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An inverse problem: recovering the fragmentation kernel from the

short-time behaviour of the fragmentation equation

Marie Doumic ∗ Miguel Escobedo † Magali Tournus ‡

Abstract

The present paper provides a new representation of the solution to the fragmentation equation
as a power series in the Banach space of Radon measures endowed with the total variation norm.
This representation is used to justify how the fragmentation kernel, which is one of the two
key parameters of the fragmentation equation, can be recovered from short-time experimental
measurements of the particle size distributions when the initial condition is a delta function. A
new stability result for this equation is also provided using a Wasserstein-type norm. We exploit
this stability to prove the robustness of our reconstruction formula with respect to noise and
initial data.

1 Introduction

The fragmentation equation is a size-structured PDE describing the evolution of a population of
particles and is ubiquitous in modeling physical or biological phenomena (cell division [13], amyloid
fibril breakage [21], microtubules dynamics [9]) and technological processes (mineral processing,
grinding solids [10], polymer degradation [19] and break-up of liquid droplets or air bubbles). The
equation is written as

∂

∂t
u(t, x) = −B(x)u(t, x) +

∫ ∞

x

κ

(

x

y

)

B(y)u(t, y)
dy

y
, (1)

to be understood in a weak sense given below in Definition 1. The two key physical parameters are
the fragmentation rate B(x) and the fragmentation kernel κ. They encode fundamental information
on the mechanical stability of each particle, and can take quite different forms depending on the
particular process considered. To estimate the parameters B and κ using population data (when
only particles density can be accessed, not the trajectory of each individual particle) is a challenging
problem.

The particular question that lead us to consider such a theoretical question originates from the
studies [20, 21], where the authors provide experimental size distribution profiles of different types
of amyloid fibrils, in order to estimate their intrinsic division properties (B and κ) and then to relate
them to their respective pathogenic properties [1]. It is not possible to follow experimentally each
fibril one by one, hence the necessity to draw the characteristic of each particle from the evolution
of the whole population.
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Identifying the fragmentation kernel from measurable population data has been a challenging
problem these past years. In the seminal paper [10] of Kolmogorov (1940), the large time behaviour
of the size distribution is identified for a constant fragmentation rate (B(x) = B) and a discrete
time model. The self-similar asymptotic behaviour of the fragmentation equation (the shape of
the particles size distribution is preserved) has then been established in [8] by Filippov (1961)
for the case B(x) = xγ , γ > 0 and the result is now well-known by the scientific community
under fairly general balance assumptions on the parameters (see [6] for instance). From the
seventies, scientists from physics and chemical departments have been using this similarity concept
for the kernel inverse problem. In 1974, a scientist of a department of chemical engineering [17]
developed a method to extract information on probabilities of droplet-breakup, and in particular
on the daughter-drop-distribution (in modern terms: the fragmentation kernel), as a function of
drop sizes data, obtained from an experiment of pure fragmentation in a batch vessel. To do so,
he uses the self-similar behaviour of the fragmentation equation, thereby restricted to monomial
fragmentation rates, and evaluates the moments of the kernel from the moments of the large time size
distribution. To recover the kernel from its moments, a method based on the expansion of the kernel
on a specific polynomial basis is suggested. These results are generalized later in the eighties [12]
to non-monomial fragmentation rates associated with an adapted definition for the self-similarity
of the kernel so as to keep the self-similar asymptotic behaviour of the model. More recently, a
reconstruction formula for κ based on the mere knowledge of the asymptotic profile g is proved
mathematically in suitable functional spaces [3]. This formula involves the moments of order s of
the asymptotic profile g, s being taken along a vertical complex line, i.e. s = u+ iv, v ∈ (−∞,∞).
One of the drawbacks of these methods based on self-similarity is that they require access to high-
order moment measurements of the self-similar profile to obtain a fine estimate for κ. Another
drawback is the difficulty to obtain a robust inversion formula to deduce the kernel from its Mellin
transform. From the late nineties, the large improvements in computer hardware opened the field
of numerical investigations of mathematical models, see for instance [11] where the authors provide
insights on how the stationary shape of the particle size distribution is impacted by the kernel.
Their conclusion is that the inverse problem of assigning a breakage kernel to a known self-similar
particular size distribution is ill-posed not only in a mathematical but also in a physical sense
since quite different kernels correspond to almost the same particles size distribution. In a recent
work [4], we explored the influence of the kernel on the time evolution of the length distribution.
We showed that the asymptotic profile is helpful to distinguish whether the fragmentation kernel
is of erosion-type kernel (one of the fragments has a size close to that of the parent particle) or
produces particles of similar size. We also showed that to obtain a finer estimate on the kernel, there
exists a time-window right after the initial time where two kernels result in a maximal difference in
length distributions, and where the initial condition that maximizes this difference is a very sharp
Gaussian.

In the present paper, we provide a new method to estimate the kernel from population data,
using only short-time measurements of the solutions. We assume the fragmentation rate B to
be known, and we provide a reconstruction formula for the fragmentation kernel. Unless specific
assumptions are stated, we restrict to monomial fragmentation rates

B(x) = αxγ , γ > 0, α > 0. (2)

This simplification renders our formulae easier to read, but our results can directly be generalized
to generic smooth fragmentation rates. The idea is based on the following remark: for ∆t small
enough, the solution u to the fragmentation equation (14) formally satisfies
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u(t+∆t, x) ≈ u(t, x) − α∆txγu(t, x) + α∆t

∫ ∞

x

κ

(

x

y

)

yγ−1u(t, y)dy + o(∆t). (3)

If we assume that at time t, the size distribution u(t, x) is a Dirac delta function at x = 1, that
is denoted δ1 or δ(x− 1), then

u(t+∆t, x) ≈ δ(x− 1)− α∆tδ(x− 1) + α∆tκ(x) + o(∆t),

and thus the kernel κ can be directly expressed from the measurement of the profile u at time t+∆t
as

κ(x) ≈ 1

α∆t
(u(t+∆t, x)− (1− α∆t)δ(x− 1)) + o(1), ∆t≪ 1.

To make rigorous the above estimate of κ as ∆t goes to zero, we expand the solution u(t, x) to
the fragmentation equation as a power series about t in the Banach space of Radon measures. Up
to our knowledge, such a representation of the solution to the fragmentation equation is novel.

How to use this formula in practice? The cunning to obtain κ directly form the measurement
of the distribution profile u(∆t, .) is to impose that the initial distribution u(0, .) is a Dirac mass.
In other words, at time t = 0, all particles have the same size. Heuristically, if all particles have the
exact same size at t = 0, after a time t long enough so that almost all particles have broken once, but
short enough such that almost no particle has broken twice, it is clear that the kernel κ, sometimes
referred to as the ”daughter particle distribution” can directly be read on the distribution. No
experiment may produce a suspension where all the particles have the same size since it would
mean being able to follow each particle one by one. However, we can hope to obtain a suspension
where all particles have approximately the same size described by a gaussian distribution. For
that reason, the second part of our work focus on the stability of our reconstruction formula with
respect to noise and to the error on the initial data. To quantify the stability result first requires
to understand what are the types of experimental uncertainties on the initial data coming from the
experiments. These are twofold: first, instead of a delta function at x = x0, the initial data is a
spread gaussian with variance σ > 0 (due to the impossibility to obtain a perfectly homogeneous
suspension). Second, the gaussian is centered as x = x0 + ε for some ε > 0, instead of x = x0
(possible bias on the measurement of the particles size). In order to deal with these uncertainties,
the Bounded-Lipshitz (BL) norm is better suited than the total variation norm (TV). For instance,
∀a ∈ R, b ∈ R, such that |b− a| < 2

‖δa − δb‖TV = 2, ‖δa − fa,σ‖TV = 2,

whereas

‖δa − δb‖BL = |b− a|, ‖δ1 − f1,σ‖BL ≤ 2
√
σ√
2π
,

where fa,σ is the density of the gaussian function centered at x = a and with variance σ.
On the other hand, the Mellin transform provides a full range of moments of the fragmentation

kernel, in particular mean, variance and skewness, and is then of interest by itself. Our last contri-
bution is a robust reconstruction formula for the Mellin transform of the fragmentation kernel using
short-time measurements of the solution to the fragmentation equation endowed with a generic ini-
tial condition. Since the equation is autonomous, it means to be able to access two close consecutive
measurements of the particles size distribution. The proof of the reconstruction formula requires
that the Mellin transform of the solution of the fragmentation equation does not vanish on a vertical
strip of the complex plane. An estimate of the error for the variance of the kernel is proved however
without such a condition. Recovering the complete kernel from its Mellin transform reveals to be
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a hard problem involving noisy deconvolution. The mathematical justification of the robustness of
the formula is based on the following property: for a function u regular enough, the asymptotic
behaviour of its Mellin transform U on a vertical line of the complex plane (i.e. the behaviour of
U(w+ iv) for large values of v) does not depend on the vertical line (i.e. does not depend on w). We
prove this result on the Mellin transform by using an adaptation of the stationary phase method
for oscillatory integrals.

The main novelties brought by this paper are

• a proof of the uniqueness of the solution in the space of measures endowed with total variation
norm (Theorem 1),

• a representation of the solution to the fragmentation equation as a power series in the Banach
space of measures endowed with total variation (Theorem 2),

• a stability result for the solution to the fragmentation equation for the BL norm, which is a
norm adapted to weak convergence of measures (Theorem 4),

• a robust reconstruction formula for the fragmentation kernel involving the short-time solution
of the fragmentation equation endowed with a delta function as initial condition. Robustness
is to be understood in the sense that if the initial condition is close to a delta function at
x = x0 in the BL norm (for instance a rectangular function centered in x0 or a delta function
at x = x0+ǫ with ǫ small), then the estimated kernel obtained with the reconstruction formula
is close to the real kernel in the BL norm (Theorem 3 and Theorem 5),

• a reconstruction formula for the Mellin transform K of the fragmentation kernel κ involving
the short-time solution of the fragmentation equation endowed with any initial condition
(Theorem 6).

The outline of the paper is as follows. In the remaining of Section 1, some properties of measures
and classical results on measure theory are recalled. Then, uniqueness of solutions to the problem
(14) (2) is proved in the space of Radon measures and, their structure is provided for general initial
conditions. In Section 2, we provide a new representation of the solution of the fragmentation
equation as a power series in the Banach space of Radon measures. In Section 3, the power series
representation is used to render explicit the short-time behaviour of the solution to the fragmentation
equation with a Dirac delta as initial data. We also explore the robustness of this behaviour, because
it is close to impossible to obtain experimentally an exact delta function, the initial data is actually
a slightly shifted gaussian distribution. In Section 4, we exhibit a reconstruction formula Kest of K,
the Mellin transform of the fragmentation κ, only based on short time intervals measurements of
the solution to the fragmentation equation, and prove and estimate of the error K−Kest. An exact
expression for K was obtained in [3] from the exact long time self similar asymptotic profile of the
solution to the fragmentation equation, but no estimate were obtained of the difference between K
and the actual values that may be reached through the experimental data. We end the paper with
numerical illustrations of the short-time behaviour of the fragmentation equation, we illustrate the
estimation results of Theorems 3 and 5, and we explore how Theorem 6 can be applied to recover
the variance of the kernel from the data.

1.1 Short reminder on measure theory

We define M(R+) as the set of Radon measures µ (not necessarily probability measures) such that
supp (µ) ⊂ R+. Let us recall that M(R+) is the dual space of the space (C(R+), ‖.‖∞) of continuous
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functions. We denote by (µ+, µ−) the Jordan decomposition of µ. We endow M(R+) with two
different norms: the total variation norm and the Bounded-Lipschitz norm. As mentioned in the
introduction, the final purpose is to obtain stability with respect the Bounded-Lipschitz norm, the
TV norm is a technical intermediate tool to reach this purpose. The total variation (TV) of the
(signed) measure µ ∈ M(R+) is defined as

‖µ‖TV = sup{
∫

R+

ϕ(x)dµ(x), ϕ ∈ C(R+) ∩ L1(d|µ|), ‖ϕ‖∞ ≤ 1}. (4)

We recall that (M(R+), ‖.‖TV ) is a Banach space. We now introduce the Bounded-Lipschitz norm
defined as

‖µ‖BL = sup{
∫

R+

ϕ(x)dµ(x), ϕ ∈ C(R+) ∩ L1(d|µ|), ‖ϕ‖∞ ≤ 1, ‖ϕ′‖∞ ≤ 1}. (5)

Comparing (4) and (5), it is clear that

∀ µ ∈ M(R+), ‖µ‖BL ≤ ‖µ‖TV . (6)

An optimal transportation point of view is provided in [16, Proposition 23] for the Bounded-
Lipschitz norm. It is proven that for any signed Radon measure with finite mass µ we have

‖µ‖BL = inf
{

(‖µ+ − ν‖TV + ‖µ− − η‖TV ) +W1(ν, η), (ν, η) ∈ M+
µ (R

+),
}

(7)

M+
µ (R

+) =
{

(ν, η) ∈ M+(R+)×M+(R+); ν ≤ µ+, η ≤ µ−, ‖ν‖TV = ‖η‖TV

}

(8)

where M+(R+) is the space of positive Radon measures with support in R+, and W1 stands for
the classical Wasserstein distance [18] between two positive measures of same mass, namely

W1(ν, η) := inf
π∈Π(ν,η)

∫

R+ |x− y|dπ(x, y),

Π(ν, η) :=
{

π positive measure on R+ s.t.
∫

R+ π(x, y)dx = η(y),
∫

R+ π(x, y)dy = ν(x)
}

.

(9)

Let us recall that for µ, ν two probability measures and for a > 0, we have W1(aµ, aν) = aW1(µ, ν).
Formula (7) (8) can be interpreted as follows: the BL norm of the signed measure µ is the BL
distance between the two positive measures µ+ and µ−. Now take µ+ and µ− two positive measures.
Consider ν and η two positive measures such that ν ≤ µ+, η ≤ µ− and ‖ν‖TV = ‖η‖TV . The
subpart ν of the measure µ+ is transported onto the subpart η of the measure µ−, with a cost
W1(ν, η). The remaining positive measures (µ+ − ν) and (µ− − η) are both cancelled with a cost
‖µ+−ν‖TV +‖µ−−η‖TV . Among all couples (ν, η) that satisfy ν ≤ µ+, η ≤ µ− and ‖ν‖TV = ‖η‖TV ,
we choose one such that the sum (‖µ+ − ν‖TV + ‖µ− − η‖TV ) +W1(ν, η) is minimal (such a couple
exists, it is proved in [15] that the infimum is actually a minimum). We provide here three examples.

• Take µ = δ(x − 1) and µε = δ(x − (1 + ε)). Consider νa = aµ and ηa = aµε with 0 ≤ a ≤ 1.
Then 0 ≤ νa ≤ µ, 0 ≤ ηa ≤ µε, and ‖νa‖TV = ‖ηa‖TV = a. Using formula (7)(8) we have

‖µ − µε‖BL = inf
0≤a≤1

{

(‖µ − νa‖TV + ‖µε − ηa‖TV ) +W1(νa, ηa)
}

= inf
0≤a≤1

{

2(1 − a) + aε
}

=

{

ε for ε ≤ 2,

2 for ε > 2.

5



• Take µ = δ(x − 1) and µσ is the measure with the rectangular density 1
2σ

√
3
1[1−σ

√
3,1+σ

√
3]

with variance σ2 for 0 < σ < 1. We take νa = µ = δ1 and ηa = µσ = fσdx, in (7), and obtain

‖µ− µσ‖BL ≤W1(µ, µσ) ≤
∫ 1+σ

√
3

1−σ
√
3

|y − 1|dy
2
√
3

=

√
3

2
σ.

• Take µ = δ(x− 1) and µσ the Gaussian with mean 1 and variance σ2. We have

‖µ − µσ‖BL ≤W1(µ, µσ) ≤
∫

|x| e
− x

2

2σ2

√
2πσ

=
2σ√
2π
.

1.2 Measure-valued solutions to the fragmentation equation

We recall that for µ ∈ M(R+) and T ∈ C(R+), the pushforward η of the measure µ by the function
T is defined as the unique measure η = T#µ such that for all ϕ ∈ C(R+),

∫

ϕ(x)dη(x) =

∫

(ϕ ◦ T )(x)dµ(x).

For ℓ > 0, we define the application

Tℓ(x) = ℓx, x ∈ R
+. (10)

The basis of our analysis in all the remaining of this work are the weak solutions to the Cauchy
problem for equation 14 with the initial condition

µt(0) = µ0, (11)

whose precise definition is given below. Throughout the present paper, the following assumptions
are used.

Hyp-1 The fragmentation kernel κ ∈ M+(R+) contains no atom at x = 0 and at x = 1, and satisfies

supp (κ) ⊂ [0, 1],

1
∫

0

dκ(z) = N < +∞,

1
∫

0

zdκ(z) = 1. (12)

Hyp-2 The initial condition µ0 ∈ M+(R+) is compactly supported

supp (µ0) ⊂ [0,M ]. (13)

Even though κ and µt are measures, we sometimes write the fragmentation equation as

∂

∂t
µt(x) = −αxγµt(x) + α

∫ ∞

x

κ

(

x

y

)

yγ−1dµt(y), µt=0(x) = µ0(x), (14)

or as

∂

∂t
µt(x) = −αxγµt(x) + α

∫ ∞

x

κ

(

x

y

)

yγ−1µt(y)dy, µt=0(x) = µ0(x).
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Definition 1 (Weak solution for (14) ). A family (µt)t≥0 ⊂ M(R+) is called a measure solution
to problem (1) (2) (11) with initial data µ0 ∈ M(R+) satisfying (Hyp-2) if the mapping t → µt is
narrowly continuous and for all ϕ ∈ C(R+) and all t ≥ 0,

∫

R+

ϕ(x)dµt(x) =

∫

R+

ϕ(x)dµ0(x) +

∫ t

0
ds

∫

R+

dµs(x)αx
γ

(

−ϕ(x) +
∫ 1

0
dκ(z)ϕ(xz)

)

. (15)

We recall that µn converges narrowly toward µ if for all ϕ ∈ Cb(R
+),

∫

ϕdµn →
∫

ϕdµ, where
Cb(R

+) denotes the set of continuous and bounded functions defined on R+. We also recall that Ty
is defined in (10).

Theorem 1 (Uniqueness and stability for the fragmentation equation in (M(R+), ‖.‖TV )). As-
sume (Hyp-1), (Hyp-2), γ ≥ 0, then there exists at most one measure-valued solution to (14) in
the sense of Definition 1 in C(R+,M(R+)). More precisely, any weak solution satisfies

supp (µt) ⊂ [0,M ], ‖µt‖TV ≤ eαM
γ(1+N)t‖µ0‖TV ,

∫

R+

xdµt(x) =

∫

R+

xdµ0(x), t > 0,

(16)
where M and N are defined in (Hyp-2).

Proof. We start by proving that any weak solution is compactly supported. We define

F (t) = sup{
∫

R+

ϕ(x)dµt(x), ϕ ∈ C(R+), ‖ϕ‖∞ ≤ 1, supp (ϕ) ∩ [0,M ] = ∅},

so that F (0) = 0 and F (t) ≥ 0. Take ϕ ∈ C(R+) such that ‖ϕ‖∞ ≤ 1 and supp (ϕ) ∩ [0,M ] = ∅.
Then, using the formulation of Definition 1 combined with (Hyp-2), we have

∫

R+

ϕ(x)dµt(x) =

∫ t

0
ds

∫

R+

αxγdµs(x)

(

−ϕ(x) +
∫ 1

z=0
ϕ(xz)dκ(z)

)

.

We set

ψ(x) := αxγ
(

−ϕ(x) +
∫ 1

z=0
ϕ(xz)dκ(z)

)

,

then Ψ ∈ C(R+), supp (Ψ) ∩ [0,M ] = ∅ and since ‖ϕ‖∞ ≤ 1, we have‖Ψ‖∞ ≤ αMγ(1 +N). Thus,
with the notation

Ψ̃(x) =
Ψ(x)

αMγ(1 +N)
,

we obtain

∫

R+

ϕ(x)dµt(x) = αMγ(1 +N)

∫ t

0
ds

∫

R+

Ψ̃(x)dµs(x) ≤ αMγ(1 +N)

∫ t

0
F (s)ds.

Taking the supremum over ϕ, in the left hand side gives us

F (t) ≤ αMγ(1 +N)

∫ t

0
F (s)ds,
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and the Gronwall lemma implies that for all t ≥ 0, it holds F (t) = 0, hence supp (µt) ⊂ [0,M ].
To prove the BV estimate, we use definition 4, and take now ϕ ∈ C(R+) such that ‖ϕ‖∞ ≤ 1. With
the same arguments as above, we obtain

∫

R+

ϕ(x)dµt(x) ≤ ‖µ0‖TV + αMγ(1 +N)

∫ t

0
‖µs‖TV ds,

which implies

‖µt‖TV ≤ ‖µ0‖TV + αMγ(1 +N)

∫ t

0
‖µs‖TV ds,

and Gronwall Lemma provides us with the result. Finally, mass conservation is obtained by choosing
ϕ(x) = x in definition 1.

1.3 Structure of solutions to the fragmentation equation

Definition 2 (Fundamental solution). We denote by µFt the fundamental solution of equation (14),
i.e. the unique solution to the equation

∂

∂t
µt(x) = −αxγµt(x) + α

∫ ∞

x

κ

(

x

y

)

yγ−1dµt(y), µt=0(x) = δ(x− 1).

Proposition 1 (Fundamental solution rescaled). Fix ℓ > 0. Denote by µFt the solution to (14) with
µ0 = δ(x− 1), then the solution to (14) with µℓ0 = δ(x − ℓ) is µℓt = Tℓ#µ

F
ℓγt, with Tℓ(x) = ℓx.

Proof. We set µℓt := Tℓ#µ
F
ℓγt. Let us prove that µℓt is a solution to (14) with initial condition

µℓ0 = δ(x−ℓ) and conclude by uniqueness of the solution. First, µℓ0 = Tℓ#µ0 = Tℓ#δ(x−1) = δ(x−ℓ).
Then, we obtain that for all ϕ ∈ Cc(R+)

∫

R+

ϕ(x)dµℓt(x) =

∫

R+

ϕ(x)d
(

Tℓ#µ
F
ℓγt

)

(x) =

∫

R+

(ϕ ◦ Tℓ)(x)dµFℓγt(x) =
∫

R+

ϕ(ℓx)dµFℓγt(x).

Since µt is a weak solution to (14), we have
∫

R+

ϕ(ℓx)dµFℓγ t(x) =
∫

R+ ϕ(ℓx)dµ0(x)

+α

∫ ℓγt

0

∫

R+

(

−xγϕ(ℓx)dµFs (x) + ϕ(ℓx)

∫ ∞

x

yγ−1dκ

(

x

y

)

dµFs (y)

)

ds.

Let us treat each of the three terms of the sum above separately. The first term is
∫

R+

ϕ(ℓx)dµ0(x) =

∫

R+

ϕ(x)dµℓ0(x).

The second term is treated using the change of variables s = ℓγu

−α
∫ ℓγt

0

∫

R+

xγϕ(ℓx)dµFs (x)ds = −α
∫ t

0

∫

R+

(xℓ)γ ϕ(ℓx)dµFℓγu(x)du

and then the change of variables z = Tℓ(x) i.e. dµ
F
ℓγu(x) = d

(

Tℓ#µ
F
ℓγu

)

(z)

−α
∫ t

0

∫

R+

(xℓ)γ ϕ(ℓx)dµFℓγu(x)du = −α
∫ t

0

∫

R+

zγϕ(z)d
(

Tℓ#µ
F
ℓγu

)

(z)du

= −α
∫ t

0

∫

R+

zγϕ(z)dµℓu(z)du.
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For the third term we also use the change of variables s = ℓγu followed by the change of variables
z = Tℓ(x) and to finish the change of variable w = Tℓ(y) i.e. dµ

F
ℓγu(y) = d

(

Tℓ#µ
F
ℓγu

)

(w) = dµℓu(w)
to get

α

∫ ℓγt

0

∫

R+

ϕ(ℓx)

∫ ∞

x

yγ−1dκ

(

x

y

)

dµFs (y)ds = α

∫ t

0

∫

R+

ϕ(z)

∫ ∞

z

wγ−1dκ
( z

w

)

dµℓu(w)du.

To summarize,

∫

R+

ϕ(x)dµℓt(x) =

∫

R+

ϕ(x)dµℓ0(x)−α

∫ t

0

∫

R+

(

zγϕ(z)dµℓu(z) + ϕ(z)

∫ ∞

z

wγ−1dκ
( z

w

)

dµℓu(w)

)

du.

Finally, since t → µFt is narrowly continuous, then t → µℓt is narrowly continuous as well. This
ends the proof of Proposition 1.

The structure of solutions to (1) is as follows:

Proposition 2 (Superimposition principle). We denote by µℓt the solution to (14) with initial
condition µℓ0 = δ(x− ℓ), then, for an initial condition u0 ∈ C(R+), the superimposition principle [7]
provides the solution u to the linear equation as (1)

u(t, x) =

∫ ∞

0
u0(ℓ)dµ

ℓ
t(x)dℓ.

Proposition 3 (Representation of the solution to (14) when initial condition is a measure). Con-
sider equation (14) endowed with initial condition µ0 ∈ M(R+). Then, the unique solution to (14)
is the measure µt defined for all t > 0 as

∫ ∞

0
ϕ(x)dµt(x) =

∫ M

0

∫ 1

0
ϕ(ℓx)dµFtℓγ (x)dµ0(ℓ), ϕ ∈ C(R+),

where µFt is the fundamental solution defined in Definition 2.

Proof. The superimposition principle implies
∫ ∞

0
ϕ(x)dµt(x) =

∫ ∞

0
ϕ(x)

∫ ∞

0
dµ0(ℓ)dµ

ℓ
t(x), ϕ ∈ C(R+),

where µℓt is the solution to (14) with initial condition µ0 = δ(x − ℓ) and the conclusion follows by
using Proposition 1.

Let us provide two cases where we have explicit formulations for the fundamental solution to
(14) for α = γ = 1 and µ0 = δ(x− 1).

Example 1. For κ = 21[0,1], we have [22]

µFt (x) = e−tδ(x− 1) + (t+ (1− x)t2)e−xt,

Example 2. For κ(z) = 2δ(z − 1/2) we have [5]

µFt (x) = e−tδ(x− 1) +
∞
∑

k=1

(4t)k

k!
δ

(

x− 1

2k

)

.

In both examples, the mass initially located at x = 1 decreases exponentially with respect to
time and is teleported on (0, 1). We end this section with the definition of the Mellin transform.
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1.4 Mellin transform

Definition 3. For a measure µ ∈ M(R+), its Mellin transform M [µ] is defined as

M [µ](s) =

∫

R+

xs−1dµ(x), (17)

for those s ∈ C such that (17) is well-defined.

Definition 4 (Multiplicative convolution). Take µ and ν two compactly supported finite measures
on R+. Their convolutive multiplication is defined as

∀ϕ ∈ C(R+), 〈µ ∗ ν, ϕ〉 = 〈µx ⊗ νy, ϕ ◦ p〉,

where p : (x, y) → xy.

If dµ(x) = f(x)dx and dν(x) = g(x)dx for f and g in L1(R+), then µ ∗ ν is the measure with
density

(f ∗ g)(x) =
∫

R+

f(y) g

(

x

y

)

dy

y
.

If dµ(x) = f(x)dx with f ∈ C(R+) and ν = δ(y− ℓ), then µ ∗ ν = Tℓ#µ is the measure with density

(f ∗ ν)(z) = 1

ℓ
f
(z

ℓ

)

.

Proposition 4 (Mellin transform and multiplicative convolution). Take µ and ν two compactly
supported finite measures on R+. For the s for which the expression below is defined, we have

M [µ ∗ ν](s) =M [µ](s)M [ν](s).

2 Representation of the solution as a power series

Theorem 2 (Representation of the solution of the fragmentation equation as a power series). For
κ a fragmentation kernel satisfying (Hyp-1), for γ ≥ 0 and for µ0 satisfying (Hyp-2), the weak
solution to (14) in C((0, T ),M(R+)) is

µt = e−αxγtµ0 +

∞
∑

n=0

(αt)n
∫ ∞

x

ℓnγan

(x

ℓ

)

µ0(ℓ)
dℓ

ℓ
, (18)

where, for x ∈ [0, 1],

a0(x) = 0, an+1(x) =
1

n+ 1

(

−xγan(x) +
∫ ∞

x

yγ−1κ

(

x

y

)

an(y)dy + κ(x)
(−1)n

n!

)

, (19)

Remark 1. We emphasize that in the formulae (18) and (19), κ, µ0 and an may be measures. In
this case, the multiplicative convolution product has to be understood in the sense of measures. For
instance, the formula (18) means

µt = e−αxγtµ0 +
∞
∑

n=0

(αt)nan ∗ bn

where the multiplicative convolution product is defined in Definition 4 and where the measure bn is
the product of the smooth function ℓ→ ℓnγ and of the measure µ0. The explicit formula also implies
that Supp(µt) ⊂ Supp(µ0) for all t ≥ 0 (as also shows the superimposition principle).

10



Proof of Theorem 2 follows from two lemmas.

Lemma 1. The fundamental solution µFt to (14) (with µ0 = δ(x − 1)) can be written as

µFt (x) = e−αtδ(x− 1) + vt(x), (20)

where vt(x) ⊥ δ(x− 1) is a positive measure-valued solution to










∂tvt(x) = −αxγvt(x) + α

∫ ∞

x

yγ−1κ

(

x

y

)

vt(y)dy + αe−αtκ(x),

v0(x) = 0.

(21)

Proof. We recall that µ ⊥ ν if there exists E ∈ B(R) such that µ(R) = µ(E) and ν(E) = 0. The
Radon Nikodym decomposition guarantees that µt can be decomposed as

µFt = A(t)δ(x − 1) + vt (22)

where vt ⊥ δ(x − 1), A(0) = 1 and v0(x) = 0. We plug (22) into (14) and get

A′(t)δ(x− 1) + ∂tvt(x) = −A(t)αxγδ(x− 1)− vt(x)αx
γ

+ α

∫ ∞

x

yγ−1κ

(

x

y

)

(A(t)δ(y − 1) + dvt(y))

which is

A′(t)δ(x − 1) + ∂tvt(x) = −αA(t)δ(x − 1)− vt(x)αx
γ + ακ(x)A(t) + α

∫ ∞

x

yγ−1κ

(

x

y

)

dvt(y).

By identification, we get










A′(t) = −αA(t), A(0) = 1,

∂tvt(x) = −αxγvt(x) + α

∫ ∞

x

yγ−1κ

(

x

y

)

dvt(y) + ακ(x)A(t), v0(x) = 0.

The first line gives A(t) = e−αt, and Lemma 1 is proved.

Lemma 2 (Representation of the solution to (21) as a power series). The power series

v(t, x) =

∞
∑

n=1

(αt)nan(x), C((0, T ),M(R+)), (23)

where an is the sequence defined in Theorem 2, is the unique weak solution to (21).

Proof. Let us verify that the series (23) converges. Since (M(R+), ‖.‖TV ) is a Banach space, it is
enough to prove the normal convergence of the series (23). We first claim that

‖an+1‖TV ≤ 1

n+ 1

(

(N + 1)‖an‖TV +
N

n!

)

, (24)

This comes directly from the induction formula (19) since x ∈ [0, 1] implies

‖xγan‖TV ≤ ‖an‖TV ,
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and

‖
∫ ∞

x

yγ−1κ

(

x

y

)

an(y)dy‖TV =

∫ ∞

0

∣

∣

∣

∣

∫ ∞

x

yγ−1κ

(

x

y

)

an(y)dy

∣

∣

∣

∣

dx

≤
∫ ∞

0

∫ ∞

x

∣

∣

∣

∣

yγ−1κ

(

x

y

)

an(y)

∣

∣

∣

∣

dydx

=

∫ 1

0

∫ ∞

0
|yγκ (z) an(y)| dydz

≤
∫ 1

0
|κ (dz)|

∫ ∞

0
|an(y)| dy ≤ N‖an‖TV ,

and finally

‖κ(x)(−1)n

n!
‖TV =

N

n!
.

We deduce from (24) that for all n ∈ N,

‖an‖TV ≤ (N + 2)n

n!
, (25)

hence the normal convergence of the series in (M(R+), ‖.‖TV ). We prove this by induction: (25) is
true for n = 0 and n = 1, and if it is satisfied for n ≥ 1 we have

‖an+1‖TV ≤ 1

n+ 1

(

(N + 1)‖an‖TV +
N

n!

)

≤ 1

(n+ 1)!

(N + 1)(N + 2)n +N

n!
≤ (N + 2)n+1

(n+ 1)!
.

We prove then using the differentiation rule of power series in a Banach space that the power series
(23) is a solution to (14). We have

d

dt
v(t, x) =

d

dt

∞
∑

n=1

(αt)nan = α

∞
∑

n=1

n(αt)n−1an = α

∞
∑

n=0

(n+ 1)(αt)nan+1

and then using the induction hypothesis (19)

d

dt
v(t, x) =α

∞
∑

n=0

(αt)n
(

−xγan(x) +
∫ ∞

x

yγ−1κ

(

x

y

)

an(y)dy + κ(x)
(−1)n

n!

)

= −αxγ
∞
∑

n=0

(αt)nan + α

∫ ∞

x

yγ−1κ

(

x

y

)

( ∞
∑

n=0

(αt)nan(y)

)

dy + α

∞
∑

n=0

(−αt)nκ(x)

= −αxγv(t, x) + α

∫ ∞

x

yγ−1κ

(

x

y

)

v(t, y)dy + αe−αtκ(x)

which ends the proof of Lemma 2.

Proof of Theorem 2. From the two lemmas above, we have a representation of the fundamental
solution as a power series, namely

µFt = e−αtδ(x − 1) +

∞
∑

n=0

(αt)nan,
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where the induction relation between the an is expressed in (19). We recall that from Proposition
3 the solution µt to the fragmentation equation when initial condition is any measure µ0 ∈ M(R+)
can be obtained as

∫ ∞

0
ϕ(x)dµt(x) =

∫ ∞

0

∫ ∞

0
ϕ(ℓx)dµFtℓγ (x)dµ0(ℓ), ϕ ∈ C(R+).

This ends the proof of Theorem 2.

We now use the explicit expression provided by Theorem 2 to obtain error estimates for the
fragmentation kernel using the short-time behaviour of the solution.

3 Short-time behaviour

3.1 An estimation for κ using shor time measurements

Let us first investigate the best case for an initial condition, namely when we depart from a Dirac
delta function at x = 1.

Theorem 3 (An estimate for κ using short-time measurements of the particles size distribution
when initial condition is a delta function at x = 1.). Assume κ satisfies (Hyp-1). We define

κest(t) =
µFt − e−αtδ(x − 1)

αt
,

where we recall that µFt is the unique fundamental solution to the fragmentation equation (14), i.e.
endowed with the initial condition µ0 = δ(x−1). Then, for t ∈ [0, T ] and for some K > 0 depending
on T , we have

∥

∥

∥κest − κ
∥

∥

∥

TV
≤ Kt.

Before proving Theorem 3, we point out that another possible formula for the estimated kernel
is

κestbis(t) =
µFt − (1− αt)δ(x − 1)

αt
= 1 +

µFt − δ(x− 1)

αt
.

Since e−αt = 1− αt+ o(t), we also have

∥

∥

∥κestbis − κ
∥

∥

∥

TV
≤ Kt.

Proof. We have, using the notations introduced in Lemmas 1 and 2,

µFt − e−αtδ(x − 1)

αt
− κ =

∞
∑

n=1
(αt)nan

αt
− κ =

∞
∑

n=1

(αt)n−1an − κ =
∞
∑

n=0

(αt)nan+1 − κ

and since a1 = κ, we have

∞
∑

n=0

(αt)nan+1 − κ =
∞
∑

n=1

(αt)nan+1 = αt
∞
∑

n=0

(αt)nan+2.

13



Thus

‖µ
F
t − e−αtδ(x− 1)

αt
− κ‖TV ≤ αt

∞
∑

n=0

(αt)n‖an+2‖TV .

The series converges (normal convergence) and thus it is bounded on any compact set, for instance
for t ∈ [0, T ]. Then Theorem 3 holds for

K(✄t 7→T ) = α max
t∈[0,T ]

∞
∑

n=0

(αt)n‖an+2‖TV .

From Theorem 3 and Proposition 1, we can deduce an estimate for any Dirac delta function
taken as an initial condition.

Corollary 1 (An estimate for κ using short-time measurements of the particles size distribution
when initial condition is a delta function at x = ℓ.). We denote by κℓ the rescaled fragmentation
kernel

κℓ = Tℓ#κ,

where the map Tℓ is defined in (10). We define

κestℓ (t) =
µℓt − e−αtℓγ δ(x− ℓ)

αtℓγ
,

where µℓt is the unique solution to (14) endowed with the initial condition µ0 = δ(x − ℓ). Then we
have for t ∈ [0, T ] and for the constant K > 0 of Theorem 3 depending on T

∥

∥

∥
κestℓ (t)− κℓ

∥

∥

∥

TV
≤ Ktℓγ .

Before proving Corollary 1, let us mention that if κ is a function, then

κℓ(z) =
1

ℓ
κ
(z

ℓ

)

, 0 ≤ z ≤ ℓ.

Proof. We notice that for any continuous map T , we have ‖T#µ‖TV ≤ ‖µ‖TV (with equality if
the measure µ is positive, or if T is injective). Let us set η = µFtℓγ − e−αtℓγ δ(x − 1). We have
Tℓ#η = µℓt − e−αtℓγ δ(x− ℓ), hence using Theorem 3

∥

∥

∥

µℓt − e−αtℓγ δ(x− ℓ)

αtℓγ
− κℓ

∥

∥

∥

TV
=
∥

∥

∥
Tℓ#

(µFtℓγ − e−αtℓγ δ(x − 1)

αtℓγ
− κ
)∥

∥

∥

TV
≤ Kαℓγt,

with K the constant of Theorem (3). This ends the proof.

Experimentally, a Dirac delta function as an initial condition is in most cases out of reach. We
thus use the superimposition principle stated in Proposition 3 to obtain an estimate not directly
for κ but for a convolution product of κ depending on the initial condition, as stated in the next
corollary. Let us first define, for a general initial data u0

κest(u0; t, x) =
u(t, x)− e−αtxγ

u0(x)

αt
.
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Corollary 2 (Generic initial condition). Assume κ ∈ C1([0, 1]). Take u0 ∈ C(R+) ∩ L1(ℓ2γdℓ).
Then the unique solution u to (14) endowed with the initial condition u0 satisfies for t ∈ [0, T ] and
for some K > 0 depending on T, α, γ and ‖u0‖L1(ℓ2γdℓ)

∥

∥

∥κest(u0; t)− w0 ∗ κ(x)
∥

∥

∥

TV
≤ Kt.

where w0 denotes the measure with density ℓ→ ℓγu0(ℓ).

Proof. For ℓ > 0, we multiply the measure

Xℓ =
µℓt − e−αtℓγ δ(x− ℓ)

αtℓγ
− κℓ

by the smooth function ℓ→ ℓγ , and apply Corollary 1 to obtain

‖Yℓ‖TV ≤ Ktℓ2γ .

where Yℓ =
µℓt − e−αtℓγ δ(x− ℓ)

αt
− ℓγκℓ We multiply the function ℓ → Yℓ from R+ onto M(R+) by

ℓ→ u0(ℓ)and integrate over R+. Since (M(R+), ‖.‖TV ) is a Banach space, we can use the Bochner
integral so that we have

∥

∥

∥κest(u0; t)− w0 ∗ κ(x)
∥

∥

∥

TV
=
∥

∥

∥

∫

R+

Yℓu0(ℓ)dℓ
∥

∥

∥

TV

≤
∫

R+

‖Yℓ‖TV u0(ℓ)dℓ = Kt

∫

R+

u0(ℓ)ℓ
2γdℓ.

Remark 2. If u0 satisfies the hypothesese of Corollary 2 it follows,

‖κest(u0; t)− κ‖TV ≤ ‖κest(u0; t)− w0 ∗ κ‖TV + ‖w0 ∗ κ− κ‖TV .

In Section 4, we use this corollary to estimate κ for general initial conditions.

3.2 Stability of the κ estimate

Let us now turn to error estimates in more realistic observation cases, where the noise may be
twofold: 1/ a model noise, where the initial condition is close to a Dirac delta in the BL distance;
and 2/ a measurement noise, where the size distributions µ0 and µt are observed with an error.
Before stating our error estimate for κ when taking into account these two sources of noise, we need
a stability result for the time-dependent solution with respect to the initial condition. Now that
uniqueness of the weak solution to (14) is guaranteed, we then use the explicit expression provided
by Theorem 2 to obtain stability with respect to the BL norm.

Theorem 4. [Stability of the fragmentation equation in (M(R+), ‖.‖BL)] Assume κ satisfies (Hyp-1),
µ0 ∈ M+(R+) satisfies (Hyp-2), and moreover either γ ≥ 1 or supp (µ0) ⊂ [m,M ] with m > 0.
Then the unique solution µt to the fragmentation equation (14) satisfies

‖µt‖BL ≤ C(M,N, T ) ‖µ0‖BL, 0 ≤ t ≤ T.
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Proof. We use the definition of the BL norm given by (5) and the representation of the solution
provided in Theorem 2. Take ϕ ∈ C(R+) such that ‖ϕ‖∞ ≤ 1 and ‖ϕ′‖∞ ≤ 1. Then, using
Proposition 3, we have

∫ +∞

0
ϕ(x)dµt(x) =

∫ M

0

∫ 1

0
ϕ(ℓx)dµFtℓγ (x)dµ0(ℓ).

We set for ℓ ≤M,

Ψ(ℓ) =

∫ 1

0
ϕ(ℓx)dµFtℓγ (x).

We notice that for any r ≥ 0, the moment of order r of the absolute value of the fundamental
solution µFt is uniformly bounded for t ∈ [0, T ] using the rough estimate based on Theorem 1

∫

R+

xrd|µFt |(x) ≤M r‖µFt ‖TV ≤M reαM
γ (N+1)T ‖δ(x − 1)‖TV =: C(M,N, T, r).

Then for all ℓ ≤M ,

|Ψ(ℓ)| ≤
∫ +∞

0
|ϕ(ℓx)|d|µFtℓγ |(x) ≤ ‖ϕ‖∞

∫ +∞

0
d|µFTMγ |(x) ≤ C(M,N, T, 0),

and
∣

∣Ψ′(ℓ)
∣

∣ ≤
∫ +∞

0
|ϕ′

(ℓx)|xd|µFtℓγ |(x) +
∫ +∞

0
|ϕ(ℓx)|tγℓγ−1

∣

∣

∣

∣

∂

∂t
d|µFtℓγ |(x)

∣

∣

∣

∣

where
∫ +∞

0
|ϕ′

(ℓx)|xd|µFtℓγ |(x) ≤ C(M,N, T, 1)‖ϕ′‖∞,

and where
∞
∫

0

|ϕ(ℓx)|tγℓγ−1

∣

∣

∣

∣

∂

∂t
d|µFtℓγ |(x)

∣

∣

∣

∣

≤ ‖ϕ‖∞Tmax(Mγ−1,mγ−1)γα





∫ ∞

0
xγd|µFtℓγ |(x) +

∞
∫

0

∞
∫

x

κ

(

x

y

)

yγ−1d|µFtℓγ |(y)dx





= ‖ϕ‖∞Tmax(Mγ−1,mγ−1)γα

(∫ ∞

0
xγd|µFtℓγ |(x) +

∫ ∞

0

∫ 1

0
κ (z) dzyγd|µFtℓγ |(y)

)

≤ Tmax(Mγ−1,mγ−1)γα(N + 1)C(M,N, T, γ).

We set C(M,N, T ) := C(M,N, T, 0)+C(M,N, T, 1)+Tmax(Mγ−1,mγ−1)γα(N +1)C(M,N, T, γ)
and define

Ψ̃(ℓ) =
Ψ(ℓ)

C(M,N, T )
,

then
‖Ψ̃‖∞ ≤ 1, ‖Ψ̃′‖∞ ≤ 1.

We have shown that for any ϕ ∈ C(R+) satisfying ‖ϕ‖∞ ≤ 1, ‖ϕ′‖∞ ≤ 1, there exists Ψ̃ ∈ C(R+)
such that ‖Ψ̃‖∞ ≤ 1, ‖Ψ̃′‖∞ ≤ 1 and

∫ +∞

0
ϕ(x)dµt(x) ≤ C(M,N, T )

∫ +∞

0
Ψ̃(x)dµ0(x).

Thus the conclusion of Theorem 4 holds.
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Remark 3. For γ < 1, and for any initial condition µ0 such that µ0(0) 6= 0, it can demonstrated
that stability with respect to the initial condition is lost.

We are now ready to state our main stability result.

Theorem 5 (Stability of the κ estimate with respect to the initial condition). Assume κ satisfies
(Hyp-1). Take an initial condition µq0 satisfying (Hyp-2) and that is close to a delta function at
x = 1 in the sense that

‖µq0 − δ(x− 1)‖BL ≤ q.

Denote by µqt the unique solution to the fragmentation equation (14) with initial condition µq0.
Consider the noisy measurements µq,ε00 and µq,εt of the respective measures µq0 and µqt such that

‖µq,ε00 − µq0‖BL ≤ ε0, ‖µq,εt − µqt‖BL ≤ ε.

Assume moreover either γ ≥ 1 or supp (µ0) ⊂ [m,M ] with m > 0. Then, for all 0 ≤ t ≤ T , there
are some constants K1 and K2 depending on M and T such that

∥

∥

∥

µq,εt − e−αtµq,ε00

αt
− κ
∥

∥

∥

BL
≤ K1t+

ε0 + ε+K2q

αt
.

Proof. We use the triangle inequality to write
∥

∥

∥

µq,εt − e−αtµq,ε00

αt
− κ
∥

∥

∥

BL
≤‖µq,εt − µqt‖BL

αt
+

‖µqt − µt‖BL

αt
+ e−αt ‖δ(x − 1)− µq0‖BL

αt

e−αt ‖µq0 − µq,ε00 ‖BL

αt
+
∥

∥

∥

µt − e−αtδ(x− 1)

αt
− κ
∥

∥

∥

BL
.

The first term, the third term and the fourth term are directly controlled using the assumptions of
Theorem 5. Theorem 3 combined with (6) guarantee that

∥

∥

∥

µt − e−αtδ(x− 1)

αt
− κ
∥

∥

∥

BL
≤ Kt.

For the second term, we use Theorem 4 to obtain

‖µqt − µt‖BL ≤ C(M,T )‖µq0 − µ0‖BL.

Thus with the assumptions of Theorem 5, we obtain

‖µqt − µt‖BL ≤ C(M, t)q.

This completes the proof of Theorem 5 with K1 = K and K2 = 1 + C(M,T ).

4 Reconstruction formula using Mellin coordinates

We have seen in the previous section, how to approximate κ for general initial conditions, and obtain
κest(u0; .). However, it is also interesting to have an approximation of the Mellin of κ. Of course
the best method to this end is not to use the Mellin transform of the approximation κest(u0; .) of
κ. We use instead the series representation of µt to obtain a series representation of its Mellin
transform, and then deduce an approximation. We denote by U(t, .) the spatial Mellin transform
of the solution µt to (14), and we denote by K the Mellin transform of κ, i.e.

U(t, s) =

∫ +∞

0
xs−1dµt(x), K(s) =

∫ +∞

0
zs−1dκ(z), W (t, h, s) =

∫ +∞

0
xs−1e−αhxγ

dµt(x), t ≥ 0.

for complex values of s for which the integrals are defined and for h > 0.
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4.1 A formula for U

Lemma 3 (Representation of U as a power series). Take κ satisfying (Hyp-1) and µ0 ∈ M(R+).
Then, the Mellin transform U of the solution µt to (14) satisfies

U(t+∆t, s) =W (t,∆t, s) +
∞
∑

n=1

(α∆t)n

n!
U(t, s+ γn)

n−1
∑

j=0

(−1)n−1−jK(s+ jγ)

j−1
∏

m=0

(K(s+mγ)− 1),

(26)
with the convention

∏

n∈∅
bn = 1.

Proof. Since the fragmentation equation is autonomous, Theorem 2 implies that for all t > 0,
∆t > 0, we have

µt+∆t = e−αxγ∆tµt +
∞
∑

n=0

(α∆t)n
∫ ∞

0
ℓnγan

(x

ℓ

)

µt(ℓ)
dℓ

ℓ
,

We pass the above equality into Mellin coordinates to get, using Proposition 4

U(t+∆t, s) =W (t,∆t, s) +

∞
∑

n=0

(α∆t)nU(t, s + nγ)An(s),

where we denote by An the Mellin transform of the measure an. Passing (19) into the Mellin
coordinates, the sequence An satisfies

A0 = 0, An+1(s) =
1

n+ 1

(

(K(s)− 1)An(s+ γ) +
(−1)n

n!
K(s)

)

.

By induction, we deduce

An(s) =
1

n!



(−1)n−1K(s) +

n−1
∑

j=1

(−1)n−1−jK(s+ jγ)

j−1
∏

m=0

(K(s+mγ)− 1)



 ,

and Lemma 3 is proved.

Inversion of the formula provided by Lemma 3, i.e. expressing K as a function of µt is not easy.
However, since κ is supported on [0, 1], it follows that K(s + nγ) → 0 as n → ∞, and then an
approximation formula for K is obtained by truncation at n = 1 of the second term at the right
hand side of (26). In order to estimate the error of such approximation the following condition is
needed

Hyp-3 There exists a compact interval I ⊂ R+ such that the Mellin transform U satisfies

U(t, w + γ + iv) 6= 0, ∀t ≥ 0, ∀w ∈ I, ∀v ∈ R.

(the Mellin transform U of the solution µt to the fragmentation equation does not vanish on some
vertical strip of the complex plane.)

Remark 4. It was proved in [3] that condition Hyp-3 is fulfilled by the Mellin transform of the
self similar solution of the fragmentation equation (14). If, following the basic assumption that for
sufficiently large times t, it may be considered that measuring µt provides a measurement of the self
similar solution (c.f. [17], [14]), it could be considered that the condition Hyp-3 is fulfilled for t
large enough.
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4.2 A reconstruction for K using short times

Definition 5 (Approximation formula for the Mellin transform of the kernel). For those s such
that s = w + iv with w ∈ I and where I is defined in (Hyp-3), we define an estimate Kest for the
Mellin transform K.

Kest(s, t,∆t) =
U(t+∆t, s)−W (t,∆t, s)

α∆tU(t, s+ γ)
.

Theorem 6 (Reconstruction formula for K). .
Let us assume that the fragmentation kernel satisfies (Hyp-1) and that additionally κ ∈ C1([0, 1]).

We assume that u0 ∈ C3([0,M ]) and that either u0(M) > 0, or u0(M) = 0 and u′0(M) < 0. In
addition to that, we assume that (Hyp-3) holds. Let us define R as the difference between K and
Kest

R(s, t,∆t) = K(s)−Kest(s, t,∆t), (27)

then there exists C > 0 depending on I, T , and M such that

|R(s, t,∆t)| ≤ Cα∆t

(1 + |s|) , ℜ(s) ∈ I, ℑ(s) ∈ R, t ∈ [0, T ].

We state one technical lemma that is used in the proof of Theorem 6.

Lemma 4 (Regularity and support of the solution to the fragmentation equation). Assume the
fragmentation kernel κ satisfies (Hyp-1) and that κ ∈ C1(0, 1). Take u0 ∈ C3([0,M ]) such that
supp (u0) = [0,M ]. Then, if we denote by u the solution to the fragmentation equation (14), it holds

1. The function x→ u(t, x) is in C3([0,M ]) for all t > 0.

2. supp (u(t, .)) = [0,M ].

3. If u0(M) > 0, then for all t > 0, u(t,M) = e−αMγ tu0(M) > 0.

If u0(M) = 0 and u′0(M) < 0, then u(t,M) = 0 and ∂xu(t,M) = e−αMγtu′0(M) < 0 for all
t > 0.

The proof of Lemma 4 is postponed at the end of Section 4.

Proof of Thereom 6. Combining (27) with Lemma 3, we have the expression for the rest R

R(s, t,∆t) =
1

α∆t

∞
∑

n=2

(α∆t)n

n!

U(t, s + γn)

U(t, s+ γ)

n−1
∑

j=0

(−1)n−1−jK(s+ jγ)

j−1
∏

m=0

(K(s+mγ)− 1). (28)

Step 1. Estimate for K.
We prove here that for some C̃ > 0 depending on I it holds

|K(s)| ≤ C̃

1 + |s| , ℜ(s) ∈ I, ℑ(s) ∈ R. (29)

We have

K(s) =

∫ 1

0
κ(x)xs−1dx =

κ(1)

s
− 1

s

∫ 1

0
κ′(x)xsdx.
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Then

|K(s)| ≤ κ(1)

|s| +
1

|s|

∫ 1

0
|κ′(x)|dx ≤ C

|s|
for some C > 0. This implies (29)

Step 2. Estimate for U . We prove here that for some C > 0 it holds

∣

∣

∣

∣

U(t, w + nγ + iv)

U(t, w + γ + iv)

∣

∣

∣

∣

≤ Cn(n− 1)M (n−1)γ , w ∈ I, n ≥ 2, v ∈ R. (30)

For |v| large, we follow the calculation of [2, Chapter IV, Section 4] where the stationary phase
method is used to study the behaviour of oscillatory integrals. For w > 0, we have for v 6= 0

U(t, w + iv) =

∫ M

0
u(t, x)xw−1xivdx =

∫ M

0
u(t, x)xw−1eiv ln(x)dx

=
1

iv

∫ M

0
u(t, x)xw

d

dx

(

eiv ln(x)
)

dx.

since
d

dx
(eiv ln(x)) =

iv

x
eiv ln(x). We perform an integration by part and we obtain

U(t, w + iv) =
1

iv
u(t,M)Mweiv ln(M) − 1

iv

∫ M

0
eiv ln(x)

∂

∂x
(u(t, x)xw) dx,

which we rewrite, using the same trick than above

U(t, w + iv) =
1

iv
u(t,M)Mweiv ln(M) −

(

1

iv

)2 ∫ M

0
x
∂

∂x
(u(t, x)xw)

d

dx

(

eiv ln(x)
)

dx.

We perform another integration by part to obtain

U(t, w + iv) =
1

iv
u(t,M)Mweiv ln(M) −

(

1

iv

)2

Mw

(

M
∂

∂x
u(t,M) + wu(t,M)

)

eiv ln(M)

+

(

1

iv

)2 ∫ M

0

∂

∂x

(

x
∂

∂x
(u(t, x)xw)

)

eiv ln(x)dx.

The third term of right hand side above can be expanded using

∂

∂x

(

x
∂

∂x
(u(t, x)xw)

)

= w2xw−1u(t, x) + xw(1 + 2w)
∂

∂x
u(t, x) + xw+1 ∂

2

∂x2
u(t, x).

Then we have















U(t, w + γ + iv) =
C(t, w, v)

iv
+
C ′(t, w, v)

(iv)2
,

U(t, w + nγ + iv) = nM (n−1)γ

(

C(t, w, v)

niv
+
C ′′(t, w, v, n)

(iv)2

) (31)
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for some complex constants C(t, w, v), C ′(t, w, v) and C ′′(t, w, v, n) defined as

C(t, w, v) = u(t,M)Mw+γeiv ln(M),

C ′(t, w, v) = −Mw+γ

(

M
∂u

∂x
(t,M) + (w + γ)u(t,M)

)

eiv ln(M),

+

∫ M

0

(

(w + γ)2xw+γ−1u(t, x) + xw+γ(1 + 2(w + γ))
∂

∂x
u(t, x) + xw+γ+1 ∂

2

∂x2
u(t, x)

)

eiv ln(x)dx

C ′′(t, w, v, n) =Mw+γ

(

M
∂

∂x
u(t,M) +

w + nγ

n
u(t,M)

)

eiv ln(M)

+

M
∫

0

(

(w + nγ)2
(

1 + xw+nγ−1
)

u(t, x) + xw+nγ(1 + 2(w + nγ))
∂u

∂x
(t, x) + xw+nγ+1∂

2u

∂x2
(t, x)

)

dx.

If u0(M) > 0, then Lemma 4 guarantees that u(t,M) > 0 as well. Then we have the following
estimates on C,C ′ and C ′′

0 < C0 ≤ |C(t, w, v)| ≤ C1, |C ′(t, w, v)| ≤ C2, w ∈ [0, a], t ∈ [0, T ], v ∈ R

|C ′′(t, w, v, n)| ≤ C3, w ∈ [0, a], t ∈ [0, T ], v ∈ R, n ≥ 1.

Then, using (31), there exists V > 0 such that for |v| ≥ V and w ∈ I,

∣

∣

∣

∣

U(t, w + nγ + iv)

U(t, w + γ + iv)

∣

∣

∣

∣

≤ nM (n−1)γ |Civ + C ′|
|Civ +C ′′| ≤ nM (n−1)γ

(

1 +
|C ′′ − C ′|
|Civ + C ′|

)

≤ nM (n−1)γK(V ).

(32)
Now, using Hypothesis (Hyp-3), we have by continuity

|U(t, w + γ + iv)| ≥ ε(V ), w ∈ I, v ∈ [−V, V ]

for some ε(V ) > 0. On the other hand, for w ∈ I,

|U(t, w + nγ + iv)| =
∣

∣

∣

∣

∫ M

0
u(t, x)xw+nγ−1eiv ln(x)dx

∣

∣

∣

∣

≤M (n−1)γ

∣

∣

∣

∣

∫ M

0
u(t, x)xw+γ−1dx

∣

∣

∣

∣

≤M (n−1)γMa+γ+1‖u(t, .)‖∞.

Then,

∣

∣

∣

∣

U(t, w + nγ + iv)

U(t, w + γ + iv)

∣

∣

∣

∣

≤ 2

nε(V )
Ma+γ+1‖u(t, .)‖∞M (n−1)γ , w ∈ I, v ∈ [−V, V ]. (33)

Combining (32) and (33) proves formula (30).
Now if u0(M) = 0, then Lemma 4 guarantees that u(t,M) = 0 as well. Thus

U(t, w) = −
(

1

iv

)2 ∫ M

0
x
∂

∂x
(u(t, x)xw)

d

dx

(

eiv ln(x)
)

dx.

In that case, u′0(M) < 0 so that Lemma 4 guarantees that ∂xu(t,M) < 0 as well, and we go one
step further in the expansion and write
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U(t, w) =−
(

1

iv

)2

Mw+1eiv ln(M) ∂

∂x
(u(t, x)xw)

∣

∣

∣

x=M

+

(

1

iv

)3

Meiv ln(M) ∂

∂x

(

x
∂

∂x
(u(t, x)xw)

)

∣

∣

∣

x=M

+

(

1

iv

)3 ∫ M

0

∂

∂x

(

x
∂

∂x

(

x
∂

∂x
(u(t, x)xw)

))

eiv ln(x)dx

Using the same types of arguments than above, we end the proof of formula (30).
Step 3. Estimate for R.
Using formula (28) and the triangle inequality, we have

|R(s, y,∆t)| ≤ α∆t
∞
∑

n=2

(α∆t)n−2

n!

∣

∣

∣

∣

U(t, s + γn)

U(t, s + γ)

∣

∣

∣

∣

n−1
∑

j=0

|K(s+ jγ)|
j−1
∏

m=0

|K(s+mγ)− 1| .

Using now (29) and (30) we obtain for ℜ(s) ∈ I and ℑ(s) ∈ R

|R(s, y,∆t)| ≤ α∆tMγ
∞
∑

n=2

(α∆t)n−2

(n− 2)!
(Mγ)n−2

n−1
∑

j=0

C̃

1 + |s| C̃
j.

which implies

|R(s, y,∆t)| ≤ α∆t
MγC̃

1 + |s|

∞
∑

n=2

(α∆t)n−2

(n− 2)!
(Mγ)n−2 1− C̃n

1− C̃
,

and Theorem 6 is proved for C =MγC̃
∑∞

n=2

(α∆t)n−2

(n − 2)!
(Mγ)n−2 1− C̃n

1− C̃
<∞.

Corollary 3 (A better estimate for kernels not allowing erosion). Assume the fragmentation kernel
κ ∈ C2([0, 1]) satisfies (Hyp-1) and κ(0) = 0. We assume that u0 ∈ C3([0,M ]) and that either
u0(M) > 0, or u0(M) = 0 and u′0(M) < 0. In addition to that, we assume that (Hyp-3) holds.
Then, there exists C > 0 depending on I, T and M such that

|R(s, t,∆t)| ≤
Cα∆t

(1 + |s|2) , ℜ(s) ∈ I, ℑ(s) ∈ R.

Proof. The proof is the same than the proof of Theorem 6, except that the estimate for the Mellin
transform in Step 1 becomes

K(s) =

∫ 1

0
κ(x)xs−1dx = −1

s

∫ 1

0
κ′(x)xs−1dx = − 1

s(s+ 1)

(

κ′(1) − κ′(0) −
∫ 1

0
κ′′(x)xs+1dx

)

.

Thus for some C̄ > 0

|K(s)| ≤ C̄

|s|2 + 1
.

Corollary 4 (Estimate of the variance of the kernel). Let us assume that the fragmentation kernel
κ ∈ C1([0, 1]) satisfies (Hyp-1). We assume that u0 ∈ C3([0,M ]) and that either u0(M) > 0, or
u0(M) = 0 and u′0(M) < 0. We denote by V ar[κ] the variance of the fragmentation kernel κ. Then,
there is C > 0 that depends on t > 0 such that

∣

∣V ar[κ]− V ar[κest(s, t,∆t)]
∣

∣ ≤ Cα∆t.
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Proof. Notice that (Hyp-3) is not needed for this corollary, since U(t, s) > 0 for s ∈ R+, and in
particular for s = 3. We express the variance of the kernel in terms of its Mellin transform

V ar
[κ

2

]

=
1

2

∫

(0,1)

∣

∣

∣

∣

x− 1

2

∣

∣

∣

∣

2

κ(x)dx =
1

2
K(3)− 1

2
K(2) +

1

8
K(1) =

1

2
K(3) − 1

4
.

and we apply Theorem 6.

4.3 Proof of Lemma 4.

Proof of Lemma 4. The arguments rely on the formula obtained in Theorem 2.

1. We use the formula (18) obtained in Theorem 2. Note that it can be rewritten using the
change of variables

z =
x

ℓ
, dz = −z

2

x
dℓ, (34)

as

u(t, x) = e−αxγtu0(x) +
∞
∑

n=0

(αt)n
∫ 1

0

xnγ

znγ
an(z)u0

(x

z

) dz

z
. (35)

The first term of the sum is clearly C1, since u0 is. To deal with the second term, set

In(x) =

∫ 1

0

xnγ

znγ
an(z)u0

(x

z

) dz

z
.

The fisrt step is to prove by induction that for all x0 > 0, for all n ≥ 0, z → an(z) ∈ C1[x0, 1].
The function a0 is clearly C1, since it is identically zero. Let us assume that for some n ≥ 0,
z → an(z) ∈ C1[x0, 1]. The function an+1 satisfies (19) and is composed with three terms.
The first term and third term are clearly C1 since an(z) ∈ C1[x0, 1] and since κ ∈ C1(0, 1). We
focus on the second term

Jn(x) =

∫ ∞

x

yγ−1κ

(

x

y

)

an(y)dy.

Once again, it can be rewritten using the change of variables (34)

Jn(x) =

∫ 1

x0

xγ

zγ
κ(z)an

(x

z

) dz

z
.

The dominated convergence theorem guarantees that Jn ∈ C1[x0, 1] and that

J ′
n(x) =

∫ 1

x0

xγ

zγ
κ(z)a′n

(x

z

) dz

z2
+

∫ 1

x0

γ
xγ−1

zγ
κ(z)an

(x

z

) dz

z
.

Indeed

∣

∣

∣

∣

xγ

zγ
κ(z)a′n

(x

z

) 1

z2

∣

∣

∣

∣

≤ 1

x2+γ
0

‖a′n‖C0[x0,1],

∣

∣

∣

∣

γ
xγ−1

zγ
κ(z)an

(x

z

) 1

z

∣

∣

∣

∣

≤ γmax{xγ−1
0 , 1}

x1+γ
0

‖an‖C0[x0,1].

We have proven that an ∈ C1(0, 1) since it is C1(K) for all K compact of (0, 1).
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The fisrt step is to prove that In ∈ C1([0,M ]). To do so, we use the dominated convergence
to prove that for all x0 > 0, we have In ∈ C1([x0,M ]) and that

I ′n(x) = nγxnγ−1

∫ 1

0

1

znγ
an(z)u0

(x

z

) dz

z
+

∫ 1

0

xnγ

znγ
an(z)u

′
0

(x

z

) dz

z2
, x ∈ [x0,M ]. (36)

Indeed, the conclusion of the dominated convergence holds: u0 ∈ C1([0,M ]), hence the the
integrand is in C1([0,M ]) as well. The domination is as follows: since supp (u0) ⊂ [0,M ], the
bounds of the integral In are z ∈

[

x
M
, 1
]

⊂
[

x0

M
, 1
]

, and thus

∣

∣

∣

∣

xnγ−1

znγ
an(z)u0

(x

z

) 1

z

∣

∣

∣

∣

≤ max{
(

x0

M

)nγ−1
,Mnγ−1}

x20
‖u0‖∞an(z),

∣

∣

∣

∣

xnγ

znγ
an(z)u

′
0

(x

z

) dz

z2

∣

∣

∣

∣

≤ max{
(

x0

M

)nγ
,Mnγ}

x20
‖u′0‖∞an(z),

and it was proved in (25) that ‖an‖TV ≤ (N + 2)n

n!
.

Now we claim that the function S defined as

S(x) =

∞
∑

n=1

(αt)nIn(x) (37)

is of class C1([x0,M ]) for all x0 > 0. Indeed, we just saw that In ∈ C1([0,M ]), and that I ′n is
given by (36). For x ∈ [x0,M ], we can control each of the two terms of the sum (36) by two
sequences that converge. Indeed using again (25), we have

n

∫ 1

0

∣

∣

∣

∣

xnγ−1

znγ
an(z)u0

(x

z

) 1

z

∣

∣

∣

∣

dz ≤ max{
(

x0

M

)nγ−1
,Mnγ−1}

x20
‖u0‖∞n

(N + 2)n

n!
,

∫ 1

0

∣

∣

∣

∣

xnγ

znγ
an(z)u

′
0

(x

z

) dz

z2

∣

∣

∣

∣

dz ≤ max{
(

x0

M

)nγ
,Mnγ}

x20
‖u′0‖∞

(N + 2)n

n!
,

and

∞
∑

n=1

(αt)n
(

Mγ

xγ0

)n (N + 2)n

n!
<∞,

∞
∑

n=1

(αt)n (max{xγ0 ,Mγ})n n(N + 2)n

n!
<∞,

This ends the proof of 1, and we have in addition for x ∈ [x0,M ] an expression of the spatial
derivative of u

∂

∂x
u(t, x) =e−αxγ tu′0(x)− αγxγ−1te−αxγtu0(x)

+
∞
∑

n=1

(αt)n
(

nγxnγ−1

∫ 1

0

1

znγ
an(z)u0

(x

z

) dz

z
+

∫ 1

0

xnγ

znγ
an(z)u

′
0

(x

z

) dz

z2

)

.
(38)

Similar arguments hold to guarantee that x→ u(t, x) ∈ C3([0,M ]).

2. First, we claim that supp (u(t, .)) ⊂ [0,M ]. Indeed, this is a consequence of formula (35) and
of the fact that supp (an) ⊂ [0, 1] for n ≥ 0. Let us now prove that supp (u(t, .)) = [0,M ]. Take
y ∈ [0,M ] and set Y (t) = u(t, y). The fragmentation equation (14) implies

Y ′(t) ≥ −αyγY (t),
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Figure 1: On each plot, we display the estimated kernel κest(t) defined in Theorem 3 for different
time points t. All plots are in black, except for the very early time point (t = 0.1, blue), and a late
time point (red).

i.e.
u(t, y) = Y (t) ≥ e−αyγ tY (0) = e−αyγtu0(y).

If u0(y) 6= 0, then for all t ≥ 0, u(t, y) 6= 0. If u0(y) = 0, since y ∈ supp (u0), for all ε > 0,
there exists yε such that |y− yε| < ε and u0(yε) 6= 0 and then u(t, yε) 6= 0, which implies that
y ∈ supp (u(t, .)). Thus supp (u(t, .)) = [0,M ].

3. It is clear from formula (18) that u(t,M) = e−αMγ tu0(M). Then, if u0(M) > 0, we have
u(t,M) > 0. If u0(M) = 0 and u′0(M) < 0, we have u(t,M) = 0, and formula (38) implies

∂

∂x
u(t,M) = e−αMγ tu′0(M) < 0.
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Figure 2: Time evolution of the distance in the Total Variation norm between the fragmentation
kernel and its first order estimate given by κest, departing from u0 = δ1 (Left) or departing from
a Gaussian curve centred at x = 1 with a standard deviation σ = 0.01, σ = 0.1 and σ = 0.2
respectively (Right). Left: the corresponding kernel is displayed on the inset with the same colour
as the error curve. Right: the fragmentation kernel is the one in Fig 1 bottom left (in blue on the
inset of the left figure). The corresponding initial condition is displayed on the inset with the same
colour as the error curve.

5 Numerical simulations

5.1 Illustration of the short-time behaviour

We illustrate on Figure 1 the formula obtained in Theorem 3 for the estimated kernel κest, that is

κest(t) =
u(t, x)− e−αtδ(x− 1)

αt
,

where u is the solution to the fragmentation equation endowed with initial condition δ(x−1). It
is observed on the plots that the above formula for the estimated kernel is valid for early time points.
As time goes by, the size distribution is driven towards stationary state and the information on the

kernel is lost. On Figure 2 Left, we see the linear time evolution of the error
∥

∥

∥κest(t)− κ
∥

∥

∥

TV
≤ Kt

as in Theorem 3 for the four kernels of Figure 1. In Figure 2 Right, are drawn the curves of the error
∥

∥

∥
κest(u0, t) − κ

∥

∥

∥

TV
as in Remark 2, for three initial conditions u0 given by (truncated) Gaussians

of standard deviation σ = 0.01, σ = 0.1 and σ = 0.2. In that case, an extra constant error is added,
related to the distance between δ1 and u0. For large standard deviations, this error in the total
variation norm becomes so large that it is no more meaningful: we see the interest to turn to the
Bounded Lipshitz norm.

Figures 3 and 4 illustrate Corollary 2 for the fragmentation kernel of erosion type higher at the
edges (Fig 1 bottom left). We see how the estimation is differently impacted around x = 0 and
around x = 1,. This gives interesting hints on how the kernel symmetry could be used to improve
the theoretical estimates.

Finally, we tested the assumptions illustrate the results of Theorem 5, computing theW1 distance
instead of the BL-norm (this is valid for our numerical case studies). In Fig ??, we display the results
obtained for the two-peak kernel (bottom right on Fig 5). The time evolution of the W1− error first
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Figure 3: Estimation of the fragmentation kernel κest at various times (black curves), first time
point in blue, latest time point in red. Left: for an initial data with variance σ = 0.2, Right: with
variance σ = 0.1. In dotted pink is what is truly estimated, namely the convolution w0 ∗ κ, see
Corollary 2.
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Figure 5: Time evolution of the error estimate in W1− distance between the fragmentation kernel
and its estimate, for ǫ0 = ǫ1 = 0.1 and for σ = 0.01 (Left), σ = 0.1 (Right). The insets display the
best estimate, obtained at the timepoints where the W1 distance is minimal.

decreases and then increases, as expected by the estimate of Theorem 5; we also displayed the best
estimated κ, taken at the optimal time where the error reaches its minimum.

5.2 Recovering the variance of the fragmentation kernel

In this section we explore how formulae from Theorem 6 enable us to recover the variance from
simulated data. We consider 6 different typical fragmentation kernels. In Table 1, we give the value
for their variance and standard deviation. We recall that the variance and standard deviation are
given by

V ar =V ar
[κ

2

]

=
1

2
K(3)− 1

4
, SD =

√
V ar,

and we define similarly, provided that
1

2
Kest(3, t,∆t) − 1

4
> 0

V arest =
1

2
Kest(3, t,∆t)− 1

4
,

else, V arest = 0. Also SDest =
√
V arest, where the formula for Kest is given in Definition 5.

In Figure 5.2, we explore the influence of ∆t on the estimation SDest for standard deviation
SD. The relative error on the standard deviation is defined as

Relative Error on the Standard Deviation =
|SDest − SD|

SD
.

We observe that for α∆t = 0.05, we are able to have a precise idea of the standard deviation of the
kernel. The worst error we have is for the kernel in blue. In Table 1, we see that this corresponds
to the kernel whose SD is of 0.1001. A 50% error gives us an estimated SD of 0.15, which is still
below the SD of the spread gaussian.
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