
HAL Id: hal-03494504
https://hal.science/hal-03494504

Submitted on 21 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extracting data models from background knowledge
graphs

Daniela Oliveira, Mathieu D’aquin

To cite this version:
Daniela Oliveira, Mathieu D’aquin. Extracting data models from background knowledge graphs.
Knowledge-Based Systems, 2022, 237, pp.107818. �10.1016/j.knosys.2021.107818�. �hal-03494504�

https://hal.science/hal-03494504
https://hal.archives-ouvertes.fr

Extracting Data Models from Background Knowledge Graphs
Daniela Oliveirab, Mathieu d’Aquina,∗
aLORIA, Université de Lorraine, Nancy, France
bLASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Portugal

ART ICLE INFO
Keywords:
Knowledge Graphs
Ontologies
Data Modelling

Abstract
Knowledge Graphs have emerged as a core technology to aggregate and publish knowledge on the
Web. However, integrating knowledge from different sources, not specifically designed to be interop-
erable, is not a trivial task. Finding the right ontologies to model a dataset is a challenge since several
valid data models exist and there is no clear agreement between them. In this paper, we propose to
facilitate the selection of a data model with the RICDaM (Recommending Interoperable and Consist-
ent Data Models) framework. RICDaM generates and ranks candidates that match entity types and
properties in an input dataset. These candidates are obtained by aggregating freely available domain
RDF datasets in a knowledge graph and then enriching the relationships between the graph’s entities.
The entity type and object property candidates are obtained by exploiting the instances and structure
of this knowledge graph to compute a score that considers both the accuracy and interoperability of
the candidates. Datatype properties are predicted with a random forest model, trained on the know-
ledge graph properties and their values, so to make predictions on candidate properties and rank them
according to different measures. We present experiments using multiple datasets from the library do-
main as a use case and show that our methodology can produce meaningful candidate data models,
adaptable to specific scenarios and needs.

1. Introduction
In recent years, the concept of Knowledge Graph (KG)

has become more prominent and has been adopted to de-
scribe graphs that aggregate different sources of knowledge [9]
(e.g. DBPedia [21]). KGs are enabled by a set of best prac-
tices which adhere to the Resource Description Framework
(RDF)1 data model, following the Linked Data2 principles.

Ontologies, defined as “an explicit specification of a con-
ceptualization” [12], are typically used tomodel KGs, ensur-
ing consistency between data sources by providing a schema
that formally represents and precisely defines entities and
their relationships [19] (see Suplementary Material 1 for a
more detailed conceptual background). A key barrier for a
data publisher, however, is to find the ontologies that best fit
their data, but also enable integration with existing datasets
in the domain.

As an example representing a simplified version of the
use case described in this paper, we can consider a library
wanting tomake their catalogue of books available as a know-
ledge graph. In choosing what ontologies to use, and what
classes and properties from those ontologies to specifically
apply, this library will take into consideration how aligned
those ontologies are with the data content to be represented,
but also how some choices might lead to greater interoperab-
ility with other libraries, if the considered elements are com-
monly used by those libraries, and how consistent the overall
result will be. Our objective here is to provide a framework
to support such a process by explicitly aligning the content

∗Corresponding author
mathieu.daquin@loria.fr (M. d’Aquin)

ORCID(s):
1https://www.w3.org/TR/rdf11-concepts/ (Accessed in November

2020)
2https://www.w3.org/DesignIssues/LinkedData.html (Accessed in May

2021)

of the data to existing, overlapping knowledge graphs, en-
abling us to assess content alignment (through similarity),
potential for interoperability (through direct or indirect oc-
currence) and consistency (through verifying the systematic
use of classes and properties in different situations). There-
fore, if in our example the framework finds that, among over-
lapping knowledge graphs, two different classes can be used
to represent books, the class Book from one ontology and
the class LiteraryWork from another, the user might want
to choose the first one for being more semantically aligned
with their data. They could however, based on the informa-
tion provided by the framework, choose the second class for
being more commonly used by or linked to existing know-
ledge graphs and therefore better in supporting interoperab-
iliy. Once one is chosen, other aspects of the data might be
described differently so to keep consistent with this choice.

A survey conducted over several years with Linked Data
providers found that the third most common barrier to pub-
lishing Linked Data was “selecting appropriate ontologies
to represent our data” [39, 40]. Similarly, another survey [24]
found that data publishers in the libraries, archives and mu-
seums domains consider that barriers to publishing Linked
Data, included being time-consuming, having a steep learn-
ing curve, difficulty in using linked data tools or no adequate
tools being available, and difficulty in establishing links. There-
fore, when data publishers find the process of publishing
Linked Data more demanding than simply maintaining their
current publishing process, they end up either not publishing
linked data at all or they do not go through all the effort it re-
quires to provide fully and directly interoperable datamodels
with published data sources. In this second case, it can lead
to publishers creating local, isolated ontologies or extending
upper-level ontologies to meet their requirements, therefore
not enabling integration with other existing datasets.

This issue has been described in several domains such as

D Oliveira et al.: Preprint submitted to Elsevier Page 1 of 27

https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/DesignIssues/LinkedData.html

Extracting Data Models

Table 1
Entity types that describe books in different library datasets.

Library Book entity types

British dcterms:BibliographicResource & bibo:Book & schema:Book

French skos:Concept | frbr:Work
German bibo:Document

Gutenberg pgterms:ebook

University bibframe:Work | bibfram:Text
Portuguese edm:ProvidedCHO

Spanish bne:C1003

OpenL /type/work

Institute Title

life sciences [17], education [5], and library data [44]. Since
we will focus our use case on the library data domain (see
Section 3 for more details), Table 1 illustrates the issue in
this domain. It shows how each of the libraries describes an
entity corresponding to a physical book in their respective
collections. Each of the existing libraries had its data model
manually created and curated. Therefore, there is no clear
correct choice and no standard is fully adopted in the do-
main. A librarian wishing to publish their catalogue online,
as part of a knowledge graph, would find a hard barrier in
deciding which data model to follow.

In this paper, we explore the potential of automating the
selection of an ontological model for existing data and de-
scribe RICDaM - Recommending Interoperable and Con-
sistent Data Models - a framework to ease the task of se-
lecting the best data model for an input dataset (which can
be provided in a structured or semi-structured formats). This
framework produces a ranked list of candidate data models
that fit the data and are interoperable with a KG of published
RDF data sources in the same domain as the input data. This
KG is obtained by aggregating freely available RDF data-
sets, extracting their underlying ontology graph, and then
enriching its edges to produce a tightly connected graph. We
exploit the content and graph structure of this KG to com-
pute a score that considers the accuracy, interoperability, and
consistency of the candidates. The output of the framework
is the correspondence between a list of triple patterns (i.e.,
⟨domain – property⇾ range⟩) extracted from the input dataset
and a ranked list of candidate triple patterns from theKG that
can be used to model that same information. These rankings
are obtained by combining three scores into a single triple
score. This score combination is weighted and the user has
the choice to decide the weight for each score to best fit their
use case or application.

Through the experiments presented here, we show that
RICDaM has the potential to support data publishers in ex-
pediting the process of selecting an ontological model for
their data and transforming the data into this model, by
providing an overview of the data models in the domain
while suggesting appropriate entity type candidates for the
entities in a dataset. Without such a framework, a data pub-
lisher would need to study the domain standards, if any ex-
ists, by manually analysing existing datasets and choosing
the data model that best suits their use case.

A demonstration [29] of the output of the framework for
two datasets is available at http://afel.insight-centre.org/
ricdam/. This demonstration provides some customisation
options and intends to emulate a possible implementation of
the framework.

We start the article by presenting some preliminary con-
cepts and introducing some related work. Then we describe
the datasets used throughout this paper and present an over-
view of the framework, followed by a detailed explanation of
the three stages of the framework including the experiments
devised to test the methodology with results and discussion.
Finally, we present our conclusions, limitations, and future
work.

2. Related Work
Data transformation from heterogeneous data sources to

RDF is a complex task and different solutions have been pro-
posed that focus on specific file formats or provide the flexib-
ility to be adapted to several data publishing formats. Blom-
qvist et al. [20] share a list of requirements for generating
RDF from heterogeneous data sources, gathered from ex-
perience and their use cases. These requirements include:
(1) transform different file formats, including binary, and
easily extend with new formats, (2) exploit existing RDF
data sources for context, (3) easy to use by Semantic Web
experts, (4) integrate well in a data engineering workflow,
and (5) be flexible and maintainable. Our framework aligns
well with the use cases proposed by Blomqvist et al. It fulfils
the requirements or is easily extendable to fulfil them.

In the same article, Blomqvist et al. propose SPARQL-
Generate, an extension of SPARQL 1.13 to transform
data into RDF, while fulfilling the requirements delineated.
SPARQL-Generate works by creating an adapted SPARQL
query that maps input data to an RDF data source by answer-
ing the query.

Similarly, mapping languages are a popular solution that
has long been used to map data sources to RDF by creat-
ing a set of logical rules that express the relations between
entities in a data source. These rules are formalised with
a vocabulary that facilitates the translation of data sources
to RDF. R2RML4 [6] was proposed as a language to ex-
press mappings between Relational Databases (RDB) and
RDF datasets. The RML mapping language [7] expanded
the applicability of R2RML by making the language input
format-agnostic, while YARRRML [16] was proposed as a
human-readable format to write these mappings. Tools and
mappings for different formats have been developed (e.g.
[25, 26, 13]) and the mapping languages have been applied
to convert data sources in different domains (e.g. [8, 18]).
Generally, mapping languages aim to create RDF data mod-
els that fit heterogeneous data sources.

However, the mappings created are either directly
extracted from the data source without following a specific
existing ontology or when creating the rules, an ontology or

3https://www.w3.org/TR/sparql11-query
4RDB to RDF Mapping Language

D Oliveira et al.: Preprint submitted to Elsevier Page 2 of 27

http://afel.insight-centre.org/ricdam/
http://afel.insight-centre.org/ricdam/
https://www.w3.org/TR/sparql11-query

Extracting Data Models

a set of ontologies needs to be manually chosen to map the
concepts in the data sources. Our framework extracts these
concepts from the existing RDF data sources, facilitating
the process of choosing the most appropriate ontology
or set of ontologies for a given use case. Furthermore,
our solution could be integrated with mapping languages
since our framework extracts the specific vocabularies from
existing data. Therefore, our framework could facilitate
the creation of mapping rules by suggesting a data model
or candidate entity types and proprieties to jump-start the
creation of the mapping rules.

When looking specifically at entity type matching,
approaches have been proposed that exploit relationships
between entities to match entity types [32, 38]. A more
recent approach [43] uses a fixed group of ontologies
(DBPedia, YAGO, and schema.org), chosen due to pre-
existing mappings between them, as background knowledge
to choose the best entity type to match an input. This
approach, like ours, uses a search-based approach to gen-
erate candidates and applies a ranking methodology to an
input unstructured text based on its context. Our approach
does not take into account context since, currently, our
framework does not accept unstructured text as an input and,
therefore, there is no context to be extracted. Furthermore,
while the authors of [43] focus on entity types only, we
propose a methodology to match the whole data model of
an input dataset that not only ranks candidates based on
content but also focuses on maximising interoperability
with existing RDF datasets.

When focusing on the schema matching problem in the
alignment of object properties, it is common to find ap-
proaches that refocus the problem as a task to find rela-
tionships between individuals. RelFinder [22] is an ex-
ample of this approach since they perform a search over en-
tities in an RDF dataset to find their relationships, while
other approaches use schema paths to find relationships
between entity individuals through their entity types [36,
37]. Hutchison et al. [33] also find relationships between en-
tities but, besides considering the path between entities, also
takes into account external resources by measuring the co-
occurrence of entities inWeb documents. Due to the holistic
nature of our framework, we extract object properties from
the entity type candidates generated and ranked. Therefore,
we do not need the datasets to be aligned a priori. Overall,
in our framework, we consider a broader view of relation-
ships by taking into account schemas from different datasets
and providing candidates that match them. Moreover, our
relationship matching strategy works not only for RDF on-
tologies but also for semi-structured datasets.

Looking at matching datatype properties, the focus is
usually on analysing the values of the datatype properties
to find matches. Hutchison et al. [34] proposed a method to
match datatype property candidates using mutual informa-
tion at the instance level to generate candidates and applying
a genetic algorithm to create mappings between datatype

properties. The authors of this work focus on finding the
best matches for simple and complex datatype properties.
In our work, we aim to find a broad list of candidates from
several existing data models and rank them according to
different measures.

The problem of generating datatype property candidates
is akin to the task of tabular data interpretation, where table
headers represent entity types or properties for each row,
which represents an entity. The first task in tabular data an-
notation is identifying the type of data in each column and
the relations between columns. Syed et al. [41] explore the
use Wikipedia as background knowledge, while other ap-
proaches use HTML (Hypertext Markup Language) tables
obtained from the Web [23, 45, 1] to interpret tabular data.
Numerical values in tables are not easy to label. Therefore,
approaches have been proposed to identify them [27, 47] us-
ing classification and clustering methods. Commonly, tab-
ular data does not follow any strict data model. Therefore,
data publishers provide table headers that, even though they
might refer to the same concepts, are provided with differ-
ent names. For instance, Chen et al. [4] provide the example
of a latitute column versus the abbreviated lat header. The
authors of this work use a supervised learningmethod to pre-
dict alternative or missing schema labels to integrate tabu-
lar data. In our proposed datatype property prediction ap-
proach, we also apply a Random Forest model. In addition
to similar features proposed by Chen et al. [4], we also ex-
tract some features that focus on distinguishing string values,
such as the number of letters, letter casing, and the number
of non-alphanumeric characters. However, due to the variety
of string datatypes, we do not expect the datatype model to
obtain a high Precision@1, but we aim for high Precision@5
since the model is used to generate an extensive list of data-
type property candidates that is further ranked by content-
and interoperability-based scores.

To summarise, while work exists to address parts of the
process of recommending a data model to be used for given
input data sources, or similar tasks, a complete process aim-
ing to suggest all the elements of such a data model based on
user requirements regarding accuracy, interoperability and
consistency does not seem to exist at this point. While we
take inspiration from some of the works presented above to
create components of our process, this means that, to the best
of our knowledge, there is no directly comparable approach
to ours.

3. Datasets
This research was motivated and guided by a library data

domain use case. Several large RDF datasets exist and have
been published following linked data principles in this do-
main and it is common to find semi-structured data in CSV
and JSON formats that are related to it. We used two par-
tial ground truths in the experiments to help evaluate the
performance of the proposed methodology. The following
sections detail the characteristics of each of these datasets
including general statistics related to their contents.

D Oliveira et al.: Preprint submitted to Elsevier Page 3 of 27

Extracting Data Models

Table 2
Summary of the library datasets used. The dashed line separates RDF (top) from non-
RDF (bottom) datasets. ET = Entity Types; DP = Datatype Properties; OP = Object
properties.

Source name URL Handle # Entities # ET # DP # OP # Triples

British Library https://www.bl.uk British 17 289 195 15 34 17 51
Bibliothèque Nationale de France https://www.bnf.fr French 38 100 563 15 93 602 695
Deutsche Nationalbibliothek https://www.dnb.de German 50 340 156 20 236 187 423
Project Gutenberg https://www.gutenberg.org Gutenberg 856 476 7 40 30 70
James Hardiman Library http://www.library.nuigalway.ie University 5 236 482 43 293 74 367
Biblioteca Nacional de Portugal http://www.bnportugal.gov.pt Portuguese 2 437 096 2 28 0 28
Biblioteca Nacional de España http://www.bne.es Spanish 20 752 087 16 163 38 201
Open Library (JSON) https://openlibrary.org OpenL 54 678 367 15 324 5 329
DSI Library (CSV) https://dsi.nuigalway.ie Institute 34 N/A N/A 0 32

3.1. Library Use Case
The library data domain is a prime example of the prob-

lem RICDaM aims to tackle. Traditionally, libraries have
exposed their catalogues using Machine-Readable Cata-
loguing (MARC)5 standards, which have been criticised for
their restrictions in the description of relationships between
entities [42, 3]. Libraries have, therefore, been shifting to-
wards more open, reusable, and interoperable formats by ex-
posing their catalogues in the RDF format. However, several
schemas have been proposed to structure bibliographic data
but none are widely adopted [44], with different libraries
modelling data in distinct ways [14, 31], hindering data in-
terchange between published datasets. Considering the dif-
ferent solutions, it is also challenging for the library data
publisher to select the most appropriate data model when
transitioning from traditional standards to RDF models.

In our experiments, we distinguish between RDF and
non-RDF (CSV and JSON) datasets. Table 2 presents the
datasets chosen from several publicly available online library
catalogues. The Gutenberg and University datasets were
chosen as the experimental use cases since they follow data
model practices not completely or easily linked to the mod-
els of the other libraries. The non-RDF datasets include a
JSON dataset from the Open Library and a local small-scale
CSV example with books and magazines from the library
of the Computing and Communications Museum of Ireland
located in the Data Science Institute (DSI).
3.2. Evaluation Datasets

The goal of RiCDaM is not to find a single best data
model but instead to provide recommendations among pro-
posed data models in a certain domain. These recommenda-
tions enable a data publisher to find elements of a data model
that best fit their purpose, be it specificity or interoperabil-
ity. RiCDaM includes the interoperability measure which
leads to the system not always proposing the candidate that,
for example, is featured in existing schema matching ground
truths, such as the OAEI Knowledge Graph track6. To the
best of our knowledge, no ground truth exists that can re-
liably evaluate a data model recommendation in these con-

5http://www.loc.gov/marc (Accessed in April 2020)
6http://oaei.ontologymatching.org/2020/knowledgegraph

ditions. Furthermore, since our goal is not to find a single
best data model but provide recommendations within sev-
eral viable options, a reliable ground truth to evaluate in-
teroperability and consistency is not trivial to construct, if
even possible. Despite these limitations, we used the OAEI
Knowledge Graph track and we built a ground truth within
the scope of this use case that can be used for future systems
and comparisons. Hopefully, this ground truth will help with
evaluating future approaches that take a similar approach to
the one taken in RiCDaM.
3.2.1. DBkWik Ground Truth

For the evaluation and analyses of the components of the
framework developed we use the data extracted for the DB-
kWik KG [15]. This data was made available for the OAEI
2020 Knowledge Graph track7 in which the main task was
developing systems capable of matching both the instances
and the schema of KGs. The data was extracted from pages
in the Fandom Wikifarm8 from three Star Wars-related wi-
kis: Star Wars (SW), Star Wars: The Old Republic (SW-
TOR), and Star Wars Galaxies (SWG); three Star Trek wi-
kis: Memory Alpha (MA), Memory Beta (MB), and Star
Trek Expanded Universe (STE); and two Marvel-related wi-
kis: Marvel Database (MDB) and Marvel Cinematic Uni-
verse (MCU).

We use SWTOR and SWG as the StarWars KG,MB and
STE as the Star Trek KG, and MDB as the Marvel KG. SW
and MA are used as the input data since they are the most
likely to overlap with the resources in the KG data sources
and, therefore, better emulate the application of our frame-
work. Since Marvel only has two datasets, we empirically
chose MCU as the input dataset. To evaluate the mappings
between input and KG, we use the Ground Truths (GTs)
provided for the OAEI 2019 Knowledge Graph Track. These
GTs include 1-to-1 equivalence mappings of entities, entity
types, and properties for each pair of files.

Table 3 shows the number of each one of these elements
in the ground truth datasets, split into data that went into the
KG and input. It also includes the number of mappings in
the GT for each data model element. These statistics show

7http://oaei.ontologymatching.org/2020/knowledgegraph
8https://www.fandom.com

D Oliveira et al.: Preprint submitted to Elsevier Page 4 of 27

https://www.bl.uk
https://www.bnf.fr
https://www.dnb.de
https://www.gutenberg.org
http://www.library.nuigalway.ie
http://www.bnportugal.gov.pt
http://www.bne.es
https://openlibrary.org
https://dsi.nuigalway.ie
http://www.loc.gov/marc
http://oaei.ontologymatching.org/2020/knowledgegraph
http://oaei.ontologymatching.org/2020/knowledgegraph
https://www.fandom.com

Extracting Data Models

Table 3
DBkWik statistics. ET = Entity Types; DP = Datatype Properties; OP = Object proper-
ties.

Dataset Data # Entities # ET # DP # OP # Triples

Star Wars
KG: SWTOR + SWG 37 590 172 393 154 547
Input: SW 335 666 273 231 483 714
GT: SW-SWG + SW-SWTOR 2448 17 7 57 -

Star Trek
KG: MB + STE 127 149 527 268 388 656
Input: MA 143 838 185 181 160 341
GT: MA-MB + MA-STE 9754 19 16 50 -

Marvel
KG: MDB 1 086 734 190 101 54 155
Input: MCU 136 500 59 49 114 163
GT: MCU-Marvel 1641 2 3 8 -

that the ground truth is not very rich in data model elements
and most of the mappings considered are between entities.
3.2.2. Gutenberg Ground Truth

In addition to the DBkWik ground truth, we created a
partial ground truth for the Gutenberg dataset. This ground
truth better aligns with RICDaM’s use case since it has sev-
eral correct options for each data model element and il-
lustrates the need for a framework like RICDaM. We se-
lected the Gutenberg dataset because it has a simple data
model with entity types and properties that are ubiquit-
ous to the data included in the library knowledge graph.
Therefore, for this ground truth we select both entity types
(pgterms:agents and pgterms:ebook), five datatype properties
and pgterms:creator as an example of an object property,
considering that this is the only object property that is eas-
ily mapped between all knowledge graph datasets. For each
of these elements, we manually selected possible equival-
ences in the datasets of the knowledge graph. The ground
truth is unranked since we do not consider any candidate
better than others but consider instead their context in the
graph. The Gutenberg ground truth is available at https:
//figshare.com/s/cdfbd624e4e451d7ac259.

4. Framework Overview
The proposed workflow, illustrated in Figure 1, has three

stages: (1) Building Background Knowledge constructs a
KG from RDF data sources, extracts the underlying onto-
logy graph from these sources and trains a Random Forest
model to predict datatype properties, (2) Candidate Gen-
eration produces a list of entity type and property candid-
ates for entities and properties in an input dataset extracted
from the background knowledge, and, finally, (3)Candidate
Ranking ranks the lists of entity type and property candid-
ates using three scoring methodologies (content, interoper-
ability and consistency).

The requirement to apply this framework to obtain can-
didate ontology elements for specific data is that related and
overlapping data can be found already in the form of know-

9URL will be replaced with public DOI in a final version.

ledge graphs. The following sections detail each stage and
illustrate their application in the library data domain where
such a requirement is easily fulfilled. For the remainder of
this article, wewill use the prefixes in Table 1s of the Supple-
mentary Material when referring to ontology namespaces.

5. Building Background Knowledge
In this stage, we describe the knowledge structures we

extract to support our framework, illustrated in Figure 1.
These structures are built to facilitate the generation and
ranking of entity type candidates and properties. The frame-
work has the following requirements: (1) efficiently produce
ranked data model candidates, (2) enable search over the lit-
erals of the RDF data sources to generate entity type candid-
ates, (3) easily traverse the ontology graph to understand the
relations of each entity type and property to rank them based
on their interoperability, and (4) generate datatype property
candidates from literal objects.

We consider two main sources of knowledge that can be
extracted from RDF data sources: the data layer and the on-
tology layer. The data layer contains the entities and their
relationships, and the ontology layer contains not only the
entity types and properties used in the dataset but also fur-
ther logical relationships between entity types that might not
be featured in the dataset.

Therefore, to answer the requirements of the framework,
we define the following tasks:
(1) building the KG: extracts the RDF data layer and

stores it in a document store to be indexed;
(2) creating the ontology graph: extracts the ontology

layer and connects it via hierarchical and logical re-
lationships and enriches the graph with edges inferred
from the data layer;

(3) extracting metadata: pre-computes the metadata maps
that facilitate candidate generation and ranking;

(4) fitting the datatype property classification model:
training and testing a Random Forest model to predict
datatype properties.

D Oliveira et al.: Preprint submitted to Elsevier Page 5 of 27

https://figshare.com/s/cdfbd624e4e451d7ac25
https://figshare.com/s/cdfbd624e4e451d7ac25

Extracting Data Models

Data
Documents

Knowledge
Graph

Knowledge Building

Unranked Entity
Type Candidates

Object and
Datatype
Properties

Entity Types Properties

Input Dataset
(CSV, JSON, RDF)

Candidate Generation

Content
Score

Interoperability
Score

Consistency
Score

Ranked Entity Type
Candidates

Ranked Property
Candidates

Ranked Data Model
Candidates

Candidate Ranking

RDF Sources

Ontology Layer

Data Layer

Properties

Ontology Layer

Data Layer

Properties

Data Layer

Properties

Ontology Layer

Unranked Object
Property

 Candidates

Unranked Datatype
Property

 Candidates

Datatype
Properties

Random Forest

Object
Properties

Pre-computed
metadataDocument Store

Content
Score

Interoperability
Score

Entity Types

Figure 1: Framework diagram. Red dashed arrows indicate the structures involved in the
generation of candidates for each data model elements.

Library 1

Library 2

Library 3

Library 4

The Eye of the
World

The Book Thief

La Ladrona de
Libros

Knowledge Graph

The Wheel of
Time: The Eye of

the World

Manuscript

Book

Libro

The Hobbit Author

J. R. R. Tolkien January 3, 1892
has birthdate

Person

Markus Zusak

equivalent

equivalent

subclass of created by

January 3, 1892fecha de
nascimiento

has author

Ontology graph

subclass of

Figure 2: Example of knowledge building from RDF sources.

Figure 2 illustrates the knowledge building process,
more specifically tasks (1) and (2). In this figure, we have
four RDF datasets from libraries and some entities and their
relationships. The books are of types Book, Manuscript, and
Libro. The people in the datasets are of type Author and Per-
son. Those represent classes of hypothetical ontologies that
were connected in a single graph through enrichment pro-
cesses. Both people have a datatype property representing
their date of birth. As described below, the ontology graph

is created by linking the data models from different sources
and enriching the relationships between entities.
5.1. Building the Knowledge Graph

The Knowledge Graph is built from several RDF data
sources that are assumed to (1) be previously published,
(2) follow the RDF data format, (3) cover a similar or related
domain to the data that needs to be modelled and (4) include
equivalences for entities and properties to be modelled.

The data sources are indexed in a document store10 with
the entities parsed into a structured JSON (JavaScript Ob-
ject Notation) format, where the attributes are the proper-
ties and the values are the objects of those properties. In
our implementation, we used the Raptor RDF Syntax Lib-
rary11 which converts several RDF file formats into a com-
mon JSON structure. We merge blank nodes (i.e., entities
without URI, that can be considered independently of other
entities) with their referencing entities and exclude docu-
ments that do not have a rdf:type property.
5.2. Creating the Ontology Graph

The KG is supported by a background ontology graph
that provides a wider data model but also includes relation-
ships and entity types that might not be represented in the
data. This ontology graph, therefore, allows for broader

10Our implementation uses ElasticSearch - https://www.elastic.co/

elasticsearch (Accessed in September 2020)
11http://librdf.org/raptor (Accessed in September 2020)

D Oliveira et al.: Preprint submitted to Elsevier Page 6 of 27

https://www.elastic.co/elasticsearch
https://www.elastic.co/elasticsearch
http://librdf.org/raptor

Extracting Data Models

searches that consider not only the entity type of a certain
entity but also the neighbours and relationships of that en-
tity type. The graph can then be exploited to compute paths
between nodes and find more relationships between con-
cepts.

We obtain this graph by automatically extracting and re-
trieving from theWeb the ontologies used by each RDF data
source. If the input datasets to be modelled are provided in
the RDF format, then their ontologies are also retrieved to
be added to the ontology graph.

Then, we construct the first layer of the ontology graph
by considering the relationships in and between the onto-
logy classes and properties. A weighted directed ontology
multigraph G is defined as G = (V ,E,W), where V is
the set of vertices, E is the multiset of edges that connect
the vertices, andW is the weighting function for the edges.
The vertices represent ontology classes or properties that
are connected to at least one edge. Edges represent rela-
tionships between ontology classes or properties. Edges
created from owl:equivalentClass or owl:equivalentProperty
predicates are added in both directions between the pair of
vertices. Similarly, for the predicates rdfs:subClassOf and
rdfs:subPropertyOf, we create the inverse edges and name
them superClassOf and superPropertyOf, respectively, to al-
low graph traversal through the children vertices. These
edges are assigned a weight of 1 since they are explicitly
stated. Edges obtained through matching as described be-
low, are weighted higher based on the confidence of any ex-
tracted mapping.

We have previously shown that enrichment strategies
lead to more cohesive ontology graphs with new paths be-
ing created between disconnected ontologies [30]. There-
fore, the second layer of edges is obtained with an enrich-
ment step that creates new relationships between ontology
classes using: (1) co-occurring entity types, (2) owl:sameAs
links, (3) ontology matching, and (4) extended string match-
ing. The co-occurring entity type edges are obtained by ex-
tracting entities that have more than one type assigned in the
KG. The relationship between the two entity types is usually
equivalence or subsumption and, therefore, an edge is added
between the two ontology classes with an assigned weight
of 1. Next, we extract new relationships from owl:sameAs

links by linking entity types vertices of entities connected
via the owl:sameAs property and attribute a weight of 1 to
these edges.

The final enrichment step adds edges from string match-
ing techniques. First, we use ontology matching techniques
to discover new relationships between ontology classes and
properties in the ontology graph. We use the Agreement-
MakerLight (AML) [10] ontology matching system since
it is consistently one of the best-performing systems in the
Ontology Alignment Evaluation Initiative (OAEI) [11]. We
adapted AML’s workflow to efficiently process bulk match-
ing requests from the pairwise combinations of ontologies.
We use the AML WordNet Matcher to extend the lexicon
of the labels in the ontologies and use the Word Matcher
to obtain the mappings. This matcher uses a bag-of-words

strategy to find word overlaps between two ontology class
labels and scores these mappings with a modified Jaccard
similarity. The mapping score scorem ranges between 0 and
1, where 1 represents the highest similarity between two
mapped classes. A threshold can be set to exclude map-
pings below a certain score. We weigh each new edge as
W (e) = 1 + (10 − (10 ⋅ scorem)). We apply a linear trans-
formation to the score so that the edge weight ranges from
1 to 11 and lower mapping scores have significantly heav-
ier edge weights than higher scores, making them harder to
traverse during graph searches.

The ontology matching enrichment step is evaluated us-
ing precision and recall metrics. We evaluate the mappings
against varying confidence thresholds to understand how this
parameter affects the results. We performed a baseline eval-
uation of the chosen ontology matching strategy by selecting
a subset of two (cmt and conference datasets) of the manu-
ally curated reference alignments of the OAEI Conference
track [48]. However, since this reference alignment eval-
uates only equivalent mappings, we added the COMPOSE
reference [46], where the author extended some of the con-
ference reference mappings to also include subsumption cor-
respondences.

In addition to ontology matching, if the input datasets
are not in RDF format, we perform extended string match-
ing step between data sources and ontologies. In this step,
we match ontologies extracted from the RDF data sources
with the data model inferred from the semi-structured in-
put datasets From RDF input data, we extract entity types
and properties labels. For datasets that do not have these re-
sources explicitly described, we use attributes or table head-
ers as input for this matching task. Using the labels previ-
ously obtained, we search them in this ontology index and
retrieve the top-10 matches. We score the matches using the
string similarity score described in Section 7.1.1. We add
these matches as new edges and weigh them using the same
linear transformation used for ontology matching edges.

The extended string matching was evaluated using the
full OAEI Conference track data from the 2019 edition12.
For this evaluation, we used the last fragment of each URI
(i.e., the remaining of the URI after the # symbol which is
present in all the URIs of the ground truth) as the label and
searched for each label in all other conference ontologies.
We then applied the extended similarity methods over this
set of labels and ontologies.
5.2.1. Ontology Matching Evaluation Results

Figure 3 shows the precision and recall results of this
evaluation. We verify that, as expected, the total number
of mappings decreases with the increase of the confidence
threshold and the precision increases. Contrary to the ex-
pected result, recall is also relatively low, even when the
threshold is 0. This is an unexpected result since AML
is one of the best-performing systems in the OAEI in the
conference track of the competition. This lack of perform-

12http://oaei.ontologymatching.org/2019/conference (Accessed in
September 2020)

D Oliveira et al.: Preprint submitted to Elsevier Page 7 of 27

http://oaei.ontologymatching.org/2019/conference

Extracting Data Models

ance can be explained by considering that our edge enrich-
ment strategy used only a single matcher, theWordMatcher,
as opposed to the combination of matchers that AML uses
for the OAEI competition. The main methodology of the
chosen matcher is a bag-of-words match, which in the case
of this dataset does not obtain a good performance since
there is a high variance between equivalent terms in themap-
pings. For example, http://cmt#SubjectArea is equivalent to
http://confOf#Topic. The Word Matcher is not designed to
pick up on these matches, therefore, the recall for this data-
set is low. Nonetheless, we decided that, for the case of our
framework, this is a simple matcher that will efficiently ob-
tain relevant edges since matches will need to have at least
one overlapping word, increasing the chance that the con-
cepts are related. The additional matchers of AML add to the
complexity of the matching algorithm and, in our use cases,
there were approximately 40 ontologies to match, with the
biomedical use case having large ontologies that make the
process a complex task. Therefore, we opted for a less com-
plex solution which ended up resulting in lower performance
for the AML matching system. Furthermore, since naturally
recall decreases with the increase of the threshold and our
goal is to support the generation of extensive lists of candid-
ates, in our case, it is preferable to maximise recall instead
of precision. Since we use the confidence value of mappings
to put a higher weight on weaker matches in the ontology
graph, making them harder to traverse during path compu-
tations between vertices, the impact of incorrect mappings
should be reduced.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Threshold

0

25

50

M

ap
pi

ng
s

0.0

0.5

1.0

Ra
tio

Precision Recall

Figure 3: Ontology matching evaluation.

This evaluation considers only equivalence and sub-
sumption relationships. However, other correspond-
ences exist between ontology classes, such as between
bibframe:Status and bibo:DocumentStatus, which are not
equivalent or subsumed but are conceptually related. There-
fore, in our experiments, we kept every mapping by setting
the confidence threshold to 0 and relied on the edge weights
to reduce the influence of incorrect mappings without dis-
carding possible relatedness correspondences.
5.2.2. Extended String Matching Evaluation Results

Following the extended string matching methods de-
scribed, we obtained 1336 class mappings with 129 miss-
ing from the reference produced in the previous section,
and 144 property mappings with 77 missing from the ref-
erence. Figure 4a shows the number of mappings, the pre-
cision, and the recall for class mappings and Figure 4b
shows the same for property mappings. This extended

string matching technique performs well when compared
with the adapted AML ontology matching strategy but per-
forms better with class names than property names in this
dataset. In the case of the property matching, precision
and recall are affected by the high percentage of rdfs:label
values which are in dromedary case and are not matched
against equivalent properties in other ontologies that are
stylised with spaces in the label. Furthermore, through
manual inspection, we found several cases of false negatives,
e.g., in the reference, http://confOf#hasTopic is equivalent
to http://conference#has_a_track-workshop-tutorial_topic

but the extended string matching only finds the match to
http://edas#hasTopic, which is arguably correct. Finally,
the last contributor to the low performance with properties
are cases similar to the ones that degraded the performance
of the ontology matching system, i.e., words that are syn-
onym but have no overlapping terms. Therefore, for both
classes and properties, we keep the threshold at 0 and weight
the edges added with a linear transformation to increase the
weight of mappings that are less likely to be correct.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Threshold

0

192

384

576

768

960

1152

1344

1536

1728

1920

M
ap

pi
ng

s
(a) Class mappings

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Threshold

0

11

21

32

43

54

64

75

86

96

107

M

ap
pi

ng
s

(b) Property mappings

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

/R
ec

al
l R

at
io

Precision
Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

/R
ec

al
l R

at
io

Precision
Recall

Figure 4: Extended matching evaluation.

5.3. Metadata Extraction
This task focuses on extracting metadata from the RDF

data sources that is not easily retrieved either from the doc-
ument store or the ontology graph. Therefore, we extract
and store useful information in intermediary structures that
will later be used to more efficiently generate and rank entity
types and property candidates.

First, we create an Entity Type Frequency (ETF) map,
a map of the number of times t each resource r (e.g., entity
type or property) appears in each of the RDF data sources
ds, in the form of ETF [ds][r] ← t. Considering that some
RDF data sources assign more than one type per entity, the
sum of frequencies for each data source is greater than the
total number of documents stored.

Then we extract the Knowledge Graph Patterns (KGP)
list of tuples, where each tuple contains the triple patterns
of the data model of an RDF data source, in the form of
⟨domain – property ⇾ range⟩. Each tuple also includes the
frequency of each triple pattern in the data sources.
5.4. Datatype Property Classification Model

In the machine learning field, classification is a super-
vised learning task where a model is trained to identify the

D Oliveira et al.: Preprint submitted to Elsevier Page 8 of 27

Extracting Data Models

categories for input data. Similarly to Chen et al. [4], we
treat the datatype property generation as a multiclass classi-
fication task, where each datatype property in the knowledge
graph is a class and its value is processed into a feature vec-
tor to use as training data. We use a random forest classi-
fier, which is an ensemble learning method for classification
that works by training several decision trees and averaging
the predictions to produce a final model. This method helps
in correcting the tendency of decision trees to overfit their
training set. We use the scikit-learn implementation13 of the
random forest classifier.

We train models for each RDF source in the knowledge
graph and the knowledge graph as a whole. The single RDF
data source model will tend to overfit since their data model
is more homogeneous. However, the goal is to annotate the
properties of similar data, so these individual models can
provide valuable predictions. When there is variability in
the values of datatype properties, the complete knowledge
graph model will likely perform better since it provides a
broader view of values for datatype properties that are used
by multiple RDF data sources.

The model training and test methodology used in our ap-
proach (1) defines features to extract from the datatype prop-
erty values, (2) performs hyperparameter tuning with ran-
domised and exhaustive parameter optimisation, (3) finds an
optimal document sample size from the knowledge graph to
train the model, (4) fits the models for each RDF source in
the knowledge graph and the whole knowledge graph.
5.4.1. Feature Selection

We performed an empirical analysis of the data in the
library use cases to better understand the kind of features
that had the potential to more accurately distinguish between
datatype properties. We concluded that the classification
model should be able to clearly distinguish between tex-
tual and numerical datatype properties. For example, in the
library dataset, it is common to have numerical codes to
uniquely identify books and, at the same time, textual prop-
erties describe attributes such as title and author. However,
the classification model not only has to distinguish between
generic datatypes of properties but, among the same data-
type, has also to be able to discern more subtle differences
between property subtypes. For example, the model has to
be able to distinguish between an author’s name and a title.
In this example, the distinction is not trivial, since it is not
uncommon for book titles to overlap with people’s names.
Nonetheless, in our scoring methodology, the frequency of
a candidate datatype property is taken into account to min-
imise overlapping cases, such as the title and author name.
To capture these characteristics, we defined the following
features:
(1) Total number of characters in the literal
(2) Number of digits
(3) Number of letters
13https://scikit-learn.org/stable/modules/generated/sklearn.

ensemble.RandomForestClassifier.html (Accessed on May 2021)

Table 4
Evaluation of date extraction approach.

Approach Precision Recall

SpaCy 0.52 0.85
Duckling 0.44 0.16
dateutil + rules 0.96 0.92

(4) Number of white spaces
(5) Number of other characters
(6) Number of uppercase letters
(7) Is date? (yes or no)
The Feature 7 was obtained through a rule-based meth-

odologywhere we use the dateutil14 Python package to parse
the literal. If the literal is recognised as a date, the following
rules are checked:
(1) Is Feature 3 > 0?
(2) Is the value decimal?
(3) Is it a negative number? (i.e., starts with a minus sign)
(4) If there are no letters or spaces, does it have more than

3 numbers?
If any of the answers are positive, then the value is not con-
sidered a date, otherwise, it is a date.

We evaluated this rule-based methodology by manually
creating a ground truth with all the datatype properties in the
library knowledge graph that have date datatypes. Then we
obtained a random sample of 100 entities from each dataset
in the library knowledge graph and extracted all the pairs
of datatype property values in each document. The value
was parsed by the Is date feature methodology and compared
with the ground truth to evaluate the precision and recall.

Table 4 compares our approach (dateutil + rules) with
the Named-Entity Recognition (NER) modules of SpaCy15
and Facebook’s Duckling16. Our approach achieves signific-
antly higher performance when identifying dates in our use
case. The modules tested falter in this case because they are
trained in full-text corpora where dates are used in the con-
text of a sentence. RDF property ranges do not include any
context for the date, which leads to several false positives
and negatives.

In our approach, false positives are mostly caused by the
bibo:issue property. Some documents mistakenly have a
date as the issue number, despite the property not being con-
sidered a date property. When this property is added to the
date properties, the precision increases to 0.99.

14https://dateutil.readthedocs.io
15https://spacy.io
16https://github.com/facebook/duckling

D Oliveira et al.: Preprint submitted to Elsevier Page 9 of 27

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://dateutil.readthedocs.io
https://spacy.io
https://github.com/facebook/duckling

Extracting Data Models

Table 5
Hyperparameter search.

Hyperparameter Randomised Exhaustive Final

n_estimators [100, 1000] [100, 500] 300
criterion {gini, entropy} {entropy} entropy
min_samples_split [0.01, 0.40] step = 0.01 [0.01, 0.21] step = 0.05 0.01
min_samples_leaf [0.01, 0.40] step = 0.01 [0.01, 0.10] step = 0.02 0.01
max_features [2, 7] [2, 4, 5, 7] 4
min_impurity_decrease [0.0, 0.2] step = 0.01 [0.0, 0.1] 0.0
bootstrap [T rue, False] [False] False
max_samples [0.7, 0.9] step = 0.1 N/A N/A

5.4.2. Hyperparameter optimisation
The scikit-learn implementation of the random forest

model provides several tuning parameters. We perform two
hyperparameter optimisations: randomised and exhaustive.
Through empirical observation of the data, we found that
some datatype properties were poorly represented in the
data, having significantly less overall representation than the
average property. Through experimentation, we also found
that, due to the size of the data, the hyperparameter optimisa-
tion was a slow task. Therefore, together with the empirical
observation of the data, we used a 3-fold cross-validation ap-
proach to maximise P@5. For each of the optimisations, we
extract 100 random value samples of each datatype property
in the knowledge graph.

Table 5 presents the two hyperparameter tuning steps
(see the link in Footnote 14 for descriptions of the hyper-
parameters). We start with a broad range of hyperparamet-
ers in the randomised grid search. The results reported in
the “Exhaustive” column represent the empirically chosen
agreement between the 3 repetitions of the random search.
The Final column includes the hyperparameters that max-
imised P@5 in the exhaustive grid search and were used to
fit the random forest models.
5.4.3. Model Fitting

Finally, we fit the random forest model to each RDF data
source in the knowledge graph and the knowledge graph
as a whole. We fit each model using parameters extracted
from the hyperparameter optimisation step, using a sample
of size s with 40% of the data being separated in the test set.
We evaluate the model with Precision@1, Precision@3, and
Precision@5. Since the goal is to obtain an exhaustive list
of candidates, Precision@5 is favoured over the other meas-
ures.

Through experimentation, we found that the features
extracted from the datatype property values are relatively
stable and even small sample sizes achieve good perform-
ance. On the other hand, the time it takes to fit a model
increases linearly with the sample size. Therefore, since
sample size does not have a significant impact on perform-
ance, we kept the sample size value low and chose s = 2000.
Library Use Case Results Table 6 shows the precision
results over the test set for each RDF source and the whole
knowledge graph in the library use case. Overall, the mod-
els obtained a high P@5 with low P@1, with the more
diverse knowledge graph obtaining lower results than any

Table 6
Random forest model evaluation for the library use case.

RDF Source P@1 P@3 P@5

Library British 0.57 0.87 0.97
Library French 0.47 0.77 0.86
Library German 0.43 0.70 0.80
Library Portuguese 0.71 0.9 0.95
Library Spanish 0.28 0.52 0.63
Knowledge Graph 0.21 0.41 0.52

model individually. The Spanish library obtained a con-
siderably lower performance than the remaining individual
libraries because, besides a higher than average total num-
ber of properties, it also includes several properties with
similar values, making it harder for a random forest model
to predict the properties correctly. For example, for dates,
there are at least 9 datatype properties in the BNE onto-
logy and it includes others from external ontologies such as
http://rdaregistry.info/Elements/a/P50038. The same situ-
ation is verified in other properties, where values between
properties are similar, making it hard for the model to dis-
tinguish between datatype properties. Nonetheless, since
the aim of the random forest model is to produce an ex-
haustive list of datatype property candidates, we give prefer-
ence to P@5. The high performance of the individual mod-
els is likely connected to overfitting. However, considering
that the datatype properties to be extracted from these mod-
els are expected to be in the same domain, following the
same structure and semantics, we do not necessarily con-
sider overfitting an issue. The overfitted models are desired
in the case of a dataset with data very similar to any of the
RDF sources individually. Nonetheless, the whole know-
ledge graph model is expected to suffer less from overfitting,
providing a broader view of the domain to match cases that
might not exactly follow any particular data model included
in the knowledge graph.

Overall, we consider that the performance is adequate
for the task at hand since exact matches are not the goal.
The trained model will allow the framework to retrieve the
datatype properties in eachmodel in a ranked order as scored
by the random forest model.

6. Candidate Generation
In this stage of the framework, we generate an exhaust-

ive list of candidates to match entity types, datatype, and
object properties between the input data and the KG. As a
preliminary pre-processing step, each input dataset is parsed
and converted to the same JSON structure of the KG and is
stored and indexed in the document store. For ease of under-
standing, we assume that the input dataD takes the shape of
a set of ⟨s – p ⇾ o⟩ triples, which directly translates to RDF
data. For JSON and CSV, we loosely adapt the data to fit
this model. For JSON data, we consider the identifier of the
document as the subject s (if no identifier is given, one is
created), the attributes as predicates p, and values as objects

D Oliveira et al.: Preprint submitted to Elsevier Page 10 of 27

Extracting Data Models

o. For CSV data, we assign a row identifier if none is given
and use it as subject s, the header or column number as the
predicate p, and the value of each row/column as object o.

The red arrows in Figure 1 indicate the structures in-
volved in generating each one of the types of candidates.
The entity type candidates are extracted by searching match-
ing entities in the document store (see Section. Datatype
properties are obtained by training a classification model on
the datatype properties of the knowledge graph and using it
to predict candidates for datatype properties in input data-
sets. Finally, object properties are obtained after generat-
ing and ranking the entity type candidates. We obtain these
properties by extracting the domain and range of the object
properties in the input data and then extracting the object
property candidates through the pairwise combination of all
entity type candidates of the domain and range. Then we
extract the object property candidates from the relationships
between all pairwise comparisons of the entity type candid-
ates in the domain and range.
6.1. Entity Types

This stage generates an exhaustive list of entity type can-
didates for entities in the input dataset D. As a first op-
tional step, the user can provide descriptors dsc, i.e, column
names, attributes, or predicates that describe entities. These
descriptors should contain values that identify the entities,
even if with some ambiguity, to facilitate the search in other
datasets that might not follow the same standards. For ex-
ample, considering a dataset with book entities, the user
might provide the columns, attributes, or predicates that in-
clude the titles of books. If not provided, the search is per-
formed over every column, attribute, or predicate related to
an entity in the dataset. Optionally, entity descriptors can
also be provided for the datasets in the document store. We
found empirically that when entity descriptors for both in-
put dataset and document store are provided, they improve
the accuracy and efficiency of the candidate generation and
ranking.

For RDF input data, we assume the entity type is the ob-
ject of the rdf:type predicate. In JSON data, we ask the user
to supply the attribute which denotes the type of the docu-
ment. If no type is supplied, then the JSON data is treated
like CSV data, where each column is assumed to be a poten-
tial entity to have an entity type assigned. For both of these
cases, if descriptors are supplied, we find only entity type
candidates for the columns or attributes indicated.

The entity type generation algorithm obtains entity type
candidates for the entity types found in the input dataset D.
See Algorithm 1 in the supplementary material for the full
pseudocode algorithm.

The first step of the algorithm is to extract the set of po-
tential unique types from the input dataset. Therefore, the
function unique_types(D) extracts the unique types or type
equivalent elements T for entities in D. Then, a function
random_sample(D, t, n) returns a random sample of n doc-
uments inD of type t. These documents represent all triples
associated with a subject of type t in RDF input data, an indi-

vidual JSON document of type t, or a row in a CSV file that
contains a value for column t. Next, for each input triple, we
extract all objects that are literals (i.e., literal(s) = T rue)
from all properties in entity document e or for all properties
in the descriptors dsc if these were provided. The function
searcℎ(S, l, w) searches the document storeS for label l and
returns a maximum of w search results.

In our implementation, we use ElasticSearch’s multi-
match query17 to search for full-text matches of label l in
the datatype property values indexed in the document store.
These fields are replaced by entity descriptors if these are
provided for the Knowledge Graph data by the user. This
algorithm then returns a mapping between entity type t for
each entity e and an extensive list of randomly sampled entity
type candidates, including the labels that matched between
input and document store entities.

The Eye
of the
World

The Book
Thief

The Book Thief

La Ladrona de
Libros

Entity type
candidates

Manuscript

Libro

Book

The Wheel of
Time: The Eye of

the World

The Eye of the
World

Book

Knowledge Graph

search

search

Figure 5: Example of entity type candidate generation

Figure 5 illustrates this process for two books (The Book
Thief and The Eye of the World) from a hypothetical input
dataset. In this example, we start by searching the knowledge
graph formatching labels and thenwe extract the entity types
from the matched entities. These entity types will represent
the unordered list of candidates that will be ranked according
to different measures.
6.2. Datatype Properties

The datatype property candidates are generated from the
Random Forest models RF trained using the method de-
scribed in Section 5.4. We train a model for each RDF data
source individually and the Knowledge Graph as a whole.

The datatype generation algorithm obtains datatype
property candidates for datatype properties in input data D.
See Algorithm 2 in the supplementary material for the full
pseudocode algorithm.

The algorithm first generates the set DP from the data
in input D with unique datatype properties in the input data
D. Then we obtain a random sample of entities Et in the in-put data that contain each of the datatype properties in DP .
After extracting the literal valuesL of the properties, we use
the trained Random Forest models RF to classify the value
with a datatype property from the Knowledge Graph. The
predict(rf , l) function returns a list ordered by the probab-
ility estimates of each datatype property in the classification

17https://www.elastic.co/guide/en/elasticsearch/reference/current/
query-dsl-multi-match-query.html (Accessed in September 2020)

D Oliveira et al.: Preprint submitted to Elsevier Page 11 of 27

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-multi-match-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-multi-match-query.html

Extracting Data Models

models matching the literal value. Therefore, we obtain the
datatype property candidates Cdp by saving the sorted pre-
diction results for each value in each model.

Robert Jordan October 17, 1948born in

Trained
random
forest
model

January 3, 1892
has birthdate

January 3, 1892fecha de
nascimiento

Datatype
property

candidates

Author

Person

Knowledge
Graph

Figure 6: Example of datatype property candidate generation

In Figure 6, the example triple ⟨Robert Jordan – born

in ⇾ October 17, 1948⟩ is used to the process of generat-
ing datatype property candidates. The literal value (i.e., the
date) of the datatype property born in is classified by the ran-
dom forest model trained on literal values in the KG. There-
fore, two candidates with literal values with similar features
are recognised and proposed as datatype property candid-
ates.
6.3. Object Properties

The object property candidate generation step depends
on the generation and ranking of entity type candidates (see
Section 7 for more details on the ranking of entity types).

The object property generation algorithm obtains object
property candidates for object properties in input data D.
See Algorithm 3 in the supplementary material for the full
pseudocode algorithm.

First, we obtain all triples which do not have literals
as their object. For each property in these triples, we ex-
tract their domain and range entity types with the func-
tion type(e). The object property candidate map Cop is ob-tained by retrieving the edges in the ontology graph that
exist between the pair of subject and object candidates.
The function get_edges(G, s, t) returns a tuple with the ob-
ject property edges op in graph G between source vertex
s and target vertex t and their data provenance prov, e.g.,
get_edges(G, s, t) = [⟨op1, prov1⟩, ⟨op2, prov2⟩]. The on-
tology provenance refers to the KG data sources that have
the candidate edge as an object property. This information
is stored as a property of the edge when the edge is intro-
duced in the ontology graph.

Figure 7 shows the process of generating object property
candidates with the running hypothetical example. Here we
take the triple ⟨The Hobbit – written by ⇾ J.R.R Tolkien⟩,
which already has ranked entity type candidates for the entit-
ies in the domain and range, and search the knowledge graph
for all edges between the entity type candidates. The result-

The Hobbit J. R. R. Tolkien
written by

Knowledge Graph

search

Book Author

Book Author
has author

Manuscript Person
created by

Object
property

candidates

Manuscript Person

Figure 7: Example of object property candidate generation

Table 7
Candidate generation recall.

Measure Recall

Entity 0.83
Entity type 0.97
Datatype property 0.95
Object property 0.70

ing edges are used as an unordered list of object property
candidates.
6.4. Experiments & Results

The candidate generation methodology is evaluated in
terms of recall since its goal is to generate an extensive list of
possible candidates. At this stage, the framework should be
able to retrieve the most likely candidates and output an un-
ranked list of entity type, datatype property and object prop-
erty candidates.

Using the DBkWik dataset and ground truth, we gen-
erated candidates using the methodologies previously de-
scribed. Since this dataset has at most two candidates per
input, we evaluate recall by testing if these two candidates
are being retrieved. Therefore, candidate generation is eval-
uated in terms of entity, entity type, datatype property, and
object property recall in the DBkWik dataset. Table 7 shows
the condensed recall results for all data model elements.
6.4.1. Entity types

Entity recall verifies that the correct entities are being
retrieved when searching for the values of the labels in the
knowledge graph, while entity type recall checks if, even
if the wrong entity was retrieved, the correct entity type
was found. The entity type recall follows the intuition that
even if similar entities (e.g., different books from the same
series) are incorrectly retrieved in some instances, their type
is likely the same. Through experimentation (see Figure 3s
of the Supplementary Material), we found that the number
of search results retrieved stabilised between a search win-
dow of 10-15. The input sample size also did not have a large
impact on this evaluation dataset (see Figure 4s of the Sup-

D Oliveira et al.: Preprint submitted to Elsevier Page 12 of 27

Extracting Data Models

plementary Material). On average, each entity type in the
ground truth has 55.2 entities, with a median of 6. Only 2
entity types have more than 1000 entities, and 27 have more
than 100. Therefore, sampling above a hundred is mostly
meaningless for this dataset. Nonetheless, we maintained a
sample size of 2000 throughout the experiments to guarantee
optimal results.

Therefore, in Table 7, for entity and entity types, we
present the results for a search window of 15 results and an
input sample size of 2000. With these parameters, the entity
type candidate generation methods obtained reasonably high
recall for the evaluation dataset. The high entity type recall
also confirms the intuition that, in some cases, even when the
correct entity is not retrieved, the entity type is still correct.
6.4.2. Datatype properties

Due to the nature of the datatype property genera-
tion, all possible knowledge graph datatype properties are
retrieved, ordered by their probability of fitting a cer-
tain value. Therefore, we would expect a recall of 1.
However, Table 7 shows a recall lower than 1 because
the ground truth features mappings between object prop-
erties and datatype properties. Our framework strictly
distinguishes datatype and object properties. Therefore,
a property cannot be both. When the framework finds
a property that is both a datatype and an object prop-
erty, it assigns it to the object properties. For example,
the property http://dbkwik.webdatacommons.org/starwars.

wikia.com/property/title in the SW dataset is mapped
as equivalent to http://dbkwik.webdatacommons.org/swg.

wikia.com/property/title in SWG and to http://dbkwik.

webdatacommons.org/swtor.wikia.com/property/title in SW-
TOR. However, in SWTOR this property is both a datatype
property and an object property, while in SWG it is only a
datatype property. Therefore, this property is considered to
be an object property. This pattern is found for 345 proper-
ties over all the DBkWik datasets.
6.4.3. Object properties

The performance of this generation step is directly cor-
related with the performance of the entity type generation
and content score ranking. This generation step extracts an
exhaustive list of all edges between two vertices in the on-
tology graph. We obtain a reasonably high recall. Similarly
to the datatype property generation, the performance of the
object property generation is degraded by overlapping map-
pings between datatype and object properties in the DBkWik
ground truth.
6.5. Discussion

In terms of entity type generation, currently, the frame-
work only uses owl:sameAs links as a means to enhance the
ontology graph to improve scoring metrics that rely on tra-
versing the graph. However, in the future, these links can
be directly explored during the entity generation step to pro-
duce a more reliable candidate list. For example, similarly to
the methods to create the owl:sameAs ground truth, when us-
ing an RDF dataset as input, if it features owl:sameAs, these

can be extracted to generate candidates. If the input data-
set does not use these links, but they exist in the knowledge
graph, they can be explored to provide a more complete list
of entity type candidates by extracting the entities that are
indicated as values of the owl:sameAs property.

When generating property candidates, the first challenge
is recognising if a predicate, attribute, or column is supposed
to be a datatype or object property. This issue is less critical
in RDF input datasets since distinguishing is amatter of find-
ing if the dataset features the URI in the object of the predic-
ate. This is the approachwe use in general in this framework.
However, for semi-structured CSV and JSON datasets, en-
tities are rarely referenced via a unique identifier. Therefore,
distinguishing datatype from object properties is not trivial.
For example, in a CSV file, a column might contain book
titles, while another contains author names. Looking at the
existing datamodels in the library data domain, it is common
that both these columns represent entities with a relationship
between them. Although this seems like a trivial example, in
the context of an automatic approach, there are several con-
siderations. First, if the input dataset labels overlap with the
knowledge graph labels, most columns will find some entity
to match, even if incorrectly. For example, a column with
page numbers can include a row for a book with 451 pages
that can be matched incorrectly to the book title Fahrenheit
451. Therefore, robust measures need to be put in place to
guarantee that only entities are obtaining entity type candid-
ates. Currently, our generation methodology does not take
this into account and the filtering of bad candidates is left to
the content scoring. In the future, the framework should in-
tegrate more robust methods to distinguish between datatype
and object properties, consider all the factors, and improve
the candidate generation methodology.

Finally, the last challenge of entity type and prop-
erty candidate generation is missing concepts, i.e., the in-
put dataset includes data that is not found in the know-
ledge graph. For example, the University dataset was
automatically converted to the BIBFRAME schema. Due
to the scope of this schema, it includes several con-
cepts that are not found in other library schemas, such
as the entity type bibframe:ColorContent or the property
bibframe:baseMaterial. These concepts do not have a direct
overlap in any of the data models adopted by the European
libraries in study. Therefore, finding suitable candidates for
these concepts in the knowledge graph is not possible. In
this case, an investigation would need to be carried out to
assess how to best handle the situation, considering that the
immediate approach would most likely be to extend the on-
tologies in the graph and manually produce the annotations
to complete the proposed data model. In a future imple-
mentation of this framework, ideally, the user would have
an integrated feature that would allow the extension of the
ontology without leaving the interface that implements the
framework.

D Oliveira et al.: Preprint submitted to Elsevier Page 13 of 27

http://dbkwik.webdatacommons.org/starwars.wikia.com/property/title
http://dbkwik.webdatacommons.org/starwars.wikia.com/property/title
http://dbkwik.webdatacommons.org/swg.wikia.com/property/title
http://dbkwik.webdatacommons.org/swg.wikia.com/property/title
http://dbkwik.webdatacommons.org/swtor.wikia.com/property/title
http://dbkwik.webdatacommons.org/swtor.wikia.com/property/title

Extracting Data Models

7. Candidate Ranking
To rank the entity type, datatype, and object property

candidates generated, we use three scores: Content, interop-
erability, and consistency score. This step ranks individually
the lists Cet, Cdp, and Cop resulting from the generation step
with the content score, returningCSet,CSdp, andCSop, andthe interoperability score, returning ISet, ISdp, and ISop.The content score focuses on measuring individual charac-
teristics of the entity type or property candidates, such as
the frequency in the search results and distance in the on-
tology graph. The interoperability score focuses on boost-
ing the score of candidates with higher connectivity in the
ontology graph. Finally, the Consistency score transforms
the individual lists of ranked candidates into cohesive data
model candidates DM and combines the individual scores
with a score of the frequency of triple patterns in the in-
put data. It should be noted that when we mention con-
sistency with the data model, we are not referring to logical
consistency within the ontologies, e.g., verifying if disjoint
axioms are not being ignored. The data model consistency
is verified in terms of the frequency of a triple in the KG
and consistently suggesting the same candidate for the same
input. Therefore, this consistency score takes into account
the co-occurrence of the triple and pairwise combinations
of ⟨domain – property ⇾ range⟩ in the KG to score the con-
sistency of the candidate triples.

The next sections detail the metrics used in each type of
score. We then describe the specific scoring methodology
used for each type of candidate in the data model.
7.1. Content Score

The content score combines metrics based on string
similarity and search result frequency into a single score
CSc ∀ c ∈ {Cet, Cdp, Cop}. The final candidate ranking pro-duces a set of candidates that are sorted according to their
appropriateness in matching entity types of the input data,
considering the metrics used. We obtain this result for each
of the data model elements by using different combinations
of the measures described in the next sections.

Manuscript

Libro

Book

Book

Content
scoring

Book

Manuscript

Libro

1

2

3

Figure 8: Example of content score ranking

Figure 8 follows the running example where, from the
entity type candidates previously generated, we rank them
according to different measures. In this figure, we use the
example entity type candidate ranking, however, the process

is similar for any of the components of the data model by
adapting the metrics that are used to rank the candidates (see
Section 7.1.2). At the end of the content score ranking, we
have an ordered set of candidates.
7.1.1. Content Score Metrics

The following metrics were empirically developed for
the framework by studying the needs and characteristics of
the use case datasets. Overall, RiCDaM has metrics to (1)
improve precision, and (2) improve the cohesiveness of de-
sirable vs. undesirable results. The first proposed methods
are aimed at ranking desirable candidates above undesirable
and the second provides means to bring the scores of desir-
able candidates closer together so that the score of a can-
didate is not artificially inflated by the precision metrics.
The intuition behind the development and implementation
of each measure is discussed individually in their respective
sections. In these measures, we refer to a generic list of can-
didates C that can represent any of the data model elements
(i.e., entity types or properties) in the data model of the input
data.
String Similarity When comparing labels of entities we
consider that a label is more likely to be correct if it is closer
to the input label. Therefore, we applied string similarity
measures to find the degree of similarity between input and
candidate labels.

We experimented with classical string similarity meth-
ods and devised a modified string similarity score sim based
on the concept of n-grams. In this work, we use a bi-gram
(n = 2) function n-gram(s) to decompose a string s into a set
of pairs at the letter and word level, e.g. Harry Potter is de-
composed into {(“_h”), (“ha”), (“ar”), (“rr”), (“ry”), (“y ”),
(“ p”), (“po”), (“ot”), (“tt”), (“te”), (“er”)} at the letter level
and {(“_”, “harry”), (“harry”, “potter”)} at the word level.
Left padding (_) is added to emphasise prefixes.

We first pre-process the strings by removing punctuation
and stop words, then we define the n-gram similarity with
a Jaccard index g-sim between sets A and B as follows in
Equation 1:

union(A,B, n) = |n-gram(A) ∪ n-gram(B)|
g-sim(A,B, n) = |n-gram(A) ∩ n-gram(B)|

union(A,B, n)
(1)

We then define the letter and word level n-gram simil-
arities l-sim and w-sim using the letter and word n-grams
Al, Bl and Aw, Bw as follows in Equation 2:

l-sim(Al, Bl, n) = g-sim(Al, Bl, n)
w-sim(Aw, Bw, n) = g-sim(Aw, Bw, n)

(2)

Lastly, we compute the string similarity metric s-sim as

D Oliveira et al.: Preprint submitted to Elsevier Page 14 of 27

Extracting Data Models

follows in Equation 3:

inv(A,B, n) =

{

union(A,B, n), if union(A,B, n) ≤ 1
1

union(A,B,n)−1 , if union(A,B, n) > 1

s-sim(A,B, n) =w-sim(Aw, Bw, n) ⋅ (1 − inv(Aw, Bw, n)) +
l-sim(Al, Bl, n) ⋅ inv(Aw, Bw, n)

(3)
The word-level similarity w-sim gives a better under-

standing of the equivalence of two entities based on their
labels. However, when the labels have few words, this met-
ric loses its meaning. Therefore, the inv(A,B, n) function
balances the weight given to w-sim versus l-sim. For ex-
ample, when comparing Harry Potter with Harry’s Pottery,
l-sim = 0.73, w-sim = 0.0, and s-sim = 0.24, therefore,
representing the level of similarity between the strings but
emphasising that, at the word level, the strings do not over-
lap.

Finally, considering two sets of strings Le and Lc , weobtain the string similarity score sim by computing the max-
imum pairwise string similarity between the two sets as seen
in Equation 4:

sim(Le,t, Lc,t) = max
le∈Le,t
lc∈Lc,t

s-sim(le, lc , n) (4)

We select candidates that have sim >= t, where t is a
user-provided threshold.
Search Results Frequency The search results frequency
score freqs(c) follows the intuition that the most common
candidate in the list of search results has a higher likelihood
of being a good candidate. Considering that count(c) is a
function that represents the raw count of the candidate c in a
list of candidates C , we apply the following transformation
to obtain a final freqs(c) in Equation 5:

freq_norm(c) = log(1 + count(c))

freqs(c) =
freq_norm(c)

max
c∈C

freq_norm(c)
(5)

KG Frequency This metric measures how frequent a re-
source is in the knowledge graph. We extract the count of a
candidate c from the ETF map (see Section 5.3). We com-
pute the normalised frequency per RDF data source ds as
seen in Equation 6:

freqkg(ds, c) =
EFT [ds][c]

max
c∈EFT [ds]

freqkg(ds, c)
(6)

Borda Score This score is based on the Borda count elec-
tion method [35], where voters rank candidates in order of
preference. In opposition to majority election, the Borda
count elects the candidate that is more broadly accepted by
the voters.

Borda count works by distributing several points determ-
ined by the number of candidates n. Each candidate c re-
ceives n − rv points, where rv represents the ranking of the
candidate in a ballot of voter v, starting from rank 0 for the
candidate ranked first. For example, with n = 3 candidates
per ballot, the candidate ranked first will get 3 points, the
second will get 2, and the 3rd will get one point.

The intuition behind this score is that when the initial
candidate generation already has a preliminary ranking, as
is the case with the entity type and datatype property can-
didates, instead of just applying flat frequency we consider
the ranking in the list of candidates.

WithN = |C| and a pool of voters V = {v1, v2,… , vk},we compute the Borda Score borda_score(c) for candidate
c with Equation 7.

borda_count(c, V) =
|V |

∑

k=1
n − rvk

borda_score(c, V) =
borda_count(c, V)

max
c∈C

borda_count(c, V)

(7)

Distance to Source Resource Using the edge-enriched
ontology graph, we compute the distance between the source
resource r and each candidate c in the candidate list C .
This score follows the intuition that candidates closer to the
source resource in the ontology graph are more likely to be
good candidates. We calculate the score distr(r, c) betweena source resource r and a candidate c as seen in Equation 8.

distr(r, c, G) = 1−
log(sℎortestDistance(r, c) + 1)
log(max

c∈C
distr(r, c, G) + 1)

(8)

7.1.2. Content Scoring Methodologies
The content scoring methodologies differ between the

three types of resources in the RDF data model to accom-
modate their different characteristics. Below, we present the
individual content scoring methodologies for each element
type in the data model.
Entity Type Content Scoring Considering a list of can-
didates Cet with all the generated unranked entity type can-
didates with source entity labels Le and target candidate la-
bels Lc , this algorithm computes the content score for en-
tity type candidates, obtaining the ranked candidates CSet.See Algorithm 4 in the supplementary material for the full
pseudocode algorithm.

For this data model element, we start by calculating the
string similarity of each candidate and filtering out the can-
didates with similarities below threshold �. Then we se-
lect the maximum similarity sim for each candidate in the
search results of each query. Finally, we obtain the fre-
quency of each candidate c in the search results per entity
type query. We then ponder the mean of the average sim-
ilarity mean(sim) of a candidate and its distance to source
resource distr by the search result frequency freqs into a fi-nal cs score per candidate per type and select the k elements
with the highest values of cs per type t.

D Oliveira et al.: Preprint submitted to Elsevier Page 15 of 27

Extracting Data Models

Datatype Property Content Scoring Considering the
datatype property candidate mappingCdp generated throughthe processes described in Algorithm 2 in the supplementary
material, this content scoring algorithm re-orders the can-
didates following the process described in Algorithm 5 of
the supplementary material.

First, the algorithm computes the Borda score per data-
type property dp, per entity e, and per model rf for each
datatype property candidate in the ranked prediction p. In
step 2, we aggregate the Borda score results per input data-
type property and candidate. In step 3, we average the Borda
scores that each candidate got in the different entities and
models and average this score with the distance to source
distt. Finally, the mapping CSdp returns the topk candid-
ates per datatype property dp considering the highest con-
tent score cs computed.
Object Property Content Scoring Considering the object
property candidates mappingCop generated through the pro-cesses described in Algorithm 3 in the supplementary mater-
ial, this content scoring algorithm re-orders the candidates
following the process described in Algorithm 6 of the sup-
plementary material.

We first iterate over each candidate c and its provenance
ontology o to extract freqs(c) where the raw count is rep-
resented by the number of times a tuple in edges contains
candidate c. The frequency freqkg represents the number of
documents in the Knowledge Graph that use object property
candidate c. Finally, the algorithm computes distr and com-
bines all scores into the final content score cs of candidate
c. The algorithm returns the topk object property candidatessorted by content score cs.
7.1.3. Content Scoring Experiments & Results

For the content scoring experiments, we chose a
threshold of 0.6 since it provides a good balance between
high precision and a reasonable number of search results for
both entity and entity type candidate rankings. In Section 3
of the Supplementary Material, we present results and dis-
cuss the experiments to find this threshold, together with the
experiments that test different string similarity measures and
their performances.

We evaluate the content scoring methodology in terms
of the effectiveness of each metric. The effectiveness of the
metrics in improving the content score is two-fold: (1) im-
proving the overall precision of the candidate retrieval and
(2) approximate the scores among the relevant candidates
and the non-relevant candidates. This second goal of the
score represents the desirability of a candidate. When sev-
eral candidates are retrieved we want to favour relevant can-
didates even if they are less performant in terms of, for ex-
ample, search results retrieved. Therefore, we evaluate the
entity type and property methodologies using the Mean Av-
erage Precision (mAP) and the standard deviation of the
scores among relevant and non-relevant candidates. The
mAP allows us to get a precision metric that is more geared
towards the ordered nature of our results since RICDaMdoes

not output a single best candidate but, instead, ranks possib-
ilities. The standard deviation tests if the relevant or non-
relevant results are getting closer scores with each step. This
closeness enables candidates to not dominate over other can-
didates solely over the frequency in which they appear in the
search results. This closeness is desirable especially consid-
ering the next step where the interoperability score will be
calculated. If a candidate has a content score that is far above
all other candidates, the interoperability score will be negli-
gible without a heavy weight over the content score. Ideally,
mAP increases with each step while the standard deviations
tend to approximate 0.

We evaluate the content scoringmethodologies using the
DBkWik and Gutenberg ground truths. We compare the res-
ults of the systems that participated in the OAEI 2020Know-
ledge Graph track [2] with RICDaM’s results. Table 8 shows
that the precision increases with each step in both the en-
tity types and the properties. In the case of the entity type
methodology, distr metric does not improve performance
but greatly improves the closeness between the scores of
the relevant and non-relevant candidates. For the properties,
we verify that the second metric increases the dispersion of
scores but greatly improves the precision over the base or-
der. Overall, RICDaM also performs better in the Guten-
berg ground truth which, even though it is a partial ground
truth, showcases the strengths of RiCDaM. The results are
improved in all aspects. The entity types in this ground truth
are themost complete set of datamodel elements and Table 8
shows results similar to the DBkWik ground truth. Des-
pite the smaller sample size for the properties, the system is
still able to reliably retrieve relevant candidates for the tested
cases, showcasing that RICDaM can reliably retrieve a good
set of ordered candidates in a relevant amount of cases.

To the best of our knowledge, no system has been
published nor exists to directly compare against RiCDaM.
Therefore, we further evaluate RICDaM by comparing our
results with the closest approaches that are represented by
the aggregated OAEI 2020 Knowledge Graph Track results.
However, the scope of these approaches is not the same as
our framework, neither is the aim of each system. Nonethe-
less, in Table 9, for the OAEI Systems that participated in
the knowledge graph track, we present the top result and,
in brackets, the average of all systems that obtained a score
above 0. The OAEI track evaluates systems in terms of pre-
cision which considers all candidates that are missing from
the ground truth as false positives. RICDaM is likely to in-
clude non-relevant results since it selects the top-k results
for each input, whether this input has one or more relev-
ant matches. Therefore, we also include Precision@1 for
RICDaM’s evaluations so that we can evaluate the system in
the case of only a single candidate being retrieved instead of
an ordered list. Furthermore, the OAEI track results do not
differentiate between datatype and object properties, there-
fore, we present the aggregated results for these properties
labelled as DP+OP.

Overall, when comparing to OAEI systems in terms of
recall, RiCDaM obtains lower performance than the top sys-

D Oliveira et al.: Preprint submitted to Elsevier Page 16 of 27

Extracting Data Models

Table 8
Entity type and property candidate content scoring ranking evaluation.

Element Dataset Metrics mAP Standard deviation

Relevant Non-relevant

Entity Types DBkWik
(1) sim 0.861 0.072 0.124
(2) sim & freqs 0.828 0.374 0.323
(3) sim &freqs & distr 0.828 0.187 0.161

Gutenberg
(1) sim 0.644 0.071 0.084
(2) sim & freqs 0.853 0.318 0.085
(3) sim &freqs & distr 0.853 0.159 0.043

Datatype Properties
DBkWik borda_score 0.122 0.151 0.231

borda_score & distr 0.326 0.215 0.142

Gutenberg borda_score 0.109 0.051 0.262
borda_score & distr 0.695 0.129 0.181

Object Properties
DBkWik freqkg 0.043 0.005 0.011

freqkg & distr 0.489 0.180 0.187

Gutenberg freqkg 0.322 0.006 0.004
freqkg & distr 0.745 0.26 0.109

Table 9
Entity type candidate content scoring ranking evaluation.

System Dataset Element Precision Precision@1 Recall

OAEI Systems DBkWik ET 1.0 (0.83) - 0.98 (0.68)
DP+OP 0.91 (0.70) - 0.86 (0.64)

RiCDaM
DBkWik ET 0.539 0.767 0.889

DP+OP 0.002 0.429 0.702

Gutenberg ET 0.377 1.0 1.0
DP+OP 0.008 1.0 0.968

tem but is comparable to the average for the DBkWik ground
truth. In terms of precision, RICDaM obtains considerably
lower performance but, when considering precision@1, the
entity type performance is close to the average, while still
underperforming in terms of properties.

Overall, our framework obtains lower precision than the
maximum and average precision obtained by systems in the
OAEI track but recall comparable to the average of the OAEI
systems. As expected, RiCDaM performs better when eval-
uated against the Gutenberg ground truth since this ground
truth better showcases the strengths of the RiCDaM meth-
odology. For the evaluation against the Gutenberg ground
truth, the recall is less reliable since the ground truth may
be incomplete. Nonetheless, results are considerably higher
when using this ground truth.
7.1.4. Discussion

To evaluate the content scoring methodologies we com-
pare the performance of RiCDaM against the systems that
participated in the OAEI Knowledge Graph task. The main
focus of those systems is to improve the performance of
their task-specific matchers, therefore, excelling at indi-
vidual matching tasks of instance and schema of a single

knowledge graph. These systems use combinations of string
similarity measures, background knowledge exploitation,
structural matching between instances in knowledge graphs,
or reasoning over ontologies to obtain their results. In con-
trast, our system focuses on integrating several RDF know-
ledge graphs, instead of knowing a priori which target is
more suitable to each input resource. The number of know-
ledge graphs being integrated increases the complexity of
the matching task and, therefore, the complex combination
of algorithms these systems use is not directly applicable to
the task handled by our framework. In addition, as previ-
ously mentioned, our system strictly differentiates between
datatype and object properties, which further hinders per-
formance when using the DBkWik dataset.

In addition to the evaluation against the OAEI systems,
we also present an evaluation and analysis of the effect of the
different metrics in the framework. In general, the methodo-
logies obtain a reasonable performance, with the entity type
methodology achieving better results than the property scor-
ing methodologies. Nonetheless, for the library use case, the
methodology is successful in re-ordering the candidates that
were generated. However, issues with the generation meth-
odology are propagated for the ranking stage. Therefore, if

D Oliveira et al.: Preprint submitted to Elsevier Page 17 of 27

Extracting Data Models

poor results were achieved at that stage, the scoring method-
ologies are not going to achieve optimal performance.

Furthermore, due to the modular nature of the frame-
work, for a particular dataset, a new measure might perform
exceedingly well and, in that case, the framework can be ex-
tended to include the results of that metric.

In terms of the evaluation performed on the content score
rankings, we were only able to use the ground truth to evalu-
ate precision and recall-based metrics since, to the best of
our knowledge, no ground truth exists to evaluate ranked
entities, entity types, or property candidates for data mod-
elling. Furthermore, in the constructed Gutenberg ground
truth, it is not possible to provide ranks for the candidates
since different existing data models have been manually de-
veloped using these candidates, therefore, we cannot claim
that one candidate is superior to another, making ranking the
candidates a matter of context or expert opinion. Therefore,
choosing a candidate over another is not obvious and, in our
evaluation, we consider each resource in the ground truth at
an equal ranking and evaluate using precision only.
7.2. Interoperability Score

The interoperability score focuses on re-ranking the can-
didate list obtained via the content score methodology by
boosting candidates that are well-connected in the onto-
logy graph and are connected to frequent entity types in
the Knowledge Graph. This score ensures that the candid-
ates ranked first are not only good matches but also maxim-
ises the integration with frequently used entity types in the
Knowledge Graph. Considering that the KG is composed
of several potential candidates for each resource, this score
improves the integration with related resources by ranking
less specific resources higher since they are more likely to
contain a broad network of equivalences and subsumptions.

Therefore, the interoperability score IS contains in-
formation from the knowledge graph KG and from a sub-
graph of the ontology graph Ge = (V ,Es) with Es ⊆
E representing ontology mappings, extended mappings,
owl:equivalentClass, and superClassOf edges only. This sub-
set of edges restricts the graph to the set of equivalent, sub-
sumed, or directly related vertices.

Interoperability
scoring

Book

Manuscript

Libro

1

2

3

Manuscript

Book

Libro

1

2

3

Figure 9: Example of interoperability score ranking

Figure 9 illustrates the impact of re-ranking the candid-
ates according to the interoperability score. In this example,
the highest-ranked entity type with content score ends up be-
ing ranked second according to the interoperability score.
This would be expected since Manuscript is a parent class
of Book in the ontology graph. Even though it is not shown

in the excerpt of the example KG, it is likely that Manuscript
will be more connected than Book in the overall knowledge
graph and, therefore, achieve a higher interoperability score
than Book.
7.2.1. Interoperability Score Metrics

This score is based on two metrics: neighbourhood size
and neighbourhood frequency. Both scores use the concept
of itℎ neighbourhood NG(v, i) of vertex v, which is the set
of all vertices that lie at the distance i from v in graph G.
Neighbourhood size represents the total number of vertices
in NGe (v, i), while the neighbourhood frequency considers
the frequency of these vertices in the KG. Higher scores in
these metrics translate into a more connected and relevant
neighbourhood. In a fully connected graph, the values of
these metrics keep increasing until all vertices are included
in this score. In contrast to the neighbourhood frequency, the
neighbourhood size rewards candidates with neighbours that
do not appear in the KG but are still in the path of the can-
didate vertex in Ge. Entity types with high neighbourhood
size scores but low neighbourhood frequency are valuable
for integration with datasets not included in the background
Knowledge Graph.
Neighbourhood Size Considering V as the set of vertices
in Ge corresponding to the candidates in CS obtained from
the content score ranking of any data model resource, we
calculate the neighbourhood size metricNS(v, dmax) as thesum of the number of vertices in the itℎ neighbourhood of
vertex v ∈ V up to a maximum weighted distance dmax,i.e., the maximum distance to consider itℎ neighbourhoods.
Therefore, the neighbourhood sizeNS(v, dmax) is computed
with:

NS(v, dmax) =
dmax
∑

i=0
|NGe (v, i)| (9)

Neighbourhood frequency The neighbourhood fre-
quency is defined as the sum of the frequencies freq(n)
of each vertex in the KG over the itℎ neighbourhood
∀v ∈ V ∶ NGe (v, i), where i is the weighted distance from
v to a maximum of dmax:

NF (v, dmax) =
∑

n∈NGe (v,dmax)
freq(n) (10)

7.2.2. Interoperability Score Methodology
Considering r as a data model resource in {et, dp, op},

the interoperability score algorithm takes as input the CSrmapping resulting from the content score algorithms re-
spective to each resource and computes the interoperability
score ISr. See Algorithm 7 in the supplementary material
for the full pseudocode algorithm.

This algorithm first finds the vertex in graphGe that cor-responds to each candidate and then computes the neigh-
bourhoods size and interoperability metrics. The mean of
these two values is the final interoperability score is.

D Oliveira et al.: Preprint submitted to Elsevier Page 18 of 27

Extracting Data Models

7.2.3. Interoperability Score Experiments & Results
In a first experiment, we assessed the impact of the

weights given to content score and interoperability scores.
Figure 10 shows the effect of the weights in the MAP eval-
uation against the Gutenberg ground truth. The figure show
that approximately with wcs = 0.6 and wcs = 0.4 there are
not many more gains to precision. Therefore, we set these
weights for the remainder of these experiments.

(0.1, 0.9) (0.3, 0.7) (0.6, 0.4) (0.8, 0.2) (1.0, 0.0)
(wcs, wis)

0.0

0.2

0.4

0.6

0.8

1.0

m
AP

Figure 10: Impact on mAP of content score and interoperab-
ility score weights.

Interoperability focuses on maximising the integration
between ontology resources selected for the data model and
the different schemas in the knowledge graph. To the best of
our knowledge, there is currently no ground truth that can re-
liably evaluate this component of the framework. Since dif-
ferent data publishers have different interpretations of what
the best entity type is for their use case, manually creating
and curating a ground truth is also not a viable option. For
example, in the case of the library data domain, some data-
sets define the concept of a book as Work, Manifestation,
or Bibliographic Resource, while others adopt more specific
terms such as Book or Document. One of the selected data-
sets (British) even uses both general and specific terms to
define the concept of a book. Therefore, even though, the-
oretically, we could compare the top-ranked candidate with
approaches that match entity types, similarly to the content
score evaluation, to the best of our knowledge, no ground
truth contains a ranking of entity type candidates that eval-
uates their interoperability and it is unlikely to exist since,
as mentioned, the best candidate is often use case depend-
ent. Furthermore, interoperability is not focused on improv-
ing the ranking based on precision and most ground truths
contain evaluations that are focused on that metric. Instead,
interoperability is focused on maximising connectivity with
the knowledge graph.

Therefore, in this section, we present an analysis and dis-
cussion of the effects the interoperability score has on the
rankings produced by the framework. We present an ex-
periment that compares the data model element candidates
scores at different stages to analyse the impact of the content

score (CS) and the interoperability score (IS) in the over-
all ranking of candidates. We include a final score Fc whichis the combination of the content score with the interoper-
ability score, following the function Fc = pow(cs,wcs) ⋅
pow(is, wis), similarly to the function scoring from Al-
gorithm 8, with weights of 1.0 for both scores. For this ex-
periment, we show the rankings up to dmax = 10 but calcu-
late Fc with the median, M , of the interoperability scores,
IS, which is equivalent to dmax = 5. For each experiment,
we present examples representative18 of the diverse results
we obtained that illustrate the points requiring discussion.

Figures 11 through 16 show the rankings for representat-
ive input entity type examples in the library use case datasets
according to different measures and parameters. The figures
show on the Y-axis the top-10 candidates according to Fc .On the X-axis we find CS which is the ranking of the can-
didate according only to the content score, then neighbour-
hood distances d from 0 (only the candidate) to 10, then the
ranking according to themedianM of the scores and, finally,
the ranking according to Fc .

CS 0 1 2 3 4 5 6 7 8 9 10 M Fc

skos:Concept

foaf:Person

dcterms:Agent

foaf:Agent

bibo:Document

schema:Person

gnd:DifferentiatedPerson

blterms:PersonConcept

blterms:TopicLCSH

bne:C1005

2 1 2 2 2 2 3 3 6 6 9 7 2 1

1 4 8 3 3 3 8 5 4 3 3 3 5 2

3 5 3 7 4 8 2 2 1 1 1 1 3 3

3 5 3 7 4 8 7 6 5 4 4 4 4 4

8 2 1 1 1 1 1 1 2 5 6 6 1 5

5 7 8 6 8 3 8 4 3 2 1 1 7 6

6 3 5 10 10 10 10 9 9 7 5 5 6 7

7 10 7 4 6 5 4 7 7 8 7 8 9 8

10 8 6 4 6 5 4 7 7 8 7 8 8 9

9 9 10 9 9 7 6 10 10 10 10 10 10 10

Input: bibframe:Person

Figure 11: Rankings for entity type in the University dataset.

CS 0 1 2 3 4 5 6 7 8 9 10 M Fc

dcterms:Agent

foaf:Agent

foaf:Person

bibo:Document

gnd:DifferentiatedPerson

schema:Person

skos:Concept

dcterms:BibliographicResource

bne:C1005

frbr:Manifestation

1 7 4 6 5 7 3 3 1 1 1 1 5 1

1 7 4 6 5 7 7 8 7 4 4 4 7 2

3 6 7 4 4 4 8 7 5 3 3 3 6 3

7 2 2 2 1 1 1 1 2 5 6 6 1 4

4 4 6 9 9 10 10 9 9 9 5 5 9 5

5 9 7 5 7 4 8 6 4 2 1 1 8 6

8 1 3 3 3 3 4 4 8 8 9 8 3 7

10 5 1 1 2 2 2 2 3 7 8 9 2 8

6 10 10 8 8 6 6 10 10 10 10 10 10 9

9 3 9 10 10 9 5 5 6 6 7 7 4 10

Input: pgterms:agent

Figure 12: Rankings for entity type in the Gutenberg dataset.

Figures 11 and 12 include entity type candidates for
author entities in the University and Gutenberg datasets,
respectively. In the University heatmap, we observe that
foaf:Person was the highest-ranked candidate according to
CS in both datasets. However, when the content score is

18The extended results are available at https://figshare.com/s/

cdfbd624e4e451d7ac25

D Oliveira et al.: Preprint submitted to Elsevier Page 19 of 27

https://figshare.com/s/cdfbd624e4e451d7ac25
https://figshare.com/s/cdfbd624e4e451d7ac25

Extracting Data Models

combined with the interoperability score, the highest-ranked
candidate changes to skos:Concept in the University dataset
and dcterms:Agent in the Gutenberg dataset. dcterms:Agent is
more generic than foaf:Person, therefore, in terms of inter-
operability, it is more desirable since it is more likely to link
to more entity types in the ontology graph. In the University
dataset, however, it obtained a lower raw content score, CS,
which leads to its lower ranking. In this dataset, skos:Concept
combined a strong content score with high interoperability
and, therefore, maintained the top-ranked position.

When looking at the ranking of bibo:Document in both
datasets, we verify that the interoperability boosted an un-
desirable candidate since this entity type is well-connected
and one of the most frequent in the knowledge graph (used
by all books in the German Library). Therefore, this is a case
where interoperability is enabling the introduction of noise
in the ranking. These cases can be counteracted by balancing
the weights given to the content and interoperability scores.

Figures 13 and 14 show the results of the same experi-
ment for two datatype properties in the Institute and OpenL
datasets, respectively. In Figure 13, the input property has
book titles as values. Despite having similar features as the
previous datasets, due to the low amount of samples extrac-
ted from this dataset, we observe that none of the candid-
ates ranked in the top-10 is an obvious match. The low
sample size leads to poor performance of the classification
model, which predicts properties incorrectly and translates
to Borda scores that are not in line with the best candidates
for the input property. On the other hand, Figure 14 shows
that the classification model and the content score can pro-
duce good results in the top-10 that are further re-ordered
according to the interoperability score. This produces can-
didate dates that are more interoperable even if less spe-
cific. For example, dcterms:date is arguably correct, even
if gnd:dateOfBirth is more specific to the date in question.
Nonetheless, once again, it is up to the data publisher to de-
cide between the more specific or more interoperable can-
didates.

CS 0 1 2 3 4 5 6 7 8 9 10 M Fc

dc:publisher

rda:P50100

rdvocab:publishersName

bne:P3001

bne:P6002

rdau:P60438

bne:P3016

rlt:pbl.gnd:preferredName

schema:recordLabel.gnd:preferredName

rlt:prf.gnd:preferredName

5 1 1 1 1 1 1 1 1 1 1 1 1 1

7 6 6 6 2 2 2 2 2 2 2 2 2 2

10 2 2 2 3 3 3 3 3 3 4 3 3 3

1 3 3 3 4 4 4 4 4 4 3 4 4 4

3 5 5 5 6 6 6 6 6 6 6 6 6 5

4 7 7 7 7 7 7 7 7 7 7 7 7 6

8 4 4 4 5 5 5 5 5 5 5 5 5 7

2 8 8 8 8 8 8 8 8 8 8 8 8 8

6 8 8 8 8 8 8 8 8 8 8 8 8 9

9 8 8 8 8 8 8 8 8 8 8 8 8 10

Input: title

Figure 13: Rankings for datatype property in the Institute
dataset.

Figures 15 and 16 show the results of this experiment for
two object properties in the University and Gutenberg data-
sets, respectively. For the bibframe:subject property in Fig-
ure 15, the top-3 properties are arguably considered correct
(bne:OP3008 - has subject). In this instance, the top-3 candid-

CS 0 1 2 3 4 5 6 7 8 9 10 M Fc

gnd:associatedDate

dcterms:date

gnd:dateOfBirth

gnd:dateOfDeath

gnd:dateOfBirthAndDeath

bnf-onto:firstYear

gnd:placeOfBirthAsLiteral

bnf-onto:lastYear

bne:P5010

bne:P1004

4 10 2 2 2 1 2 2 2 2 2 2 2 1

9 2 1 1 1 4 1 1 1 1 1 1 1 2

2 3 4 3 3 2 3 4 4 4 3 5 4 3

3 5 6 4 4 3 4 3 3 3 4 6 3 4

5 8 9 9 7 7 5 5 6 6 6 7 6 5

7 1 3 5 5 5 7 7 7 7 7 3 5 6

6 7 8 8 6 6 5 5 5 5 5 8 6 7

8 4 5 6 8 8 7 7 7 7 7 3 8 8

1 6 7 7 9 9 9 9 9 9 10 10 10 9

10 9 10 10 10 10 10 10 10 10 9 9 9 10

Input: birth_date

Figure 14: Rankings for datatype property in the OpenL data-
set.

ates have similar interoperability scores and, therefore, there
were not many changes regarding the content score ranking.
It is also likely that no more correct matches exist since both
the German and British libraries use dcterms:subject, and
the remaining two properties are used by the Spanish and
French libraries. The Portuguese library does not use this
property, and therefore, the top-3 cover the best candidates
in each library.

In Figure 16, the top ranked candidates are not so fit-
ting since dcterms:subjectwas ranked second, with the same
candidate as the input (dcterms:creator) ranked third due to
its lower interoperability. This is another case of ranking
non-relevant candidates higher than more accurate candid-
ates. However, this reduction in precision is tolerable in
cases where interoperability with multiple data sources is
desirable, the data publisher still has the remaining relev-
ant candidates further in the hierarchy and a fast validation
of the output recommendation will yield more accurate and
interoperable results.

CS 0 1 2 3 4 5 6 7 8 9 10 M Fc

dcterms:subject

bne:OP3008

bnf-onto:subject

bne:OP1008

bne:OP7001

rlt:clb

rdau:P60261

rdau:P60278

rdau:P60287

rdau:P60200

1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 3 1 2 2 2 2 2 2 2 2 2 2

3 9 2 1 2 2 2 2 2 3 3 3 2 3

3 9 10 10 10 10 10 4 4 4 4 4 10 4

5 3 4 4 4 4 4 5 5 5 5 5 4 5

8 6 7 7 7 7 7 8 8 8 8 6 5 6

6 4 5 5 5 5 5 6 6 6 6 7 6 7

7 5 6 6 6 6 6 7 7 7 7 8 7 8

9 7 8 8 8 8 8 9 9 9 9 9 8 9

10 8 9 9 9 9 9 10 10 10 10 10 9 10

Input: bibframe:subject

Figure 15: Rankings for object property in the University data-
set.

7.2.4. Discussion
For the interoperability score, the choice of dmax is the

parameter to take into account, which is also use case de-
pendent. At dmax = 1, the interoperability considers only
direct neighbours which include only subclasses, equival-

D Oliveira et al.: Preprint submitted to Elsevier Page 20 of 27

Extracting Data Models

CS 0 1 2 3 4 5 6 7 8 9 10 M Fc

dcterms:contributor

dcterms:subject

dcterms:creator

schema:contributor

bne:OP3006

dcterms:relation

skos:related

bne:OP1001

dcterms:isFormatOf

bne:OP3003

2 2 1 1 4 2 2 4 2 3 2 3 3 1

4 1 2 4 2 4 1 1 1 1 1 1 1 2

1 3 6 7 7 7 5 5 7 6 7 6 6 3

5 5 3 2 1 1 6 2 3 2 3 2 2 4

6 4 3 2 3 2 8 3 4 3 4 4 4 5

8 8 5 5 5 6 3 6 6 5 5 5 5 6

10 10 7 6 6 5 7 8 5 7 6 7 7 7

3 7 9 9 9 9 10 9 9 10 9 9 9 8

9 9 10 10 10 10 4 7 8 8 8 8 8 9

7 6 8 8 8 8 9 10 10 9 10 10 10 10

Input: dcterms:creator

Figure 16: Rankings for object property in the Gutenberg data-
set.

ences, and perfect mappings. As dmax increases, the neigh-bourhood of the candidate is expanded to include more re-
lated entity types, potentially introducing more noise into
the neighbourhood. Therefore, the user’s choice is a balance
between specificity and maximisation of interoperability. In
our experiments, we used a dmax = 10 to present a broader
view of the impact of interoperability but empirically chose
to use the median of all IS scores (i.e., maximum weighted
distance of 5) to combine with the CS score. This median
distance represents a middle point between using the gen-
eric values found at distance 10 when the interoperability
score stabilises and considering a significant distance from
the source to boost candidates that are well-connected in the
graph.
7.3. Consistency Score

The consistency score takes as input the results from the
individual scoring methodologies of entity types and proper-
ties and re-ranks them considering their combined frequency
in the KG but also the homogeneity of the candidate data
models being proposed. Therefore, the consistency score
has two main phases: (1) score aggregation, which com-
bines the individual scores and Knowledge Graph frequen-
cies into a single triple candidate score, and (2) score refine-
ment, which iterates over the candidate triples and boosts
triples that improve the consistency of the entity types and
properties being suggested considering the whole candidate
data model.

Figure 17 shows potential results from the consistency
score aggregation and refinement. The aggregation step ob-
tains a ranked set of triples to match input triples. This step
takes into account not only the individual scores of the triple
elements but also the frequency that the three elements ap-
pear together on the knowledge graph. The ranked triples
are then refined to boost triples that include elements that
are more commonly ranked first. In this example, we see
that for the bottom triple, the triples with the class Person are
ranked higher than the triples with the class Author. There-
fore, in the refinement step, even though the triple ⟨Book – has

author ⇾ Author⟩ was ranked higher, the triple ⟨Book – has

author ⇾ Person⟩ is boosted to the top rank because Person

is highly ranked in other triples. The final recommended
data model is presented to the user in the format presented
in this figure.
7.3.1. Score Aggregation

In the score aggregation phase, for each triple pattern in
the input data, we obtain the individual content and interop-
erability scores of each element and combine themwith their
co-occurrence scores extracted from the KGPmap construc-
ted (see Section 5.3). The co-occurrence score corresponds
to the frequency in which elements of the triple co-occur in a
triple pattern of the KGP.We compute the co-occurrence fre-
quencies of the candidate triples ⟨domain – property⇾ range⟩

dpr and the pairs domain-property dr, domain-range dr, and
property-range pr. Therefore, the score aggregation is com-
puted for each input triple pattern ⟨d – p ⇾ r⟩ in the input
dataset by considering the individual scores CSe and ISeof the element e, where e is an element of the triple pattern
candidate {cd , cp, cr} ⇔ c ∈ C . The individual scores CSeand ISe are obtained with the specific methodologies per
resource described in sections 7.1.2 and 7.2.2.

Overall, we normalise all scores using the following:

s̃(e) =
s(e)

max
e∈E

s(e)
(11)

WhereE is the set of all elements for which s(e) can be com-
puted. Whenever the tilde character (̃) is used, it represents
a value normalised by the maximum of the set.

We then compute the mean of the co-occurrences of the
triple patterns cor with:

co_mean(d, p, r) = mean(c̃odpr, c̃odp, c̃opr, c̃odr) (12)
Algorithm 8 in the supplementary material shows the

complete methodology to compute the score aggregation
phase of the consistency score.

This algorithm first defines the general scoring function
that is used to initialise the aggregated score and is also used
in the score refinement phase to recompute the aggregated
score after refinement.

The aggregation phase begins by extracting the indi-
vidual scores of each of the candidates that match the
triple pattern. The algorithm then computes the Cartesian
product between the three sets of candidates (line 19 in Al-
gorithm 8) and obtains the co-occurrence score co, which is
used, in addition to the individual score, to compute the fi-
nal aggregated score agg. The final step uses the function
sortby(C, agg) to sort the candidates in descending order of
agg score per d, p, r key in the map.
7.3.2. Score Refinement

In the score refinement phase, we iterate over all can-
didate triples that share elements, i.e., the same input
subject, predicate, or object, and adjust the individual
score of the overlapping resource by boosting or penal-
ising it depending on its ranking in the different overlap-
ping triples. We use the Borda score (Section 7.1.1) to

D Oliveira et al.: Preprint submitted to Elsevier Page 21 of 27

Extracting Data Models

1

2

3

4

Book Author
has author

Manuscript Person
created by

Literal
has birthdate

fecha de
nascimiento

Person

Author
has birthdate

Person

Author
fecha de

nascimiento

J. R. R. Tolkien January 3, 1892
has birthdate

The Hobbit J. R. R. Tolkien
written by

Book Person
created by

Manuscript Author
has author

Book
has author

Person

1

2

3

4

5

Literal

Literal

Literal

RefinementAggregation

1

2

3

4

Book Author
has author

Manuscript Person
created by

Literal
has birthdate

fecha de
nascimiento

Person

Author
has birthdate

Person

Author
fecha de

nascimiento

J. R. R. Tolkien
has birthdate

The Hobbit J. R. R. Tolkien
written by

Book Person
created by

Manuscript Author
has author

Book
has author

Person1

2

3

4

5

Literal

Literal

Literal

January 3, 1892

Figure 17: Example of consistency score ranking

consider the rankings of the candidates when refining the
score. For example, considering two triple patterns in the
input data: [pgterms:ebook, dcterms:creator, pgterms:agent]
and [pgterms:ebook, dcterms:publisher, literal], the refine-
ment phase would look at the rankings of the candidates for
pgterms:ebook in both triples and adjust the score according
to the rankings of the entity types in both triples. This is an
iterative process that runs until the data model converges or
up to a maximum of n iterations.

Algorithm 9 in the supplementary material shows the
complete methodology to compute the score refinement
phase of the consistency score.

First, the algorithm computes the Borda score for each
candidate of each element. For that, it uses the func-
tion groupby(DM, e) to group key-value pairs in DM,
where the element e is a specific component of the ⟨d, p, r⟩
key. For example, groupby(DM, pgterms:ebook) gets all the
triple patterns and their candidate lists that have the subject
pgterms:ebook. The Borda score is then used to refine the in-
dividual scores of each candidate and the function scoring()
computes an updated aggregated score agg. Finally, we re-
order the candidates in descending order of the new agg
score. This process is repeated until the refinement does not
change the order of the DM mapping anymore or until m
iterations are reached.
7.3.3. Consistency Experiments & Results

Figure 18 shows a representative example19
for the Gutenberg library of the effects of the
consistency score and the weights of each score
in the candidate rankings for the input triple
⟨pgterms:ebook – dcterms:creator ⇾ pgterms:agent⟩.

19The extended results are available at https://figshare.com/s/

cdfbd624e4e451d7ac25

The Fc rankings represent the weighted average of the
content score CS and the interoperability score IS of the
elements of the triple. Agg represents the score obtained
after the aggregation step of the consistency score algorithm.
Finally, Ref represents the rankings after the refinement
step of the consistency score.

In Figure 18a, we show weights that we empirically
found to work well for this use case, presenting triple recom-
mendations that seemed potentially good candidates. In this
example, the top-ranked candidate triple is not changed in
the refinement step, however, the remaining triples are signi-
ficantly changed by the consistency steps. Generally triples
with bibo:Document as domain and dcterms:Agent as range
are ranked higher since these were the triples that obtained
higher scores and, therefore, aremore frequently ranked first.
The predicate dcterms:subject ranked above other more de-
sirable candidates due to its high interoperability. This is
another case where a different balance between the weights
given to interoperability and content score could positively
affect the final results. The remaining candidates as boosted
by co-occurrence frequency and the score refinement to ap-
pear in the top-20 recommended triples for the input triple
pattern. The remaining candidates follow similar patterns,
where despite obtaining lower scores when combining con-
tent and interoperability metrics, the triple score is boosted
by co-occurrence in the Agg step, and further refined in the
last step. This pattern is also verified for all remaining triple
patterns of the datasets of both use cases. Previous issues
are not resolved in this step, but when the rankings follow
the expected outcomes, the resulting rankings follow a sim-
ilar pattern to the example in Figure 18.

Figure 18b shows the impact of giving equal weight to
content and interoperability scores. Here we see that the Ag-
gregation step changes the ranking based on Fc and the Re-

D Oliveira et al.: Preprint submitted to Elsevier Page 22 of 27

https://figshare.com/s/cdfbd624e4e451d7ac25
https://figshare.com/s/cdfbd624e4e451d7ac25

Extracting Data Models

Fc Agg Ref

bibo:Document dcterms:contributor dcterms:Agent

bibo:Document dcterms:subject dcterms:Agent

bibo:Document dcterms:creator dcterms:Agent

bibo:Document schema:contributor dcterms:Agent

bibo:Document dcterms:subject gnd:DifferentiatedPerson

bibo:Document dcterms:relation dcterms:Agent

bibo:Document dcterms:isFormatOf dcterms:Agent

bibo:Document dcterms:creator gnd:DifferentiatedPerson

dcterms:BibliographicResource dcterms:contributor dcterms:Agent

schema:Book dcterms:contributor dcterms:Agent

1 4 1

5 8 2

6 10 3

7 12 4

23 1 5

20 31 6

26 40 7

25 3 8

30 15 9

43 28 10

wcs = 0.6
wis = 0.4
wcns = 0.3

(a)

Fc Agg Ref

1 8 4

5 10 5

10 24 7

6 23 6

29 2 1

24 69 8

33 85 11

44 4 3

21 7 13

43 13 14

wcs = 1.0
wis = 1.0
wcns = 0.5

(b)

Fc Agg Ref

3 5 2

11 13 3

1 3 1

13 18 5

30 2 8

16 16 4

18 20 6

7 1 7

75 49 12

61 39 12

wcs = 1.0
wis = 0.0
wcns = 0.3

(c)
pgterms:ebook dcterms:creator pgterms:agent

Figure 18: Ranking of triple candidates according to final score Fc , score aggregation Agg,
and score refinement Ref .

finement step leads to the wrong triple being ranked higher
than others that are potentially more correct. Figure 18c
shows the result of the recommendation if the interoperab-
ility is given no weight. In this case, a more specific triple
is ranked higher after aggregation but the refinement steps
leads the recommendation to the more general triples.
7.3.4. Discussion

For the chosen use cases, we observed that the consist-
ency methodology fulfilled its purpose and led to more con-
sistent data models in terms of frequency in the knowledge
graph and the candidates being suggested within the data
model.

A feature of this score is that it combines the previous
scores with the co-occurrence scores to obtain a final triple
score. This combination is achieved by balancing paramet-
ers that should align with the preferences of the user. In our
experiments, we found the weights 0.6 for wcs, 0.4 for wisand 0.3 for wcns to be the most balanced, however, these
might not be optimal for different use cases. In the case of
the library data, we obtained reasonable results for the final
rankings, but it is not guaranteed that it will be similar for
other datasets. Besides, these parameters are meant to be
adjusted to the preferences of the users. Therefore, the user
can focus on the framework by boosting the content, inter-
operability, or consistency scores. However, the user should
also consider that the strength of this framework lies not in
achieving the highest precision possible for each candidate
but, instead is focused on producing a ranking of candidate
triples that will be accurate, consistent, and interoperable.
Maximising one of these scores, while ignoring the others
will produce results that might be less optimal.

7.4. Evaluating Distance to Source
The final experiment focuses on comparing the ranking

obtained by our framework with the original entity types
from library KG datasets. This evaluation was obtained by
taking each dataset, excluding their entities from the docu-
ment store, and running the framework to produce a set of
entity type candidates.

We use the term lenient to refer to a metric that does not
use a binary classification but considers the distance in the
graph to make an assessment. Therefore, we distinguish two
types of evaluation: (1) strict where the correctness of the
rank is binary, and (2) lenient which considers the distance
from the source type t ∈ T to the candidate type c ∈ C .

This evaluation uses Precision@k (P@k), where k ∈
{1, 3, 5}. The lenient evaluation instead of binary correct-
ness considers the distance in the ontology graph Ge. We
compute lenient precision by considering correct candidates
at three distances d ∈ {1, 2, 3}, i.e., any candidate at a dis-
tance less or equal to d is considered correct. We calculate
these metrics for every input entity type in each library, aver-
age the results, and present the aggregated result in Table 10.

The strict evaluation obtained poor performance in all
datasets. This result was expected since the removal of data
from the document store has a high impact on both CS and
IS due to frequency counts being lowered in the search res-
ults and document store for the original entity types. There-
fore, the likelihood of our framework suggesting the same
entity type as the original is low. In the lenient evaluation,
we verify that the entity type candidates suggested are close
to the original types. Overall, the interoperability score does
not seem to drive the candidates away from the entity type
originally chosen to model the data. We observe slight vari-

D Oliveira et al.: Preprint submitted to Elsevier Page 23 of 27

Extracting Data Models

Table 10
Results of the strict and lenient evaluation of the distance from source.

Strict Lenient

Library Score P@1 P@3 P@5 P@1 P@3 P@5

d0 d0 d0 d1 d2 d3 d1 d2 d3 d1 d2 d3

British CS 0.037 0.025 0.022 0.370 0.852 0.926 0.272 0.753 0.926 0.200 0.704 0.904
IS 0.000 0.037 0.022 0.370 0.889 0.963 0.284 0.728 0.926 0.230 0.674 0.881

French CS 0.000 0.028 0.033 0.417 0.833 0.917 0.306 0.694 0.972 0.333 0.717 0.983
IS 0.000 0.028 0.033 0.417 0.833 1.000 0.472 0.722 0.972 0.433 0.700 0.950

German CS 0.000 0.000 0.007 0.152 0.848 1.000 0.151 0.742 0.989 0.167 0.727 0.980
IS 0.000 0.000 0.007 0.182 0.909 1.000 0.237 0.785 0.978 0.213 0.747 0.980

Portuguese CS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
IS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Spanish CS 0.000 0.062 0.038 0.500 0.833 1.000 0.312 0.812 1.000 0.231 0.731 1.000
IS 0.000 0.062 0.038 0.500 0.833 1.000 0.312 0.625 1.000 0.231 0.731 1.000

ations in the IS score in comparison to the CS score, how-
ever, in most cases, this variation is small enough to claim
that the interoperability score does not degrade the recom-
mendation of the framework. The German library has one of
the lowest performances because they adopted a data model
that is structurally distant from the ones used in the other
libraries. However, the Portuguese library obtains a score of
0 in every metric. This is due to the simple nature of their
data model and the lack of general interoperability with the
remaining models. Despite the low performance in this ex-
periment, however, the Portuguese library data was still part
of the knowledge graph andmight use a desirable data model
for other users.

This evaluation, together with the previous experiments,
demonstrates that our framework proposes candidates that
are potentially more interoperable with existing domain
datasets while maintaining the original meaning intended in
the library datasets by proposing similar entity types.

8. Conclusions
RICDaM is a framework composed of several meth-

ods and algorithms to produce a ranked set of candidates
to match the data of an input dataset. This framework is
divided into (1) building the background knowledge graph
from multiple data sources and the ontology graph extracted
from those sources, and (2) generating and ranking entity
type and property candidates by exploiting information ob-
tained from the knowledge graph and the ontology graph.

We experimented and evaluated the framework with di-
verse methods to examine its performance and analyse its
impact on potential applications. Through the evaluations
and experiments, we concluded that, within the set para-
meters, the framework achieves the goal of facilitating the
process of creating a data model for an input dataset that
can be adjusted to be accurate, interoperable, and consist-
ent. This process is facilitated by proposing a ranked list
of candidates that orders candidates based on the relevancy
to the input and their interoperability with other concepts
in the knowledge graphs. The caveats of each methodology

proposed were discussed and should be taken into consid-
eration when implementing the framework and associated
evaluations. Overall, one of the goals of the framework was
to lower the entry-level barrier to publish linked data. In
our proposed framework, most of the underlying processes
of identifying the best class or property to model the data are
automatised and present the user with a recommendation of a
data model for their data. Nonetheless, the user is presented
with a ranked set of options and can customise to model to fit
a certain use case. This customisation can require some level
of understanding of the data model and the underlying con-
cepts of the RDF data model. Therefore, despite being able
to streamline the process of creating a data model, the pub-
lishing barriers are not eliminated since some level of know-
ledge is still required for an optimal experience. On the other
hand, the framework is more successful in aiding in selecting
and linking the ontologies used to model data in a domain.
The framework takes existing datasets and provides interop-
erable and consistent recommendations for data models and
eliminate the need to manually analyse the data domain and
empirically decide between existing data models.

In the future, we will apply this to more domains with
potentially more complex data, such as the biomedical do-
main. This domain is characterised by very large data with
complexities specific to the domain. Preliminary work in
this domain was conducted [28]. However, further testing
is necessary to accurately analyse the effectiveness of the
methodology in this domain.

The consistency score can consider the consistency in
terms of independent data sources in the knowledge graph.
Currently, the knowledge graph is treated by the framework
as a single source. However, if it distinguishes between data
sources, it is possible to boost the patterns that exist within
the same source data model, ensuring that logical coherence
is maintained from the original data source. In this sense, de-
pending on which data source is being mostly ranked first,
the framework would boost the triple candidates that be-
long to that source. For example, if candidate triples from
the British library are frequently ranked first, the framework

D Oliveira et al.: Preprint submitted to Elsevier Page 24 of 27

Extracting Data Models

would boost candidates from that library to improve the con-
sistency of the model at the data source level.

Another consideration in terms of the weighting scheme
for the scores is that, in the future, these should not be taken
globally for each entity in the triple candidate. Data pub-
lishers can have different requirements for the data model
elements, considering, for example, that entity types should
focus more on interoperability, while properties should be as
accurate as possible. Therefore, in the future, these weights
should be expanded to provide more fine-grained control
over the weights given to the scoring methodologies.

A demonstration of an implementation is available at
http://afel.insight-centre.org/ricdam/ [29]. The demon-
stration includes two pre-loaded outputs: one for the Guten-
berg dataset and the other for the Open Library, and presents
the top candidate data model to the user. The interface gives
an overview of the best-ranked candidates for each triple but
also allows the user to adapt the data model to their prefer-
ence and use case. The demonstration presents an overview
of the output of the framework, allows the customisation of
the data model and tuning of the parameters to produce dif-
ferent candidate rankings. In the future, a complete tool us-
ing this framework would allow the user to search the in-
dexed ontologies or add new ontologies to the graph to com-
plete the model when the data model fails to find the desired
class. For JSON or CSV input datasets, it would also be
possible to generate an RML mapping file to facilitate the
process of translating the data to RDF.

Acknowledgements
This research was supported by Science Founda-

tion Ireland (SFI) under Grant Number SFI/12/RC/2289
and SFI/12/RC/2289_P2, co-funded by the European Re-
gional Development Fund and the Fundação para a Ciên-
cia e a Tecnologia through the LASIGE Research Unit,
UIDB/00408/2020 and UIDP/00408/2020.

References
[1] Adelfio, M.D., Samet, H., 2013. Schema Extraction for Tabular

Data on the Web. Proceedings of the VLDB Endowment 6, 421–
432. URL: http://dl.acm.org/doi/10.14778/2536336.2536343, doi:10.
14778/2536336.2536343.

[2] Algergawy, A., Faria, D., Ferrara, A., Fundulaki, I., Harrow, I., Hert-
ling, S., Jimenez-Ruiz, E., Karam, N., Khiat, A., Lambrix, P., Li, H.,
Montanelli, S., Paulheim, H., Pesquita, C., Saveta, T., Shvaiko, P.,
Splendiani, A., Thieblin, E., Trojahn, C., Vatasˇcˇinova, J., Zamazal,
O., Zhou, L., 2019. Results of the Ontology Alignment Evaluation
Initiative 2019, in: Proceedings of the 14th International Workshop
on OntologyMatching co-located with ISWC 2019, CEURWorkshop
Proceedings, Auckland, New Zealand. p. 40.

[3] Andresen, L., 2004. After MARC – what then? Library Hi Tech 22,
40–51. URL: https://doi.org/10.1108/07378830410524486, doi:10.
1108/07378830410524486.

[4] Chen, Z., Jia, H., Heflin, J., Davison, B.D., 2018. Generating Schema
Labels through Dataset Content Analysis, in: Companion of the The
Web Conference 2018 on The Web Conference 2018 - WWW ’18,
ACM Press, Lyon, France. pp. 1515–1522. URL: http://dl.acm.org/
citation.cfm?doid=3184558.3191601, doi:10.1145/3184558.3191601.

[5] d’Aquin, M., Adamou, A., Dietze, S., 2013. Assessing the educational
linked data landscape, in: Proceedings of the 5th Annual ACM Web

Science Conference, Association for Computing Machinery, Paris,
France. pp. 43–46. URL: https://doi.org/10.1145/2464464.2464487,
doi:10.1145/2464464.2464487.

[6] Das, S., Sundara, S., Cyganiak, R., 2012. R2RML: RDB to RDF
Mapping Language. URL: https://www.w3.org/TR/r2rml/.

[7] Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens,
E., Van de Walle, R., 2014. RML: A Generic Language for Integ-
rated RDF Mappings of Heterogeneous Data., in: LDOW. URL:
https://www.researchgate.net/profile/Ruben_Verborgh/publication/

264274087_RML_A_Generic_Language_for_Integrated_RDF_Mappings_of_

Heterogeneous_Data/links/53d8fd2b0cf2631430c38a7b.pdf.
[8] Do, B.L., Aryan, P.R., Trinh, T.D., Wetz, P., Kiesling, E., Tjoa, A.M.,

2015. Toward a framework for statistical data integration, in: Pro-
ceedings of the 3rd International Workshop on Semantic Statistics,
CEUR Workshop Proceedings, Bethlehem, U.S.A.. p. 12.

[9] Ehrlinger, L., Wöß, W., 2016. Towards a Definition of Knowledge
Graphs, in: Joint Proceedings of the Posters and Demos Track of the
12th International Conference on Semantic Systems and the 1st In-
ternational Workshop on Semantic Change & Evolving Semantics,
CEUR-WS, Leipzig, Germany.

[10] Faria, D., Pesquita, C., Santos, E., Palmonari, M., Cruz, I.F., Couto,
F.M., 2013. The AgreementMakerLight Ontology Matching System,
in: On the Move to Meaningful Internet Systems: OTM 2013 Con-
ferences, Springer, Berlin, Heidelberg. pp. 527–541. URL: https:
//link.springer.com/chapter/10.1007/978-3-642-41030-7_38, doi:10.
1007/978-3-642-41030-7_38.

[11] Faria, D., Pesquita, C., Tervo, T., Couto, F.M., Cruz, I.F., 2019. AML
and AMLC Results for OAEI 2019, in: Proceedings of the 14th In-
ternational Workshop on Ontology Matching co-located with ISWC
2019, CEUR-WS. p. 6.

[12] Gruber, T.R., 1993. A translation approach to portable ontology
specifications. Knowledge Acquisition 5, 199–220. URL: http:

//www.sciencedirect.com/science/article/pii/S1042814383710083,
doi:10.1006/knac.1993.1008.

[13] Haesendonck, G., Maroy, W., Heyvaert, P., Verborgh, R., Dimou, A.,
2019. Parallel RDF generation from heterogeneous big data, in: Pro-
ceedings of the International Workshop on Semantic Big Data - SBD
’19, ACM Press, Amsterdam, Netherlands. pp. 1–6. URL: http://
dl.acm.org/citation.cfm?doid=3323878.3325802, doi:10.1145/3323878.
3325802.

[14] Hallo, M., Luján-Mora, S., Maté, A., Trujillo, J., 2016. Current state
of Linked Data in digital libraries. Journal of Information Science 42,
117–127. URL: https://doi.org/10.1177/0165551515594729, doi:10.
1177/0165551515594729.

[15] Hertling, S., Paulheim, H., 2020. DBkWik: extracting and integ-
rating knowledge from thousands of Wikis. Knowledge and In-
formation Systems 62, 2169–2190. URL: https://doi.org/10.1007/
s10115-019-01415-5, doi:10.1007/s10115-019-01415-5.

[16] Heyvaert, P., De Meester, B., Dimou, A., Verborgh, R., 2018.
Declarative Rules for Linked Data Generation at Your Fingertips!,
in: Gangemi, A., Gentile, A.L., Nuzzolese, A.G., Rudolph, S.,
Maleshkova, M., Paulheim, H., Pan, J.Z., Alam, M. (Eds.), The Se-
mantic Web: ESWC 2018 Satellite Events, Springer International
Publishing, Cham. pp. 213–217. doi:10.1007/978-3-319-98192-5_40.

[17] Hu, W., Qiu, H., Dumontier, M., 2015. Link Analysis of Life Science
Linked Data, in: Arenas, M., Corcho, O., Simperl, E., Strohmaier,
M., d’Aquin, M., Srinivas, K., Groth, P., Dumontier, M., Heflin,
J., Thirunarayan, K., Staab, S. (Eds.), International Semantic Web
Conference, Springer International Publishing, Cham. pp. 446–462.
doi:10.1007/978-3-319-25010-6_29.

[18] Iglesias-Molina, A., Chaves-Fraga, D., Priyatna, F., Corcho, O., 2019.
Enhancing the Maintainability of the Bio2RDF Project Using Declar-
ative Mappings, Edinburgh, Scotland. p. 11.

[19] Krötzsch, M., Thost, V., 2016. Ontologies for Knowledge Graphs:
Breaking the Rules, in: Groth, P., Simperl, E., Gray, A., Sabou,
M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (Eds.), Inter-
national Semantic Web Conference, Springer, Cham. pp. 376–
392. URL: http://link.springer.com/10.1007/978-3-319-46523-4_23,

D Oliveira et al.: Preprint submitted to Elsevier Page 25 of 27

http://afel.insight-centre.org/ricdam/
http://dl.acm.org/doi/10.14778/2536336.2536343
http://dx.doi.org/10.14778/2536336.2536343
http://dx.doi.org/10.14778/2536336.2536343
https://doi.org/10.1108/07378830410524486
http://dx.doi.org/10.1108/07378830410524486
http://dx.doi.org/10.1108/07378830410524486
http://dl.acm.org/citation.cfm?doid=3184558.3191601
http://dl.acm.org/citation.cfm?doid=3184558.3191601
http://dx.doi.org/10.1145/3184558.3191601
https://doi.org/10.1145/2464464.2464487
http://dx.doi.org/10.1145/2464464.2464487
https://www.w3.org/TR/r2rml/
https://www.researchgate.net/profile/Ruben_Verborgh/publication/264274087_RML_A_Generic_Language_for_Integrated_RDF_Mappings_of_Heterogeneous_Data/links/53d8fd2b0cf2631430c38a7b.pdf
https://www.researchgate.net/profile/Ruben_Verborgh/publication/264274087_RML_A_Generic_Language_for_Integrated_RDF_Mappings_of_Heterogeneous_Data/links/53d8fd2b0cf2631430c38a7b.pdf
https://www.researchgate.net/profile/Ruben_Verborgh/publication/264274087_RML_A_Generic_Language_for_Integrated_RDF_Mappings_of_Heterogeneous_Data/links/53d8fd2b0cf2631430c38a7b.pdf
https://link.springer.com/chapter/10.1007/978-3-642-41030-7_38
https://link.springer.com/chapter/10.1007/978-3-642-41030-7_38
http://dx.doi.org/10.1007/978-3-642-41030-7_38
http://dx.doi.org/10.1007/978-3-642-41030-7_38
http://www.sciencedirect.com/science/article/pii/S1042814383710083
http://www.sciencedirect.com/science/article/pii/S1042814383710083
http://dx.doi.org/10.1006/knac.1993.1008
http://dl.acm.org/citation.cfm?doid=3323878.3325802
http://dl.acm.org/citation.cfm?doid=3323878.3325802
http://dx.doi.org/10.1145/3323878.3325802
http://dx.doi.org/10.1145/3323878.3325802
https://doi.org/10.1177/0165551515594729
http://dx.doi.org/10.1177/0165551515594729
http://dx.doi.org/10.1177/0165551515594729
https://doi.org/10.1007/s10115-019-01415-5
https://doi.org/10.1007/s10115-019-01415-5
http://dx.doi.org/10.1007/s10115-019-01415-5
http://dx.doi.org/10.1007/978-3-319-98192-5_40
http://dx.doi.org/10.1007/978-3-319-25010-6_29
http://link.springer.com/10.1007/978-3-319-46523-4_23

Extracting Data Models

doi:10.1007/978-3-319-46523-4_23.
[20] Lefrançois, M., Zimmermann, A., Bakerally, N., 2017. A SPARQL

Extension for Generating RDF from Heterogeneous Formats, in:
Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P.,
Hartig, O. (Eds.), The Semantic Web, Springer International Pub-
lishing, Cham. pp. 35–50. URL: http://link.springer.com/10.1007/
978-3-319-58068-5_3, doi:10.1007/978-3-319-58068-5_3. series Title:
Lecture Notes in Computer Science.

[21] Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D.,
Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S.,
Bizer, C., 2015. DBpedia – A large-scale, multilingual know-
ledge base extracted from Wikipedia. Semantic Web 6, 167–
195. URL: https://www.medra.org/servlet/aliasResolver?alias=

iospress&doi=10.3233/SW-140134, doi:10.3233/SW-140134.
[22] Lehmann, J., Schuppel, J., Auer, S., 2007. Discovering Unknown

Connections – the DBpedia Relationship Finder, in: Proceedings of
the 1st Conference on Social Semantic Web (CSSW), Leipzig, Ger-
many. p. 11.

[23] Limaye, G., Sarawagi, S., Chakrabarti, S., 2010. Annotating and
searching web tables using entities, types and relationships. Proceed-
ings of the VLDB Endowment 3, 1338–1347. URL: http://dl.acm.
org/doi/10.14778/1920841.1921005, doi:10.14778/1920841.1921005.

[24] McKenna, L., Debruyne, C., O’Sullivan, D., 2018. Understand-
ing the Position of Information Professionals with regards to Linked
Data: A Survey of Libraries, Archives and Museums, in: Proceed-
ings of the 18th ACM/IEEE on Joint Conference on Digital Librar-
ies, Association for Computing Machinery, New York, NY, USA. pp.
7–16. URL: https://doi.org/10.1145/3197026.3197041, doi:10.1145/
3197026.3197041.

[25] de Medeiros, L.F., Priyatna, F., Corcho, O., 2015. MIRROR: Auto-
matic R2RML Mapping Generation from Relational Databases, in:
Cimiano, P., Frasincar, F., Houben, G.J., Schwabe, D. (Eds.), Engin-
eering the Web in the Big Data Era. Springer International Publish-
ing, Cham. volume 9114, pp. 326–343. URL: http://link.springer.
com/10.1007/978-3-319-19890-3_21, doi:10.1007/978-3-319-19890-3_
21. series Title: Lecture Notes in Computer Science.

[26] Michel, F., Djimenou, L., Faron Zucker, C., Montagnat, J., 2015.
Translation of Relational and Non-Relational Databases into RDF
with xR2RML, in: 11th International Confenrence on Web Inform-
ation Systems and Technologies (WEBIST’15), Lisbon, Portugal.
pp. 443–454. URL: https://hal.archives-ouvertes.fr/hal-01207828,
doi:10.5220/0005448304430454.

[27] Neumaier, S., Umbrich, J., Parreira, J.X., Polleres, A., 2016. Multi-
level Semantic Labelling of Numerical Values, in: Proceedings of the
15th International Semantic Web Conference, Springer International
Publishing, Kobe, Japan. pp. 428–445. URL: http://link.springer.
com/10.1007/978-3-319-46523-4_26, doi:10.1007/978-3-319-46523-4_
26. series Title: Lecture Notes in Computer Science.

[28] Oliveira, D., 2021. Generating and ranking candidate data models
from background knowledge. Thesis. NUI Galway. URL: https://
aran.library.nuigalway.ie/handle/10379/16394. accepted: 2021-01-
04T11:09:07Z.

[29] Oliveira, D., d’Aquin, M., 2020. RICDaM: Recommending Interop-
erable and Consistent Data Models, in: Proceedings of the ISWC
2020 Demos and Industry Tracks: From Novel Ideas to Industrial
Practice co-located with 19th International Semantic Web Confer-
ence (ISWC 2020), CEUR-WS.org. p. 5. URL: http://ceur-ws.org/
Vol-2721/paper535.pdf.

[30] Oliveira, D., Sahay, R., d’Aquin, M., 2019. Leveraging Ontologies
for Knowledge Graph Schemas, in: Proceedings of the 1st Workshop
on Knowledge Graph Building co-located with ESWC 2019, CEUR-
WS.org, Portoroz, Slovenia. pp. 24–36. URL: http://ceur-ws.org/
Vol-2489/paper3.pdf.

[31] Park, H., Kipp, M., 2019. Library Linked Data Models: Library Data
in the Semantic Web. Cataloging & Classification Quarterly 57, 261–
277. URL: https://doi.org/10.1080/01639374.2019.1641171, doi:10.
1080/01639374.2019.1641171.

[32] Paulheim, H., Bizer, C., 2013. Type Inference on Noisy RDF Data,

in: Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern,
F., Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Stef-
fen, B., Sudan, M., Terzopoulos, D., Tygar, D., Vardi, M.Y., Weikum,
G., Salinesi, C., Norrie, M.C., Pastor, O. (Eds.), Advanced In-
formation Systems Engineering. Springer Berlin Heidelberg, Berlin,
Heidelberg. volume 7908, pp. 510–525. URL: http://link.springer.
com/10.1007/978-3-642-41335-3_32, doi:10.1007/978-3-642-41335-3_
32. series Title: Lecture Notes in Computer Science.

[33] Pereira Nunes, B., Dietze, S., Casanova, M.A., Kawase, R., Fetahu,
B., Nejdl, W., 2013a. Combining a Co-occurrence-Based and a Se-
mantic Measure for Entity Linking, in: Hutchison, D., Kanade, T.,
Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor, M., Nier-
strasz, O., Pandu Rangan, C., Steffen, B., Sudan, M., Terzopoulos,
D., Tygar, D., Vardi, M.Y., Weikum, G., Cimiano, P., Corcho, O.,
Presutti, V., Hollink, L., Rudolph, S. (Eds.), The Semantic Web: Se-
mantics and Big Data. Springer Berlin Heidelberg, Berlin, Heidel-
berg. volume 7882, pp. 548–562. URL: http://link.springer.com/
10.1007/978-3-642-38288-8_37, doi:10.1007/978-3-642-38288-8_37.

[34] Pereira Nunes, B., Mera, A., Casanova, M.A., Fetahu, B.,
P. Paes Leme, L.A., Dietze, S., 2013b. Complex Matching of RDF
Datatype Properties, in: Hutchison, D., Kanade, T., Kittler, J., Klein-
berg, J.M., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O.,
Pandu Rangan, C., Steffen, B., Sudan, M., Terzopoulos, D., Ty-
gar, D., Vardi, M.Y., Weikum, G., Decker, H., Lhotská, L., Link,
S., Basl, J., Tjoa, A.M. (Eds.), Database and Expert Systems Ap-
plications, Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 195–
208. URL: http://link.springer.com/10.1007/978-3-642-40285-2_

18, doi:10.1007/978-3-642-40285-2_18. series Title: Lecture Notes in
Computer Science.

[35] Saari, D.G., 1994. Geometry of Voting. Springer Berlin Heidelberg,
Berlin, Heidelberg. OCLC: 903196450.

[36] Sabou, M., d’Aquin, M., Motta, E., 2008. SCARLET: SemantiC
RelAtion DiscoveRy by Harvesting OnLinE OnTologies, in: Bech-
hofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (Eds.), The
Semantic Web: Research and Applications, Springer, Berlin, Heidel-
berg. pp. 854–858. doi:10.1007/978-3-540-68234-9_72.

[37] Seo, D., Koo, H.K., Lee, S., Kim, P., Jung, H., Sung, W.K., 2011.
Efficient Finding Relationship between Individuals in a Mass Onto-
logy Database, in: Kim, T.h., Adeli, H., Ma, J., Fang, W.c., Kang,
B.H., Park, B., Sandnes, F.E., Lee, K.C. (Eds.), U- and E-Service,
Science and Technology, Springer, Berlin, Heidelberg. pp. 281–286.
doi:10.1007/978-3-642-27210-3_37.

[38] Sleeman, J., Finin, T., Joshi, A., 2015. Entity Type Recogni-
tion for Heterogeneous Semantic Graphs. AI Magazine 36, 75–
86. URL: https://www.aaai.org/ojs/index.php/aimagazine/article/
view/2569, doi:10.1609/aimag.v36i1.2569. number: 1.

[39] Smith-Yoshimura, K., 2016. Analysis of International Linked Data
Survey for Implementers. D-Lib Magazine 22. URL: http://

www.dlib.org/dlib/july16/smith-yoshimura/07smith-yoshimura.html,
doi:10.1045/july2016-smith-yoshimura.

[40] Smith-Yoshimura, K., 2018. Analysis of 2018 International Linked
Data Survey for Implementers. The Code4Lib Journal URL: https:
//journal.code4lib.org/articles/13867.

[41] Syed, Z., Finin, T., Mulwad, V., Joshi, A., 2010. Exploiting a Web of
Semantic Data for Interpreting Tables, in: Proceedings of the Second
Web Science Conference, Raleigh, NC, USA.

[42] Tennant, R., 2004. A bibliographic metadata infrastructure for the
twenty-first century. Library Hi Tech 22, 175–181. URL: https:
//www.emerald.com/insight/content/doi/10.1108/07378830410524602/

full/html, doi:10.1108/07378830410524602.
[43] Tonon, A., Catasta, M., Prokofyev, R., Demartini, G., Aberer,

K., Cudré-Mauroux, P., 2016. Contextualized ranking of entity
types based on knowledge graphs. Journal of Web Semantics 37-
38, 170–183. URL: https://linkinghub.elsevier.com/retrieve/pii/
S1570826815001468, doi:10.1016/j.websem.2015.12.005.

[44] Ullah, I., Khusro, S., Ullah, A., Naeem, M., 2018. An Over-
view of the Current State of Linked and Open Data in Cataloging.
Information Technology and Libraries 37, 47–80. URL: https:

D Oliveira et al.: Preprint submitted to Elsevier Page 26 of 27

http://dx.doi.org/10.1007/978-3-319-46523-4_23
http://link.springer.com/10.1007/978-3-319-58068-5_3
http://link.springer.com/10.1007/978-3-319-58068-5_3
http://dx.doi.org/10.1007/978-3-319-58068-5_3
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/SW-140134
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/SW-140134
http://dx.doi.org/10.3233/SW-140134
http://dl.acm.org/doi/10.14778/1920841.1921005
http://dl.acm.org/doi/10.14778/1920841.1921005
http://dx.doi.org/10.14778/1920841.1921005
https://doi.org/10.1145/3197026.3197041
http://dx.doi.org/10.1145/3197026.3197041
http://dx.doi.org/10.1145/3197026.3197041
http://link.springer.com/10.1007/978-3-319-19890-3_21
http://link.springer.com/10.1007/978-3-319-19890-3_21
http://dx.doi.org/10.1007/978-3-319-19890-3_21
http://dx.doi.org/10.1007/978-3-319-19890-3_21
https://hal.archives-ouvertes.fr/hal-01207828
http://dx.doi.org/10.5220/0005448304430454
http://link.springer.com/10.1007/978-3-319-46523-4_26
http://link.springer.com/10.1007/978-3-319-46523-4_26
http://dx.doi.org/10.1007/978-3-319-46523-4_26
http://dx.doi.org/10.1007/978-3-319-46523-4_26
https://aran.library.nuigalway.ie/handle/10379/16394
https://aran.library.nuigalway.ie/handle/10379/16394
http://ceur-ws.org/Vol-2721/paper535.pdf
http://ceur-ws.org/Vol-2721/paper535.pdf
http://ceur-ws.org/Vol-2489/paper3.pdf
http://ceur-ws.org/Vol-2489/paper3.pdf
https://doi.org/10.1080/01639374.2019.1641171
http://dx.doi.org/10.1080/01639374.2019.1641171
http://dx.doi.org/10.1080/01639374.2019.1641171
http://link.springer.com/10.1007/978-3-642-41335-3_32
http://link.springer.com/10.1007/978-3-642-41335-3_32
http://dx.doi.org/10.1007/978-3-642-41335-3_32
http://dx.doi.org/10.1007/978-3-642-41335-3_32
http://link.springer.com/10.1007/978-3-642-38288-8_37
http://link.springer.com/10.1007/978-3-642-38288-8_37
http://dx.doi.org/10.1007/978-3-642-38288-8_37
http://link.springer.com/10.1007/978-3-642-40285-2_18
http://link.springer.com/10.1007/978-3-642-40285-2_18
http://dx.doi.org/10.1007/978-3-642-40285-2_18
http://dx.doi.org/10.1007/978-3-540-68234-9_72
http://dx.doi.org/10.1007/978-3-642-27210-3_37
https://www.aaai.org/ojs/index.php/aimagazine/article/view/2569
https://www.aaai.org/ojs/index.php/aimagazine/article/view/2569
http://dx.doi.org/10.1609/aimag.v36i1.2569
http://www.dlib.org/dlib/july16/smith-yoshimura/07smith-yoshimura.html
http://www.dlib.org/dlib/july16/smith-yoshimura/07smith-yoshimura.html
http://dx.doi.org/10.1045/july2016-smith-yoshimura
https://journal.code4lib.org/articles/13867
https://journal.code4lib.org/articles/13867
https://www.emerald.com/insight/content/doi/10.1108/07378830410524602/full/html
https://www.emerald.com/insight/content/doi/10.1108/07378830410524602/full/html
https://www.emerald.com/insight/content/doi/10.1108/07378830410524602/full/html
http://dx.doi.org/10.1108/07378830410524602
https://linkinghub.elsevier.com/retrieve/pii/S1570826815001468
https://linkinghub.elsevier.com/retrieve/pii/S1570826815001468
http://dx.doi.org/10.1016/j.websem.2015.12.005
https://ejournals.bc.edu/index.php/ital/article/view/10432
https://ejournals.bc.edu/index.php/ital/article/view/10432

Extracting Data Models

//ejournals.bc.edu/index.php/ital/article/view/10432, doi:10.6017/
ital.v37i4.10432.

[45] Venetis, P., Halevy, A., Madhavan, J., Paşca, M., Shen, W., Wu,
F., Miao, G., Wu, C., 2011. Recovering semantics of tables
on the web. Proceedings of the VLDB Endowment 4, 528–
538. URL: http://dl.acm.org/doi/10.14778/2002938.2002939, doi:10.
14778/2002938.2002939.

[46] Vennesland, A., 2017. Matcher composition for identification of sub-
sumption relations in ontology matching, in: Proceedings of the In-
ternational Conference on Web Intelligence - WI ’17, ACM Press,
Leipzig, Germany. pp. 154–161. URL: http://dl.acm.org/citation.
cfm?doid=3106426.3106503, doi:10.1145/3106426.3106503.

[47] Yi, Y., Chen, Z., Heflin, J., Davison, B.D., 2018. Recognizing Quant-
ity Names for Tabular Data, in: Joint Proceedings of the First Inter-
national Workshop on Professional Search (ProfS2018); the Second
Workshop on Knowledge Graphs and Semantics for Text Retrieval,
Analysis, and Understanding (KG4IR); and the International Work-
shop on Data Search (DATA:SEARCH’18), CEUR-WS.org, Ann Ar-
bor, Michigan, USA. p. 6.

[48] Zamazal, O., Svátek, V., 2017. The Ten-Year OntoFarm and its Fer-
tilization within the Onto-Sphere. Journal of Web Semantics 43,
46–53. URL: http://www.sciencedirect.com/science/article/pii/

S1570826817300100, doi:10.1016/j.websem.2017.01.001.

D Oliveira et al.: Preprint submitted to Elsevier Page 27 of 27

https://ejournals.bc.edu/index.php/ital/article/view/10432
https://ejournals.bc.edu/index.php/ital/article/view/10432
http://dx.doi.org/10.6017/ital.v37i4.10432
http://dx.doi.org/10.6017/ital.v37i4.10432
http://dl.acm.org/doi/10.14778/2002938.2002939
http://dx.doi.org/10.14778/2002938.2002939
http://dx.doi.org/10.14778/2002938.2002939
http://dl.acm.org/citation.cfm?doid=3106426.3106503
http://dl.acm.org/citation.cfm?doid=3106426.3106503
http://dx.doi.org/10.1145/3106426.3106503
http://www.sciencedirect.com/science/article/pii/S1570826817300100
http://www.sciencedirect.com/science/article/pii/S1570826817300100
http://dx.doi.org/10.1016/j.websem.2017.01.001

