
HAL Id: hal-03494461
https://hal.science/hal-03494461

Submitted on 19 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Two-Level Formal Model for Big Data Processing
Programs

João Batista de Souza Neto, Anamaria Martins Moreira, Genoveva
Vargas-Solar, Martin A Musicante

To cite this version:
João Batista de Souza Neto, Anamaria Martins Moreira, Genoveva Vargas-Solar, Martin A Musicante.
A Two-Level Formal Model for Big Data Processing Programs. Science of Computer Programming,
2021, 215 (1), �10.1016/j.scico.2021.102764�. �hal-03494461�

https://hal.science/hal-03494461
https://hal.archives-ouvertes.fr

Highlights

A Two-Level Formal Model for Big Data Processing Programs

João Batista de Souza Neto, Anamaria Martins Moreira, Genoveva Vargas-

Solar, Martin A. Musicante

• This is an extended version of Modeling Big Data Processing Programs,

by João Batista de Souza Neto, Anamaria Martins Moreira, Genoveva

Vargas-Solar and Martin A. Musicante. SBMF 2020.

• This extended version contains the following improvements, in relation to

the SBMF 2020 paper:

– Extension of the modeling primitives to support iterative programs.

This is the main contribution of the extended version. Section 3.3

present the iterate and iterateWithCondition primitives and their se-

mantics in terms of Monoid Algebra. Iterations are represented by

a loop on the Petri Net that defines the program. In order to have

an acyclic graph to represent the program, these loops are unfolded

to build a Petri Net without cycles. We give an example use of

these operations, by modeling a Spark program taken from [2]. In

this example, we show how the upper layer (Petri Net) of the model

is unfolded to consider the new primitives. We conclude that the

extension of the model provides more expressiveness to model both

non-iterative and iterative Big Data processing algorithms. Partic-

ularly, iterative ones that come up in current analytics algorithms

based on data mining, machine learning, graph analysis, and artifi-

cial intelligence techniques.

– The inclusion of the description of Big Data Processing Frameworks,

describing their characteristics and highlighting the strategies they

propose concerning the implementation of iterative algorithms. Given

the diversity of strategies adopted for addressing iteration, we discuss

the importance of providing an abstract model that can represent

issues related to iteration. The description includes, for each frame-

work, a list of primitives they provide and their correspondence to

the operations in our model (see Table 1).

– Besides the new technical content, the paper was revised and ex-

panded as follows: The new contents include:

(i) A better motivation and more clear explanation of the application

of the model;

(ii) Improved description of Petri Nets and Monoid Algebra. We par-

ticularly extended the description of the Monoid Algebra including

the repeat operation.

(iii) Better and more complete description of the model. In partic-

ular, we include the definition of some primitive operations that do

not appear in the SBMF paper. In this sense, the extended version

provides a full description of the proposed model.

(iv) Overall improvement of the Related Work and Conclusions. In

the related work, we refer to very recent works addressing iterative

algorithms in Big Data processing frameworks. Our model is com-

plementary to these approaches since it attempts to model itera-

tion independently of the technical characteristics of concrete target

frameworks.

2

A Two-Level Formal Model for Big Data Processing
Programs

João Batista de Souza Netoa,b,∗, Anamaria Martins Moreirac, Genoveva
Vargas-Solard, Martin A. Musicantea

aDepartment of Informatics and Applied Mathematics (DIMAp)
Federal University of Rio Grande do Norte, Natal, Brazil.

bDepartment of Informatics, Management and Design (DIGD-DV)
Federal Center for Technological Education of Minas Gerais, Divinópolis, Brazil.

cInstitute of Computing (IC)
Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

dFrench Council of Scientific Research (CNRS), LIRIS, Lyon, France.

Abstract

This paper proposes a model for specifying data flow-based parallel data pro-

cessing programs agnostic of target Big Data processing frameworks. The paper

focuses on the formal abstract specification of non-iterative and iterative pro-

grams, generalizing the strategies adopted by data flow Big Data processing

frameworks. The proposed model relies on Monoid Algebra and Petri Nets to

abstract Big Data processing programs in two levels: a higher level representing

the program data flow and a lower level representing data transformation oper-

ations (e.g., filtering, aggregation, join). We extend the model for data process-

ing programs proposed in [1], for modeling iterative data processing programs.

The general specification of these programs implemented by data flow-based

parallel programming models is essential given the democratization of iterative

and greedy Big Data analytics algorithms. Indeed, these algorithms call for

revisiting parallel programming models to express iterations. The paper gives

?This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior - Brasil (CAPES) - Finance Code 001.

??This paper is an extended version of [1].
∗Corresponding author
Email addresses: jbsneto@ppgsc.ufrn.br,jbsneto@cefetmg.br (João Batista de Souza

Neto), anamaria@ic.ufrj.br (Anamaria Martins Moreira),
genoveva.vargas-solar@liris.cnrs.fr (Genoveva Vargas-Solar), mam@dimap.ufrn.br
(Martin A. Musicante)

Preprint submitted to Journal of LATEX Templates December 19, 2021

a comparative analysis of the iteration strategies proposed by Apache Spark,

DryadLINQ, Apache Beam, and Apache Flink. It discusses how the model

achieves to generalize these strategies.

Keywords: Big Data processing, Data flow programming models, Petri Nets,

Monoid Algebra

1. Introduction

The intensive processing and analytics of datasets with significant volume,

variety, and velocity scales, namely Big Data, calls for parallel programming

models adapted to exploiting their potential. Parallel programming models are

based on the principle that significant problems can often be divided into smaller5

ones, which can then be solved simultaneously. Large-scale data processing

frameworks have emerged as solutions to process and analyze Big Data through

parallel programming models. An execution engine provided by the framework

manages the parallel and distributed processing of datasets transparently. This

facility allows developers to avoid dealing with low-level details inherent to the10

use of distributed and parallel environments.

Big Data processing frameworks can be general-purpose, SQL-based, graph

processing, and stream processing [3]. General-purpose frameworks implement

parallel programming models adopting either control flow-based or data flow-

based approaches. Under the control flow strategy, a single system node controls15

the entire program execution (master, orchestrator). In the data flow parallel

model, the processes that execute the program trigger the execution of other

program components. An example of control flow-based systems is Apache

Hadoop [4] and examples of data flow-based systems are Dryad/DryadLINQ [5,

6], Apache Flink [7], Apache Beam [8] and Apache Spark [9]. Data flow-based20

models have gained popularity for implementing Big Data processing and an-

alytics parallel programs. Therefore we address the formal modeling of data

flow-based parallel programs models.

In data flow-based frameworks, a program is built from individual processing

2

blocks. These processing blocks implement operations that perform transfor-25

mations on the data. The interaction between these blocks defines the data flow

that specifies the order to perform operations. Datasets exchanged among the

blocks are modeled by data structures such as key-value tuples or tables. The

sequence of operations applied in a data flow-based program is modeled by a

DAG (Directed Acyclic Graph) representing the program’s execution plan.30

Depending on the dataset properties (velocity, volume), performance ex-

pectations, and computing infrastructure characteristics (cluster, cloud, HPC

nodes), it is often a critical programmer’s decision to choose a well-adapted tar-

get system used for running data processing programs. This diversity suggests

that programs have different performance scores depending on their context and35

available resources. Programs performance does not depend entirely on efficient

code but on infrastructure configuration tuning often done empirically (i.e., trial

and error) and embedded in the code (e.g., caching and data sharing strategies).

Therefore, this close dependence of programs, data and infrastructure configu-

ration leads to solutions challenging to reuse, maintain and enhance.40

We believe that abstract programs can promote the design of platform-

agnostic code that would be deployed in a variety of frameworks. Having formal

models of the parallel execution implemented by frameworks of the same fam-

ily can be used for comparing infrastructures, defining pipelines to test parallel

data processing programs, and verifying programs properties (such as correct-45

ness, completeness, or concurrent access to data).

To the extent of our knowledge, most works addressing Big Data processing

programs have worked on technical and engineering challenging aspects. Few

works, such as [10], [11], and [12] have worked on formal specifications to rea-

son about their execution abstractly. A first version [1] of the work presented50

here introduced a model for non-iterative Big Data processing programs. The

main goal of our approach is to have an abstract representation common to

data-centric programs. This representation can be used to compare different

frameworks and as (intermediate) representation to translate, refine, or opti-

mize programs. We have used the model to define mutation operators that can55

3

be instantiated for different systems. In particular, specifications in our model

have been used as an intermediate representation of programs in a mutation

testing tool of Apache Spark programs [13].

Our model has two levels: a higher level, where we use Petri Nets [14] to

represent the program data flow, and a lower level, where we use Monoid Al-60

gebra [15, 16], a formal system to describe processing of distributed data, to

represent data transformation operations. Combining these formalisms allows

the program logic to be described independently of the target Big Data pro-

cessing system, by: (i) representation of programs execution through directed

acyclic graphs (DAGs) where vertices represent operations and datasets, and65

edges represent data communication, and (ii) operations applied on data (e.g.,

filtering, aggregation, join). Throughout the paper, we use the notion of data

flow to refer to the representation of a program’s data flow graph and transfor-

mations to the operations over datasets that compose the program.

Big Data processing and analytics tasks combine unary non-iterative oper-70

ations like filtering and aggregations (e.g., max, min) and binary operations

like joins that are addressed by the first version of our model proposed in [1].

However, there are iterative tasks that are not addressed by the first version of

our model. Examples of these are machine learning algorithms.

Therefore, this paper extends the model for data processing programs pro-75

posed in [1], to also model iterative programs. Besides the introduction of iter-

ative processing primitives, this paper extends [1] by (i) providing a complete

description of our model, including more comprehensive use of the resources pro-

vided by Petri Nets; (ii) giving a more detailed comparison of data flow-based

systems to show how our proposal can model them; and (iii) showing a po-80

tential application of the extended model to derive iteration, specific mutation

operators.

The remainder of the paper is organized as follows. Section 2 introduces

the main characteristics of data flow-based Big Data processing frameworks

and presents the formalisms used in the model, namely, Petri Nets and Monoid85

4

Algebra. Section 3 presents the model for formally expressing Big Data process-

ing programs. Section 4 discusses how our proposal can model operations and

iteration strategies of data flow-based Big Data processing frameworks. Sec-

tion 5 describes the general lines of the way the model can be used in a concrete

program testing application. Section 6 introduces related work addressing ap-90

proaches for generalizing control and data flow parallel programming models.

Finally, Section 7 concludes the paper and discusses future work.

2. Background

This section introduces big data processing frameworks to summarize their

main characteristics that were considered for the construction of the model95

presented in this work. Afterward, we make a brief presentation of Petri Nets

and Monoid Algebra, the two formalisms used to build the model.

2.1. Big Data Processing Frameworks

Big Data processing frameworks adopt control flow or data flow based par-

allel programming models for implementing programs. Dependence analysis is100

a formal theory in compilation theory for determining ordering constraints be-

tween computations [17]. The theory distinguishes between control and data

dependencies. Control flow models focus on sequential (imperative) program-

ming [18]. Thus the data follows the control, and computations are executed

explicitly based on the sequence programmed. Data flow models focus on data105

dependencies and allow avoiding spurious control dependencies like accidental

locking [18], which simplifies the definition of concurrent and independent com-

putations.

Apache Hadoop [4] is an open-source control flow system for the processing

of distributed data that implements the MapReduce programming model [19].110

MapReduce is a parallel computing model that divides processing into two op-

erations: map and reduce. The map operation applies the same function to

all the elements of a list of key/value records. The result of map is feed to

5

the reduce operation which processes key/value data aggregated by the key.

Other systems such as Apache Spark [9], Apache Flink [7], Apache Beam [8],115

and Dryad/DryadLINQ [5, 6], adopt data flow models that show better perfor-

mance.

With increasing interest in running these algorithms on massive datasets,

there is a need to execute iterations in a massively parallel fashion. Therefore,

existing systems propose different strategies for implementing iterative opera-120

tions. The following lines analyze and compare these strategies.

Apache Spark. [9] is a general-purpose system for in-memory parallel data

processing. Spark is centered on the concept of RDDs (Resilient Distributed

Datasets), which are distributed datasets that can be processed in parallel in a

processing cluster. Spark programs are represented through a DAG that defines125

the program’s data flow, where RDDs are processed by applying operations to

them. Spark offers two types of operations. Transformations, which process

the data in an RDD and generate a new RDD as output, and actions, which

save the contents of the RDD or generate a different result from an RDD. Spark

adopts a lazy evaluation strategy, where actions trigger the processing of data,130

possibly applying transformations.

The in-memory processing of Spark proved to be more efficient than that of

Apache Hadoop, making it more suitable for iterative programs since intermedi-

ate data does not need to be stored on disk [9], as occurs in Hadoop. However,

Spark does not have a native solution for defining iterative programs, making135

it necessary to use resources from the underlying programming language, like

while and for loops, so that iterations can be defined. Since Spark adopts a

lazy evaluation strategy, the data flow definition through the call of successive

transformations forms an execution plan. This plan is optimized in a DAG and

executed in parallel when an action is called. The definition of iterative pro-140

grams follows the same principle. In this way, transformations called within an

iteration form a step in the execution plan, making these transformations to be

repeated in the DAG as many times as the number of iterations programmed

6

in the loop.

Apache Beam. [8] is a unified model for defining both batch and streaming data-145

parallel processing pipelines. Beam is well adapted for implementing parallel

data processing tasks, where the problem can be decomposed into many smaller

bundles of data that can be processed independently and in parallel. A pipeline

can be executed by one of Beam’s supported distributed processing back-ends,

which include Apache Flink, Apache Spark, and Google Cloud Dataflow.150

Apache Beam programs are defined as data pipelines (Pipeline) that encap-

sulate its data flow with distributed data collections (PCollection) and data

processing operations (PTransform). Thus, a program is defined by reading an

input dataset, applying operations to datasets, and writing an output dataset.

This pipeline is optimized in a DAG and submitted for execution in a back-end155

engine. Similar to Apache Spark, Beam does not provide a definitive solution

for implementing iterative programs. Thus, the definition of iterative programs

is based on the use of resources from the underlying programming language,

relying on external control to the pipeline to control iterations.

Dryad/DryadLINQ. [5] is a system and model for parallel and distributed160

programming that was proposed by Microsoft. Dryad offered a flexible pro-

gramming model by representing a program through a DAG where the vertices

are processing operations, and the edges are communication channels through

which data is transferred. With this model, a program is not limited to just two

operations as in MapReduce. Dryad was expanded through DryadLINQ [6], a165

high-level interface that introduces an abstraction for representing distributed

datasets (DryadTable) and offered a comprehensive set of operations. A pro-

gram in DryadLINQ is represented by a data stream defined as a DAG, in which

datasets are processed by applying operations in sequence. The definition of it-

erative programs in Dryad/DryadLINQ also follows the approach of Apache170

Spark and Apache Beam, i.e., there is no native operation to control iterations,

but they can be defined using loops from the underlying programming language.

7

Apache Flink. is a framework and distributed processing engine for batch and

streaming data processing [7]. The system processes arbitrary data flow pro-

grams in a distributed runtime environment. The data flow is organized as a175

DAG with one or more entry or exit points in other frameworks. Flink imple-

ments a lightweight fault-tolerant model based on the use of checkpoints that

can be manually placed in the program, or the system can add that. Flink offers

the DataSet API for batch processing and the DataStream API for streaming

processing. Both offer a comprehensive set of operations for data processing,180

with mapping, filtering, and aggregation operations, in addition to other types

of operations.

From the Big Data processing frameworks analyzed in this work, Flink is the

only one that offers a native solution for iterative programs. For the definition

of iterative programs, Flink offers the iterate operation. This operation takes185

as an argument a high-order function, called step function, which encapsulates

the iterative data flow that consumes an input dataset and produces an output

dataset, which in turn is the input for the next iteration. The iterate operator

implements a simple form of iterations: in each iteration, the step function

consumes the entire input (the result of the previous iteration or the initial190

dataset) and computes the next version of the partial solution. There are two

options to specify termination conditions for an iteration specifying: (i) the

maximum number of iterations; the iteration will be executed this many times;

(ii) custom convergence function that implements a convergence criterion to

end iterations. Flink also offers the delta iterate operator (iterateDelta) to195

address the case of incremental iterations that selectively modify elements of

their solution and evolve the solution rather than fully recompute it. This

strategy leads to more efficient algorithms because not every element in the

solution set changes in each iteration.

2.2. Petri Nets200

Petri Nets [20] are a formal tool to model and analyze the behavior of dis-

tributed, concurrent, asynchronous, and/or non-deterministic systems [14]. A

8

Petri Net is defined as a directed bipartite graph that contains two types of

nodes: places and transitions. Places represent the system’s state variables,

while transitions represent the actions performed by the system. These two205

components are connected through directed edges that connect places to transi-

tions and transitions to places. With these components, it is possible to repre-

sent (i) the different states of a system; (ii) the actions taken by the system to

move from one state to another (transitions) (iii) and how the state changes due

to actions (edges). This modeling is done by using tokens to decorate places of210

the net. The distribution of the tokens among places indicates that the system

is in a given state. The execution of an action (transition) takes tokens from

one place to another, leading to the system’s state evolution.

Formally, a Petri net is a quintuple PN = (P, T, F,W,M0) where P ∩T = ∅,

P ∪ T 6= ∅ and:215

P = {p1, p2, . . . , pm} is a finite set of places,

T = {t1, t2, . . . , tn} is a finite set of transitions,

F ⊆ (P × T) ∪ (T × P) is a finite set of edges,

W : F → {1, 2, 3, . . .} is function associating positive weights to edges,

M0 : P → {0, 1, 2, 3, . . .} is a function defining the initial marking of a net.

The execution of a system is defined by firing transitions. Firing a transition

t consumes W (s, t) tokens from all its input places s, and produces W (t, s′)

tokens to each of its output places s′. The transition t can only be fired (it is

said to be enabled) if there are at least W (s, t) tokens on all its input places

s. The semantics of a given process is then given by the evolution of markings220

produced by firing enabled transitions.

2.3. Monoid Algebra

Monoid Algebra was proposed in [15] as an algebraic formalism for data-

centric distributed computing operations based on monoids and monoid homo-

morphisms. A monoid is an algebraic structure (S,⊕, e⊕) formed by a set S,225

9

an associative operation ⊕ in S and a neutral element e⊕. The function ⊕ is

usually used to identify the monoid. A monoid homomorphism is a function H

over two monoids, say ⊗ = (S,⊗, e⊗) to ⊕ = (T,⊕, e⊕), such that:

H(X ⊗ Y) = H(X)⊕H(Y) for all X and Y of type S

H(e⊗) = e⊕

Monoid algebra uses monoid and monoid homomorphism concepts to define

operations on distributed datasets, which are represented as monoid collections.230

The associative nature of monoid homomorphisms makes it possible to model

parallel operations over distributed data.

One type of monoid collection is bag, an unordered data collection of elements

of type α (denoted as Bag[α]). The elements of Bag[α] are formed by using

the unit injection function U], which generates the unitary bag {{x}} from an235

element x (U](x) = {{x}}), the associative operation], which unites two bags

({{x}}] {{y}} = {{x, y}}), and the neutral element {{}}, which is an empty bag.

Another monoid collection is the one formed by lists. It can be defined as an

ordered bag. It can be defined from the set List[α] containing lists of elements

of type α, and using U++ as the unit injection function, the list concatenation240

++ as the associative operation and the empty list [] as the neutral element of

the monoid.

Monoid algebra defines distributed operations as monoid homomorphisms

over monoid collections (which represent distributed datasets). These homo-

morphisms are defined to abstractly describe the basic blocks of distributed245

data processing systems such as map/reduce or data flow systems. The key

idea behind monoid algebra is to use the associativity property of the monoid

operations and the homomorphism between monoids to represent the processing

of partitioned data and the combination of the results, independently from how

data is partitioned.250

Let us now define the most common operations used in monoid algebra. The

flatmap operation receives a function f of type α→ Bag[β] and a collection X

10

of type Bag[α] as input and returns a collection Bag[β] resulting from the union

] of the results of applying f to each element of X. This operation captures

the essence of parallel processing since f can be executed in parallel on top255

of different data partitions in a distributed dataset. Notice that flatmap f is

a monoid homomorphism since it is a function that preserves the structure of

bags.

The operations groupby and cogroup capture the data shuffling process by

representing the reorganization and grouping of data. The groupby operation260

groups the elements of Bag[κ × α] using the first component of type κ as a

key, resulting in a collection Bag[κ × Bag[α]], where the second component is

a collection containing all elements of type α that were associated with the

same key k in the initial collection. The cogroup operation works similarly to

groupby, but it operates on two collections that have a key of the same type265

κ. In this way, the result of cogroup, when applied to two collections of type

Bag[κ× α] and Bag[κ× β] is a collection of type Bag[κ×Bag[α× β]].

The reduce operation represents the aggregation of the elements of Bag[α]

into a single element of type α from the application of an associative function

f of type α→ α→ α.270

The operation orderby represents the transformation of a bag Bag[κ × α]

into a list List[κ × α] ordered by the key of type κ which supports the total

order ≤.

These operations are monoid homomorphisms, as proved in [15]. This prop-

erty makes it possible to make transparent to the model how data has been275

distributed when parallelizing tasks. However, they are not enough to model

applications where iteration is needed. For this, Monoid algebra, as presented

in [15], includes the repeat operation.

The repeat operation provided by Monoid Algebra is used to allow the

representation of iterative algorithms [15], such as machine learning and graphs

processing algorithms. The repeat operation receives a function f of type

Bag[α] → Bag[α], a predicate p of type Bag[α] → boolean, a count number

n, and a collection X of type Bag[α] as input and returns a collection of type

11

Bag[α] as output. The definition of repeat is given below [16]:

repeat(f, p, n,X) , if n ≤ 0 ∨ ¬p(X)

then X

else repeat(f, p, n− 1, f(X))

The repeat operation stops when the counter n is zero or the condition

p in X is false. While these conditions are not met, the operation computes280

f(X) and decrements n recursively. Intuitively, in each iteration, the collection

resulting from the previous iteration is processed by f which produces a new

collection for the next iteration (or for the output when repeat stops).

In addition, monoid algebra also supports the use of lambda expressions

(λx.e), conditionals (if-then-else).285

Our proposal combines Petri Nets with Monoid Algebra to build abstract

versions of the primitives present in Big Data processing applications.

3. Modeling Big Data Processing Programs

This section introduces the proposed formal model for Big Data processing

programs. The model is organized in two levels: data flow and transformations.290

Data flow in our model is defined using Petri Nets, and the semantics of the

transformations applied to the data are modeled as monoid homomorphisms on

datasets.

3.1. Data Flow

For the upper level of our two-level modelization, we define a graph repre-295

senting the data flow of a data processing program. We rely on the data flow

graph model presented in [21], which was formalized using Petri Nets [14].

A program P is defined as a bipartite directed graph where places stand for

the program’s distributed datasets (D), and transitions stand for its transfor-

mations (T). Datasets and transformations are connected by edges (E):300

12

P = 〈D ∪ T,E〉

This graph can be seen as a Petri Net, as defined in Section 2. Datasets

correspond to the places of the net, and transformations correspond to the net

transitions. The initial marking (M0) of the Petri Net represents the availability

of the input datasets for the computation to begin. There will be as many305

tokens in an input dataset as the number of its uses in the program. The weight

functionW is defined as 1 for every edge leaving a place and as k, for every edge

arriving at a place, where k is the number of times the same dataset is used in

the program. That is, for each edge (t, d) ∈ E, W (t, d) = |O(d)| and for each

edge (t, d) ∈ E, W (d, t) = 1, where O(d) represents the set of transformations310

that receive d as input, i.e., the number o edges coming out of d.

To construct the data flow model, the available transformations on the mod-

eled frameworks fall into two categories: basic transformations (without cycles)

and iterative transformations. We first present the more common case of acyclic

programs. The extension of our model to deal with iterations is presented in315

Section 3.3. All basic transformations in our model can have their data flow

modeled by either a single transition with one input and one output edge (see

Figure 1a) or a single transition with two input and one output edges (see Fig-

ure 1b). We call unary transformations those that receive only one dataset as

input and binary transformations those that receive two datasets as input. The320

transitions must be sequenced by matching the corresponding input and output

datasets to construct the graph (actually a DAG).

t

(a) Unary Transformation.

t

(b) Binary Transformation.

Figure 1: Types of transformations in the data flow.

13

1 def unionLogsExample(firstLogs: RDD[String], secondLogs: RDD[

String]): RDD[String] = {

2 val aggregatedLogLines = firstLogs.union(secondLogs)

3 val uniqueLogLines = aggregatedLogLines.distinct()

4 val cleanLogLines = uniqueLogLines.filter((line: String) => !(line.

startsWith("host") && line.contains("bytes")))

5 return cleanLogLines

6 }

Figure 2: Sample log union program in Spark.

To illustrate the model, let us consider the Spark program shown in Figure 2.

This program receives as input two datasets (RDDs) containing log messages

(line 1). It makes the union of these two datasets (line 2), removes duplicate325

logs (line 3), and ends by filtering headers, removing logs that match a specific

pattern (line 4). The program ends by returning the filtered RDD (line 5).

In this program, we can identify five RDDs, that will be referred to using

short names for conciseness. So, D = {d1, d2, d3, d4, d5}, where d1 = firstLogs,

d2 = secondLogs, d3 = aggregatedLogLines, d4 = uniqueLogLines, and d5 =330

cleanLogLines. For simplicity, each RDD in the code was given a unique name.

It makes it easier to reference them in the text. However, the model considers

that each RDD is uniquely identified, independently of the concrete name given

to it in the code.

We can also identify the application of three transformations in P ; thus the335

set T in our example is defined as T = {t1, t2, t3}, where t1 = union(d1, d2), t2 =

distinct(d3), and t3 = filter((line: String) => !(line.startsWith

(“host”) && line.contains(“bytes”)), d4).

Each transformation in T receives one or two datasets belonging to D as

input and produces a dataset in D as output. Besides, the sets D and T are340

disjoint and finite.

Edges connect datasets with transformations. An edge can be a pair in

D × T , representing the input dataset of a transformation, or it can be a pair

14

in T ×D, representing the output dataset of a transformation. In this way, the

set of edges of P is defined as E ⊆ (D × T) ∪ (T ×D).345

The set E in our example program is, then:

E = {(d1, t1), (d2, t1), (t1, d3), (d3, t2), (t2, d4), (d4, t3), (t3, d5)}

Using these sets, we can define a graph representing the Spark program in

Figure 2. This graph is depicted in Figure 3. The distributed datasets in D

are represented as circle nodes, and the transformations in T are represented as350

thick bar nodes of the graph, as is usual in representing Petri Nets. The edges

are represented by arrows that connect the datasets and transformations. The

token marking in d1 and d2 indicate that the program is ready to be executed

(initial marking). For simplicity, we only indicate the weight of edges of the

Petri Net when they are different from 1.

t1 d3 t2 d4 t3 d5

d1

d2

Figure 3: Data flow representation of the program in Figure 2.

355

3.2. Data Sets and Transformations

The data flow model defined above represents (i) the datasets and transfor-

mations of a program P ; (ii) the order in which transformations are processed

when the program P is executed. These representations are abstract from their

actual contents or semantics.360

To define the contents of datasets in D and the semantics of transformations

in T , we make use of Monoid Algebra [15, 16]. Datasets are represented as

monoid collections, and transformations are defined as operations supported by

monoid algebra. These representations are detailed in the following.

15

3.2.1. Distributed Datasets365

A distributed dataset in D can either be represented by a bag (Bag[α]) or

a list (List[α]). Both structures represent collections of distributed data [16],

capturing the essence of the concepts of RDD in Apache Spark, PCollection in

Apache Beam, DataSet in Apache Flink and DryadTable in DryadLINQ. These

structures provide an abstraction of the actual distributed data in a cluster in370

the form of a simple collection of items.

We define most of the transformations of our model in terms of bags. We

consider lists only for transformations implementing sorts, which are the only

ones in which the order of the elements in the dataset is relevant.

In monoid algebra, bags and lists can either represent distributed or local375

collections. Monoid homomorphisms treat these two kinds of collections in a

unified way [16]. In this way, we will not distinguish between distributed and

local collections when defining our transformations.

3.2.2. Transformations

In our model, transformations take one or two datasets as input and produce380

one dataset as an output. Transformations may also receive other parameters

such as functions, which represent data processing operations defined by the

developer, and literals such as boolean constants. A transformation t in the

transformation set T of a program P is characterized by (i) the operation it

implements, (ii) the types of its input and output datasets, (iii) and its input385

parameters.

We define the transformations of our model in terms of the operations of

monoid algebra defined in Section 2. We group transformations into categories

according to the types of operations we identified in the data processing systems

we studied.390

Mapping Transformations. transform values of an input dataset into values of

an output dataset by applying a mapping function. Our model provides two

mapping transformations: flatMap and map. Both transformations apply a

16

given function f to every element of the input dataset to generate the output

dataset, the only difference being the requirements on the type of f and its395

relation with the type of the generated dataset. Given an input dataset of

type Bag[α], the map transformation accepts any f : α → β and generates

an output dataset of type Bag[β], while the flatMap transformation requires

f : α→ Bag[β] to produce a dataset of type Bag[β] as output.

The definition of flatMap in our model is just the monoid algebra operation

defined in Section 2:

flatMap :: (α→ Bag[β])→ Bag[α]→ Bag[β]

flatMap(f,D) = flatmap(f,D)

The map transformation derives data of type Bag[β] when given a function

f : α→ β. For that to be modeled with the flatmap from monoid algebra, we

create a lambda expression that receives an element x from the input dataset

and results in a Bag[β] collection containing only the result of applying f to x

(λx.{{f(x)}}). Thus, map is defined as:

map :: (α→ β)→ Bag[α]→ Bag[β]

map(f,D) = flatmap(λx.{{f(x)}}, D)

Filter Transformation. uses a boolean function to determine whether a data

item should be mapped to the output dataset. As in the case of map, we use a

lambda expression to build a singleton bag:

filter :: (α→ boolean)→ Bag[α]→ Bag[α]

filter(p,D) = flatmap(λx. if p(x) then {{x}} else {{}}, D)

For each element x of the input dataset D, the filter transformation checks400

the condition p(x). It forms the singleton bag {{x}} or the empty bag ({{}}),

depending on the result of that test. This lambda expression is then applied to

the input dataset using the flatmap operation.

For instance, consider the boolean function p(x) = x ≥ 3 and a bag D =

{{1, 2, 3, 4, 5}}. then, filter(p,D) = {{3, 4, 5}}.405

17

Grouping Transformations. group the elements of a dataset with respect to a

key. We define two grouping transformations in our model: groupByKey and

groupBy. The groupByKey transformation is defined as the groupby operation

of Monoid Algebra. It maps a key-value dataset into a dataset associating each

key to a bag. Our groupBy transformation uses a function k to map elements

of the collection to a key before grouping the elements with respect to that key:

groupBy :: (α→ κ)→ Bag[α]→ Bag[κ×Bag[α]]

groupBy(k,D) = groupby(flatmap(λx.{{(k(x), x)}}, D))

groupByKey :: Bag[κ× α]→ Bag[κ×Bag[α]]

groupByKey(D) = groupby(D)

For example, let us consider the identity function to define each key, and the

datasets D1 = {{1, 2, 3, 2, 3, 3}}, and D2 = {{(1, a), (2, b), (3, c), (1, e), (2, f)}}.

Applying groupBy and groupByKey to these sets results in:

groupBy(λk.k,D1) = {{(1, {{1}}), (2, {{2, 2}}), (3, {{3, 3, 3}})}}

groupByKey(D2) = {{(1, {{a, e}}), (2, {{b, f}}), (3, {{c}})}}

Set-like Transformations. correspond to binary mathematical operations in dis-

tributed collections such as those defined in set theory. They operate on two

datasets of the same type and result in a new dataset of the same type. The

definition of these transformations is based on the definitions in [16].

The union transformation represents the union of elements from two datasets

into a single dataset. This operation is represented in a simple way using the

bags union operator (]):

union :: Bag[α]→ Bag[α]→ Bag[α]

union(Dx, Dy) = Dx]Dy

We also define the intersection and subtract transformations. To define these

transformations, we first define auxiliary operations some and all that represent

the existential (∃) and universal (∀) quantifiers, respectively. These operations

18

receive a predicate function p and reduce the dataset to a logical value:

some :: (α→ boolean)→ Bag[α]→ boolean

some(p,D) = reduce(∨, t1(p,D))

t1(p,D) = flatmap(λx.{{p(x)}}, D)

all :: (α→ boolean)→ Bag[α]→ boolean

all(p,D) = reduce(∧, t1(p,D))

t1(p,D) = flatmap(λx.{{p(x)}}, D)

Using some and all, we can define the transformations intersection and sub-

tract as follows:

intersection :: Bag[α]→ Bag[α]→ Bag[α]

intersection(Dx, Dy) = flatmap(λx. if some(λy.x = y,Dy)

then {{x}} else {{}}), Dx)

subtract :: Bag[α]→ Bag[α]→ Bag[α]

subtract(Dx, Dy) = flatmap(λx. if all(λy.x 6= y,Dy)

then {{x}} else {{}}), Dx)

The intersection of bags Dx and Dy selects all elements of Dx appearing at410

least once in Dy. Subtracting Dy from Dx selects all the elements of Dx that

differ from every element of Dy.

Unlike the union operation in mathematical sets, the union transformation

defined in our model maintains repeated elements from the two input datasets.

To allow the removal of these repeated elements, we define the distinct trans-

formation. To define distinct, we first map each element of the dataset to a

key/value tuple containing the element itself as a key. After, we group this

key/value dataset, which will result in a dataset in which the group is the re-

peated key itself. Last, we map the key/value elements only to the key, resulting

in a dataset with no repetitions. The distinct transformation is defined as fol-

19

lows:

distinct :: Bag[α]→ Bag[α]

distinct(D) = flatmap(λ(k, g).{{k}}, t2(D))

t1(D) = flatmap(λx.{{(x, x)}}, D)

t2(D) = groupby(t1(D))

Aggregation Transformations. collapses elements of a dataset into a single ele-

ment. The most common aggregations apply binary operations on the elements

of a dataset to generate a single element, resulting in a single value or on groups

of values associated with a key. We represent these aggregations with the trans-

formations reduce, which operates on the whole set, and reduceByKey, which

operates on values grouped by key. The reduce transformation has the same

behavior as the reduce operation of monoid algebra. The definition of reduce-

ByKey is also defined in terms of reduce, but since its result is the aggregation

of elements associated with each key rather than the aggregation of all elements

of the set, we first need to group the elements of the dataset by their keys:

reduce :: (α→ α→ α)→ Bag[α]→ α

reduce(f,D) = reduce(f,D)

reduceByKey :: (α→ α→ α)→ Bag[κ× α]→ Bag[κ× α]

reduceByKey(f,D) = flatmap(λ(k, g).{{(k, reduce(f, g))}},groupby(D))

Examples of this kind of transformation are sums, products, or the arithmetic

mean of a set of values given as a column of a dataset. For instance, the sum

of the values of a single-column dataset may be defined by using reduce. Let us415

consider the function f(x, y) = x+ y and the dataset D1 = {{1, 2, 3, 4, 5}}. The

expression reduce(f,D1) aggregates the values in D1 using the sum operation

f , resulting in the value 15.

Join Transformations. implement relational join operations between two datasets.

We define four join operations, which correspond to well-known operations in420

20

relational databases: innerJoin, leftOuterJoin, rightOuterJoin, and fullOuter-

Join. The innerJoin operation combines the elements of two datasets based on

a join-predicate expressed as a relationship, such as the same key. LeftOuterJoin

and rightOuterJoin combine the elements of two sets like an innerJoin adding

to the result all values in the left (right) set that do not match to the right425

(left) set. The fullOuterJoin of two sets forms a new relation containing all the

information present in both sets.

See below the definition of the innerJoin transformation, which was based

on the definition presented in [22]:

innerJoin :: Bag[κ× α]→ Bag[κ× β]→ Bag[κ× (α× β)]

innerJoin(Dx, Dy) = flatmap(λ(k, (dx, dy)).t2(k, dx, dy), t1(Dx, Dy))

t1(Dx, Dy) = cogroup(Dx, Dy)

t2(k, dx, dy) = flatmap(λx.t3(k, x, dy), dx)

t3(k, x, dy) = flatmap(λy.{{(k, (x, y))}}, dy)

The definition of the other joins follows a similar logic, but conditionals are

included to verify the different relationships. In cases where one side does not

have pairs with a certain key, the result of the join is an empty bag on that

side and the element that has the key on the other side. The definitions of

leftOuterJoin, rightOuterJoin, and fullOuterJoin are as follows:

leftOuterJoin :: Bag[κ× α]→ Bag[κ× β]→ Bag[κ× (α×Bag[β])]

leftOuterJoin(Dx, Dy) = flatmap(λ(k, (dx, dy)).t2(k, dx, dy), t1(Dx, Dy))

t1(Dx, Dy) = cogroup(Dx, Dy)

t2(k, dx, dy) = if dy = {{}} then t3(k, dx) else t4(k, dx, dy)

t3(k, dx) = flatmap(λx.{{(k, (x, {{}}))}}, dx)

t4(k, dx, dy) = flatmap(λx.t5(k, x, dy), dx)

t5(k, x, dy) = flatmap(λy.{{(k, (x, {{y}}))}}, dy)

21

rightOuterJoin :: Bag[κ× α]→ Bag[κ× β]→ Bag[κ× (Bag[α]× β)]

rightOuterJoin(Dx, Dy) = flatmap(λ(k, (dx, dy)).t2(k, dx, dy), t1(Dx, Dy))

t1(Dx, Dy) = cogroup(Dx, Dy)

t2(k, dx, dy) = if dx = {{}} then t3(k, dy) else t4(k, dx, dy)

t3(k, dy) = flatmap(λy.{{(k, ({{}}, y))}}, dy)

t4(k, dx, dy) = flatmap(λx.t5(k, x, dy), dx)

t5(k, x, dy) = flatmap(λy.{{(k, ({{x}}, y))}}, dy)

fullOuterJoin :: Bag[κ× α]→ Bag[κ× β]→ Bag[κ× (Bag[α]×Bag[β])]

fullOuterJoin(Dx, Dy) = flatmap(λ(k, (dx, dy)).t2(k, dx, dy), t1(Dx, Dy))

t1(Dx, Dy) = cogroup(Dx, Dy)

t2(k, dx, dy) = if dx 6= {{}} ∧ dy = {{}} then t3(k, dx) else t4(k, dx, dy)

t3(k, dx) = flatmap(λx.{{(k, ({{x}}, {{}}))}}, dx)

t4(k, dx, dy) = if dx = {{}} ∧ dy 6= {{}} then t5(k, dy) else t6(k, dx, dy)

t5(k, dy) = flatmap(λy.{{(k, ({{}}, {{y}}))}}, dy)

t6(k, dx, dy) = flatmap(λx.t7(k, x, dy), dx)

t7(k, x, dy) = flatmap(λy.{{(k, ({{x}}, {{y}}))}}, dy)

Sorting Transformations. Add the notion of order to a bag. In practical terms,

these operations receive a bag and form a list, ordered according to some criteria.

Sort transformations are defined in terms of the orderby operation of monoid430

algebra, which transforms a Bag[κ × α] into a List[κ × α] ordered by the key

of type κ that supports the total order ≤ (we will also use the inv function,

which reverses the total order of a list, thus using ≥ instead of ≤). We define

two transformations, the orderBy transformation that sorts a dataset of type α,

and the orderByKey transformation that sorts a key/value dataset by the key.435

22

The definitions of our sorting transformations are as follows:

orderBy :: boolean→ Bag[α]→ List[α]

orderBy(desc,D) = flatmap(λ(k, v).[k],orderby(t1(desc,D)))

t1(desc,D) = if desc then t2(D) else t3(D)

t2(D) = flatmap(λx.{{(inv(x), x)}}, D)

t3(D) = flatmap(λx.{{(x, x)}}, D)

orderByKey :: boolean→ Bag[κ× α]→ List[κ× α]

orderByKey(desc,D) = orderby(t1(desc,D))

t1(desc,D) = if desc then t2(D) else D

t2(D) = flatmap(λ(k, x).{{(inv(k), x)}}, D)

The boolean value used as the first parameter defines if the direct order ≤

or its inverse is used.

To exemplify the use of sorting transformations let us considerD1 = {{1, 3, 2, 5, 4}}

and D2 = {{(1, a), (3, c), (2, a), (5, e), (4, d)}}. Then:

orderBy(false,D1) = [1, 2, 3, 4, 5]

orderBy(true,D1) = [5, 4, 3, 2, 1]

orderByKey(false,D2) = [(1, a), (2, b), (3, c), (4, d), (5, e)]

orderByKey(true,D2) = [(5, e), (4, d), (3, c), (2, b), (1, a)]

3.3. Modeling Iterative Programs

Iterative algorithms apply an operation repeatedly until a predetermined

number of iterations or given conditions are reached. Common iterative algo-440

rithms are machine learning algorithms, such as Logistic Regression [23], and

graph analysis algorithms, such as PageRank [24], which perform iterative op-

timizations and calculations.

Big Data processing systems like Apache Spark, Apache Flink, Apache

Beam, and Dryad/DryadLINQ represent their programs as DAGs (Directed445

Acyclic Graphs). These systems apply a lazy evaluation strategy to execute

23

programs. Thus, the programs are first defined, then translated into an opti-

mized DAG representing the execution plan, and, finally, sent to run in parallel.

Due to this characteristic, iterative programs, characterized by cycles, must be

translated into a DAG. Therefore, the operations executed iteratively in the pro-450

gram must be repeated n times in the DAG, where n is the number of iterations

performed by the program.

In the systems Apache Spark, Apache Beam, and Dryad/DryadLINQ, itera-

tive programs are defined with the aid of loop statements (such as for and while)

of the underlying programming language to control iterations. Apache Flink, on455

the other hand, has a native operation (iterate) for that, where iterative opera-

tions must be encapsulated in a step function that is performed a predetermined

number of times or until a specific condition, given by a convergence function,

is reached.

Our model relies on the Apache Flink approach to represent the data flow460

of iterative programs. We define the transformations to be executed iteratively,

encapsulating them in a step function that will be repeated as many times as

specified in the program. The input and output of the step function must be

datasets of the same type so that the output of an iteration is an input for the

next one.465

Iterative Data Flow. to represent the data flow of an iterative program, we use

auxiliary transitions to represent the beginning of the iterations (tstart), the

repetition of the step function through a cycle in the graph (titerative) and the

end of the iterations (tend). These transitions are identity transformations in

practice since they do not change the data but only control the iterations. We470

assume that the iteration starts with an input dataset d0 and that the step

function will be executed n times, resulting in the dataset dn as output. In the

data flow model, we abstract the control of the number of iterations. Thus, the

number of iterations in the data flow model is non-deterministic. We delegate

this control for a specific transformation that will be presented later. Figure 4475

shows how the data flow of an iterative program is represented in our model.

24

di-1 di

titerative

tend

dn

tstart

d0

t1i t2i t3i

Step Function

Figure 4: Iterative data flow.

We highlight the step function with dashed lines to represent the part repeated

in each iteration.

Each iteration data flow is represented by such a sub-net and, to construct

the complete Petri Net for a program, it must be composed with the other480

transformations as was the case with acyclic transformations. The place corre-

sponding to its initial dataset (d0) is the output from some previous transition,

and the place corresponding to its final dataset (dn) is the input for a transition

in its sequence or a final (output) place.

This model can be reduced into a model without cycles. This reduction485

is valid because all of the studied systems require either an explicit limit of

iterations (n) or the execution plan (which corresponds to the construction of the

data flow model) is evaluated before the actual execution of the transformations.

Consequently, the execution plan always contains the information on the number

of required iterations, making it possible to unfold the iteration as many times490

as needed. For example, considering the iterative data flow shown in Figure 4,

when unfolding this data flow for 3 iterations (n = 3), we obtain the data

flow shown in Figure 5, in which the auxiliary transitions tstart, titerative and

tend were removed and the transformations within the step function have were

repeated 3 times.495

25

t11 t21 t31

d0 d1

t12 t22 t32

d2

t13 t23 t33

d3

Figure 5: Expanded iterative data flow for 3 iterations.

Iterative Transformations. we define the semantics of iterative transformations

in terms of the repeat operation of monoid algebra, which receives a step func-

tion f of type Bag[α] → Bag[α], a predicate function p of type Bag[α] →

boolean, a counter n (n ∈ Z) and a bag D of type Bag[α] as input and recur-

sively applies the function f until the condition in p is reached or n iterations500

occur, returning the resulting collection as output.

We define two iterative transformations: iterate and iterateWithCondition.

The iterate transformation takes a step function st, a counter n, and a collection

D as input and applies st n times. The transformation iterateWithCondition is

similar, but it receives an additional predicate function p, so it iterates n times

or until the condition in p is false, whichever is reached first (n is necessary

to avoid an infinite loop if p is never reached). The definitions of iterate and

iterateWithCondition are as follows:

iterate :: (Bag[α]→ Bag[α])→ Z→ Bag[α]→ Bag[α]

iterate(st, n,D) = repeat(st, λx.true, n,D)

26

iterateWithCondition :: (Bag[α]→ Bag[α])→

(Bag[α]→ boolean)→

Z→ Bag[α]→ Bag[α]

iterateWithCondition(st, p, n,D) = repeat(st, p, n,D)

Notice that our iterateWithCondition transformation corresponds exactly to

the repeat primitive of Monoid Algebra. Choosing such a primitive is an im-

portant design decision for our framework since it provides iterations that have

an upper limit in the number of times the body of an iteration may be executed.505

Despite the profound implications of our choice in terms of the theoretical ex-

pressiveness of our system, in practical terms, we believe that the impact of this

decision is palliated by the fact that any natural value may be used to set the

maximum number of iterations.

Example. to illustrate how an iterative program is represented in our model,510

let us consider the implementation of the PageRank algorithm [24] in Apache

Spark presented in Figure 6. This version was based on the implementation

presented in [2]. The PageRank algorithm calculates the importance (ranking)

of a page based on the number of links from other pages to it. Rankings are

calculated iteratively so that in each iteration, a page contributes to the ranking515

of the pages it links to and updates its ranking with the contribution it receives

from the other pages that link to it.

The program shown in Figure 6 receives a key/value dataset of links as input,

where the key is the address of a page, and the value is the collection of pages it

links to (line 1). The program also receives the number of iterations (n) that will520

be made as input. The program starts by creating the initial ranks dataset, in

which each page (key) of the links dataset receives an initial ranking of 1.0 (line

2). The iterative part is defined between lines 3 and 12, where the iterations are

controlled through a for statement executed from 1 to n. We abstract the block

inside the for statement (lines 4 to 11) as the step function that receives the525

27

ranks dataset as input and produces, at the end of the iteration, a new version

of the ranks dataset with the updated ranking of each page as output.

The step function starts with a join between links and ranks (line 4). Note

that the dataset links is not changed in the step function, but is only used in the

join with ranks. We have a dataset where each element is a tuple containing530

the page address, its ranking, and the list of pages it is linked to. Then we

take only the part that contains the ranking and the list of links to other pages

(line 5). After that, we calculate the contribution that each page sends to the

ranking of the other pages it links to (lines 6 to 9). This contribution is equal

to r
s , where r is the page ranking and s is the number of neighbors (pages535

it links to). Next, we aggregate the contributions with the aggregateByKey

transformation (line 10). Since the contribs dataset has key/value pairs where

the key is a page and the value is the contribution it receives from another page,

the result of the aggregation is a key/value dataset with the page (key) and the

sum of all contributions it received (value). At the end of the step function (line540

11), we update the ranks dataset so that the ranking of each page is equal to

1 def pageRank(links: RDD[(String, Iterable[String])], n: Int) = {

2 var ranks = links.map(link => (link._1, 1.0))

3 for(i <− 1 to n){

4 val linksRanks = links.join(ranks)

5 val values = linksRanks.map(lr => lr._2)

6 val contribs = values.flatMap { v =>

7 val size = v._1.size

8 v._1.map(url => (url, v._2 / size))

9 }

10 val aggregContribs = contribs.reduceByKey((a, b) => a + b)

11 ranks = aggregContribs.map(rank => (rank._1, 0.15 + 0.85 ∗ rank._2))

12 }

13 ranks

14 }

Figure 6: PageRank implementation in Spark (based on [2]).

28

0.15 + 0.85 × c, where c is the sum of all contributions received by the page.

The program ends by returning the final ranks dataset with the ranking of each

page calculated after n iterations (line 13).

To model the data flow of this program, we need to identify the datasets545

and transformations defined outside and inside the step function (iteration).

Outside the step function, we have the input dataset links of type Bag[String×

Bag[String]] and the initial ranks dataset of type Bag[String×Double], defined

before the iteration, which we call ranks0. We also have the map transformation

(t1) that is applied to generate ranks0.550

Each iteration updates the datasets used within the step function (st).

Within the step function, we denote the datasets and transformations with

an i subscript, representing that a new version of the dataset or transformation

will be created at each iteration.

In this example, we have the datasets ranksi : Bag[String ×Double] (note

that is the same type of ranks0), linksRanksi : Bag[String × (Bag[String]×

Double)], valuesi : Bag[Bag[String]×Double], contribsi : Bag[String×Double]

and aggregContribsi : Bag[String ×Double]. To fit the iteration subnet pat-

tern, we need to distinguish between the ranks variable before and after the

iteration. That gets us then the following set of places for our Petri Net:

D = {links, ranks0, ranksi−1, linksRanksi, valuesi, contribsi,

aggregContribsi, ranksi, ranksn}

We also have the innerJoin transformation t2i, the map t3i, the flatMap t4i,555

the reduceByKey t5i and the map t6i.

The data flow graph representing the PageRank program is shown in Fig-

ure 7. In it, we can see the data sets and transformations defined and the edges

that connect them. We can also see the tstart, titerative and tend transitions

that represent the beginning, continuation and end of the iterations. In terms

29

ranksi-1 ranksi

titerative

tend

ranksn

tstart

ranks0

ss

t3i

valuesi

t4i

contribsi

t5i

links

t1

t2i

linksRanksi aggregContribsi

t6i

Step Function

Figure 7: Data flow of the PageRank program.

of Monoid Algebra, the program is defined as follows:

t1 = map(link => ..., links)

t2i(ranksi) = innerJoin(links, ranksi)

t3i(linksRanksi) = map(lr => ..., linksRanksi)

t4i(valuesi) = flatMap(v => ..., valuesi)

t5i(contribsi) = reduceByKey((a,b) => ..., contribsi)

t6i(aggregContribsi) = map(rank => ..., aggregContribsi)

where i ranges from 1 to n.

The iteration that begins at tstart and ends at tend is defined as:

titerate = iterate(st, n, ranks0), where

st = t6i ◦ t5i ◦ t4i ◦ t3i ◦ t2i

As we mentioned earlier, the data flow systems that we are modeling define

their programs as DAGs, so the representation of iterative programs takes place

through the repetition of operations n times where n is the number of itera-560

tions, having no cycles in the graph as we did in our model. Our iteration

30

ranks0links

t1

t21

linksRanks1

t31

values1

t41

contribs1

t51

aggregContribs1

t61

ranks1

t22

linksRanks2

t32

values2

t42

contribs2

t52

aggregContribs2

t62

ranks2

t23

linksRanks3

t33

values3

t43

contribs3

t53

aggregContribs3

t63

ranks3

Figure 8: Expanded data flow (without cycle) of the PageRank program for 3 iterations.

representation is an abstraction for the expansion of the graph, but in fact, our

model allows us to represent the DAG that would be created in the data flow

systems. As an example, we can see the expanded representation of the data

flow of the PageRanks program for 3 iterations in Figure 8. In it we can see565

that the iterations control transitions (tstart, titerative and tend) were removed

and that the program is represented as a DAG.

The principles of the example given above apply to any structured iteration

defined at the Petri Net level. It is easy to see that the transformation from an

iterative Petri Net into an acyclic one, for a given n, can be defined using graph570

transformation/rewriting.

4. Comparing Parallel Big Data Processing Frameworks

The model proposed in this paper uses as reference the characteristics of the

programming strategies implemented by most prominent data flow-based Big

Data processing frameworks like Apache Spark [9], Dryad/DryadLINQ [5, 6],575

Apache Flink [7] and Apache Beam [8] that were presented in Section 2. These

frameworks use a similar DAG-based model to represent the data processing

programs workflow despite the adoption of different strategies for executing

programs, optimizing, and processing data. DAGs are composed of data pro-

31

cessing operations that are connected through communication channels. The580

channels are places for intermediate data storage among operations.

Our model captures the Petri Net data flow component of DAGs (data pro-

cessing operations and communication channels). The nodes for datasets repre-

sent the communication channels among operations. They represent at a high

level, the abstractions used by Big Data processing frameworks for modeling585

distributed datasets, such as RDD in Apache Spark (see Figure 2 and Figure

3), PCollection in Apache Beam, DataSet in Apache Flink and DryadTable in

DryadLINQ. Transformation nodes represent the processing operations that re-

ceive datasets and transmit the processing results to another dataset. The repre-

sentations of the datasets and transformations in the data flow graph encompass590

the main abstractions of the DAGs in these systems and allow to represent and

analyze a program independently of the system in which it will be executed.

The semantics of transformations and datasets are represented in the model

using Monoid Algebra. The transformations included in the model were based

on the main types of operations provided by the analyzed frameworks. These595

operations can be categorized intomapping, which are operations that transform

values in a dataset; filtering, which are operations that remove values from a

dataset based on some predicate; grouping, which are operations that group

values based on a key; aggregation, which are operations that summarize a group

of values into a single value; Set-like operations, which are inspired by operations600

in mathematical sets; join, which are operations based on the relational join

between datasets; and ordering, which are operations that order the values of

the dataset. This paper focuses on the abstract representation of both non-

iterative and iterative Big Data processing programs.

Table 1 compares the transformations defined by the model and the op-605

erations implemented in the Big Data processing frameworks. Therefore, we

grouped the transformations according to the types of processing that are done:

Mapping, Filtering, Grouping, Sets, Aggregation, Joins and Ordering. In addi-

tion, we include Iteration in the table to show the support for iterative opera-

tions. We modeled the main types of operations provided by these frameworks.610

32

Table 1: Comparing our model operations with operations in Big Data processing frameworks.

Model Apache Spark Apache Flink Apache Beam DryadLINQ

Mapping map, flatMap map, flatMap map, flatMap ParDo,

FlatMapEle-

ments, MapEle-

ments

Select, Select-

Many

Filtering filter filter filter Filter Where

Grouping groupBy, group-

ByKey

groupBy, group-

ByKey

groupBy GroupByKey GroupBy

Sets union, intersec-

tion, subtract,

distinct

union, intersec-

tion, subtract,

distinct

union, distinct Flatten, Dis-

tinct

Union, Inter-

sect, Except,

Distinct

Aggregation reduce, redube-

ByKey

reduce, reduce-

ByKey, aggre-

gateByKey

reduce, re-

duceGroup,

aggregate

Combine Aggregate

Joins innerJoin, left-

OuterJoin,

rightOuterJoin,

fullOuterJoin

join, left-

OuterJoin,

rightOuterJoin,

fullOuterJoin

join, left-

OuterJoin,

rightOuterJoin,

fullOuterJoin

CoGroupByKey Join

Ordering orderBy, order-

ByKey

sortBy, sort-

ByKey

sortPartition,

sortGroup

OrderBy

Iteration iterate, iterate-

WithCondition

Support with

external for and

while loops

iterate, deltaIt-

erate

Support with

external for and

while loops

Support with

external for and

while loops

In the table, we also indicate how the model and frameworks deal with iterative

programs.

Some systems offer more specific operations that we do not define directly

in our model. It is a work in progress to guarantee complete coverage of all

the operations of the considered systems. However, most of the operations

that are not directly represented in the model can easily be represented using

the transformations provided by the model. For example, classic aggregation

operations, like maximum, minimum, or the sum of the elements in a dataset.

33

We can easily represent these operations using the reduce operation of the model:

max(D) = reduce(λ(x, y). if x > y then x else y,D)

min(D) = reduce(λ(x, y). if x < y then x else y,D)

sum(D) = reduce(λ(x, y).x+ y,D)

Ideally, Big Data processing frameworks should allow users to express data

flow using simple imperative data flow statements while matching the perfor-

mance of native data flow. Therefore, we believe it is necessary to propose615

formal models agnostic of the underlying programming models and their imple-

mentation to manipulate iterative and non-iterative data processing algorithms

abstractly. The model proposed in the previous sections can be an abstraction

of existing data flow-based programming models independently of their specific

implementations by different frameworks. It provides abstractions of the data620

flow programming models that can be applied to specify parallel data processing

programs independently of target systems.

An abstract representation of parallel data flow can be used to address pro-

gram testing challenges, to compare Big Data processing tools when choosing

one of them, as well as to help in migrating solutions from one framework to625

another. In particular, our model is used as a representation tool to apply mu-

tation testing on data flow-based Big Data processing programs. In the next

section, we briefly discuss how this is done in a testing tool we developed.

5. Applications of the model

The abstract and formal concepts provided by the model make it suitable for630

the automation of software development processes, such as those done by IDE

tools. Consequently, we first applied the model to formalize the mutation oper-

ators presented in [13], where we explored the application of mutation testing

in Spark programs, and in the tool TRANSMUT-Spark1 [25] that we devel-

1TRANSMUT-Spark is publicly available at https://github.com/jbsneto-ppgsc-ufrn/

transmut-spark.

34

oped to automate this process. Mutation testing is a fault-based technique that635

simulates faults to design and evaluate test sets [26]. Faults are simulated by

applying mutation operators, rules with modification patterns for programs (a

modified program is called a mutant). In [13], we presented a set of mutation op-

erators designed for Spark programs that are divided into two groups: mutation

operators for the data flow and mutation operators for transformations.640

These mutation operators were based on a taxonomy of faults found in Spark

programs [25, 27] with the idea of mimicking them, and on common mutation

operators for different languages, such as those proposed in [28]. This taxonomy

was built using our experience as Spark programmers, as well as the observation

of programs, published literature, and documentation about Apache Spark.645

Although derived from a study of Spark faults, the definition of the oper-

ators is done at the model level, addressing each of its views (data flow and

transformation semantics) so that they are also applicable to the other similar

frameworks. Mutation operators for the data flow model change the DAG that

defines the program. In general, we define three types of modifications in the650

data flow: replacing one transformation with another (both existing in the pro-

gram), swapping the calling order of two transformations, and deleting the call

of a transformation in the data flow. These modifications involve changes to the

edges of the program. Besides, replacing a transformation with another must

maintain the type consistency, i.e., the I/O datasets of both transformations655

must be of the same type. In Figure 9 we exemplify these mutations in the data

flow that was presented in Figure 3.

Mutation operators associated with transformations model the changes done

on specific transformations’ types, such as aggregation transformations or set

transformations. In general, we model two types of modifications: (1) replace-

ment of the function passed as a parameter of the transformation and (2) re-

placement of a transformation by another of the same group. In the first type,

we defined specific substitution functions for each group of transformations.

For example, for a transformation of type aggregation, we define five substitu-

tion functions (fm) to replace it. Considering the aggregation transformation

35

t1 t3 t3

(a) Transformation Replacement.

t1 t3 t2

(b) Transformations Swap.

t1 t3

(c) Transformation Deletion.

Figure 9: Examples of mutants created with mutation operators for data flow.

t1 = reduce(max(x, y), d), which receives as input a function that returns the

greater of the two input parameters and an integer dataset, the mutation oper-

ator for aggregation transformation replacement will generate the following five

mutants:

t1 = reduce(fm(x, y) = x, d)

t1 = reduce(fm(x, y) = y, d)

t1 = reduce(fm(x, y) = max(x, x), d)

t1 = reduce(fm(x, y) = max(y, y), d)

t1 = reduce(fm(x, y) = max(y, x), d)

In the second type of modification, we replace a transformation with others

from the same group. For example, for set transformations (union, intersection,

and subtract), we replace one transformation with the remaining two; besides,

we replace the transformation for the identity of each of the two input datasets,

and we also invert the order of the input datasets. Considering the set transfor-

mation t1 = subtract(d1, d2), which receives two integer datasets a input, the

36

set transformation replacement operator will generate the following mutants:

t1 = union(d1, d2)

t1 = intersection(d1, d2)

t1 = identity(d1)

t1 = identity(d2)

t1 = subtract(d2, d1)

The mutation operators for the other transformations follow these two types

of modifications, respecting each group’s type consistency and particularities.

The tool TRANSMUT-Spark [25] uses the model as an intermediate rep-660

resentation. The tool reads a Spark program and translates it into an imple-

mentation of the model, so the mutation operators are applied to the model.

TRANSMUT-Spark actual implementation is based on a previous version of

the model ([1]) which only deals with non-iterative programs. Our next step

in the evolution of the tool is to include mutation operators which can alter665

the iterative characteristics of the programs. In the following, we describe some

potential mutation operators which may reflect common programming mistakes

introduced by the iterative nature of the model. Their proposal is inspired by

very well-known loop-related mistakes in any programming language, such as a

wrong number of iterations or a stop predicate that is inverted, and on specifics670

of the proposed model.

5.1. Mutation Operators for Iterative Programs

Loops are a powerful tool, but also a source of many programming mistakes.

The software testing community has been dedicating effort on how to best exer-

cise iterative programs in order to gain confidence in their correction and quality675

for a long time ([29, 30, 31, 32]). Testing of iterative operations is traditionally

done by applying graph coverage criteria [26] in which different execution paths

can be tested in order to exercise loops and branches. Some recurring ideas

are to exercise the program with test cases where the loop is not executed and

exploring the upper bounds of the number of executions, when possible. It is680

37

common to have some mandatory action occurring inside the loop that is not

carried out when the loop is not executed. It is also very common to have a

wrong stop condition that leads to a missing or to an exceeding execution of the

loop. Other common mistakes are the use of a condition that reflects when the

loop must be continued instead of a stop condition and vice versa, and, more685

generally, a wrong conditional control expression can lead to different undesired

behaviors of the program. Test design must also look for these mistakes.

The mutation approach to dealing with specific kinds of programming issues

is to simulate them with the mutation operators. With the extension of the

model to represent iterative programs presented in Section 3.3, we can now690

formalize specific mutation operators for iterative operations.

Based on that, mutation operators that model faults in iterative transforma-

tions by modifying the number of times or conditions passed to the operation

may be proposed. Those operators apply two strategies: change the number of

iterations n passed to the transformation and change the conditional function695

p for the iterative transformation with condition. The mutation operators are

formalized below:

Number of Iterations Replacement (NIR). Given an iterative transformation

that takes a number of iterations n as parameter (iterate and iterateWithCon-

dition), the NIR operator replaces n by: 0, 1, c, n − 1 and n + 1, where c is a700

constant number that can be chosen by the test engineer.

Negate Iteration Condition (NIC). Given an iterative transformation that takes

a predicate function p as a parameter (iterateWithCondition), where p defines

the condition to continue the iterations, the NIC operator replaces p with a

predicate function pm that negates the result of p (pm(x) = ¬p(x)).705

Remove Iteration Condition (RIC). Given an iterative transformation that takes

a predicate function p as a parameter (iterateWithCondition), where p defines

the condition to continue the iterations, the NIC operator replaces p with a

predicate function pm that is a tautology (pm(x) = true), which in practice

38

removes the condition and leaves the iterative transformation based only on the710

maximum number of iterations n that is passed as parameter to the transfor-

mation.

With the NIR operator, we can simulate common mistakes related to the

definition of iterations, which are the cases where the iterative operation is not

executed or executed only once, as well as the mistake of executing the iteration715

one time less or more than it should. This operator is similar to the operators

proposed in [32] that simulate faults in for loops by modifying the loop’s initial-

ization and sentinels. With the NIC and RIC operators, we can simulate faults

in condition-based iterations, in which mistakes can be made in defining the

stopping condition of the loop. In these operators, mutations are made only in720

the control of iterations, i.e., in n or p. Finally, the transformations performed

iteratively are encapsulated in the step function (st). For these transformations,

it is possible to apply the other mutation operators that were proposed in [13]

and there is no need for additional mutation operators.

To exemplify the mutation operators for iterative transformations, let us con-

sider the PageRank program presented in Section 3.3. For the sake of simplicity,

we consider only the iterative transformation (titerate = iterate(st, n, ranks0))

since for the other transformations applied in st we can apply the previously

defined [13] mutation operators, as said above. Applying the NIR operator in

this transformation, we generate the following five mutants:

titerate = iterate(st, 0, ranks0)

titerate = iterate(st, 1, ranks0)

titerate = iterate(st, c, ranks0)

titerate = iterate(st, n− 1, ranks0)

titerate = iterate(st, n+ 1, ranks0)

6. Related Work725

Data flow processing that defines a pipeline of operations or tasks applied on

datasets has been traditionally formalized using (colored) Petri Nets [33], which

39

are well adapted to model the organization (flow) of the processing tasks that

receive and produce data. A number of proposals use Petri Nets to model control

flow and use other formal tools for modeling the operations applied on data.730

For example, [34, 35] uses nested relational calculus for formalizing operations

applied to non first normal form-compliant data. Our approach is similar, in

the sense that we model the workflow using Petri Nets, but use Monoid Algebra

to model operations on datasets, thus allowing for the (implicit) treatment of

distribution and parallelism inside operations.735

Let us now describe some initiatives to formalize data processing parallel

programming models. Our presentation focuses on the tools and strategies used

to formalize control/data flows and data processing operations.

The authors in [10] formalize MapReduce using CSP [36]. The system is

formalized with respect to four components: Master, Mapper, Reducer and FS740

(file system). The Master manages the execution process and the interaction

between the other components. The Mapper and Reducer components repre-

sent, respectively, the processes for executing the map and reduce operations.

Finally, FS represents the file system that stores the data processed in the pro-

gram. These components implement the data processing pipeline implemented745

by these systems, loading data from a file system, executing a map function

(by several mappers), shuffling and sorting, and executing a function reduce by

reducers. The model allows the analysis of properties and interaction between

these processes, as implemented by MapReduce systems.

In [12] MapReduce applications are formalized within Coq, an interactive750

proof assistant. As in [10], the authors also formalized the components and

execution process of MapReduce systems. The user-defined functions of the

map and reduce operations are also formalized with Coq. Then, these formal

definitions are used to prove the correctness of MapReduce programs. This

approach is different from the work presented in [10] that formalizes only the755

MapReduce system, without specific consideration to the user-defined functions

implemented by each component. Although related to our study, both works

in [10, 12] are restricted to the description of a less general model than ours.

40

More recent work has proposed formal models for data flow programming

models, particularly associated with Spark. The work in [11] introduces PureS-760

park, a functional and executable specification for Apache Spark written in

Haskell. The purpose of PureSpark is to specify parallel aggregation operations

of Spark. Based on this specification, necessary and sufficient conditions are

extracted to verify whether the outputs of aggregations in a Spark program

are deterministic. The work [37] presents a formal model for Spark applica-765

tions based on temporal logic. The model considers the DAG that forms the

program, information about the execution environment, such as the number of

CPU cores available, the number of program tasks, and the average execution

time of the tasks. Then, the model is used to check time constraints and make

predictions about the program’s execution time. Both works ([11] and [37]) aim770

to evaluate Spark programs for specific properties. The abstraction level of our

model is higher than that of the work of Marconi et al., so our model is not

suited, as it is, to evaluate cluster behavior. But it can be used and was used

in TRANSMUT-Spark, in enforcing the development of test cases that verify

the deterministic behavior of aggregations through mutation, the goal of the775

work by Chen et al..

The research community has also paid attention to the problem of address-

ing iterative programs in data flow-based programming frameworks and has

proposed several solutions [38, 39, 40]. For example, Emma [38] can translate

imperative control flow to Flink’s native iterations. The translation is limited780

to cases when there is only a single while-loop containing a sequential body,

without any other control flow statement. This approach is unsuitable for data

analytics tasks, such as hyper-parameter optimization, simulated annealing, and

strongly connected components, which require a more complex control flow.

AutoGraph [39] and Janus [40] compile imperative control flow to TensorFlow’s785

native iterations [41]. However, they do not support general data analytics other

than machine learning. Mitos [42] allows users to write imperative control flow

constructs, such as regular while-loops and if statements.

41

7. Conclusions and Future Work

This paper presents a model for data flow processing programs. Our model790

combines two formal mathematical tools: Monoid Algebra and Petri Nets.

Monoid Algebra is an abstract way to specify operations over partitioned datasets.

Petri nets are widely used to specify parallel computation. Our proposal com-

bines these two models by building two-level specifications. The lower level uses

Monoid Algebra to specify individual transformations (i.e., operations whose795

arguments and results are datasets). The upper level defines the program using

a Petri Net, where places represent datasets and transitions represent operations

over that data.

The paper is an extended version of [1]. The main technical difference to

that paper is the addition of iterations to the model and the proposed use of our800

model to specify the operations available in several existing Big Data processing

frameworks. In this sense, the paper specifies data processing operations (i.e.,

transformations) provided as built-in operations in Apache Spark, DryadLINQ,

Apache Beam, and Apache Flink.

In the proposed model, iterations are represented by a loop on the Petri Net805

that defines the program. Loops are statically unfolded to build a Petri Net

without cycles, to have a DAG representing the program. This technique is

convenient and realistic. It is convenient since it preserves the distributive and

associative properties of the operations over datasets, as well as the standard

representation of programs as DAGs. It is realistic since it provides a general810

model of strategies used by most prominent Big Data processing frameworks to

process loops [2, 7, 8, 6].

Beyond the interest of providing a formal model for data flow-based pro-

grams, our proposal can be used as a comparison tool of target systems or

to define program testing pipelines. We also showed how operations could be815

combined into data flows to implement mutation operations in mutation test-

ing approaches. The model was already used as an intermediary representation

to specify mutation operators that were then implemented in TRANSMUT-

42

Spark, a software engineering tool for mutation testing of Spark programs [13].

A natural extension to this work would be to instantiate the tool for other820

systems of the data flow family (DryadLINQ, Apache Beam, Apache Flink).

This instantiation can be done by adapting TRANSMUT-Spark’s front and

back ends so that a program originally written in any of these systems can be

tested using the mutation testing approach proposed in [13]. This line of work,

where the model is used as the internal format, is suited for the more practi-825

cal users, not willing to see the formalism behind their tools. However, when

exploring the similarities of different frameworks, our model may be used as a

platform-agnostic form of formally specifying and analyzing the properties of a

program before its implementation. In addition, the formalization of iterative

transformations allowed us to propose specific mutation operators for iterative830

operations. Thus, we can now extend TRANSMUT-Spark to support the

testing of iterative programs. We plan to implement these features in future

work.

Furthermore, we intend to study the extension of our model to use Colored

Petri Nets (CPN) and CPN Tools [43] to specify the types for transformations835

over datasets explicitly and to manipulate, analyze and animate the specifica-

tions. This extension may be helpful to detect design problems at an early

stage. Also, we plan to work on the use of specifications for code generation to

target data flow systems similar to Apache Spark. A simple form of this code

generation was implemented to generate test programs in TRANSMUT-Spark840

back-end.

References

[1] J. B. de Souza Neto, A. M. Moreira, G. Vargas-Solar, M. A. Musicante,

Modeling big data processing programs, in: G. Carvalho, V. Stolz (Eds.),

Formal Methods: Foundations and Applications, Springer International845

Publishing, Cham, 2020, pp. 101–118.

43

[2] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.

Franklin, S. Shenker, I. Stoica, Resilient Distributed Datasets: A Fault-

tolerant Abstraction for In-memory Cluster Computing, in: Proceedings of

the 9th USENIX Conference on Networked Systems Design and Implemen-850

tation, NSDI’12, USENIX Association, Berkeley, CA, USA, 2012, pp. 2–2.

URL http://dl.acm.org/citation.cfm?id=2228298.2228301

[3] F. Bajaber, R. Elshawi, O. Batarfi, A. Altalhi, A. Barnawi, S. Sakr, Big

Data 2.0 Processing Systems: Taxonomy and Open Challenges, Journal of

Grid Computing 14 (3) (2016) 379–405. doi:10.1007/s10723-016-9371-1.855

[4] Hadoop, Apache Hadoop Documentation (2019).

URL https://hadoop.apache.org/docs/r2.7.3/

[5] M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, Dryad: Distributed

Data-parallel Programs from Sequential Building Blocks, in: Proceedings

of the 2Nd ACM SIGOPS/EuroSys European Conference on Computer860

Systems 2007, EuroSys ’07, ACM, New York, NY, USA, 2007, pp. 59–72.

doi:10.1145/1272996.1273005.

URL http://doi.acm.org/10.1145/1272996.1273005

[6] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda,

J. Currey, DryadLINQ: A System for General-purpose Distributed Data-865

parallel Computing Using a High-level Language, in: Proceedings of the

8th USENIX Conference on Operating Systems Design and Implementa-

tion, OSDI’08, USENIX Association, Berkeley, CA, USA, 2008, pp. 1–14.

URL http://dl.acm.org/citation.cfm?id=1855741.1855742

[7] P. Carbone, S. Ewen, S. Haridi, A. Katsifodimos, V. Markl, K. Tzoumas,870

Apache Flink: Stream and Batch Processing in a Single Engine, IEEE Data

Engineering Bulletin 38 (4) (2015) 28–38.

[8] A. Beam, Apache Beam: An advanced unified programming model (2016).

URL https://beam.apache.org/

44

[9] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica, Spark:875

Cluster Computing with Working Sets, in: Proceedings of the 2Nd USENIX

Conference on Hot Topics in Cloud Computing, HotCloud’10, USENIX

Association, Berkeley, CA, USA, 2010, pp. 10–10.

URL http://dl.acm.org/citation.cfm?id=1863103.1863113

[10] F. Yang, W. Su, H. Zhu, Q. Li, Formalizing MapReduce with CSP, in:880

2010 17th IEEE International Conference and Workshops on Engineering

of Computer Based Systems, 2010, pp. 358–367.

[11] Y.-F. Chen, C.-D. Hong, O. Lengál, S.-C. Mu, N. Sinha, B.-Y. Wang, An

Executable Sequential Specification for Spark Aggregation, in: A. El Ab-

badi, B. Garbinato (Eds.), Networked Systems, Springer International Pub-885

lishing, Cham, 2017, pp. 421–438.

[12] K. Ono, Y. Hirai, Y. Tanabe, N. Noda, M. Hagiya, Using Coq in Speci-

fication and Program Extraction of Hadoop MapReduce Applications, in:

G. Barthe, A. Pardo, G. Schneider (Eds.), Software Engineering and For-

mal Methods, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp.890

350–365.

[13] J. B. Souza Neto, A. Martins Moreira, G. Vargas-Solar, M. A. Musicante,

Mutation Operators for Large Scale Data Processing Programs in Spark,

in: S. Dustdar, E. Yu, C. Salinesi, D. Rieu, V. Pant (Eds.), Advanced In-

formation Systems Engineering, Springer International Publishing, Cham,895

2020, pp. 482–497.

[14] T. Murata, Petri nets: Properties, analysis and applications, Proceedings

of the IEEE 77 (4) (1989) 541–580. doi:10.1109/5.24143.

[15] L. Fegaras, An algebra for distributed Big Data analytics, Journal of Func-

tional Programming 27 (2017) e27. doi:10.1017/S0956796817000193.900

[16] L. Fegaras, Compile-Time Query Optimization for Big Data Analytics,

45

Open Journal of Big Data (OJBD) 5 (1) (2019) 35–61.

URL https://www.ronpub.com/ojbd/OJBD_2019v5i1n02_Fegaras.html

[17] K. Kennedy, J. R. Allen, Optimizing compilers for modern architectures: a

dependence-based approach, Morgan Kaufmann Publishers Inc., 2001.905

[18] R. Ivanovs, Concurrency Glossary (2018).

URL https://slikts.github.io/concurrency-glossary/

[19] J. Dean, S. Ghemawat, MapReduce: Simplified Data Processing on Large

Clusters, in: OSDI’04: Sixth Symposium on Operating System Design and

Implementation, San Francisco, CA, 2004, pp. 137–150.910

[20] C. A. Petri, Kommunikation mit automaten, Ph.D. thesis, Universität

Hamburg, (In German) (1962).

[21] K. M. Kavi, B. P. Buckles, N. Bhat, A Formal Definition of Data Flow

Graph Models, IEEE Transactions on Computers C-35 (11) (1986) 940–

948. doi:10.1109/TC.1986.1676696.915

[22] S. Chlyah, N. Gesbert, P. Genevès, N. Layaïda, An Algebra with a Fixpoint

Operator for Distributed Data Collections (Mar. 2019).

URL https://hal.inria.fr/hal-02066649

[23] T. Hastie, R. Tibshirani, J. Friedman, The elements of statistical learning:

data mining, inference, and prediction, Springer Science & Business Media,920

2009.

[24] S. Brin, L. Page, The anatomy of a large-scale hypertextual web search

engine, Computer networks and ISDN systems 30 (1-7) (1998) 107–117.

[25] J. B. Souza Neto, Transformation mutation for spark programs testing,

Ph.D. thesis, Federal University of Rio Grande do Norte (UFRN), Na-925

tal/RN, Brazil, (In Portuguese) (2020).

[26] P. Ammann, J. Offutt, Introduction to Software Testing, second edition

Edition, Cambridge University Press, New York, NY, 2017.

46

[27] J. B. de Souza Neto, A. M. Moreira, G. Vargas-Solar, M. A. Mu-

sicante, Transmut-spark: Transformation mutation for apache spark930

(https://arxiv.org/abs/2108.02589. 2021). arXiv:2108.02589.

URL https://arxiv.org/abs/2108.02589

[28] H. Agrawal, R. A. DeMillo, B. Hathaway, W. Hsu, W. Hsu, E. W. Krauser,

R. J. Martin, A. P. Mathur, E. Spafford, Design of Mutant Operators for the

C Programming Language, techreport SERC-TR-41-P, Purdue University,935

West Lafayette, Indiana (March 1989).

[29] T. Chow, Testing software design modeled by finite-state machines, IEEE

Transactions on Software Engineering SE-4 (3) (1978) 178–187.

[30] L. J. White, B. Wiszniewski, Path testing of computer programs with loops

using a tool for simple loop patterns, Software: Practice and Experience940

21 (10) (1991) 1075–1102.

[31] N. Li, U. Praphamontripong, J. Offutt, An experimental comparison of four

unit test criteria: Mutation, edge-pair, all-uses and prime path coverage,

in: 2009 International Conference on Software Testing, Verification, and

Validation Workshops, 2009, pp. 220–229.945

[32] M. Raunak, C. Murphy, B. O’Haver, An Empirical Study of Off-by-one

Loop Mutation, Technical report, University of Pennsylvania (2015).

[33] E. Lee, D. Messerschmitt, Pipeline interleaved programmable DSP’s: Syn-

chronous data flow programming, IEEE Transactions on acoustics, speech,

and signal processing 35 (9) (1987) 1334–1345.950

[34] J. Hidders, N. Kwasnikowska, J. Sroka, J. Tyszkiewicz, J. Van den Bussche,

Petri net + nested relational calculus = dataflow, in: OTM Confederated

International Conferences" On the Move to Meaningful Internet Systems",

Springer, 2005, pp. 220–237.

47

[35] J. Hidders, N. Kwasnikowska, J. Sroka, J. Tyszkiewicz, J. Van den Buss-955

che, DFL: A dataflow language based on Petri nets and nested relational

calculus, Information Systems 33 (3) (2008) 261–284.

[36] S. D. Brookes, C. A. R. Hoare, A. W. Roscoe, A Theory of Communicating

Sequential Processes, J. ACM 31 (3) (1984) 560–599. doi:10.1145/828.833.

[37] F. Marconi, G. Quattrocchi, L. Baresi, M. M. Bersani, M. Rossi, On960

the Timed Analysis of Big-Data Applications, in: A. Dutle, C. Muñoz,

A. Narkawicz (Eds.), NASA Formal Methods, Springer International Pub-

lishing, Cham, 2018, pp. 315–332.

[38] A. Alexandrov, G. Krastev, V. Markl, Representations and optimizations

for embedded parallel dataflow languages, ACM Transactions on Database965

Systems (TODS) 44 (1) (2019) 1–44.

[39] D. Moldovan, J. M. Decker, F. Wang, A. A. Johnson, B. K. Lee, Z. Nado,

D. Sculley, T. Rompf, A. B. Wiltschko, Autograph: Imperative-style coding

with graph-based performance, arXiv preprint arXiv:1810.08061 (2018).

[40] E. Jeong, S. Cho, G.-I. Yu, J. S. Jeong, D.-J. Shin, B.-G. Chun, {JANUS}:970

Fast and flexible deep learning via symbolic graph execution of imperative

programs, in: 16th {USENIX} Symposium on Networked Systems Design

and Implementation ({NSDI} 19), 2019, pp. 453–468.

[41] Y. Yu, M. Abadi, P. Barham, E. Brevdo, M. Burrows, A. Davis, J. Dean,

S. Ghemawat, T. Harley, P. Hawkins, et al., Dynamic control flow in large-975

scale machine learning, in: Proceedings of the Thirteenth EuroSys Confer-

ence, 2018, pp. 1–15.

[42] G. E. Gévay, T. Rabl, S. Breß, L. Madai-Tahy, J.-A. Quiané-Ruiz, V. Markl,

Efficient control flow in dataflow systems: When ease-of-use meets high

performance, in: IEEE 37th International Conference on Data Engineering980

(ICDE), 2021.

48

[43] K. Jensen, L. M. Kristensen, L. Wells, Coloured Petri Nets and CPN

Tools for modelling and validation of concurrent systems, International

Journal on Software Tools for Technology Transfer 9 (3) (2007) 213–254.

doi:10.1007/s10009-007-0038-x.985

49

