T ·

[
x1
x2

]
+ b =

[
1 0
0 1

]
·
[
x1
x2

]
+

[
1
−1

]
.

There is one eigenvalue µ = 1 with geometric multiplicity 2; we solve three indepen-
dent invariants from it:

x1 + x2 − 2 ≤ 0, x1 + x2 − 2 ≥ 0; −x1 + x2 ≤ 0.

Next we find out the other invariants from tight µ’s. In this case (7′) read

(when µ > 1 :)
11− 10µ

1− µ
≤ 1 ∧ 6− 5µ

1− µ
≤ −1.

Then K = (1, 109] ∩ (1, 76] = (1, 109] and the feasible domain of µ is [0, 1) ∪ (1, 109].

The tight choices are 0, 109 :

µ = 0 : x1 − 10 ≤ 0 ∧ −x2 − 5 ≤ 0;

µ = 10/9 : − x1 + 1 ≤ 0 ∧ x2 − 1 ≤ 0. ut

5 Generalizations
In this section, we extend our theory developed in Section 4 to two directions. In one
direction, we consider the invariants cT ·x+d ≤ 0 for the affine while loops in general
form (†): we will derive the relationship of µ and c, as well as the feasible domain
and tight choices of µ. In the other direction, we stick to the single-branch affine
while loops with deterministic updates and tautological guard (�), yet generalize the
invariants to bidirectional-inequality form d1 ≤ cT · x ≤ d2; we will apply eigenvalue
method to this case for solving the invariants.

5.1 Loops with Non-deterministic Updates
In Section 4, we handled the loops with deterministic updates; here we generalize
the results to the ones with non-deterministic updates in the form of (†). We still
focus on the single-branch loops (for multi-branch ones, we shall solve out invariants
for each branch separately and simply take the intersection):

initial condition θ : R · x+ f ≤ 0
while G : P · x+ q ≤ 0 do T · x−T′ · x′ + b ≤ 0 . (†′)

For this general form, the initiation constraints are still (1)(2)(3), while the
consecution constraints from Farkas table (∗) are

µ · c+PT · ξ +TT · η = 0 (9)

−(T′)T · η = c (10)

(µ− 1)d+ qT · ξ + bT · η = λC0 ≥ 0 (11)

14 Yucheng Ji et al.

where (10) provides the relationship of c and η; plugging it into (9) yield(
TT − µ · (T′)T

)
· η +PT · ξ = 0. (9′)

Hence for any non-trivial invariant cT · x + d ≤ 0 of this loop (†′), we have c =
−(T′)T · η, where η is characterized differently in the following three cases:

1. T and T′ are square matrices and loop guard is ‘true’. In this case, we take
ξ = 0 in (9′) and easily see that µ must be a root of det

(
TT − µ · (T′)T

)
= 0

and η is a null vector of the matrix TT − µ · (T′)T.
2. T and T′ are square matrices and there is loop guard. In this case, µ must

be values other than the roots of det
(
TT − µ · (T′)T

)
= 0, thus the inverse

matrix
(
TT − µ · (T′)T

)−1 exists; we time it on (9′) and get that η(µ) =

−
(
TT − µ · (T′)T

)−1
PT · ξ.

3. Neither T nor T′ is square matrix. In this case, we need to use Gaussian
elimination method to solve (9′). By linear algebra, the solution η(µ) would
contain ‘homogeneous term’ (which doesn’t involve ξi’s) and ‘non-homogeneous
terms’ (which contain linear terms of ξi’s). Thus η(µ) could be written as
η(µ) +

∑
i ξi · η̃i(µ).

For Case 2 and Case 3, we have a continuum of candidates for µ. The feasible
domain of µ is given by

(
[0, 1) ∪

(
K̃ ∩ [1,+∞)

))
∩ J , where K̃ is the solution set to

the following compatibility condition (by combining constraints (3′′)(11)):

bT · η(µ) + qT · ξ ≥ (µ− 1)fT · (RT)−1L (T′)T · η(µ)

and J is the solution set to constraints η(µ) ≥ 0. The tight choices of µ consists of
0 and the positive boundary points of K̃ ∩ J .

5.2 An Extension to Bidirectional Affine Invariants

Here we restrict us to single-branch affine loops with deterministic updates and
tautological loop guard, but aim for the invariants of bidirectional inequality form
d1 ≤ cT · x ≤ d2. This is actually the conjunction of two affine inequalities: Φ1 :
−cT · x+ d1 ≤ 0 ∧ Φ2 : cT · x− d2 ≤ 0. We have the following proposition:

Proposition 9. For any bidirectional invariant d1 ≤ cT ·x ≤ d2 of the loop (�), we
have that c must be an eigenvector of TT with a negative eigenvalue.

Proof. We can easily write down the initiation condition: θ |= (Φ1 ∧ Φ2) and the
corresponding constraints (with λ, λ̃ being two different sets of parameters):

RT · λ = c, fT · λ+ d2 = λI0 ≥ 0; RT · λ̃ = −c, fT · λ̃− d1 = λ̃I0 ≥ 0.

However, there are two possible ways to propose the consecution condition:

(Φ1 ∧ τ |= Φ′1 and Φ2 ∧ τ |= Φ′2) or (Φ1 ∧ τ |= Φ′2 and Φ2 ∧ τ |= Φ′1)

If we choose the first one, there will be nothing different from the things we did in
Section 4.2. Thus we choose the second one: make the two inequalities induct each

Affine Invariant Generation via Matrix Algebra 15

other. Hence the Farkas tables are

µ −cT · x + d1 ≤ 0 (Φ1)
λC0 − 1 ≤ 0
−c T · x − x′ + b = 0 (τ)

cT · x′ − d2 ≤ 0 (Φ′2)

µ̃ cT · x − d2 ≤ 0 (Φ2)
λ̃C0 − 1 ≤ 0
c T · x − x′ + b = 0 (τ)

− cT · x′ + d1 ≤ 0 (Φ′1)

We write out the constraints of consecution:

−µ · c = TT · c = −µ̃ · c (12)

µ · d1 + d2 − bT · c = λC0 ≥ 0, − µ̃ · d2 − d1 + bT · c = λ̃C0 ≥ 0

the proposition is verified by (12) since µ, µ̃ ≥ 0. ut
Example 7 (Fibonacci sequence, Part 6). Recall that in this example we have a
negative eigenvalue 1−

√
5

2 . It yields the eigenvector c = [c1,
1−
√
5

2 c1]
T. The other

constraints are computed as:

−(3−
√
5)c1/2 + d2 = λI0 ≥ 0, (3−

√
5)c1/2− d1 = λ̃I0 ≥ 0.

−(1−
√
5)d1/2 + d2 = λC0 ≥ 0, (1−

√
5)d2/2− d1 = λ̃C0 ≥ 0.

If we choose c1 = 2, λI0 = 0 = λ̃C0 (or c1 = −2, λ̃I0 = 0 = λC0), we get an invariant

µ = (1−
√
5)/2 : 2(2−

√
5) ≤ 2x1 + (1−

√
5)x2 ≤ 3−

√
5

which reflects the ‘golden ratio’ property of the Fibonacci sequence. ut

6 Continuity of Invariants w.r.t. µ

In Section 4, we have shown that for any invariant cT · x+ d ≤ 0 of single-branch
affine loop with deterministic updates, c is given in two ways:

c(µ) :=

{
(TT − µ · I) · c = 0 when det(TT − µ · I) = 0

(TT − µ · I)−1 · z when det(TT − µ · I) 6= 0

with z = PT · ξ. We express c(µ) differently at eigenvalues than at other points. A
natural question is thus brought up to us: is c(µ) continuous at eigenvalues w.r.t. µ?
The following proposition answers this question:
Proposition 10. Suppose λ is an eigenvalue of TT with eigenvector c(λ); and
{λi} is a sequence lying in the feasible domain of µ which converges to λ. If λ has
geometric multiplicity 1, then the sequence {c(λi)} converges to c(λ) as well; in
other words, we can use {c(λi)} to approximate c(λ) in this case.
In order to prove it, we first introduce the following linear algebra theorem:
Theorem 2. We denote the adjoint matrix of TT − µ · I by Ad(µ). Suppose λ is
an eigenvalue of n× n matrix T. Then for any n-vector x,

1. Ad(λ) · x is an eigenvector of TT with eigenvalue λ; moreover, there exists x
such that Ad(λ) · x 6= 0 if and only if λ has geometric multiplicity 1;

2. If {λi} is a sequence convergent to λ, then {Ad(λi) · x} also converges to
Ad(λ) · x.

16 Yucheng Ji et al.

We address the proof of this theorem in Appendix A.4. Now we are ready to prove
Proposition 10:
Proof. By the definition of inverse matrix and adjoint matrix, c(λi) = (TT − λi ·
I)−1 ·z = (Ad(λi) ·z)/det(TT−λi · I) where det(TT−λi · I) is a (non-zero) number,
so we can absorb it into z and write c(λi) = Ad(λi) · z. By Theorem 2.2, the limit
of {c(λi)} exists, which is denoted by Ad(λ) · z. There are two possible outcomes:
1. Ad(λ) · z = 0 for any vector z. By Theorem 2.1, we know the geometric

multiplicity of λ is > 1 and no continuity is available;
2. There exists z such that Ad(λ) · z 6= 0. By Theorem 2.1, we conclude that

Ad(λ) · z is the non-zero eigenvector c(λ) of TT with eigenvalue λ. ut
As a byproduct, Proposition 10 can be used to implement our eigenvalue method in
dimensions higher than 4:
An Algorithmic Approach to Eigenvalue Method. In Section 4.2 and Section
5.2, we need to solve the characteristic polynomial to get the eigenvalues; while
general polynomials with degree ≥ 5 do not have algebraic solution formula due to
Abel-Ruffini-Galois theorem. We can develop a number sequence {λi} to approach
the true eigenvalue λ; however, we can’t approximate the eigenvector of λ by solving
the kernel of TT − λi · I because it has trivial kernel.

Nonetheless, if λ has geometric multiplicity 1, we can compute (TT − λi · I)−1 · z
(in the case of tautological loop guard, we just replace z by any non-zero n-vector)
to approximate the eigenvector c(λ) due to Proposition 10. However, in the case
that λ has geometric multiplicity > 1, no such approach is available.

7 Experimental Results

Implementation. We implemented our automatic invariants generation algorithm
in Python 3.8 and used Sage [61] for matrix manipulation. All results were obtained
on an Intel Core i7(2.00 GHz) machine with 64 GB memory, running Ubuntu 18.04.
All µ values were obtained by explicitly solving the roots of characteristic polynomial
of the transition matrix and the polynomial (8).
Benchmarks. Our benchmarks are affine while loops chosen from some original
linear transition systems benchmarks (which we rewrite as programs) from the StInG
invariant generator [59] that implements the most related approach in [56], some
linear dynamical systems in [41], some loop programs in [60] and some other linear
dynamical systems resulting from well-known linear recurrences such as Fibonacci
numbers, Lucas numbers, etc.
Results. The experimental results are presented in Table 1. In the table, the column
‘Loop’ specifies the name of the benchmark, ‘Dim(ension)’ specifies the number of
program variables in the benchmark, ‘µ’ specifies the values through eigenvalues
of the transition matrix or boundary points of the intervals in the feasible domain,
‘Invariants’ lists the generated affine invariant from our approach, ‘C(om)p(a)r(ison)’
compares our approach with the existing cited work where ‘=’ means the generated
invariants are identical, ‘>’ means our generated invariants are tighter, ‘/’ means
the invariants can only be generated in this work, and ‘Time’ records the amount of
runtime for our approach measured in seconds.
Analysis. The results in Table 1 show that our approach can derive affine invariants
with irrational coefficients which result from the calculated irrational µ’s from
eigenvalues of the transition matrix and boundary points of the feasible domain,
which cannot be achieved by the invariant generator StInG. This demonstrates the
thorough coverage for the µ value endowed from our approach.

Affine Invariant Generation via Matrix Algebra 17

Table 1. Affine Invariant Generation Experimental Results

Loop Dim µ Invariants Cpr Time (s)

Fibonacci numbers 2
(1 −

√
5)/2

2x1 + (1 −
√

5)x2 + 2
√

5 − 4 ≥ 0

/ 1.78−2x1 + (
√

5 − 1)x2 −
√

5 + 3 ≥ 0

(1 +
√

5)/2
2x1 + (

√
5 + 1)x2 −

√
5 − 3 ≥ 0

2x1 + (
√

5 + 1)x2 ≥ 0

See-Saw [59] 2 1 −x1 + 2x2 ≥ 0 = 1.04
3x1 − x2 ≥ 0

Example 6.2 [41] 4 1 −
√

2 −w + y − (
√

2 − 1)x + (
√

2 − 1)z ≥ 0 > 1.73
1 +
√

2 −w + y + (
√

2 + 1)x − (
√

2 + 1)z ≥ 0

css200 [60] 2 0, 1 i − k + 1 ≥ 0, i − j ≥ 0 > 1.93−2k + 1 ≥ 0

afnp2014 [60] 2 0, 1, 1000/999 −x + 999y + 1 ≥ 0 > 1.93
y ≥ 0,−y + 999 ≥ 0

gsv2008 [60] 2 0, 1, 8/7 x − y + 50 ≥ 0, x + 7y + 50 ≥ 0 > 2.07−x + y − 2 ≥ 0

cggmp2005 [60] 2 0, 1, 10/9 i − j + 9 ≥ 0, i + 2j − 21 = 0 > 1.84

Lucas numbers 2
(1 −

√
5)/2

−2x1 + (
√

5 − 1)x2 + 5 −
√

5 ≥ 0

/ 2.152x1 − (
√

5 − 1)x2 + 3
√

5 − 5 ≥ 0

(1 +
√

5)/2
2x1 + (

√
5 + 1)x2 − 5 −

√
5 ≥ 0

2x1 + (
√

5 + 1)x2 ≥ 0

Pell numbers 2
1 −
√

2
x1 − (

√
2 − 1)x2 + 5

√
2 − 7 ≥ 0

/ 2.19−x1 + (
√

2 − 1)x2 + 3 − 2
√

2 ≥ 0

1 +
√

2
x1 + (

√
2 + 1)x2 − 3 − 2

√
2 ≥ 0

x1 + (
√

2 + 1)x2 ≥ 0

Pell-Lucas numbers 2
1 −
√

2
x1 − (

√
2 − 1)x2 + 6

√
2 − 8 ≥ 0

/ 2.17−x1 + (
√

2 − 1)x2 + 4 − 2
√

2 ≥ 0

1 +
√

2
x1 + (

√
2 + 1)x2 − 4 − 2

√
2 ≥ 0

x1 + (
√

2 + 1)x2 ≥ 0

Mersenne numbers 2 1, 2 −x1 + x2 ≥ 0 / 1.79
2x1 − x2 − 1 ≥ 0

Tribonacci numbers 3
∆ = (3

√
33 + 19)1/3 a = 1

3
(∆ + 4

∆
+ 1), b = 1/a + 1

/ 2.62
µ = (5∆ + 1)/3 x1 + bx2 + ax3 ≥ b + a

Perrin numbers 3
∆ = (

√
69+9
18

)1/3 a =
3∆+1/∆

3
, b = 1/a + 1

/ 2.50
µ = 4

3
∆ x1 + bx2 + ax3 ≥

2
3∆

+ 2∆ + 3

Jacobsthal numbers 2 −1, 2 −2x1 + x2 + 1 ≥ 0,−2x1 + x2 − 1 ≤ 0 / 1.93

Jacobsthal-Lucas 2 −1, 2 2x1 − x2 − 3 ≤ 0, 2x1 + x2 + 1 ≥ 0 / 1.94numbers

8 Related Works

Below we compare our approach with existing approaches from the literature in
more detail.
Constraint Solving. Our approach falls in the category of constraint solving.
We target affine invariants, thus our approach is incomparable with the ones for
polynomial invariant generation [38, 65, 12, 35, 53, 19, 1, 43, 16, 48, 36, 55]. Below we
compare our result with the existing results for affine invariant generation. [17] uses
quantifier elimination, while our approach is more efficient since it only involves
the calculation of eigenvalues/eigenvectors and matrix inverse. Compared with [56]
that uses several heuristics to guess the value of µ, our approach provides the
characterization for the domain of all feasible µ values, thus is complete and more
accurate. [49] considers the use of eigenvalues and eigenvectors but restricted to the
subclasses of equality and convergent invariants, while our approach targets general
affine invariants over affine while loops and provides a comprehensive treatment
of them. Another related work [41] considers to have a decidable logic for simple
affine loops without loop guard by avoiding the computation of eigenvalues. Our
result handles general affine loops with possibly loop guard and targets invariant
generation, thus they target different objectives.
Abstract Interpretation. A mainstream technique to find inductive invariants is
abstract interpretation [52, 2, 6, 21, 46, 54, 10], which is the oldest and most classical
approach to invariant generation. Roughly speaking, the method of abstract inter-
pretation first establishes an abstract domain for the specific form of invariants to

18 Yucheng Ji et al.

be generated, and then perform forward/backward propagation to reach a fixed
point. Compared with constraint solving, abstract interpretation does not provide
any guarantee on the accuracy of the generated invariants, except for rare special
cases [31]. This point is experimental observed in [56], where constraint solving can
produce much tighter invariants. In contrast, our approach ensures the tightness of
the generated invariants by a thorough analysis on the choice of the key parameter
in the application of Farkas’ Lemma.
Recurrence Analysis. Another closely-related technique is recurrence analysis [42,
26, 37, 40, 8]. It usually transforms the invariant-generation problem into a recurrence
relation, and then solve the invariants through the analysis of recurrence relations.
The disadvantage of recurrence-based approaches is that they are only applicable to
the situations where the underlying recurrence relation has a closed form solution.
In our situation, we consider the general case of affine invariants over affine while
loops, for which a closed form solution is not possible.
Logical Inference. Invariants could also be obtained through logical inference,
such as abductive inference [25], Craig interpolation [28, 45], ICE learning [29, 64],
predicate abstraction [32], random search [57], etc. Compared with our approach,
those approaches cannot provide any theoretical guarantee on the tightness of the
generated invariants, which is though ensured by our approach.
Machine Learning. The method of machine learning [30, 66, 34] solves the invariant-
generation problem as follows: first, one establishes a (typically large) training
set of programs whose invariants are given; then, training approaches (such as
neural networks) are applied to the training set to train an invariant generator;
finally, the trained invariant generator is used to generate invariants for programs
outside the training set. Compared with constraint solving, machine-learning based
approaches require a large training set to cover as most typical loops as possible,
and still cannot ensure a theoretical guarantee on the tightness of the generated
invariants. In particular, these approaches cannot produce specific numerical values
(e.g. eigenvalues) needed to handle our examples.
Dynamic Analysis. Dynamic analysis [23, 58, 47] first runs the program of concern
for multiple times to collect its execution data, and then guess the invariants based on
these data. Compared with constraint solving that statically generates the invariants
with correctness and precision guarantee, dynamic analysis needs to run the program
multiple times for a potentially large amount of execution data, and still cannot
ensure the tightness of the generated invariants.

9 Conclusion and Future Work

In this work, we had a thorough investigation on the affine invariant generation over
unnested affine while loop. Our approach is based on the previous approaches [17,
56] through Farkas’ Lemma and completely addresses the main issue of quadratic
constraints (from the application of Farkas’ Lemma) via matrix methods. Exper-
imental results show that our approach can efficiently automatic generate affine
invariants from eigenvalues/eigenvectors and matrix inverse of the relevant matrices
derived from the loop. In particular, our approach is able to generate affine invariants
with irrational coefficients resulting from irrational eigenvectors, which to our best
knowledge is not possible from the previous approaches in the literature. Future
work needs to concentrate on the complex examples.

Affine Invariant Generation via Matrix Algebra 19

References

1. Adjé, A., Garoche, P., Magron, V.: Property-based polynomial invariant generation
using sums-of-squares optimization. In: SAS. LNCS, vol. 9291, pp. 235–251. Springer
(2015). https://doi.org/10.1007/978-3-662-48288-9_14, https://doi.org/10.1007/978-3-
662-48288-9_14

2. Adjé, A., Gaubert, S., Goubault, E.: Coupling policy iteration with semi-
definite relaxation to compute accurate numerical invariants in static analysis.
Log. Methods Comput. Sci. 8(1) (2012). https://doi.org/10.2168/LMCS-8(1:1)2012,
https://doi.org/10.2168/LMCS-8(1:1)2012

3. Albarghouthi, A., Li, Y., Gurfinkel, A., Chechik, M.: Ufo: A framework
for abstraction- and interpolation-based software verification. In: CAV. LNCS,
vol. 7358, pp. 672–678. Springer (2012). https://doi.org/10.1007/978-3-642-31424-7_48,
https://doi.org/10.1007/978-3-642-31424-7_48

4. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In: SAS. LNCS,
vol. 6337, pp. 117–133. Springer (2010). https://doi.org/10.1007/978-3-642-15769-1_8,
https://doi.org/10.1007/978-3-642-15769-1_8

5. Asadi, A., Chatterjee, K., Fu, H., Goharshady, A.K., Mahdavi, M.: Polyno-
mial reachability witnesses via stellensätze. In: PLDI. pp. 772–787. ACM (2021).
https://doi.org/10.1145/3453483.3454076, https://doi.org/10.1145/3453483.3454076

6. Bagnara, R., Rodríguez-Carbonell, E., Zaffanella, E.: Generation of basic semi-algebraic
invariants using convex polyhedra. In: SAS. LNCS, vol. 3672, pp. 19–34. Springer (2005).
https://doi.org/10.1007/11547662_4, https://doi.org/10.1007/11547662_4

7. Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In: CAV.
LNCS, vol. 3576, pp. 491–504. Springer (2005). https://doi.org/10.1007/11513988_48,
https://doi.org/10.1007/11513988_48

8. Breck, J., Cyphert, J., Kincaid, Z., Reps, T.W.: Templates and recurrences: better to-
gether. In: PLDI. pp. 688–702. ACM (2020). https://doi.org/10.1145/3385412.3386035,
https://doi.org/10.1145/3385412.3386035

9. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martingales.
In: CAV. LNCS, vol. 8044, pp. 511–526. Springer (2013). https://doi.org/10.1007/978-
3-642-39799-8_34, https://doi.org/10.1007/978-3-642-39799-8_34

10. Chakarov, A., Sankaranarayanan, S.: Expectation invariants for probabilistic pro-
gram loops as fixed points. In: Müller-Olm, M., Seidl, H. (eds.) SAS. LNCS,
vol. 8723, pp. 85–100. Springer (2014). https://doi.org/10.1007/978-3-319-10936-7_6,
https://doi.org/10.1007/978-3-319-10936-7_6

11. Chatterjee, K., Fu, H., Goharshady, A.K.: Non-polynomial worst-case analysis of
recursive programs. ACM Trans. Program. Lang. Syst. 41(4), 20:1–20:52 (2019).
https://doi.org/10.1145/3339984, https://doi.org/10.1145/3339984

12. Chatterjee, K., Fu, H., Goharshady, A.K., Goharshady, E.K.: Polynomial invariant gen-
eration for non-deterministic recursive programs. In: PLDI. pp. 672–687. ACM (2020).
https://doi.org/10.1145/3385412.3385969, https://doi.org/10.1145/3385412.3385969

13. Chatterjee, K., Fu, H., Novotný, P., Hasheminezhad, R.: Algorithmic analysis of quali-
tative and quantitative termination problems for affine probabilistic programs. ACM
Trans. Program. Lang. Syst. 40(2), 7:1–7:45 (2018). https://doi.org/10.1145/3174800,
https://doi.org/10.1145/3174800

14. Chatterjee, K., Novotný, P., Zikelic, D.: Stochastic invariants for probabilis-
tic termination. In: Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, Paris, France, January 18-
20, 2017. pp. 145–160. ACM (2017). https://doi.org/10.1145/3009837.3009873,
https://doi.org/10.1145/3009837.3009873

15. Chen, Y., Xia, B., Yang, L., Zhan, N., Zhou, C.: Discovering non-linear ranking functions
by solving semi-algebraic systems. In: ICTAC. LNCS, vol. 4711, pp. 34–49. Springer
(2007). https://doi.org/10.1007/978-3-540-75292-9_3, https://doi.org/10.1007/978-3-
540-75292-9_3

20 Yucheng Ji et al.

16. Chen, Y., Hong, C., Wang, B., Zhang, L.: Counterexample-guided polyno-
mial loop invariant generation by lagrange interpolation. In: CAV. LNCS,
vol. 9206, pp. 658–674. Springer (2015). https://doi.org/10.1007/978-3-319-21690-4_44,
https://doi.org/10.1007/978-3-319-21690-4_44

17. Colón, M., Sankaranarayanan, S., Sipma, H.: Linear invariant generation using
non-linear constraint solving. In: CAV. LNCS, vol. 2725, pp. 420–432. Springer
(2003). https://doi.org/10.1007/978-3-540-45069-6_39, https://doi.org/10.1007/978-3-
540-45069-6_39

18. Colón, M., Sipma, H.: Synthesis of linear ranking functions. In: TACAS. LNCS,
vol. 2031, pp. 67–81. Springer (2001). https://doi.org/10.1007/3-540-45319-9_6,
https://doi.org/10.1007/3-540-45319-9_6

19. Cousot, P.: Proving program invariance and termination by parametric abstrac-
tion, lagrangian relaxation and semidefinite programming. In: VMCAI. LNCS,
vol. 3385, pp. 1–24. Springer (2005). https://doi.org/10.1007/978-3-540-30579-8_1,
https://doi.org/10.1007/978-3-540-30579-8_1

20. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints.
In: POPL. pp. 238–252. ACM (1977). https://doi.org/10.1145/512950.512973,
https://doi.org/10.1145/512950.512973

21. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Ri-
val, X.: The astreé analyzer. In: ESOP. LNCS, vol. 3444, pp. 21–30. Springer
(2005). https://doi.org/10.1007/978-3-540-31987-0_3, https://doi.org/10.1007/978-
3-540-31987-0_3

22. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints
among variables of a program. In: POPL. pp. 84–96. ACM Press (1978).
https://doi.org/10.1145/512760.512770, https://doi.org/10.1145/512760.512770

23. Csallner, C., Tillmann, N., Smaragdakis, Y.: Dysy: dynamic symbolic
execution for invariant inference. In: ICSE. pp. 281–290. ACM (2008).
https://doi.org/10.1145/1368088.1368127, https://doi.org/10.1145/1368088.1368127

24. David, C., Kesseli, P., Kroening, D., Lewis, M.: Danger invariants. In: FM.
LNCS, vol. 9995, pp. 182–198 (2016). https://doi.org/10.1007/978-3-319-48989-6_12,
https://doi.org/10.1007/978-3-319-48989-6_12

25. Dillig, I., Dillig, T., Li, B., McMillan, K.L.: Inductive invariant gener-
ation via abductive inference. In: OOPSLA. pp. 443–456. ACM (2013).
https://doi.org/10.1145/2509136.2509511, https://doi.org/10.1145/2509136.2509511

26. Farzan, A., Kincaid, Z.: Compositional recurrence analysis. In: FMCAD. pp. 57–64.
IEEE (2015)

27. Floyd, R.W.: Assigning meanings to programs. Mathematical Aspects of Computer
Science 19, 19–33 (1967)

28. Gan, T., Xia, B., Xue, B., Zhan, N., Dai, L.: Nonlinear craig interpolant generation. In:
CAV. LNCS, vol. 12224, pp. 415–438. Springer (2020). https://doi.org/10.1007/978-3-
030-53288-8_20, https://doi.org/10.1007/978-3-030-53288-8_20

29. Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: A robust frame-
work for learning invariants. In: CAV. LNCS, vol. 8559, pp. 69–87. Springer
(2014). https://doi.org/10.1007/978-3-319-08867-9_5, https://doi.org/10.1007/978-
3-319-08867-9_5

30. Garg, P., Neider, D., Madhusudan, P., Roth, D.: Learning invariants using deci-
sion trees and implication counterexamples. In: POPL. pp. 499–512. ACM (2016).
https://doi.org/10.1145/2837614.2837664, https://doi.org/10.1145/2837614.2837664

31. Giacobazzi, R., Ranzato, F.: Completeness in abstract interpretation: A do-
main perspective. In: AMAST. LNCS, vol. 1349, pp. 231–245. Springer (1997).
https://doi.org/10.1007/BFb0000474, https://doi.org/10.1007/BFb0000474

32. Gulwani, S., Srivastava, S., Venkatesan, R.: Constraint-based invariant inference
over predicate abstraction. In: VMCAI. LNCS, vol. 5403, pp. 120–135. Springer
(2009). https://doi.org/10.1007/978-3-540-93900-9_13, https://doi.org/10.1007/978-3-
540-93900-9_13

Affine Invariant Generation via Matrix Algebra 21

33. Gupta, A., Rybalchenko, A.: Invgen: An efficient invariant generator. In: CAV. LNCS,
vol. 5643, pp. 634–640. Springer (2009). https://doi.org/10.1007/978-3-642-02658-4_48,
https://doi.org/10.1007/978-3-642-02658-4_48

34. He, J., Singh, G., Püschel, M., Vechev, M.T.: Learning fast and precise numerical anal-
ysis. In: PLDI. pp. 1112–1127. ACM (2020). https://doi.org/10.1145/3385412.3386016,
https://doi.org/10.1145/3385412.3386016

35. Hrushovski, E., Ouaknine, J., Pouly, A., Worrell, J.: Polynomial invariants for affine pro-
grams. In: LICS. pp. 530–539. ACM (2018). https://doi.org/10.1145/3209108.3209142,
https://doi.org/10.1145/3209108.3209142

36. Humenberger, A., Jaroschek, M., Kovács, L.: Automated generation of non-linear loop
invariants utilizing hypergeometric sequences. In: ISSAC. pp. 221–228. ACM (2017).
https://doi.org/10.1145/3087604.3087623, https://doi.org/10.1145/3087604.3087623

37. Humenberger, A., Kovács, L.: Algebra-based synthesis of loops and their in-
variants (invited paper). In: VMCAI. LNCS, vol. 12597, pp. 17–28. Springer
(2021). https://doi.org/10.1007/978-3-030-67067-2_2, https://doi.org/10.1007/978-
3-030-67067-2_2

38. Kapur, D.: Automatically generating loop invariants using quantifier elimination. In:
Deduction and Applications. Dagstuhl Seminar Proceedings, vol. 05431. Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany
(2005), http://drops.dagstuhl.de/opus/volltexte/2006/511

39. Katoen, J., McIver, A., Meinicke, L., Morgan, C.C.: Linear-invariant generation for
probabilistic programs: - automated support for proof-based methods. In: SAS. LNCS,
vol. 6337, pp. 390–406. Springer (2010). https://doi.org/10.1007/978-3-642-15769-1_24,
https://doi.org/10.1007/978-3-642-15769-1_24

40. Kincaid, Z., Breck, J., Boroujeni, A.F., Reps, T.W.: Compositional
recurrence analysis revisited. In: PLDI. pp. 248–262. ACM (2017).
https://doi.org/10.1145/3062341.3062373, https://doi.org/10.1145/3062341.3062373

41. Kincaid, Z., Breck, J., Cyphert, J., Reps, T.: Closed forms for numerical loops. Pro-
ceedings of the ACM on Programming Languages 3(POPL), 1–29 (2019)

42. Kincaid, Z., Cyphert, J., Breck, J., Reps, T.W.: Non-linear reasoning for in-
variant synthesis. Proc. ACM Program. Lang. 2(POPL), 54:1–54:33 (2018).
https://doi.org/10.1145/3158142, https://doi.org/10.1145/3158142

43. Lin, W., Wu, M., Yang, Z., Zeng, Z.: Proving total correctness and generating pre-
conditions for loop programs via symbolic-numeric computation methods. Frontiers
Comput. Sci. 8(2), 192–202 (2014)

44. Manna, Z., Pnueli, A.: Temporal verification of reactive systems - safety. Springer
(1995)

45. McMillan, K.L.: Quantified invariant generation using an interpolating sat-
uration prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS. LNCS,
vol. 4963, pp. 413–427. Springer (2008). https://doi.org/10.1007/978-3-540-78800-3_31,
https://doi.org/10.1007/978-3-540-78800-3_31

46. Müller-Olm, M., Seidl, H.: Computing polynomial program invariants. Inf.
Process. Lett. 91(5), 233–244 (2004). https://doi.org/10.1016/j.ipl.2004.05.004,
https://doi.org/10.1016/j.ipl.2004.05.004

47. Nguyen, T., Kapur, D., Weimer, W., Forrest, S.: Using dynamic analy-
sis to discover polynomial and array invariants. In: ICSE. pp. 683–693.
IEEE Computer Society (2012). https://doi.org/10.1109/ICSE.2012.6227149,
https://doi.org/10.1109/ICSE.2012.6227149

48. de Oliveira, S., Bensalem, S., Prevosto, V.: Polynomial invariants by linear algebra. In:
ATVA. LNCS, vol. 9938, pp. 479–494 (2016). https://doi.org/10.1007/978-3-319-46520-
3_30, https://doi.org/10.1007/978-3-319-46520-3_30

49. de Oliveira, S., Bensalem, S., Prevosto, V.: Synthesizing invariants by solv-
ing solvable loops. In: ATVA. LNCS, vol. 10482, pp. 327–343. Springer (2017).
https://doi.org/10.1007/978-3-319-68167-2_22, https://doi.org/10.1007/978-3-319-
68167-2_22

22 Yucheng Ji et al.

50. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety
verification by interactive generalization. In: PLDI. pp. 614–630. ACM (2016).
https://doi.org/10.1145/2908080.2908118, https://doi.org/10.1145/2908080.2908118

51. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear
ranking functions. In: VMCAI. LNCS, vol. 2937, pp. 239–251. Springer (2004).
https://doi.org/10.1007/978-3-540-24622-0_20, https://doi.org/10.1007/978-3-540-
24622-0_20

52. Rodríguez-Carbonell, E., Kapur, D.: An abstract interpretation approach for automatic
generation of polynomial invariants. In: SAS. LNCS, vol. 3148, pp. 280–295. Springer
(2004). https://doi.org/10.1007/978-3-540-27864-1_21, https://doi.org/10.1007/978-3-
540-27864-1_21

53. Rodríguez-Carbonell, E., Kapur, D.: Automatic Generation of Polynomial
Loop Invariants: Algebraic Foundations. In: ISSAC. pp. 266–273. ACM (2004).
https://doi.org/10.1145/1005285.1005324, https://doi.org/10.1145/1005285.1005324

54. Rodríguez-Carbonell, E., Kapur, D.: Automatic generation of polynomial
invariants of bounded degree using abstract interpretation. Sci. Comput.
Program. 64(1), 54–75 (2007). https://doi.org/10.1016/j.scico.2006.03.003,
https://doi.org/10.1016/j.scico.2006.03.003

55. Sankaranarayanan, S., Sipma, H., Manna, Z.: Non-linear loop invariant
generation using gröbner bases. In: POPL. pp. 318–329. ACM (2004).
https://doi.org/10.1145/964001.964028, https://doi.org/10.1145/964001.964028

56. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constraint-based linear-relations analy-
sis. In: SAS. LNCS, vol. 3148, pp. 53–68. Springer (2004). https://doi.org/10.1007/978-
3-540-27864-1_7, https://doi.org/10.1007/978-3-540-27864-1_7

57. Sharma, R., Aiken, A.: From invariant checking to invariant inference us-
ing randomized search. Formal Methods Syst. Des. 48(3), 235–256 (2016).
https://doi.org/10.1007/s10703-016-0248-5, https://doi.org/10.1007/s10703-016-0248-5

58. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., Nori, A.V.: A data driven
approach for algebraic loop invariants. In: ESOP. LNCS, vol. 7792, pp. 574–592. Springer
(2013). https://doi.org/10.1007/978-3-642-37036-6_31, https://doi.org/10.1007/978-3-
642-37036-6_31

59. Sting: Stanford invariant generator. http://theory.stanford.edu/ srirams/Software/st-
ing.html (2004)

60. SV-COMP2021: 11th Competition on Software Verification (2021),
https://github.com/sosy-lab/sv-benchmarks

61. The Sage Developers: SageMath, the Sage Mathematics Software System (Version 9.4)
(2021), https://www.sagemath.org

62. Wang, J., Sun, Y., Fu, H., Chatterjee, K., Goharshady, A.K.: Quantitative analysis of
assertion violations in probabilistic programs. In: PLDI. pp. 1171–1186. ACM (2021).
https://doi.org/10.1145/3453483.3454102, https://doi.org/10.1145/3453483.3454102

63. Wang, P., Fu, H., Goharshady, A.K., Chatterjee, K., Qin, X., Shi, W.: Cost analy-
sis of nondeterministic probabilistic programs. In: PLDI. pp. 204–220. ACM (2019).
https://doi.org/10.1145/3314221.3314581, https://doi.org/10.1145/3314221.3314581

64. Xu, R., He, F., Wang, B.: Interval counterexamples for loop invariant learning. In:
ESEC/FSE. pp. 111–122. ACM (2020). https://doi.org/10.1145/3368089.3409752,
https://doi.org/10.1145/3368089.3409752

65. Yang, L., Zhou, C., Zhan, N., Xia, B.: Recent advances in program verifica-
tion through computer algebra. Frontiers Comput. Sci. China 4(1), 1–16 (2010).
https://doi.org/10.1007/s11704-009-0074-7, https://doi.org/10.1007/s11704-009-0074-7

66. Yao, J., Ryan, G., Wong, J., Jana, S., Gu, R.: Learning nonlinear loop invari-
ants with gated continuous logic networks. In: PLDI. pp. 106–120. ACM (2020).
https://doi.org/10.1145/3385412.3385986, https://doi.org/10.1145/3385412.3385986

Affine Invariant Generation via Matrix Algebra 23

A Appendix
A.1 Independence of Non-tight Invariants
By the following example, we show that the invariants produced by µ’s from the inte-
rior of the feasible domain can not be written as the non-negative linear combinations
of tight invariants:
Example 8. Consider the loop:

initial condition

θ : R · x+ f =

1 0 0
0 1 0
0 0 1

 ·
x1x2
x3

+

−1−2
−3

 = 0

while pT · x+ q = [−1, 0, 0] · [x1, x2, x3]T − 10 ≤ 0 dox′1x′2
x′3

 = T ·

x1x2
x3

+ b =

2 1 −2
1 0 0
0 1 0

 ·
x1x2
x3

+ 0.

The three eigenvalues of T are 1, 2,−1, which yield the following invariants:

µ = 1 : x1 − x2 − 2x3 + 7 ≤ 0;

x1 − x2 − 2x3 + 7 ≥ 0;

µ = 2 : x1 − x3 + 2 ≤ 0;

µ = −1 : − 1 ≤ x1 − 3x2 + 2x3 ≤ 1.

(6) here isc1c2
c3

 =
ξ

−µ3 + 2µ2 + µ− 2

 µ2 µ 1
µ− 2 µ2 − 2µ µ− 2
−2µ −2 µ2 − 2µ− 1

 ·
−10

0

=

ξ

−µ3 + 2µ2 + µ− 2

 −µ2

2− µ
2µ

Inequality (5′) is

(µ− 1)d ≥ 10ξ

Inequality (3′′) is

(µ− 1)[−1,−2,−3] · c =
ξ(µ− 1)(µ2 − 4µ− 4)

−µ3 + 2µ2 + µ− 2
≥ (µ− 1)d

when µ ≥ 1.

Compatibility condition (7) is

(µ− 1)(µ2 − 4µ− 4)

−µ3 + 2µ2 + µ− 2
≥ 10 ⇒ 11µ2 − 14µ− 24

−µ2 + µ+ 2
≥ 0

⇒
(µ− 7−

√
313

11)(µ− 7+
√
313

11)

(µ+ 1)(µ− 2)
≤ 0 when µ ≥ 1.

24 Yucheng Ji et al.

The feasible domain is [0, 1) ∪ (2, 7+
√
313

11], the tight choices are:

µ = 0 : − x2 − 10 ≤ 0;

µ =
7 +
√
313

11
:
362 + 14

√
313

121
x1 +

√
313− 15

11
x2

− 14 + 2
√
313

11
x3 +

430 + 30
√
313

121
≤ 0,

or approximately 504x1 + 24x2 − 449x3 + 794 ≤ 0.

We compute invariants from some other µ’s:

µ = 1/3 : x1 − 15x2 − 6x3 − 200 ≤ 0;

µ = 2/3 : x1 − 3x3 − 3x3 − 50 ≤ 0;

µ = 2.1 : 441x1 + 10x2 − 420x3 + 799 ≤ 0;

µ = 2.2 : 484x1 + 20x2 − 440x3 + 796 ≤ 0.

The reader can check that the invariants from 0 < µ < 1 can not be expressed by
the non-negative linear combinations of the ones from µ = 0, 1; the invariants from
2 < µ < 7+

√
313

11 can not be expressed by the non-negative linear combinations of the
ones from µ = 2, 7+

√
313

11 either. So from this example we conclude that though the
µ’s from the interior of the feasible domain are not tight, they still would provide
independent invariants and thus could be kept as back-up choices. ut

A.2 Basis of All Legitimate Invariants

We care about one question: is there a basis of invariants, such that all legitimate
invariants are non-negative linear combinations of this basis? By Example 8, we
already know that tight invariants can not form such a basis.

We have the following proposition to answer this question:
Proposition 11. Consider a single-branch affine while loop with deterministic
updates. There exists a basis consisting of 2n vectors (n is the number of variables),
such that any c produced by some µ from the feasible domain is a non-negative linear
combination of this basis. However, these basis vectors don’t lead to invariants.
Proof. Recall the formula (6′) for c produced by µ from the feasible domain (with
z = PT · ξ):

c(µ) = (TT − µ · I)−1 · z is proportional to ±Ad(µ) · z

where the entries of Ad(µ) are cofactors of TT − µ · I, thus are polynomials of µ
with degree ≤ n− 1. If we do Taylor expansion for Ad(µ) w.r.t µ:

Ad(µ) = A0 + µ ·A1 + ...+ µn−1 ·An−1

then c can be written as a non-negative linear combination

c = (±A0 · z) + µ · (±A1 · z) + ...+ µn−1 · (±An−1 · z)

of the vectors {±A0 · z, ...,±An−1 · z}. Thus these 2n vectors form a desired basis.
However, these vectors themselves are usually not invariant, because there does not
always exist µ > 0 such that Ad(µ) = Ai for 1 ≤ i ≤ n− 1. ut

Affine Invariant Generation via Matrix Algebra 25

Furthermore, it’s complicated to compute this basis for any specific loop. We
need to calculate the coefficients A0,A1, ...,An−1 of the Taylor expansion, which
are given by the formula:

Ai =
di

dµi
Ad(µ)|µ=0.

Therefore, we can not use the basis as ‘optimal’ invariants.

A.3 Proof of Proposition 6

Proof (Proof of Proposition 6). If µ is a root to (8), then the two conditions (3)(5′)
for d coincide:

bT · c− ξ · q = (µ− 1)d = (µ− 1)fT · (RT)−1L · c;

otherwise, the feasible domain of d is an interval. We discuss two cases respectively:

– when 0 ≤ µ < 1 : constraints (3′)(5′) give us

(µ− 1)d ≥ max{bT · c− ξ · q, (µ− 1)fT · (RT)−1L · c}

– when µ ≥ 1 : constraints (3′′)(5′) give us

bT · c− ξ · q ≤ (µ− 1)d ≤ (µ− 1)fT · (RT)−1L · c

and the optimal value of d is one of the two boundaries of the interval. ut

A.4 Proof of Theorem 2

Proof (Proof of Theorem 2).

1. By the definition of adjoint matrix, we have

(TT − µ · I)Ad(µ) = det(TT − µ · I) · I

for any µ. Since λ is an eigenvalue of T, we have det(TT − λ · I) = 0, and

(TT − λ · I)Ad(λ) = det(TT − λ · I) · I = [0]n×n

thus for any vector x,

(TT − λ · I)Ad(λ) · x = 0;

so Ad(λ) · x is an eigenvector of TT with eigenvalue λ.
Using the condition that the geometric multiplicity of λ is 1, we know the rank
of TT − λ · I is n− 1; it has at least one non-zero cofactor. Hence Ad(λ) is not
zero matrix, and there exists x such that Ad(λ) · x 6= 0.
Otherwise the geometric multiplicity of λ is larger than 1, then rank(TT−λ ·I) <
n− 1 and all its cofactors are 0. In this case Ad(λ) = [0]n×n.

2. We know that every entry of Ad(µ) is a cofactor of TT − µ · I, which is a
polynomial of µ, hence continuous in µ. Thus for any {λi} → λ, we have
{Ad(λi) · x} → Ad(λ) · x. ut

