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An inverse problem: recovering the fragmentation kernel from the

short-time behaviour of the fragmentation equation

Marie Doumic ∗ Miguel Escobedo † Magali Tournus ‡

Abstract

Given a phenomenon described by a self-similar fragmentation equation, how to infer the
fragmentation kernel from experimental measurements of the solution ? To answer this question
at the basis of our work, a formal asymptotic expansion suggested us that using short-time
observations and initial data close to a Dirac measure should be a well-adapted strategy. As a
necessary preliminary step, we study the direct problem, i.e. we prove existence, uniqueness and
stability with respect to the initial data of non negative measure-valued solutions when the initial
data is a compactly supported, bounded, non negative measure. A representation of the solution
as a power series in the space of Radon measures is also shown. This representation is used
to propose a reconstruction formula for the fragmentation kernel, using short-time experimental
measurements when the initial data is close to a Dirac measure. We prove error estimates in Total
Variation and Bounded Lipshitz norms; this gives a quantitative meaning to what a ”short” time
observation is. For general initial data in the space of compactly supported measures, we provide
estimates on how the short-time measurements approximate the convolution of the fragmentation
kernel with a suitably-scaled version of the initial data. The series representation also yields a
reconstruction formula for the Mellin transform of the fragmentation kernel κ and an error
estimate for such an approximation. Our analysis is complemented by a numerical investigation.

1 Introduction

The fragmentation equation is a size-structured PDE describing the evolution of a population of
particles. It is ubiquitous in modelling physical or biological phenomena (cell division [40], amyloid
fibril breakage [49], microtubules dynamics [30]) and technological processes (mineral processing,
grinding solids [32], polymer degradation [47] and break-up of liquid droplets or air bubbles). As
presented in [36], the equation may be written as follows

∂

∂t
u(t, x) = −u(t, x)

x

∫ x

0
yF (x, y)dy +

∫ ∞

x
u(t, y)F (y, x)dy, (1)

where u(t, x) represents the concentration of particles at time t of size x, and the fragmentation
measure F (y, x) the creation of particles of size x out of fragmenting particles of size y. The
mathematical properties of the fragmentation equation have been extensively studied using a great
variety of methods (statistical physics; formal asymptotics; real, complex and functional analysis;
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linear semigroup theory; probability methods). Only a few references are given here among the vast
existing mathematical literature as: on particular solutions [47, 51], on the existence and uniqueness
of solutions for the Cauchy problem [45, 36, 4, 21, 35, 5], on detailed properties of the solutions
[41, 3, 14, 11, 26]. For a rather complete list of references the interested reader may consult [5, 6, 12].

Due to its importance in the modelling (see for example [31, 44]), and its very rich mathematical
properties, a class of fragmentation measures F have proved to be particularly fruitful: the measures
composed with a fragmentation rate B(x), that depends on the particle size, and a fragmentation
kernel κ(y/x), that describes the probability that a particle of size y is created by fragmentation of
a particle of size x:

F (x, y) =
B(x)

x
κ
(y
x

)
. (2)

The fact that the probability to obtain a particle of size y out of a particle of size x only depends
on the ratio y/x is a classical assumption often referred to as a ’self-similarity property’ [11, 13, 14].
In order to be coherent with the modelling, the fragmentation kernel must be a finite measure
compactly supported on (0, 1) OR [0,1]? and such that zdκ(z) is a probability measure. With such
a fragmentation measure, equation (1) reads then

∂

∂t
u(t, x) = −B(x)u(t, x) +

∫ ∞

x
κ

(
x

y

)
B(y)u(t, y)

dy

y
. (3)

The two key physical parameters B and κ encode fundamental information on the mechanical
stability of each particle, and can take different forms depending on the particular process consid-
ered. To estimate the parameters B and κ using population data (when only the particles density
u(t, x) can be accessed, not the trajectory of each individual particle) is a challenging mathematical
problem, important for the applications. The specific application that led us to its study originates
from the works [48, 49], where the authors provide experimental size distribution profiles of different
types of amyloid fibrils, in order to estimate their intrinsic division properties (B and κ) and then to
relate them to their respective pathogenic properties [9]. It is not possible to follow experimentally
each fibril one by one, hence the necessity to draw the characteristic features of each particle from
the evolution of the whole population.

1.1 Review on existing results to estimate the fragmentation kernel

Identifying the fragmentation kernel κ from observed population data has been a challenging
problem for some time. As detailed below, in most of the cases up to now, the analysis of this
problem has been based on the idea of self-similar long-time asymptotic behaviour of the solutions
to (3), see [3, 11, 13, 16, 21].

In the seminal paper [32] of A. N. Kolmogorov (1940) on general random processes of particle
grinding, the self-similar large time behaviour of the size distribution is identified in a slightly
different but closely related equation, discretised in time and with a constant fragmentation rate
B. The self-similar asymptotic behaviour of the fragmentation equation written for the cumulative
distribution function was established in [24] by Filippov (1961) for the case B(x) = xγ , γ > 0 and
the result is now well-known by the scientific community under fairly general balance assumptions
on the parameters (see for instance [41, 23, 3, 14]).

From the seventies, scientists from physics and chemical departments have been using this
similarity concept for the kernel inverse problem. In 1974, a scientist of a department of chemical
engineering [44] developed a method to extract information on probabilities of droplet-breakup, and
in particular on the daughter-drop-distribution (in modern terms: the fragmentation kernel), as a
function of drop sizes data, obtained from an experiment of pure fragmentation in a batch vessel.
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To do so, the self-similar behaviour of the solutions of the fragmentation equation, written here too
for the cumulative distribution function, is assumed, thereby restricted to power law fragmentation
rates (i.e. B(x) = αxγ with α, γ > 0), and the moments of the kernel are estimated from the
moments of the large time size distribution. To recover the kernel from its moments, a method
based on the expansion of the kernel on a specific polynomial basis is suggested. These results
are generalised later in 1980 [38] to non-power law fragmentation rates associated with an adapted
definition for the self-similarity of the kernel so as to keep the self-similar asymptotic behaviour of
the model.

From the late nineties, the large improvements in computer hardware opened the field of nu-
merical investigations of mathematical models. In [33] the authors provide insights on how the
stationary shape of the particle size distribution is impacted by the kernel. Their conclusion is that
the inverse problem of assigning a breakage kernel to a known self-similar particular size distribution
is ill-posed not only in a mathematical but also in a physical sense since quite different kernels cor-
respond to almost the same particles size distribution. This conclusion has been confirmed by the
theoretical results of [3, 18]: in these articles, key properties of the fragmentation kernel have been
proved to be linked to unobservable quantities of the asymptotic profile, namely its behaviour for
very small or very large sizes. In [18], we proposed a reconstruction formula for κ based on the mere
knowledge of the long-time asymptotic profile g of the solutions of (3) in suitable functional spaces
[18]. This formula involves the moments of order s of the asymptotic profile g, s being taken along
a vertical complex line, i.e. s = u + iv, v ∈ (−∞,∞). However, due to its severely ill-posedness
on the one hand, and to the impossibility of observing the asymptotic profile for very small or very
large sizes on the other hand, this reconstruction formula revealed of little practical use. Of note, a
similar estimate in the case of the growth-fragmentation equation with constant growth and division
rates has been carried out in a statistical setting in [29], together with a consistency result and a
numerical study.

We thus explored further the influence of the kernel on the time evolution of the length distri-
bution [19]. We showed that despite the previously seen limitations, the asymptotic profile remains
helpful to distinguish whether the fragmentation kernel is an erosion-type kernel (one of the frag-
ments has a size close to that of the parent particle) or produces particles of similar sizes. By
statistical testing, we also showed that departing from the same initial condition, there exists a
time-window right after the initial time where two different kernels give rise to a maximal difference
of their corresponding size distribution solutions, and that the initial condition that maximizes
this difference is a very sharp Gaussian. This last remark led us to explore further the short-time
behaviour of the solution, which is the basis of our present study.

Inverse problems for fragmentation equations related with our ”short-time” approach appeared
in 2002 [1] and in 2013 [2]. In the first article the authors consider the reconstruction of a source term
in a coagulation-fragmentation equation. The equation is linearized assuming that for short times
the solution c(t, x) of the equation may be approximated by the initial data c0, and keeping only
linear terms in the perturbation. The inverse problem for the linear equation is then solved using
optimal control methods, the solvability theory of operator equations, and iteration algorithms.
In the second article the authors solve the linearization of the inverse problem for (1), obtained
assuming F = 1+ f with |f | small, u = c0 + g where c0 is the solution of (1) with F = 1, assuming
that |g| is also small, and keeping in the equation only principal terms.

1.2 Outline of our main results

In the present article we revisit the question of estimating κ from measurements on the popu-
lation density u(t, x), and we introduce two main novelties. First, a new method, that only uses
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short-time measurements of the solutions. As pointed out in the above review, this is a very dif-
ferent idea from those generally used up to now since these are based on the long time self-similar
behaviour of the solutions. Second, a reconstruction formula for the Mellin transform of κ and an
estimate of the error of the approximation. More precisely, we assume the fragmentation rate B to
be known, and provide a reconstruction formula for the sole fragmentation kernel.

Unless specific assumptions are stated, we restrict the study to power law fragmentation rates

B(x) = αxγ , γ > 0, α > 0. (4)

The guiding idea of our study is based on the following remark: for ∆t small enough, the solution
µ to the fragmentation equation (3) with B defined by (4) formally satisfies

µ(t+∆t, x) ≈ µ(t, x)− α∆txγµ(t, x) + α∆t

∫ ∞

x
κ

(
x

y

)
yγ−1µ(t, y)dy + o(∆t). (5)

If we assume that at time t, the size distribution µ(t, x) is a Dirac delta function at x = 1, that
is denoted δ1 or δ(x− 1), then

µ(t+∆t, x) ≈ δ(x− 1)− α∆tδ(x− 1) + α∆tκ(x) + o(∆t),

and thus the kernel κ can be directly estimated from the measurement of the profile µ at time t+∆t
as

κ(x) ≈ 1

α∆t
(µ(t+∆t, x)− (1− α∆t)δ(x− 1)) + o(1), ∆t≪ 1.

To make the above estimate of κ rigorous, we first prove the uniqueness of a non negative
solution µ to the Cauchy problem for the equation (3) when κ and the initial data µ0 are non
negative measures satisfying some suitable conditions (see Theorem 1 below). Then we expand
the solution µ(t, x) as a power series about t in the Banach space of Radon measures. Up to
our knowledge, such representation of the measure-valued solution of the fragmentation equation
with a fragmentation kernel measure κ is new, though some explicit solutions of the fragmentation
equation in form of series are given in [51, 50] for particular continuous fragmentation functions and
particular initial data µ0.

To estimate κ from the measurement of the distribution profile µ(∆t, .) for small values of ∆t,
the cunning observation is to impose that the initial distribution µ0 is a Dirac mass. In other words,
at time t = 0, all particles should have the same size. Heuristically, if all particles have the exact
same size at t = 0, after a time t long enough so that a non-negligible quantity of particles have
broken once, but short enough so that a negligible quantity of particles has broken twice, it is clear
that the kernel κ, sometimes referred to as the “daughter particle distribution” can directly be read
on the distribution of particles strictly smaller than initially.

Of course no experiment may produce a suspension where all the particles have the same size
since it would mean being able to follow each particle one by one. However, we can hope to obtain a
suspension where all particles have approximately the same size, described for instance by a gaussian
distribution that would be not too far from a Dirac delta function. For that reason the stability
of our estimates of κ with respect to measurement noise and to the error on the initial data µ0
must be estimated . It is then necessary to consider measure-valued solutions. The existence and
uniqueness of such solutions to coagulation or fragmentation equations has been already studied in
the literature of mathematics, for example in [39], [10] for the coagulation equation, [13], [7] for a
growth-fragmentation equation, [16] for a fragmentation equation but where only the case γ = 0
would satisfy the hypothesis.
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Quantifying the stability result first requires to understand what are the types of experimental
uncertainties on the initial data coming from the experiments. These are twofold: first, instead of
a delta function at x = x0, the initial data is a spread distribution with variance σ > 0 (due to the
impossibility to obtain a perfectly homogeneous suspension). Second, this distribution is centered
at x = x0 + ε for some ε > 0, instead of x = x0 (possible bias on the measurement of the particles’
sizes). In order to deal with these uncertainties, the Bounded-Lipshitz (BL) norm is better suited
than the total variation norm (TV). For instance, ∀a ∈ R, b ∈ R, such that |b− a| < 2

∥δa − δb∥TV = 2, ∥δa − fa,σ∥TV = 2,

whereas

∥δa − δb∥BL = |b− a|, ∥δ1 − f1,σ∥BL ≤ 2
√
σ√
2π
,

where fa,σ is the density of the gaussian function centered at x = a with variance σ.
However, in the case of a generic initial data not necessarily close to a delta function, a recon-

struction formula may still be obtained through the use of the moments of the solution. From the
very beginning of the study of inverse problems for the fragmentation equation, the moments of
the solution µ ([44, 38]), and then its Mellin transform, have been extensively used. Of note, the
Mellin transform of κ (denoted by K from now on), is of interest by itself since it provides a range
of moments of the fragmentation kernel, in particular variance and skewness. An exact expression
for K was obtained in [18] from the long-time self similar asymptotic profile of the solution µ in
terms of an (in general) oscillatory integral, but no way to approximate this integral and estimate
the error was given. The exact series representation of the solution µ to (3) obtained in the present
paper may be used in order to deduce an approximation of K and estimate the error of such an
approximation.

Our last contribution is thus a robust reconstruction formula of K. To this end, we use short-
time measurements of the solution µ to equation (3) for generic initial data µ0, not necessary close
to a Dirac measure, and the initial data itself. This dependence on the initial data µ0 contrasts
with the result in [18] where the reconstruction formula (see Theorem 2 in [18]) only involves the
long-time asymptotic profile of the solution. Since the equation is autonomous, this means to be
able to access two close consecutive measurements of the particles size distribution - an experimental
setting much more realistic than to depart from a mono-disperse suspension.

To sum-up, the main novelties brought by this paper are

• a proof of the uniqueness and stability of the solution in the space of non negative measures
endowed with the total variation norm (Theorem 1),

• a representation of a solution to the fragmentation equation (endowed with any non-negative
measure as initial data) as a power series in the Banach space of measures endowed with the
total variation norm (Theorem 2), implying in particular existence of measure-valued solutions
to (3),

• a proof of the non-negativity of the power series solution (Theorem 3),

• as a consequence of the three previous items and summarized in Corollary 1, a statement of
existence of a unique non-negative measure-valued solution to (3), accompanied with a power
series representation of this unique solution,

• a stability result for the solution to the fragmentation equation for the BL norm, which is a
norm adapted to weak convergence of measures (Theorem 4),
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• a robust reconstruction formula for the fragmentation kernel involving the short-time solution
of the fragmentation equation endowed with a delta function as initial condition. Robustness
is to be understood in the sense that if the initial condition is close to a delta function at
x = x0 in the BL norm (for instance a rectangular function centered in x0 or a delta function
at x = x0+ϵ with ϵ small), then the estimated kernel obtained with the reconstruction formula
is close to the real kernel in the BL norm (Theorem 5 and Theorem 6),

• a reconstruction formula for the Mellin transform K of the fragmentation kernel κ involving
the short-time solution of the fragmentation equation endowed with any initial condition
(Theorem 7).

The outline of the paper is as follows. In the remaining of Section 1, some properties of measures
and classical results on measure theory are recalled, as well as the definition of Mellin transform and
Mellin convolution. Section 2 is devoted to the proof of the existence, uniqueness, non negativity
and series representation of solutions to the problem (3) (with B defined by (4)) in the space of
Radon measures, and their stability with respect to the initial data in the TV norm. In Section
3, estimates of the fragmentation kernel and bounds for the error of such estimates are obtained
using, for small values of the time variable, the expression as a series of the solution µ provided by
Theorem 2. The stability of these estimates with respect to the initial data and noise measurements
is also considered in BL norm. In Section 4, we study the Mellin transform K of κ. Under some
regularity assumption on κ and on the initial data µ0, a reconstruction formulaKest ofK is obtained,
only based on short time-intervals measurements of the solution to the fragmentation equation and
an estimate of the error K −Kest is obtained. An estimate of the variance of κ is then deduced,
and under a stronger regularity assumption on κ, a pointwise estimate of the difference of κ and
the inverse Mellin transform of Kest is proved. We end the paper with a numerical investigation
of the short-time behaviour of the fragmentation equation, we illustrate the estimation results of
Theorems 5 and 6, and we explore how Theorem 7 can be applied to recover the variance of the kernel
from the data. For every theorem, the constants arising in estimates and depending continuously
on parameters p1, p2, . . . are denoted by C(p1, p2, . . . ).

1.3 Short reminder on measure theory

We define M(R+) as the set of Radon measures µ (not necessarily probability measures) such that
supp (µ) ⊂ R+. Let us recall that M(R+) is the dual space of the space (C(R+), ∥.∥∞) of continuous
functions. We denote by (µ+, µ−) the Jordan decomposition of µ. We endow M(R+) with two
different norms: the total variation norm and the Bounded-Lipschitz norm. As mentioned in the
introduction, the final purpose is to obtain stability with respect to the BL norm, the TV norm
being a technical intermediate tool to reach this purpose. The TV norm of the (signed) measure
µ ∈ M(R+) is defined as

∥µ∥TV = sup{
∫
R+

φ(x)dµ(x), φ ∈ C(R+) ∩ L1(d|µ|), ∥φ∥∞ ≤ 1}. (6)

We recall that (M(R+), ∥.∥TV ) is a Banach space. We now define the BL norm as

∥µ∥BL = sup{
∫
R+

φ(x)dµ(x), φ ∈ C(R+) ∩ L1(d|µ|), ∥φ∥∞ ≤ 1, ∥φ′∥∞ ≤ 1}. (7)

Comparing (6) and (7), it is clear that

∀ µ ∈ M(R+), ∥µ∥BL ≤ ∥µ∥TV . (8)

6



An optimal transportation point of view is provided in [43, Proposition 23] for the BL norm. It is
proven that for any signed Radon measure with finite mass µ we have

∥µ∥BL = inf
{
(∥µ+ − ν∥TV + ∥µ− − η∥TV ) +W1(ν, η), (ν, η) ∈ M+

µ (R
+),
}

(9)

M+
µ (R

+) =
{
(ν, η) ∈ M+(R+)×M+(R+); ν ≤ µ+, η ≤ µ−, ∥ν∥TV = ∥η∥TV

}
(10)

where M+(R+) is the space of positive Radon measures with support in R+, and W1 stands for
the classical Wasserstein distance [46] between two positive measures of same mass, namely

W1(ν, η) := inf
π∈Π(ν,η)

∫
R+ |x− y|dπ(x, y),

Π(ν, η) :=
{
π positive measure on R+ s.t.

∫
R+ π(x, y)dx = η(y),

∫
R+ π(x, y)dy = ν(x)

}
.

(11)

Let us recall that for µ, ν two probability measures and for a > 0, we have W1(aµ, aν) = aW1(µ, ν).
Formula (9) (10) can be interpreted as follows: the BL norm of the signed measure µ is the BL
distance between the two positive measures µ+ and µ−. Now take µ+ and µ− two positive measures.
Consider ν and η two positive measures such that ν ≤ µ+, η ≤ µ− and ∥ν∥TV = ∥η∥TV . The
subpart ν of the measure µ+ is transported onto the subpart η of the measure µ−, with a cost
W1(ν, η). The remaining positive measures (µ+ − ν) and (µ− − η) are both cancelled with a cost
∥µ+−ν∥TV +∥µ−−η∥TV . Among all couples (ν, η) that satisfy ν ≤ µ+, η ≤ µ− and ∥ν∥TV = ∥η∥TV ,
we choose one such that the sum (∥µ+ − ν∥TV + ∥µ− − η∥TV ) +W1(ν, η) is minimal (such a couple
exists, it is proved in [42] that the infimum is actually a minimum). Let us give three examples.

• Take µ = δ(x− 1) and µε = δ(x− (1 + ε)). Consider νa = aµ and ηa = aµε with 0 ≤ a ≤ 1.
Then 0 ≤ νa ≤ µ, 0 ≤ ηa ≤ µε, and ∥νa∥TV = ∥ηa∥TV = a. Using formula (9)(10) we have

∥µ− µε∥BL = inf
0≤a≤1

{
(∥µ− νa∥TV + ∥µε − ηa∥TV ) +W1(νa, ηa)

}
= inf

0≤a≤1

{
2(1− a) + aε

}
=

{
ε for ε ≤ 2,

2 for ε > 2.

• Take µ = δ(x − 1) and µσ is the measure with the rectangular density 1
2σ

√
3
1[1−σ

√
3,1+σ

√
3]

with variance σ2 for 0 < σ < 1. We take νa = µ = δ1 and ηa = µσ = fσdx, in (9), and obtain

∥µ− µσ∥BL ≤W1(µ, µσ) ≤
∫ 1+σ

√
3

1−σ
√
3

|y − 1|dy
2
√
3

=

√
3

2
σ.

• Take µ = δ(x− 1) and µσ the Gaussian with mean 1 and variance σ2. We have

∥µ− µσ∥BL ≤W1(µ, µσ) ≤
∫

|x| e
− x2

2σ2

√
2πσ

=
2σ√
2π
.

We recall that for µ ∈ M(R+) and T ∈ C(R+), the pushforward η of the measure µ by the
function T is defined as the unique measure

η = T#µ
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such that for all φ ∈ C(R+), ∫
φ(x)dη(x) =

∫
(φ ◦ T )(x)dµ(x).

For ℓ > 0, we define the application

Tℓ(x) = ℓx, x ∈ R+. (12)

1.4 Mellin transform

Definition 1. For a measure µ ∈ M(R+), its Mellin transform M [µ] is defined as

M [µ](s) =

∫
R+

xs−1dµ(x), (13)

for s ∈ C such that (13) is well-defined.

Definition 2 (Mellin convolution (cf. [37]). Take µ and ν two compactly supported finite measures
on R+. Their Mellin convolution (sometimes referred to as multiplicative convolution) is defined as

∀φ ∈ C(R+), ⟨µ ∗ ν, φ⟩ = ⟨µx ⊗ νy, φ ◦ p⟩,

where p : (x, y) → xy.

If dµ(x) = f(x)dx and dν(x) = g(x)dx for f and g in L1(R+), then µ ∗ ν is the measure with
density

(f ∗ g)(x) =
∫

R+

f(y) g

(
x

y

)
dy

y
.

If dµ(x) = f(x)dx with f ∈ C(R+) and ν = δ(y− ℓ), then µ ∗ ν = Tℓ#µ is the measure with density

(f ∗ ν)(z) = 1

ℓ
f
(z
ℓ

)
.

Proposition 1 (Mellin transform and Mellin convolution). Take µ and ν two compactly supported
finite measures on R+. For the s for which the expression below is defined, we have

M [µ ∗ ν](s) =M [µ](s)M [ν](s).

2 Measure-valued solutions to the fragmentation equation: exis-
tence, uniqueness, stability and series representation.

The basis of our analysis in all the remaining of this work are the weak solutions to the Cauchy
problem for equation 17 with the initial condition

µt(t = 0) = µ0, (14)

whose precise definition is given below. Throughout the present paper, the following assumptions
are used.

Hyp-1 The fragmentation kernel κ ∈ M+(R+) contains no atom at x = 0 and at x = 1, and satisfies

supp (κ) ⊂ [0, 1],

1∫
0

dκ(z) = N < +∞,

1∫
0

zdκ(z) = 1. (15)
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Hyp-2 The initial condition µ0 ∈ M+(R+) is compactly supported

supp (µ0) ⊂ [0, L]. (16)

Even though κ and µt are measures, we sometimes write the fragmentation equation as

∂

∂t
µt(x) = −αxγµt(x) + α

∫ ∞

x
κ

(
x

y

)
yγ−1dµt(y), µt=0(x) = µ0(x), (17)

or as

∂

∂t
µt(x) = −αxγµt(x) + α

∫ ∞

x
κ

(
x

y

)
yγ−1µt(y)dy, µt=0(x) = µ0(x).

Definition 3 (Weak solution for (17)). A family (µt)t≥0 ⊂ M(R+) is called a measure-valued
solution to problem (3) (4) (14) with initial data µ0 ∈ M(R+) satisfying (Hyp-2) if the mapping
t → µt is narrowly continuous and for all φ ∈ C(R+) such that x 7→ φ(x)/(1 + x) is bounded on
[0,∞), and all t ≥ 0,∫

R+

φ(x)dµt(x) =

∫
R+

φ(x)dµ0(x) +

∫ t

0
ds

∫
R+

dµs(x)αx
γ

(
−φ(x) +

∫ 1

0
dκ(z)φ(xz)

)
. (18)

We recall that µn converges narrowly toward µ if for all φ ∈ Cb(R+),
∫
φdµn →

∫
φdµ, where

Cb(R+) denotes the set of continuous and bounded functions defined on R+.
Although several results may be found in the references given in the introduction about the

existence and uniqueness of solutions to fragmentation equations, none of them covers exactly the
hypotheses that we have in mind for κ and the initial data µ0. For the sake of completeness, our first
result is then an existence and uniqueness of compactly supported and non negative measure-valued
solutions to (17) under assumptions (Hyp-1), (Hyp-2). We begin with a uniqueness and stability
result.

Theorem 1 (Uniqueness and TV-stability for the fragmentation equation in (M+(R+), ∥.∥TV )).
Assume (Hyp-1), (Hyp-2) and γ ≥ 0. Suppose that µt ∈ C(R+,M(R+)), is a non negative
measure-valued solution to (17), in the sense of Definition 3. Then, for all t > 0,

supp (µt) ⊂ [0, L] (19)

∥µt∥TV ≤ ∥µ0∥TV e
α(2L)γ(1+N)t (20)∫

R+

xdµt(x) =

∫
R+

xdµ0(x) (21)

where N is defined in (Hyp-1) and L is defined in (Hyp-2). In particular such a solution is
unique.

Proof. Consider µt ∈ C(R+,M(R+)) a non negative measure-valued solution to (17) in the sense of
Definition (3). We start proving property (19). To this end we first notice that

αxγµt(x) = αµt(x)

∫ x

0

y

x
xγ−1κ

(y
x

)
dy.

9



Then in the right-hand side of (18) we write∫
R+

dµs(x)αx
γ

(
−φ(x) +

∫ 1

0
dκ(z)φ(xz)

)
=

=

∫ ∞

0

∫ x

0
b(x, y) y

(
φ(y)

y
− φ(x)

x

)
dydµs(x).

where

b(x, y) = αxγ−1κ
(y
x

)
. (22)

Consider then the test function

φ(x) =


0 ∀x ∈ [0, L]

x(x− L) ∀x ∈ [L,L+ 1]

x ∀x ≥ L+ 1.

Since x→ φ(x)/(1 + x) is bounded and non decreasing on [0,∞), by (18)∫
R+

φ(x)dµt(x) =

∫
R+

φ(x)dµ0(x) +

∫ t

0

∫ ∞

0

∫ x

0
b(x, y) y

(
φ(y)

y
− φ(x)

x

)
dydµs(x)ds

≤
∫

R+

φ(x)dµ0(x) = 0,

where the last inequality is justified since µt ≥ 0 for t ≥ 0 and since x → φ(x)/x is non decreasing
as well. Since φ ≥ 0 and µt ≥ 0 for all t ≥ 0 it follows that for φ(x)dµt(x) = 0 for all t > 0 and
almost every x > 0. Since by construction φ(x) > 0 for all x > L we deduce that for every t > 0,
supp (µt) ⊂ [0, L].

To prove the BV estimate (20), we use definition (6), and take φ ∈ C(R+) such that ∥φ∥∞ ≤ 1.
By (18),∫

R+

φ(x)dµt(x) =

∫
R+

φ(x)dµ0(x)+

∫ t

0
ds

∫
R+

αxγdµs(x)

(
−φ(x) +

∫ 1

z=0
φ(xz)dκ(z)

)
.

Let χ ∈ C([0,∞)) such that ||χ||∞ = 1, χ(x) = 1 for all x ∈ [0, L] and χ(x) = 0 for x > 2L and
consider the function defined as

ψ(x) := αxγχ(x)

(
−φ(x) +

∫ 1

z=0
φ(xz)dκ(z)

)
,

It satisfies ψ ∈ C(R+) and, since ∥φ∥∞ ≤ 1, and supp (χ) ⊂ [0, 2L],

sup
0≤x≤L

|ψ(x)| ≤ α(2L)γ(1 +N).

Therefore, ∫
R+

φ(x)dµt(x) ≤ ∥µ0∥TV + α(2L)γ(1 +N)

∫ t

0
∥µs∥TV ds,

which implies

∥µt∥TV ≤ ∥µ0∥TV + α(2L)γ(1 +N)

∫ t

0
∥µs∥TV ds,

and Gronwall Lemma yields (20). Finally, mass conservation property (21) is obtained by choosing
φ(x) = x in definition 3 and using the last statement of (Hyp-1).
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The following proposition provides us with a solution to the fragmentation equation when initial
condition is a delta mass localized at x = ℓ in terms of a fundamental solution.

Proposition 2 (Fundamental solution rescaled). Fix ℓ > 0. Assume that µFt is a fundamental
solution to (17), i.e. a solution to (17) when the initial data is µ0 = δ(x− 1). Then, µℓt = Tℓ#µ

F
ℓγt,

with Tℓ(x) = ℓx, is a solution to (17) with µℓ0 = δ(x− ℓ).

Proof. We set µℓt := Tℓ#µ
F
ℓγt. Let us prove that µℓt is a solution to (17) with initial condition

µℓ0 = δ(x−ℓ) and conclude by uniqueness of the solution. First, µℓ0 = Tℓ#µ0 = Tℓ#δ(x−1) = δ(x−ℓ).
Then, we obtain that for all φ ∈ Cc(R+)∫

R+

φ(x)dµℓt(x) =

∫
R+

φ(x)d
(
Tℓ#µ

F
ℓγt

)
(x) =

∫
R+

(φ ◦ Tℓ)(x)dµFℓγt(x) =
∫

R+

φ(ℓx)dµFℓγt(x).

Since µt is a weak solution to (17), we have∫
R+

φ(ℓx)dµFℓγt(x) =
∫

R+ φ(ℓx)dµ0(x)

+α

∫ ℓγt

0

∫
R+

(
−xγφ(ℓx)dµFs (x) + φ(ℓx)

∫ ∞

x
yγ−1dκ

(
x

y

)
dµFs (y)

)
ds.

Let us treat each of the three terms of the sum above separately. The first term is∫
R+

φ(ℓx)dµ0(x) =

∫
R+

φ(x)dµℓ0(x).

The second term is treated using the change of variables s = ℓγu

−α
∫ ℓγt

0

∫
R+

xγφ(ℓx)dµFs (x)ds = −α
∫ t

0

∫
R+

(xℓ)γ φ(ℓx)dµFℓγu(x)du,

and then the change of variables z = Tℓ(x) i.e. dµ
F
ℓγu(x) = d

(
Tℓ#µ

F
ℓγu

)
(z)

−α
∫ t

0

∫
R+

(xℓ)γ φ(ℓx)dµFℓγu(x)du = −α
∫ t

0

∫
R+

zγφ(z)d
(
Tℓ#µ

F
ℓγu

)
(z)du

= −α
∫ t

0

∫
R+

zγφ(z)dµℓu(z)du.

For the third term we also use the change of variables s = ℓγu followed by the change of variables
z = Tℓ(x) and to finish the change of variable w = Tℓ(y) i.e. dµ

F
ℓγu(y) = d

(
Tℓ#µ

F
ℓγu

)
(w) = dµℓu(w)

to get

α

∫ ℓγt

0

∫
R+

φ(ℓx)

∫ ∞

x
yγ−1dκ

(
x

y

)
dµFs (y)ds = α

∫ t

0

∫
R+

φ(z)

∫ ∞

z
wγ−1dκ

( z
w

)
dµℓu(w)du.

To summarize,∫
R+

φ(x)dµℓt(x) =

∫
R+

φ(x)dµℓ0(x)−α

∫ t

0

∫
R+

(
zγφ(z)dµℓu(z) + φ(z)

∫ ∞

z
wγ−1dκ

( z
w

)
dµℓu(w)

)
du.

Finally, since t→ µFt is narrowly continuous, then t→ µℓt is narrowly continuous as well. This ends
the proof of Proposition 2.
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Theorem 2 (Existence of a solution to (17) represented as a power series). For any fragmentation
kernel κ satisfying (Hyp-1), γ ≥ 0 and µ0 satisfying (Hyp-2), there exists a weak solution µt ∈
C(R+,M(R+)) to (17) in the sense of Definition 3. This solution is given by the following everywhere
convergent series

µt = e−αxγtµ0 +

∞∑
n=0

(αt)n
∫ ∞

0
ℓnγan

(x
ℓ

)
µ0(ℓ)

dℓ

ℓ
, (23)

where the sequence an is defined as follows for x ∈ [0, 1],

a0(x) = 0, an+1(x) =
1

n+ 1

(
−xγan(x) +

∫ ∞

x
yγ−1κ

(
x

y

)
an(y)dy + κ(x)

(−1)n

n!

)
. (24)

In particular, ∫ ∞

0
φ(x)dµt(x) =

∫ L

0

∫ 1

0
φ(ℓx)dµFtℓγ (x)dµ0(ℓ), ∀φ ∈ C(R+), (25)

and
supp (µt) ⊂ supp (µ0), for all t > 0. (26)

Remark 1. We emphasize that in (24) and (23), κ, µ0 and an may be measures. In this case, the
Mellin convolution product has to be understood in the sense of measures. For instance, the formula
(23) means

µt = e−αxγtµ0 +

∞∑
n=0

(αt)nan ∗ bn (27)

dbn(y) = ynγdµ0(y), (28)

where the Mellin convolution product ∗ is defined in Definition 2.

Proof of Theorem 2. Step 1: A power series representation for the fundamental solution.
In this step, we prove that

µFt (x) = e−αtδ(x− 1) + vt, (29)

where

vt =
∞∑
n=1

(αt)nan ∈ C((0, T ),M(R+)), vt(0) = 0, vt ⊥ δ(x− 1), (30)

is a fundamental solution to (17), and we prove that for all t > 0, this solution satisfies

supp (µFt ) ⊂ [0, 1]. (31)

12



Fix T > 0. Assume that µFt is a fundamental solution to (17) on [0, T ]× R+. We recall that µ ⊥ ν
if there exists E ∈ B(R) such that µ(R) = µ(E) and ν(E) = 0. The Radon-Nikodym decomposition
guarantees that for all t > 0, µFt can be decomposed as

µFt = A(t)δ(x− 1) + vt, (32)

where vt ⊥ δ(x− 1), A(0) = 1 and v0(x) = 0. We plug (32) into (17) and get

A′(t)δ(x− 1) + ∂tvt(x) = −A(t)αxγδ(x− 1)− vt(x)αx
γ+

+ α

∫ ∞

x
yγ−1κ

(
x

y

)
(A(t)δ(y − 1) + dvt(y))

which is

A′(t)δ(x− 1) + ∂tvt(x) = −αA(t)δ(x− 1)− vt(x)αx
γ + ακ(x)A(t) + α

∫ ∞

x
yγ−1κ

(
x

y

)
dvt(y).

By identification, we get that necessarily
A′(t) = −αA(t), A(0) = 1,

∂tvt(x) = −αxγvt(x) + α

∫ ∞

x
yγ−1κ

(
x

y

)
dvt(y) + ακ(x)A(t), v0(x) = 0.

(33)

The first line gives A(t) = e−αt. This proves that µFt is necessarily equal to e−αt + vt, where vt
satisfies the second line of (33). Now let us verify that the series (30) converges in C((0, T ),M(R+)).
Since (M(R+), ∥.∥TV ) is a Banach space, it is enough to prove the normal convergence of the series
(30). We first claim that

∥an+1∥TV ≤ 1

n+ 1

(
(N + 1)∥an∥TV +

N

n!

)
, (34)

This comes directly from the induction formula (24) since x ∈ [0, 1] implies

∥xγan∥TV ≤ ∥an∥TV ,

and

∥
∫ ∞

x
yγ−1κ

(
x

y

)
an(y)dy∥TV =

∫ ∞

0

∣∣∣∣∫ ∞

x
yγ−1κ

(
x

y

)
an(y)dy

∣∣∣∣ dX
≤
∫ ∞

0

∫ ∞

x

∣∣∣∣yγ−1κ

(
x

y

)
an(y)

∣∣∣∣ dydx
=

∫ 1

0

∫ ∞

0
|yγκ (z) an(y)| dydz

≤
∫ 1

0
|κ (dz)|

∫ ∞

0
yγ |an(y)| dy ≤ N∥an∥TV ,

and finally

∥κ(x)(−1)n

n!
∥TV =

N

n!
.

We deduce from (34) that for all n ∈ N,

∥an∥TV ≤ (N + 2)n

n!
, (35)
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hence the normal convergence of the series (30) in (M(R+), ∥.∥TV ) for all t > 0. We prove (35) by
induction: (35) is true for n = 0 and n = 1, and if it is satisfied for n ≥ 1 we have

∥an+1∥TV ≤ 1

n+ 1

(
(N + 1)∥an∥TV +

N

n!

)
≤ 1

(n+ 1)!

(N + 1)(N + 2)n +N

n!
≤ (N + 2)n+1

(n+ 1)!
.

Then the series vt defined in (30) converges in the Banach space C((0, T ),M(R+)). Since from the
induction rule (24) supp (an) ⊂ [0, 1] for all n ≥ 0, it follows that supp (vt) ⊂ [0, 1]. We prove then,
using the differentiation rule of power series in a Banach space, that the power series (30) is a
solution to the second line of (33). We have

d

dt
v(t, x) =

d

dt

∞∑
n=1

(αt)nan = α

∞∑
n=1

n(αt)n−1an = α

∞∑
n=0

(n+ 1)(αt)nan+1.

Using the induction hypothesis (24) we get

d

dt
v(t, x) =α

∞∑
n=0

(αt)n
(
−xγan(x) +

∫ ∞

x
yγ−1κ

(
x

y

)
an(y)dy + κ(x)

(−1)n

n!

)

= −αxγ
∞∑
n=0

(αt)nan + α

∫ ∞

x
yγ−1κ

(
x

y

)( ∞∑
n=0

(αt)nan(y)

)
dy + α

∞∑
n=0

(−αt)nκ(x)

= −αxγv(t, x) + α

∫ ∞

x
yγ−1κ

(
x

y

)
v(t, y)dy + αe−αtκ(x),

which is (33). The property of the support supp (µFt ) ⊂ [0, 1] follows from the hypothesis on the
support of κ and by inspection of formulas (30) and (24).

Step 2: A power series representation of a solution with a generic initial condition. By
the classical superposition principle, if

µt(x) =

∫ ∞

0
µ0(ℓ)µ

ℓ
t (x) dℓ (36)

converges in C((0, T ),M(R+)) (where µℓt is the scaled fundamental solution obtained in Proposition
2 from µFt the fundamental solution obtained in Step 1), µt will be a solution to the fragmentation
equation with initial condition µ0 ∈ M(R+). Notice that we have the following equality for the
integral (36): ∫ ∞

0
µ0(ℓ)µ

ℓ
t (x)dℓ = e−αxγtµ0 +

∫ ∞

0

+∞∑
n=0

(αt)nℓnγan

(x
ℓ

)
µ0(ℓ)

dℓ

ℓ
. (37)

Since for every n, by (35)

m∑
n=0

∣∣∣∣∣∣∣∣(αt)n ∫ ∞

0
ℓnγan

(x
ℓ

)
µ0(ℓ)

dℓ

ℓ

∣∣∣∣∣∣∣∣
TV

≤ ||µ0||TV

m∑
n=0

(αt)n||an||TV L
γn

≤ ||µ0||TV

m∑
n=0

(αt)n
(N + 2)n

n!
Lγn,
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the series in the right-hand side of (37) converges absolutely in the Banach space C((0, T ),M(R+))
for all T > 0. The integral (36) is then absolutely convergent and defines a solution to the frag-
mentation equation with initial condition µ0 ∈ M(R+) and for t ∈ [0, T ]. Property (25) follows
then from the definition of µFtℓγ . Since supp (an) ⊂ [0, 1] for every n ≥ 0, it follows from (23) that
supp (µt) ⊂ [0, L] for all t > 0. Using a classical diagonal argument, and since the property on the
support of the solution does not depend on T , the power series defines a solution in C(R+,M(R+))
This ends the proof of Theorem 2].

Theorem 3 (Non negativity of the power series solution). Assume the fragmentation kernel κ
satisfies (Hyp-1) with γ ≥ 0 and take µ0 that satisfies (Hyp-2). Then, the power series solution
(23) to the fragmentation equation (17) is non-negative.

Remark 2. Up to our knowledge, no proof of positivity for the fragmentation equation is available
in the literature in the case where either the initial condition µ0 is a measure or the fragmentation
kernel κ is a measure. In our case, both are measures.

Proof. We first prove the non negativity of the fundamental solution µFt defined by (29) (30) using
an approximation argument. Consider to this end the function χ such that:

χ ∈ C(0,∞), χ ≥ 0, ||χ||∞ = 1, χ(x) = 1 ∀x ∈ [0, 2L]; χ(x) = 0 ∀x > 3L,

and a mollifier θ ∈ C(0,∞), such that θ ≥ 0, supp θ ⊂ [0, 1] and the sequence θm(x) = mθ(m(x−1)).
Let us then denote by κm a regularization of the fragmentation kernel

κm = κ ∗ θm,

by a a regularization of the fragmentation rate

a(x) = xγχ(x),

and by θk a regularization of the initial condition δ(x− 1). By construction ||a||∞ ≤ (3L)γ and for
each m ≥ 1, κm is a regular function satisfying

supp [κm] ⊂ [0, 2], lim
m→∞

||κm − κ||BL = 0, ||κm||TV ≤ ||κ||TV ||θm||TV ≤ N. (38)

Consider for every m ≥ 1 the sequence of functions {an,m}n∈N,m∈N defined as follows,

a0,m(x) = 0,

an+1,m(x) =
1

n+ 1

(
−a(x)an,m(x) +

∫ ∞

0
a(y)κm

(
x

y

)
an,m(y)

dy

y
+ κm(x)

(−1)n

n!

)
. (39)

It immediately follows, for all n ≥ 1,m ≥ 1,

an,m ∈ C([0,∞)), supp [an,m] ⊂ [0, 2]

and then, the sequence {an,m}n∈N,m∈N satisfies also,

an+1,m(x) =
1

n+ 1

(
−xγan,m(x) +

∫ ∞

0
yγκm

(
x

y

)
an,m(y)

dy

y
+ κm(x)

(−1)n

n!

)
. (40)
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Since supp [an,m] ⊂ [0, 2] it follows that

||x→ xγan,m(x)||TV ≤ 2γ ||an,m||TV .

. Then, for every m ≥ 1 fixed, as for the proof of (35) it follows now that

∥an,m∥TV ≤ 2γn(N + 2)n

n!
, ∀n ≥ 1, ∀m ≥ 1. (41)

Step 1: The solution ukm to the regularized problem is non negative. Consider the
regularized problem (m <∞ and k <∞)

∂

∂t
uk,m(t, x) = −αa(x)uk,m(t, x) + α

∫ ∞

x
κm

(
x

y

)
a(y)uk,m(t, y)

dy

y
,

uk,m(0, x) = θk(x).

(42)

We define for k ≥ 1 and m ≥ 1 the sequence of functions

uk,m(t, x) = e−αxγtθk +

∞∑
n=0

(αt)n
∫ ∞

0
ℓnγan,m

(x
ℓ

)
θk(ℓ)

dℓ

ℓ
, (43)

For k ≥ 1 andm ≥ 1, the series is absolutely convergent since Moreover, by construction supp [uk,m] ⊂
[0, 2]. Then, uk,m satisfies (42). By Lemma 3 of [36], of which the equation (42) and the initial
data θk satisfy the hypothesis, the Cauchy problem for (42) with initial data θk possesses a global
solution bounded, continuous, non negative, analytic in t for each x > 0 and integrable in x for
every t > 0. Moreover, by construction, for all T > 0 and t ∈ (0, T ),∫

|ukm(t, x)|dx =

∫
infty

0
e−αxγtθk(x)dx+

∫ ∞

0

∞∑
n=0

(αt)n
∫ ∞

0
ℓnγ
∣∣∣an,m (x

ℓ

) ∣∣∣θk(ℓ)dℓ
ℓ
dx

≤ 1 +

∞∑
n=0

(αt)n2nγ
(N + 2)n

n!
<∞.

Therefore, by Lemma 4 in [36], the function uk,m is the unique solution of (42)that satisfies (??).
Moreover, this solution is non negative.

Step 2: limit k → ∞. Consider the problem (m <∞)

∂

∂t
um(t, x) = −αa(x)um(t, x) + α

∫ ∞

x
κm

(
x

y

)
a(y)um(t, y)

dy

y
,

um(0, x) = δ(x− 1).

(44)

We define the sequence of measures um as

um(t, x) = e−αtδ(x− 1) +
∞∑
n=0

(αt)nan,m (45)

The series in (45) is absolutely convergent in TV norm for every m ≥ 1 and it defines a measure
um ∈ M(R+) such that

||um(t)||TV ≤ exp(αt2γ(N + 2))+e−αt. (46)
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The measure um(t, .) satisfies (44) but since supp [um(t)] ⊂ [0, 2] it also satisfies,

∂

∂t
um(t, x) = −αxγum(t, x) + α

∫ ∞

x
κm

(
x

y

)
yγ−1um(t, y)dy.

We claim now that (ukm)k≥0 converges weakly towards um. Indeed, on one hand, for all φ ∈ CC(R+),

lim
k→∞

∫ ∞

0
e−αxγtθk(x)φ(x)dx = e−αtφ(1), (47)

and on the other hand, let us notice that for each n ≥ 1 and m ≥ 1 fixed,

lim
k→∞

∫ ∞

0
ℓnγan,m

(x
ℓ

)
θk(ℓ)

dℓ

ℓ
= an,m(x), x ∈ [0, 2].

Moreover, for all k ≥ 1, n ≥ 1 and m ≥ 1∫ ∞

0
ℓnγan,m

(x
ℓ

)
θk(ℓ)

dℓ

ℓ
=

∫ ∞

0

(
x

y

)nγ−1

an,m(y)k θ

(
k
x

y

)
dy.

Therefore, if

ψk(z) = znγ−1kθ(kz)

then ψk ∈ C([0,∞) and ψk ≥ 0. Since supp θ ⊂ [0, 1] and ||θ||∞ ≤ 1, for all n such that nγ > 2,

sup
z>0

ψk(z) = sup
z>0

znγ−1kθ(kz) = sup
z∈[0,k−1]

znγ−2(kz)θ(kz) ≤ 1

It follows that for all m ≥ 1, n ≥ 1, k ≥ 1 and x > 0,∣∣∣∣∫ ∞

0
ℓnγan,m

(x
ℓ

)
θk(ℓ)

dℓ

ℓ

∣∣∣∣ ≤ ||an,m||TV

It follows by the Lebesgue’s convergence that

lim
k→∞

∞∑
n=0

(αt)n
∫ ∞

0
ℓnγan,m

(x
ℓ

)
θk(ℓ)

dℓ

ℓ
=

∞∑
n=0

(αt)nan,m(x), x ∈ [0, 2], (48)

and then, combining (47) with (48) gives us

lim
k→∞

∫ ∞

0
φ(x)uk,m(t, x)dx =

∫ ∞

0
φ(x)um(t, x)dx, φ ∈ CC(R+),

and then
um ≥ 0. (49)

Step 3: limit m→ ∞. We prove here that um converges weakly towards µFt . To do so, we prove
by induction that

∥an,m − an∥BL →
m→∞

0. (50)
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For n = 1, a1,m = κm, a1 = κ, and by construction ||κm−κ||BL →
m→∞

. Assume then ||an,m−an||BL →
0. In order to prove that the same property holds for the sequence {an+1,m}m∈N it is sufficient to
prove

lim
m→∞

∣∣∣∣∣∣∣∣∫ ∞

x
yγ−1κm

(
x

y

)
an,m(y)dy −

∫ ∞

x
yγ−1κ

(
x

y

)
an(y)dy

∣∣∣∣∣∣∣∣
BL

= 0. (51)

If, for the sake of notation we define the functions ãn,m and ãn as

ãn,m(ℓ) = ℓγan,m(ℓ), ãn(ℓ) = ℓγan(ℓ),

then property (51) reads,

lim
m→∞

||ãn,m ∗ κm − ãn ∗ κ||BL = 0. (52)

Notice indeed that, for all test function φ such that ||φ||∞ ≤ 1 and ||φ′||∞ ≤ 1,∫ ∞

0
φ(x) (ãn,m ∗ κm(x)− ãn ∗ κ(x)) dx =

∫ ∞

0
φ(x) (ãn,m − ãn) ∗ κm(x)dx+

+

∫ ∞

0
φ(x) (κm − κ) ∗ ãn(x)dx (53)

The two terms in the right-hand side of (53) may be bounded with the same arguments. Consider
for example the first.∣∣∣∣∫ ∞

0
φ(x) (ãn,m − ãn) ∗ κm(x)dx

∣∣∣∣ = ∣∣∣∣∫ ∞

0
φ(x)

∫ ∞

0
(ãn,m − ãn)

(
x

y

)
κm(y)

dy

y
dx

∣∣∣∣
=

∣∣∣∣∫ 2

0
κm(y)

∫ ∞

0
(ãn,m − ãn)

(
x

y

)
φ(x)dx

dy

y

∣∣∣∣
≤ ||κm||TV sup

y∈[0,2]

∣∣∣∣∫ ∞

0
(ãn,m − ãn) (z)φ(zy)dz

∣∣∣∣
For each y ∈ [0, 2],∣∣∣∣∫ ∞

0
(ãn,m − ãn) (z)φ(zy)dz

∣∣∣∣ ≤ ||ãn,m − ãn||BL

(
||φ||∞ + 2||φ′||∞

)
from where, by (38)

||(ãn,m − ãn) ∗ κm||BL ≤ 3N ||ãn,m − ãn||BL.

A similar arguments shows, using (35),

||(κm − κ) ∗ ãn||BL ≤ 3||km − k||BL||ãn||TV ≤ 3
(N + 2)n

n!
||km − k||BL

and then, (51) holds true.
Now, for any φ ∈ C1([0,∞)), such that ||φ||∞ + ||φ′||∞ <∞, by definition of the measure um∫ ∞

0
um(t, x)φ(x)dx = e−αtφ(1) +

∫ ∞

0

( ∞∑
n=0

(αt)nan,m(x)

)
φ(x)dx

= e−αtφ(1) +
∞∑
n=0

(αt)n
∫ ∞

0
an,m(x)φ(x)dx.
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Since for every n ≥ 1,

lim
m→∞

∫ ∞

0
an,m(x)φ(x)dx =

∫ ∞

0
an(x)φ(x)dx

and

(αt)n
∫ ∞

0
|an,m(x)φ(x)|dx ≤ (αt)n||φ||∞||an,m||TV

≤ (αt)n||φ||∞
2γn(N + 2)n

n!

one has,

lim
m→∞

∫ ∞

0
φ(x)um(t, x)dx = e−αtφ(1) +

∞∑
n=0

(αt)n
∫ ∞

0
an(x)φ(x)dx =

∫ ∞

0
φ(x)dµFt

and it follows
µFt ≥ 0.

This ends the proof of Theorem 3.

The following corollary follows now easily from Theorem 1, Theorem (2), Theorem 3 and Propo-
sition (2).

Corollary 1 (Well-posedness of the fragmentation equation). Assume the fragmentation kernel
κ satisfies (Hyp-1) with γ ≥ 0 and take µ0 that satisfies (Hyp-2). Then, there exists a unique
non-negative solution µt to the fragmentation equation in C(R+,M(R+)) that has a finite TV norm.
Moreover, this solution satisfies

supp (µt) ⊂ supp (µ0)

and can be represented as the power series (23).

Let us provide two cases where we have explicit formulations for the fundamental solution to
(17) for µ0 = δ(x− 1).

Example 1. For α = γ = 1 and κ = 21[0,1], we have [51, formula 11]

µFt (x) = e−tδ(x− 1) + (2t+ (1− x)t2)e−xt,

Example 2. For α = 1, γ = 0, and κ(z) = 2δ(z − 1/2) we have [20, Proposition 1]

µFt (x) = e−tδ(x− 1) + e−t
∞∑
k=1

(4t)k

k!
δ

(
x− 1

2k

)
.

In both examples, the mass initially located at x = 1 decreases exponentially with respect to
time and is teleported on (0, 1).

The stability of the solution with respect to the TV norm has been proved in Theorem 1. The
stability in the BL norm is deduced now from the explicit expression provided by Theorem 2.

Theorem 4 (Stability of the fragmentation equation in (M(R+), ∥.∥BL)). Assume κ satisfies
(Hyp-1), µ0 ∈ M+(R+) satisfies (Hyp-2), and moreover either γ ≥ 1 or supp (µ0) ⊂ [m,M ]
with m > 0. Then the unique solution µt to the fragmentation equation (17) satisfies

∥µt∥BL ≤ C(L,N, T, α, γ,mγ−1) ∥µ0∥BL, 0 ≤ t ≤ T,

19



Proof. We use the definition of the BL norm given by (7) and the representation of the solution
provided in Theorem 2. Take φ ∈ C(R+) such that ∥φ∥∞ ≤ 1 and ∥φ′∥∞ ≤ 1. Then by (25) in
Theorem 2, ∫ +∞

0
φ(x)dµt(x) =

∫
0

∫ 1

0
φ(ℓx)dµFtℓγ (x)dµ0(ℓ).

For ℓ ≤M, we set

Ψ(ℓ) =

∫ 1

0
φ(ℓx)dµFtℓγ (x).

We notice that for any r ≥ 0, the moment of order r of the absolute value of the fundamental
solution µFt is uniformly bounded for t ∈ [0, T ] using the rough estimate based on Theorem 1∫

R+

xrd|µFt |(x) ≤ Lr∥µFt ∥TV ≤ LreαL
γ(N+1)T ∥δ(x− 1)∥TV =: C̃(L,N, T, r, α, γ).

Then for all ℓ ≤ L,

|Ψ(ℓ)| ≤
∫ +∞

0
|φ(ℓx)|d|µFtℓγ |(x) ≤ ∥φ∥∞

∫ +∞

0
d|µFTLγ |(x) ≤ C̃(L,N, T, 0, α, γ),

and ∣∣Ψ′(ℓ)
∣∣ ≤ ∫ +∞

0
|φ′

(ℓx)|xd|µFtℓγ |(x) +
∫ +∞

0
|φ(ℓx)|tγℓγ−1

∣∣∣∣ ∂∂td|µFtℓγ |(x)
∣∣∣∣

where ∫ +∞

0
|φ′

(ℓx)|xd|µFtℓγ |(x) ≤ C̃(L,N, T, 1, α, γ)∥φ′∥∞,

and where
∞∫
0

|φ(ℓx)|tγℓγ−1

∣∣∣∣ ∂∂td|µFtℓγ |(x)
∣∣∣∣

≤ ∥φ∥∞Tmax(Lγ−1,mγ−1)γα

∫ ∞

0
xγd|µFtℓγ |(x) +

∞∫
0

∞∫
x

κ

(
x

y

)
yγ−1d|µFtℓγ |(y)dx


= ∥φ∥∞Tmax(Lγ−1,mγ−1)γα

(∫ ∞

0
xγd|µFtℓγ |(x) +

∫ ∞

0

∫ 1

0
κ (z) dzyγd|µFtℓγ |(y)

)
≤ Tmax(Lγ−1,mγ−1)γα(N + 1)C̃(L,N, T, γ, α, γ).

We set C(L,N, T, α, γ,mγ−1) := C̃(L,N, T, 0, α, γ)+C̃(L,N, T, 1, α, γ)+Tmax(Lγ−1,mγ−1)γα(N+
1)C̃(L,N, T, γ, α, γ) and define

Ψ̃(ℓ) =
Ψ(ℓ)

C(L,N, T, α, γ,mγ−1)
,

then
∥Ψ̃∥∞ ≤ 1, ∥Ψ̃′∥∞ ≤ 1.

We have shown that for any φ ∈ C(R+) satisfying ∥φ∥∞ ≤ 1, ∥φ′∥∞ ≤ 1, there exists Ψ̃ ∈ C(R+)
such that ∥Ψ̃∥∞ ≤ 1, ∥Ψ̃′∥∞ ≤ 1 and∫ +∞

0
φ(x)dµt(x) ≤ C(L,N, T, α, γ,mγ−1)

∫ +∞

0
Ψ̃(x)dµ0(x).

Thus the conclusion of Theorem 4 holds.
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Remark 3. For γ < 1, and for any initial condition µ0 such that µ0(0) ̸= 0, m = 0 and thus
Theorem (4) does not provide any estimate on ∥µt∥BL. Stability with respect to the initial condition
is lost.

3 Inverse problem for the fragmentation kernel

In this section, estimates of the fragmentation kernel and bounds of the error of such estimates
are obtained using the series expression of the solution µ of (17) provided by Theorem 2 for short
values of the time variable.

3.1 An estimation for κ using short-time measurements

Let us first investigate the best possible case, when the initial data µ0 is a Dirac delta function
at x = 1.
Theorem 5 (An estimate for κ using short-time measurements of the particles size distribution
when initial condition is a delta function at x = 1.). Assume κ satisfies (Hyp-1) and define

κest(t) =
µFt − e−αtδ(x− 1)

αt
, (54)

where µFt is the unique fundamental solution to the fragmentation equation (17) with the initial data
µ0 = δ(x− 1). Then we have∥∥∥κest − κ

∥∥∥
TV

≤ C(N,T, α) t, ∀t ∈ (0, T ], (55)

for

C = α max
t∈[0,T ]

∞∑
n=0

(αt)n∥an+2∥TV = α
∞∑
n=0

(αT )n∥an+2∥TV . (56)

Before proving Theorem 5, we point out that another possible formula for the estimated kernel
is

κestbis(t) =
µFt − (1− αt)δ(x− 1)

αt
= 1 +

µFt − δ(x− 1)

αt
.

Since e−αt = 1− αt+ o(t), we also have∥∥∥κestbis − κ
∥∥∥
TV

≤ Ct.

Proof. We have, using the notations introduced in Lemma ?? and Proposition2,

µFt − e−αtδ(x− 1)

αt
− κ =

∞∑
n=1

(αt)nan

αt
− κ =

∞∑
n=1

(αt)n−1an − κ =
∞∑
n=0

(αt)nan+1 − κ

and since a1 = κ, we have

∞∑
n=0

(αt)nan+1 − κ =

∞∑
n=1

(αt)nan+1 = αt

∞∑
n=0

(αt)nan+2.
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Thus

∥µ
F
t − e−αtδ(x− 1)

αt
− κ∥TV ≤ αt

∞∑
n=0

(αt)n∥an+2∥TV .

The series converges (normal convergence) and thus it is bounded on any compact set, for instance
for t ∈ [0, T ]. This ends the proof of Theorem 5.

When the initial data is a Dirac delta at x = ℓ > 0 Theorem 5 and Proposition 2 give an
estimate of the following rescaled fragmentation kernel,

κℓ = Tℓ#κ,

where the map Tℓ is defined in (12). Recall that if κ is a function, then

κℓ(z) =
1

ℓ
κ
(z
ℓ

)
, 0 ≤ z ≤ ℓ.

Corollary 2 (An estimate for κ using short-time measurements of the particles size distribution
when initial condition is a delta function at x = ℓ). We define

κestℓ (t) =
µℓt − e−αtℓγδ(x− ℓ)

αtℓγ
,

where µℓt is the unique solution to (17) with the initial condition µ0 = δ(x− ℓ). Then, for all T > 0,∥∥∥κestℓ (t)− κℓ

∥∥∥
TV

≤ Ctℓγ , ∀t ∈ (0, T ].

where C is the constant given in (56)

Proof. We notice that for any continuous map T , we have ∥T#µ∥TV ≤ ∥µ∥TV (with equality if
the measure µ is positive, or if T is an injection). Let us set η = µFtℓγ − e−αtℓγδ(x − 1). We have
Tℓ#η = µℓt − e−αtℓγδ(x− ℓ), hence using Theorem 5∥∥∥µℓt − e−αtℓγδ(x− ℓ)

αtℓγ
− κℓ

∥∥∥
TV

=
∥∥∥Tℓ#(µFtℓγ − e−αtℓγδ(x− 1)

αtℓγ
− κ
)∥∥∥

TV
≤ Cαℓγt,

where C is the constant in (56). This ends the proof.

In most of the cases, a Dirac delta as an initial condition is experimentally out of reach. However,
as proved in the next corollary, for all initial data µ0 satisfying (Hyp-2), it is possible to estimate
not the kernel κ itself but the convolution κ ∗ w0 where dw0(ℓ) = ℓγdµ0(ℓ). Moreover, if the initial
data µ0 becomes closer and closer, in some suitable sense, to δ(x−1), so does κ∗w0 and the estimate
of κ ∗ w0 gives an estimate of κ itself.

If µ0 satisfies (Hyp-2) and µ is the unique solution given by Theorem 2 of the equation (17)
with initial data µ0, define

κest(µ0; t, x) =
µ(t, x)− e−αtxγ

µ0(x)

αt
. (57)

We have the following corollary.
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Corollary 3 (Generic initial condition). Assume κ satisfies (Hyp-1) and µ0 satisfies (Hyp-2).
Then, for all T > 0, ∥∥∥κest(µ0; t)− w0 ∗ κ(x)

∥∥∥
TV

≤ CL2γ∥µ0∥TV t, ∀t ∈ (0, T ], (58)

where w0 denotes the measure with density ℓ→ ℓγµ0(ℓ), C is given in (56) and κest(µ0; t) is defined
by (57).

If {µ0,n}n∈N ⊂ M+(R+) is a sequence such that
lim
n→∞

||µ0,n − δ(x− 1)||BL = 0

sup
n∈N

||µ0,n||TV <∞ (59)

or if

lim
n→∞

||µ0,n − δ(x− 1)||TV = 0, (60)

then for all ε > 0 there exists n0 such that for all T > 0,∥∥∥κest(µ0,n; t)− κ(x)
∥∥∥
BL

≤ CL2γ sup
n∈N

||µ0,n||TV t+ ε, ∀t ∈ (0, T ], ∀n > n0. (61)

Proof. For ℓ > 0, we multiply the measure

Xℓ =
µℓt − e−αtℓγδ(x− ℓ)

αtℓγ
− κℓ

by the smooth function ℓ→ ℓγ , and apply Corollary 2 to obtain

∥Yℓ∥TV ≤ Ctℓ2γ ,

with C the constant given in (56) and Yℓ =
µℓt − e−αtℓγδ(x− ℓ)

αt
− ℓγκℓ. We multiply the function

ℓ → Yℓ from R+ onto M(R+) by ℓ → µ0(ℓ) and integrate over R+. Since (M(R+), ∥.∥TV ) is a
Banach space, we can use the Bochner integral so that we have∥∥∥κest(µ0; t)− w0 ∗ κ(x)

∥∥∥
TV

=
∥∥∥∫

R+

Yℓdµ0(ℓ)
∥∥∥
TV

≤
∫

R+

∥Yℓ∥TV dµ0(ℓ) ≤ t

∫
R+

ℓ2γdµ0(ℓ),

and (58) follows.
If we suppose now that {µ0,n}n∈N satisfies (59), then so does {w0,n}n∈N and therefore ||w0,N ∗

κ− κ||BL −→
n→∞

0. We deduce by (8) and (58),

||κest(µ0,n; t)− κ||BL ≤ ||κest(µ0,n; t)− w0,n ∗ κ||TV + ||κ− κ ∗ w0,n||BL

≤ CL2γ ||µ0,n||TV t+ ||κ− κ ∗ w0,n||BL

from where (61) follows.
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Now if {µ0,n}n∈N satisfies ((60), {w0,n}n∈N does too and therefore

lim
n→∞

||κ− κ ∗ w0,n||TV = 0.

We deduce,

||κest(µ0,n; t)− κ||TV ≤ CL2γ ||µ0,n||TV t+ ||κ− κ ∗ w0,n||TV

and (61) follows.

Remark 4. If {µ0,n}n∈N is such that

µ0,n ⇀
n→∞

δ(x− 1), in the weak sense of measures,

sup
n∈N

||µ0,n||TV <∞,

∃ Q ⊂ [0,∞), compact ; suppµ0,n ⊂ Q, ∀n ∈ N,

then, by Proposition 4 in [27], ||w0,n − δ(x− 1)||BL −→ 0
n→∞

. It follows that Property (59) is satisfied

and (61) holds. Notice however that property (59) is not satisfied for any weakly-converging sequence
µ0,n.

3.2 Stability of the κ estimate colorvert with respect to model and measurement
noises.

Let us now turn to error estimates in more realistic observation cases, where the noise may be
twofold: 1/ a model noise, where the initial condition is close to a Dirac delta in the BL distance;
and 2/ a measurement noise, where the size distributions µ0 and µt are observed with an error. A
stability result for the time-dependent solution with respect to the initial condition µ0 has already
been proved in Theorem 4.

Theorem 6 (Stability of the κ estimate with respect to noises on the initial condition and the
measurements). Assume κ satisfies (Hyp-1). Take an initial condition µq0 satisfying (Hyp-2) and
that is close to a delta function at x = 1 in the sense that

∥µq0 − δ(x− 1)∥BL ≤ q.

We denote by µqt the unique solution to the fragmentation equation (17) with initial condition µq0.
Consider the noisy measurements µq,ε00 and µq,εt of the respective measures µq0 and µqt such that

∥µq,ε00 − µq0∥BL ≤ ε0, ∥µq,εt − µqt∥BL ≤ ε.

Assume moreover either γ ≥ 1 or supp (µ0) ⊂ [m,L] with m > 0. Then, for all 0 ≤ t ≤ T , there are
some constants C1(N,T, α) and C2(L,N, T, α, γ,m

γ−1) such that∥∥∥µq,εt − e−αtµq,ε00

αt
− κ
∥∥∥
BL

≤ C1t+
ε0 + ε+ C2q

αt
. (62)
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Proof. We use the triangle inequality to write∥∥∥µq,εt − e−αtµq,ε00

αt
− κ
∥∥∥
BL

≤∥µq,εt − µqt∥BL

αt
+

∥µqt − µFt ∥BL

αt
+ e−αt ∥δ(x− 1)− µq0∥BL

αt

e−αt ∥µ
q
0 − µq,ε00 ∥BL

αt
+
∥∥∥µt − e−αtδ(x− 1)

αt
− κ
∥∥∥
BL
.

(63)

The first, third and fourth terms in the right-hand side of (63) are directly controlled using the
assumptions of Theorem 6.In the last term at the right-hand side of (63), Theorem 5 combined with
(8) guarantee that ∥∥∥µt − e−αtδ(x− 1)

αt
− κ
∥∥∥
BL

≤ C(N,T, α) t.

For the second term, we use Theorem 4 to obtain

∥µqt − µt∥BL ≤ C(L,N, T, α, γ,mγ−1)∥µq0 − δ(x− 1)∥BL

Thus with the assumptions of Theorem 6, we obtain

∥µqt − µt∥BL ≤ C(L,N, T, α, γ,mγ−1)q.

This completes the proof of Theorem 6 with C1 = C(N,T, α) and C2 = 1 + C(L,N, T, α, γ,mγ−1).

Remark 5. We notice that (62) presents a balance between two terms, which is classically encoun-
tered in the field of inverse problems [22] and which is also reminiscent of the classical bias-variance
tradeoff in nonparametric statistics [25]. The time interval t plays the same role as a regularisation
parameter: if too small, the noise is not smoothed and the right-hand side of (62) tends to infinity;
if too large, the estimate loses its accuracy, the right-hand side being not small. There is a time t∗

such that the estimate provided by Theorem (6) is optimal, namely

t∗ =

√
ε0 + ε+ C2q

αC1
. (64)

For this value, the error estimate is in the order of
√
ε0 + ε+ q, vanishing when the noise levels

vanish, though at a lower speed than the noises themselves - the rate of convergence in the order of√
ε being reminiscent of mildly ill-posed problems.

Remark 6. Using short-time measurements to estimate parameters of a given time-dependent equa-
tion is an idea that has appeared for other types of equations. Recently, a very similar approach has
been used for estimating the tumbling kernel of a mesoscopic equation for chemotaxis [28]; in their
approach, convergence of their estimate is obtained, but no quantitative error estimate as (62). Fur-
ther away from our equation, it has been used to estimate the exponent of a time-fractional diffusion
equation [34], or yet the diffusion parameter in the heat equation [15]. However, up to our knowl-
edge, no systematic approach which would analyse the ”short-time method” in a general framework,
and which would justify our analogy of the time window of the observation with a regularisation
parameter, has yet been developed.
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4 Reconstruction formula in Mellin variables

We have seen in the previous section how to approximate κ when the initial condition is not too far
from a Dirac measure, and how to approximate w0 ∗ κ by κest(µ0; .) for generic initial condition.
This section is devoted to the deduction of a reconstruction formula for the Mellin transform of the
fragmentation kernel κ in the case of generic initial condition, and to estimate the error of such an
approximation, in terms of short-time measurements of the population data and the initial data.
The best method to this end is not to use the Mellin transform of the approximation κest(µ0; .)
of κ obtained in Corollary 3. Instead, the series representation of µt is used to deduce a series
representation of its Mellin transform U , and then an approximation of the Mellin transform directly.

Suppose that κ satisfies (Hyp-1), µ0 satisfies (Hyp-2) and let µ be the solution to (17) with
initial condition µ0 given by Theorem 2 . We denote by U(t, .) the x-Mellin transform of µt to (17),
and we denote by K the Mellin transform of κ, i.e.

U(t, s) =

∫ +∞

0
xs−1dµt(x), K(s) =

∫ +∞

0
zs−1dκ(z).

We also define

W (t, h, s) =

∫ +∞

0
xs−1e−αhxγ

dµt(x), ∀t ≥ 0, ∀h > 0.

It follows from (Hyp-1) and Theorem 2 that K is analytic in s ∈ S+
1 = {s ∈ C; ℜe(s) > 1} and so

are U(t) and W (t, h) for all t > 0 and h > 0.

4.1 A formula for U

Lemma 1 (Representation of U as a power series). Take κ satisfying (Hyp-1) and µ0 ∈ M(R+)
that satisfies (Hyp-2). Then, the Mellin transform U of the solution µt to (17) satisfies

U(t+∆τ, s) =W (t,∆τ, s) +

∞∑
n=1

(α∆τ)n

n!
U(t, s+ γn)×

×
n−1∑
j=0

(−1)n−1−jK(s+ jγ)

j−1∏
m=0

(K(s+mγ)− 1),

(65)

for t > 0 and ∆τ > 0, with the convention ∏
n∈∅

bn = 1.

Proof. Since the fragmentation equation is autonomous, Theorem 2 implies that for all t > 0,
∆τ > 0, we have

µt+∆τ = e−αxγ∆τµt +
∞∑
n=0

(α∆τ)n
∫ ∞

0
ℓnγan

(x
ℓ

)
µt(ℓ)

dℓ

ℓ
,

We apply the Mellin transform to both sides of the above equality and use Proposition 1: it
follows

U(t+∆τ, s) =W (t,∆τ, s) +

∞∑
n=0

(α∆τ)nU(t, s+ nγ)An(s),
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where we denote by An the Mellin transform of the measure an. Passing (24) into the Mellin
coordinates, the sequence An satisfies

A0 = 0, An+1(s) =
1

n+ 1

(
(K(s)− 1)An(s+ γ) +

(−1)n

n!
K(s)

)
.

By induction, we deduce

An(s) =
1

n!

(−1)n−1K(s) +

n−1∑
j=1

(−1)n−1−jK(s+ jγ)

j−1∏
m=0

(K(s+mγ)− 1)

 ,

and Lemma 1 is proved.

4.2 A reconstruction for K using short times

Since κ is supported on [0, 1], it follows that K(s+nγ) → 0 as n→ ∞, and then an approximation
formula for K may be obtained by truncation at n = 1 of the second term at the right-hand side of
(65). To this end, let us give the following definitions.

Definition 4 (Approximation formula for the Mellin transform of the kernel). For s ∈ C, we denote

Kest(s, t,∆τ) =
U(t+∆τ, s)−W (t,∆τ, s)

α∆τU(t, s+ γ)

R(s, t,∆τ) = K(s)−Kest(s, t,∆τ). (66)

The error term R(s, t,∆τ) may be estimated uniformly for s on some vertical strip of the complex
plane such that |ℑm(s)| > V for V > 0 large enough. This requires some further regularity on the
kernel κ, the initial data µ0 and the solution µ that ensure that U and K decay fast enough at
infinity.

Hyp-3 There exists an interval I ⊂ (0,∞) such that κ and the function x 7→ s−1xsκ(x) are absolutely
continuous functions on x ∈ [0, 1], for all s ∈ SI , where

SI = {s ∈ C; ℜe(s) ∈ I} .

Hyp-4 Let µ0 ≡ u0 ∈ C3([0, L]) and either u0(L) > 0, or u0(L) = 0 and u′0(L) < 0.

The decay at infinity of the Mellin transform U follows from the condition (Hyp-4) on u0 thanks
to the following lemma whose proof is postponed until the end of Section 4.

Lemma 2 (Regularity and support of the solution to the fragmentation equation). Assume the
fragmentation kernel κ satisfies (Hyp-1). Take u0 ∈ C3([0, L]) such that supp (u0) = [0, L]. Then,
if we denote µ = u the solution to the fragmentation equation (17) with µ0 = u0, it holds

1. The function x→ u(t, x) is in C3([0, L]) for all t > 0.

2. supp (u(t, .)) = [0, L].

3. If u0(L) > 0, then for all t > 0, u(t, L) = e−αLγtu0(L) > 0.

If u0(L) = 0 and u′0(L) < 0, then u(t, L) = 0 and ∂xu(t, L) = e−αLγtu′0(L) < 0 for all t > 0.
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For any interval I ⊂ (0,∞) and V > 0 let us define the domain

DI,V = {s ∈ C; ℜes ∈ I, |ℑms| > V }

We have then the following

Theorem 7 (Reconstruction formula for K). Suppose that the fragmentation kernel κ satisfies
(Hyp-1) and (Hyp-3) and u0 satisfies (Hyp-2) and (Hyp-4). Then, the following holds.
(i) For all T > 0, τ0 > 0 and V > 0 sufficiently large, there exists a constant C > 0 depending on
α, γ, V, I, T, τ0, and L, such that for all t ∈ (0, T ) and all ∆τ ∈ (0, τ0)

|R(s, t,∆τ)| ≤ Cα∆τ

|s|
, ∀s ∈ DI,V . (67)

(ii) For all T > 0, all τ0 > 0 and s ∈ R such that s > 1 there exists a constant C = C(t, s, τ0) > 0
such that

|R(s, t,∆τ)| ≤ Cα∆τ, ∀t ∈ (0, T ), ∀∆τ ∈ (0, τ0) (68)

Proof of Thereom 7. We first prove (i). Combining (66) with Lemma 1, we have the expression for
the rest R

R(s, t,∆τ) =
1

α∆τ

∞∑
n=2

(α∆τ)n

n!

U(t, s+ γn)

U(t, s+ γ)

n−1∑
j=0

(−1)n−1−jK(s+ jγ)

j−1∏
m=0

(K(s+mγ)− 1). (69)

Step 1. Estimate for K. We prove here that for some C̃ > 0 depending on I it holds

|K(s)| ≤ C̃(I)

1 + |s|
, ∀s ∈ SI . (70)

By (Hyp-1), K(s) is well defined and analytic for ℜes > 0. Take s ∈ I. Since by (Hyp-3),
κ ∈ C([0, 1]) and ℜe(s) > 0 it follows that xsκ(x) −→

x→0
0. And since κ and x → s−1xsκ(s) are

absolutely continuous on [0, 1]

K(s) =

∫ 1

0
κ(x)xs−1dx =

κ(1)

s
− 1

s

∫ 1

0
κ′(x)xsdx, ∀s ∈ SI .

Because κ is absolutely continuous on [0, 1] there exists two non-decreasing functions on [0, 1], κ1
and κ2, such that κ = κ1−κ2 on [0, 1], κ′i are measurable and non negative on [0, 1] for i = 1, 2 and∫ 1

0
κ′i(x) ≤ κi(1)− κi(0), i = 1, 2∫ 1

0
|κ′(x)|dx ≤

∫ 1

0
(κ′1(x) + κ′2(x))dx

≤ κ1(1) + κ2(1)− κ1(0)− κ2(0).

Therefore,

|K(s)| ≤ κ(1)

|s|
+

1

|s|

∫ 1

0
|κ′(x)|dx, ∀s ∈ SI

≤ κ(1)

|s|
+

1

|s|
(κ1(1) + κ2(1)− κ1(0)− κ2(0))
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from where (70) follows. Step 2. Estimate for U . We prove here that for every T > 0 and for V

large enough, there exists a constant C = C(L, T, V, α, γ) > 0 such that for all t ∈ (0, T ) and n ≥ 2,∣∣∣∣U(t, w + nγ + iv)

U(t, w + γ + iv)

∣∣∣∣ ≤ C(L, T, α, γ)n(n− 1)L(n−1)γ , ∀s ∈ DI,V . (71)

We follow, for |v| large, the calculation of [17, Chapter IV, Section 4] where the stationary phase
method is used to study the behaviour of oscillatory integrals. For w > 0, we have for v ̸= 0

U(t, w + iv) =

∫ L

0
u(t, x)xw−1xivdx =

∫ L

0
u(t, x)xw−1eiv ln(x)dx

=
1

iv

∫ L

0
u(t, x)xw

d

dx

(
eiv ln(x)

)
dx.

since
d

dx
(eiv ln(x)) =

iv

x
eiv ln(x). We perform an integration by part and we obtain

U(t, w + iv) =
1

iv
u(t, L)Lweiv ln(L) − 1

iv

∫ L

0
eiv ln(x)

∂

∂x
(u(t, x)xw) dx,

which we rewrite, using the same trick than above

U(t, w + iv) =
1

iv
u(t, L)Mweiv ln(L) −

(
1

iv

)2 ∫ L

0
x
∂

∂x
(u(t, x)xw)

d

dx

(
eiv ln(x)

)
dx.

We perform another integration by part to obtain

U(t, w + iv) =
1

iv
u(t, L)weiv ln(L) −

(
1

iv

)2

Lw

(
L
∂

∂x
u(t, L) + wu(t,M)

)
eiv ln(L)

+

(
1

iv

)2 ∫ L

0

∂

∂x

(
x
∂

∂x
(u(t, x)xw)

)
eiv ln(x)dx.

The third term of the right-hand side above can be expanded using

∂

∂x

(
x
∂

∂x
(u(t, x)xw)

)
= w2xw−1u(t, x) + xw(1 + 2w)

∂

∂x
u(t, x) + xw+1 ∂

2

∂x2
u(t, x).

Then we have
U(t, w + γ + iv) =

C(L, t, α, γ, w, v)

iv
+
C ′(L, t, α, γ, w, v)

(iv)2
,

U(t, w + nγ + iv) = nL(n−1)γ

(
C(L, t, α, γ, w, v)

niv
+
C ′′(L, t, α, γ, w, v, n)

(iv)2

) (72)

for some complex constants C(L, t, α, γ, w, v), C ′(L, t, α, γ, w, v) and C ′′(L, t, α, γ, w, v, n) defined
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as

C(L, t, α, γ, w, v) = u(t, L)Lw+γeiv ln(L),

C ′(L, t, α, γ, w, v) = −Lw+γ

(
L
∂u

∂x
(t, L) + (w + γ)u(t, L)

)
eiv ln(L),

+

∫ L

0

(
(w + γ)2xw+γ−1u(t, x) + xw+γ(1 + 2(w + γ))

∂

∂x
u(t, x) + xw+γ+1 ∂

2

∂x2
u(t, x)

)
eiv ln(x)dx

C ′′(L, t, α, γ, w, v, n) = Lw+γ

(
L
∂

∂x
u(t, L) +

w + nγ

n
u(t, L)

)
eiv ln(L)

+

L∫
0

(
(w + nγ)2

(
1 + xw+nγ−1

)
u(t, x) + xw+nγ(1 + 2(w + nγ))

∂u

∂x
(t, x) + xw+nγ+1∂

2u

∂x2
(t, x)

)
dx.

If u0(L) > 0, then Lemma 2 guarantees that u(t, L) > 0 as well. Then we have the following
estimates on C,C ′ and C ′′

0 < C0 ≤ |C(L, t, α, γ, w, v)| ≤ C1, |C ′(L, t, α, γ, w, v)| ≤ C2, w ∈ I, t ∈ [0, T ], v ∈ R,

and |C ′′(L, t, α, γ, w, v, n)| ≤ C3, w ∈ I, t ∈ [0, T ], v ∈ R, n ≥ 1.

Then, using (72), there exists V > 0 such that for |v| ≥ V and w ∈ I,∣∣∣∣U(t, w + nγ + iv)

U(t, w + γ + iv)

∣∣∣∣ ≤ nL(n−1)γ |Civ + C ′|
|Civ + C ′′|

≤ nL(n−1)γ

(
1 +

|C ′′ − C ′|
|Civ + C ′|

)
≤ nL(n−1)γC(V ). (73)

for some constant C(V ) > 0 that depends on V , and formula (71) follows.
Now if u0(L) = 0, then Lemma 2 guarantees that u(t, L) = 0 as well. Thus

U(t, w) = −
(

1

iv

)2 ∫ L

0
x
∂

∂x
(u(t, x)xw)

d

dx

(
eiv ln(x)

)
dx.

In that case, u′0(L) < 0 so that Lemma 2 guarantees that ∂xu(t, L) < 0 as well, and we go one
step further in the expansion and write

U(t, w) =−
(

1

iv

)2

Lw+1eiv ln(L)
∂

∂x
(u(t, x)xw)

∣∣∣
x=L

+

(
1

iv

)3

Leiv ln(L)
∂

∂x

(
x
∂

∂x
(u(t, x)xw)

) ∣∣∣
x=L

+

(
1

iv

)3 ∫ L

0

∂

∂x

(
x
∂

∂x

(
x
∂

∂x
(u(t, x)xw)

))
eiv ln(x)dx

Using the same types of arguments than above, formula (71) holds again.
Step 3. Estimate for R.
Using formula (69) and the triangle inequality, we have

|R(s, y,∆τ)| ≤ α∆τ
∞∑
n=2

(α∆τ)n−2

n!

∣∣∣∣U(t, s+ γn)

U(t, s+ γ)

∣∣∣∣ n−1∑
j=0

|K(s+ jγ)|
j−1∏
m=0

|K(s+mγ)− 1| .
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Using now (70) and (71) we obtain for ℜ(s) ∈ I and ℑ(s) ∈ R

|R(s, y,∆τ)| ≤ α∆τLγ

1 + |s|

∞∑
n=2

(α∆τ)n−2

(n− 2)!
(Lγ)n−2

n−1∑
j=0

C̃j+1. (74)

which implies

|R(s, y,∆τ)| ≤ ατ0
LγC̃

1 + |s|

∞∑
n=2

(α∆τ)n−2

(n− 2)!
(Lγ)n−2 1− C̃n

1− C̃
,

and Theorem 7 is proved for C = LγC̃
∑∞

n=2

(ατ0)
n−2

(n− 2)!
(Lγ)n−2 1− C̃n

1− C̃
<∞.

In order to prove now (ii), suppose that s ∈ R is fixed such that s > 1, estimate (70) still holds.
Moreover, since µ(t) ≥ 0 for all t > 0 it follows that U(t, s) > 0. Since U(·, s) ∈ C(0,∞) it follows
that for all T > 0 there exists a constant C = C(T, s) > 0 such that U(t, s + γ) > C−1 for all
t ∈ (0, t). It then follows, arguing as for (74),∣∣∣∣U(t, s+ nγ)

U(t, s+ γ)

∣∣∣∣ ≤ CLγn−1||µ(t)||TV

|R(s, t,∆τ)| ≤ C||µ(t)||TV α∆τ
∞∑
n=2

(ατ0)
n−2

n!

n−1∑
j=0

C̃j+1

≤

(
C||µ(t)||TV

∞∑
n=2

(ατ0)
n−2

n!

1− C̃n

1− C̃

)
α∆τ

where C̃ comes from Step 1.

The estimate in Theorem 7 may be improved under stronger assumptions on κ. For example,

Corollary 4 (A better estimate for kernels not allowing erosion). Suppose that the hypothesis
of Theorem 7 hold. Suppose moreover that κ′ and x 7→ κ′(x)xs+1 are absolutely continuous on
x ∈ [0, 1], and κ(1) = 0 for s ∈ SI . Then, for all T > 0 and τ0 > 0 there exists two constants
V > 0 and C(L, T, α, γ, I, V, τ0) > 0 such that for all t ∈ (0, T ), ∆τ ∈ (0, τ0)

|R(s, t,∆τ)| ≤ C(L, T, α, γ, I, V, τ0)α∆τ

|s|2
, ∀s ∈ DI,V . (75)

Proof. The proof is the same than the proof of Theorem 7, except that the estimate for the Mellin
transform in Step 1 becomes,

K(s) =

∫ 1

0
κ(x)xs−1dx = −1

s

∫ 1

0
κ′(x)xsdx

= − 1

s(s+ 1)

(
κ′(1)− κ′(0)−

∫ 1

0
κ′′(x)xs+1dx

)
, ∀s ∈ SI

and thus for some C̄ > 0

|K(s)| ≤ C̄

|s|2 + 1
, ∀s ∈ SI .
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A natural question arising from Theorem 7 and Corollary 4 is if, and in what sense the inverse
Mellin transform of Kest(t,∆τ), M−1

(
Kest(t,∆τ)

)
, is an approximation of the kernel κ itself. By

(Hyp-3), for all s ∈ I,

sup
x∈[0,1]

xs|κ(x)| <∞, (76)

and then, for any s0 ∈ I, (76) holds for all s > s0. But (76) is not known to be true for s <
inf{σ;σ ∈ I}.

Theorem 8. Suppose that the hypothesis of Corollary 4 are satisfied and denote I = (a, b) for some
b > a ≥ 0. Then, for every t > 0, every τ0 > 0 and δ > 0 sufficiently small, there exists a positive
constant C that depends on t, τ0 and δ such that, for all s ∈ (a, b),

sup
x∈[0,1]

xs
∣∣κ(x)−M−1

(
Kest(t,∆τ)

)
(x)
∣∣ ≤ C∆τ, ∀∆τ ∈ (0, τ0). (77)

Proof. By hypothesis, for all T > 0 and τ0 > 0 there exist two constants V > 0 and C > 0 such
that (75) holds for t ∈ [0, T ], ∆τ ∈ (0, τ0), s ∈ SI and |ℑm(s)| > V .
Moreover, for each t ∈ (0, T ) the function U(t, s+γ) is analytic on the domain {s ∈ C;ℜes > 1−γ}
and γ ≥ 1. Then, for any δ > 0 sufficiently small to have (a+ δ/3, a+2δ) ⊂ the function U(t, s+γ)
is analytic on

Qδ,V = {s ∈ SI ;ℜes ∈ (a+ δ/3, a+ 2δ, |ℑms| < 2V }

and it may then have only a finite number of zeros in Qδ,V . Therefore there exists a closed sub-
interval J ⊂ (a + δ/2, a + δ) such that U(t, s + γ) ̸= 0 for s ∈ SJ ∩ Qδ,V . It follows by continuity
that for some constant C(t, J, V, δ) > 0 that may depend on t, J, V, δ,

|U(t, s+ γ)| ≥ C(t, J, V, δ) > 0, ∀s ∈ SJ , |ℑs| < V. (78)

On the other hand, for w ∈ J ,

|U(t, w + nγ + iv)| =
∣∣∣∣∫ L

0
u(t, x)xw+nγ−1eiv ln(x)dx

∣∣∣∣ ≤ L(n−1)γ

∣∣∣∣∫ L

0
u(t, x)xw+γ−1dx

∣∣∣∣
≤ L(n−1)γLa+γ+1∥u(t, .)∥∞.

Then,∣∣∣∣U(t, w + nγ + iv)

U(t, w + γ + iv)

∣∣∣∣ ≤ 2

nC(t, J, V, δ)
La+γ+1∥u(t, .)∥∞L(n−1)γ , w ∈ J, v ∈ [−V, V ]. (79)

Therefore, by (73) and (79), for every t ∈ (0, T ), τ0 > 0 and δ > 0 small enough, there exists a
closed interval J ⊂ I and a constant C > 0 depending on t, J, τ0, δ such that

|R(s, t,∆τ)| ≤ C

1 + |s|2
∀s ∈ SJ , ∀∆τ ∈ (0, τ0). (80)

The inverse Mellin transform of R(s, t,∆τ) is then a well-defined function for all x > 0 and ∆τ ∈
(0, τ0), given by

M−1(R(t,∆τ))(x) =
1

2iπ

∫ r+i∞

r−i∞
R(s, t,∆τ)x−sds, r ∈ J.
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and is such that

M−1(R(t,∆τ)) ∈ E′
J

where E′
J is the space of distributions whose Mellin transform is analytic on SJ (cf. [37]). Since it

also holds for x > 0,

κ(x) ≡ M−1(K)(x) =
1

2iπ

∫ r+i∞

r−i∞
K(x)x−sds, r ∈ J.

it follows from (66) that the inverse Mellin transform of Kest(t,∆τ) is also well defined for ∆τ ∈
(0, τ0) and x > 0, and given by a similar integral expression. It is then possible to apply the inverse
Mellin transform to both sides of (66) to obtain for t > 0, ∆τ ∈ (0, τ0), x > 0 and some constant
C > 0 depending on t, τ0 and δ,∣∣κ(x)−M−1(Kest(t,∆τ)(x)

∣∣ = ∣∣M−1(R(t,∆τ))(x)
∣∣

≤ C∆τ x−r

∫
R
(1 + |v|2)−1dv, ∀x ∈ (0, 1), ∀r ∈ J.

Since r ∈ J ⊂ (a+ δ/2, a+ δ),∣∣κ(x)−M−1
(
Kest(t,∆τ)

)
(x)
∣∣ ≤ Cδx

−a−δ∆τ ∀x ∈ (0, 1), ∀∆τ ∈ (0, τ0).

For every s ∈ (a, b) there exists δ > 0 such that s > a+ δ and then, for all x ∈ [0, 1], ∆τ ∈ (0, τ0),

xs
∣∣κ(x)−M−1

(
Kest(t,∆τ)

)
(x)
∣∣ ≤ Cδx

−a−δ+s∆τ ≤ Cδ∆τ,

and estimate (77) follows.

A different reconstruction formula of κ was already obtained in Theorem 2, (iii) of [18]. We
notice that there are similarities in the formulae: both of them are the inverse Mellin transform of
a ratio between two Mellin transforms of linear functionals of the solution, the numerator taken in
s and the denominator taken in s + γ. This reveals a serious drawback when noise is considered:
both formulae then fall in the scope of so-called severely ill-posed inverse problems, exactly as for
deconvolution problems, see e.g. [8], ch. 4 for an introduction. However, despite the fact that this
new formula is an approximation whereas the previous one was exact, its advantages are many.

• Experimentally, it is possible to use the measurement of the solutions at several pairs of close
time points, thus making the most of experimental data, see [9]. On the contrary, with the
formula in [18], only the large-time asymptotic profile can be used.

• In [18] there are specific difficulties linked to the measurement of the asymptotic profile:
first, as time passes, the distribution is closer and closer to zero-size particles, making the
measurement all the more noisy ; second, one needs to assess the validity of considering that
the asymptotic behaviour is reached - the distance to the true asymptotics being a second
source of noise ; third, it has been proved by numerical simulation that different fragmentation
kernels may give rise to very close asymptotic size-distribution of particles [19].

• Experimentally, it should be possible to depart from several very different initial conditions,
and then use the superimposition principle to combine them in such a way that we get the
most information. This is a direction for future research.
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Remark 7. If only the hypothesis of Theorem 7 are assumed, the same argument as above still
shows (78) for some interval J ⊂ I and some constant C depending on t, J and V . But instead of
(80) only the following holds for some constant C = C(t, J, τ0),

|R(s, t,∆τ)| ≤ C

1 + |s|
∀s ∈ SJ , ∀∆τ ∈ (0, τ0). (81)

The inverse Mellin transform of R(t,∆τ) is then still well defined, but its expression is now

M−1(R(t,∆τ)) = −
(
x
∂

∂x

)
(h(t,∆τ))

∀x > 0 : h(t,∆τ, x) =
1

2iπ

∫ r+i∞

r−i∞
R(s, t,∆τ)s−1x−sds, r ∈ J,

where h(t,∆τ, x) is a function, defined for all x > 0 and all ∆τ ∈ (0, τ0), such that h(t,∆τ0) ∈ E′
J .

As above, the inverse Mellin transform of Kest(t,∆τ) is then well defined too, but no point wise
estimate like (77) holds.

Remark 8. At first sight, regularity assumptions such as (Hyp-3), (Hyp-4) and the non-erosion
of Corollary 4 may be surprising. It is however classical in the field of inverse problems to assume
regularity on the object we want to estimate, and to gain a better convergence rate when the regu-
larity increases, see for instance [22]. Here however it is not only on κ that regularity is required -
moreover (Hyp-3) is satisfied for a large class of measures and for all the classical fragmentation
kernels - but also on the initial condition, which is less expected. We thus have been able to recon-
struct the fragmentation kernel in two extreme cases: either very singular initial condition, given
by a Dirac delta function, or very regular ones, at least C3.

Point (ii) of Theorem 7 may also be used to estimate the statistical parameters of the kernel
κ like mean, variance, skewness, kurtosis, since all of them may be expressed in terms of K(s) for
integer values of s. Consider for example the variance given by

V ar
[κ
2

]
=

1

2

∫
(0,1)

∣∣∣∣x− 1

2

∣∣∣∣2 κ(x)dx =
1

2
K(3)− 1

2
K(2) +

1

8
K(1) =

1

2
K(3)− 1

4

It is then possible to estimate V ar[κ] using 65 and defining:(
V ar

[κ
2

])est
(t,∆τ) =

1

2
Kest(3, t,∆τ)− 1

4
.

The following Corollary immediately follows from Point (ii) of Theorem 7 for s = 3.

Corollary 5 (Estimate of the variance of the kernel). Suppose that the assumptions of Theorem 7
are satisfied. Then for all T > 0 and τ0 > 0 there is C(L, T, τ0, α, γ) such that∣∣V ar[κ]− (V ar[κ])est(t,∆τ)

∣∣ ≤ C(L, T, α, γ)α∆τ, ∀t ∈ (0, T ), ∀∆τ ∈ (0, τ0).
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4.3 Proof of Lemma 2.

Proof of Lemma 2. The arguments rely on the formula obtained in Theorem 2.

1. We use the formula (23) obtained in Theorem 2. Note that it can be rewritten using the
change of variables

z =
x

ℓ
, dz = −z

2

x
dℓ, (82)

as

u(t, x) = e−αxγtu0(x) +
∞∑
n=0

(αt)n
∫ 1

0

xnγ

znγ
an(z)u0

(x
z

) dz
z
. (83)

The first term of the sum is clearly C1, since u0 is. To deal with the second term, set

In(x) =

∫ 1

0

xnγ

znγ
an(z)u0

(x
z

) dz
z
.

The fisrt step is to prove by induction that for all x0 > 0, for all n ≥ 0, z → an(z) ∈ C1[x0, 1].
The function a0 is clearly C1, since it is identically zero. Let us assume that for some n ≥ 0,
z → an(z) ∈ C1[x0, 1]. The function an+1 satisfies (24) and is composed with three terms.
The first term and third term are clearly C1 since an(z) ∈ C1[x0, 1]. We focus on the second
term

Jn(x) =

∫ ∞

x
yγ−1κ

(
x

y

)
an(y)dy.

Once again, it can be rewritten using the change of variables (82)

Jn(x) =

∫ 1

x0

xγ

zγ
κ(z)an

(x
z

) dz
z
.

The dominated convergence theorem guarantees that Jn ∈ C1[x0, 1] and that

J ′
n(x) =

∫ 1

x0

xγ

zγ
κ(z)a′n

(x
z

) dz
z2

+

∫ 1

x0

γ
xγ−1

zγ
κ(z)an

(x
z

) dz
z
.

Indeed∣∣∣∣xγzγ κ(z)a′n (xz ) 1

z2

∣∣∣∣ ≤ 1

x2+γ
0

∥a′n∥C0[x0,1],

∣∣∣∣γ xγ−1

zγ
κ(z)an

(x
z

) 1

z

∣∣∣∣ ≤ γmax{xγ−1
0 , 1}

x1+γ
0

∥an∥C0[x0,1].

We have proven that an ∈ C1(0, 1) since it is C1(K) for all K compact of (0, 1).

The fisrt step is to prove that In ∈ C1([0, L]). To do so, we use the dominated convergence to
prove that for all x0 > 0, we have In ∈ C1([x0, L]) and that

I ′n(x) = nγxnγ−1

∫ 1

0

1

znγ
an(z)u0

(x
z

) dz
z

+

∫ 1

0

xnγ

znγ
an(z)u

′
0

(x
z

) dz
z2
, x ∈ [x0, L]. (84)

Indeed, the conclusion of the dominated convergence holds: u0 ∈ C1([0, L]), hence the the
integrand is in C1([0, L]) as well. The domination is as follows: since supp (u0) ⊂ [0, L], the
bounds of the integral In are z ∈

[
x
L , 1
]
⊂
[
x0
L , 1

]
, and thus∣∣∣∣xnγ−1

znγ
an(z)u0

(x
z

) 1

z

∣∣∣∣ ≤ max{
(
x0
L

)nγ−1
, Lnγ−1}

x20
∥u0∥∞an(z),∣∣∣∣xnγznγ

an(z)u
′
0

(x
z

) dz
z2

∣∣∣∣ ≤ max{
(
x0
L

)nγ
, Lnγ}

x20
∥u′0∥∞an(z),
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and it was proved in (35) that ∥an∥TV ≤ (N + 2)n

n!
.

Now we claim that the function S defined as

S(x) =

∞∑
n=1

(αt)nIn(x) (85)

is of class C1([x0, L]) for all x0 > 0. Indeed, we just saw that In ∈ C1([0, L]), and that I ′n is
given by (84). For x ∈ [x0, L], we can control each of the two terms of the sum (84) by two
sequences that converge. Indeed using again (35), we have

n

∫ 1

0

∣∣∣∣xnγ−1

znγ
an(z)u0

(x
z

) 1

z

∣∣∣∣ dz ≤ max{
(
x0
L

)nγ−1
, Lnγ−1}

x20
∥u0∥∞n

(N + 2)n

n!
,∫ 1

0

∣∣∣∣xnγznγ
an(z)u

′
0

(x
z

) dz
z2

∣∣∣∣ dz ≤ max{
(
x0
L

)nγ
, Lnγ}

x20
∥u′0∥∞

(N + 2)n

n!
,

and

∞∑
n=1

(αt)n
(
Lγ

xγ0

)n (N + 2)n

n!
<∞,

∞∑
n=1

(αt)n (max{xγ0 , L
γ})n n(N + 2)n

n!
<∞,

This ends the proof of 1, and we have in addition for x ∈ [x0, L] an expression of the spatial
derivative of u

∂

∂x
u(t, x) =e−αxγtu′0(x)− αγxγ−1te−αxγtu0(x)

+

∞∑
n=1

(αt)n
(
nγxnγ−1

∫ 1

0

1

znγ
an(z)u0

(x
z

) dz
z

+

∫ 1

0

xnγ

znγ
an(z)u

′
0

(x
z

) dz
z2

)
.
(86)

Similar arguments hold to guarantee that x→ u(t, x) ∈ C3([0, L]).

2. First, we claim that supp (u(t, .)) ⊂ [0, L]. Indeed, this is a consequence of formula (83) and
of the fact that supp (an) ⊂ [0, 1] for n ≥ 0. Let us now prove that supp (u(t, .)) = [0, L]. Take
y ∈ [0, L] and set Y (t) = u(t, y). The fragmentation equation (17) implies

Y ′(t) ≥ −αyγY (t),

i.e.
u(t, y) = Y (t) ≥ e−αyγtY (0) = e−αyγtu0(y).

If u0(y) ̸= 0, then for all t ≥ 0, u(t, y) ̸= 0. If u0(y) = 0, since y ∈ supp (u0), for all ε > 0,
there exists yε such that |y− yε| < ε and u0(yε) ̸= 0 and then u(t, yε) ̸= 0, which implies that
y ∈ supp (u(t, .)). Thus supp (u(t, .)) = [0, L].

3. It is clear from formula (23) that u(t, L) = e−αLγtu0(L). Then, if u0(L) > 0, we have
u(t, L) > 0. If u0(L) = 0 and u′0(L) < 0, we have u(t, L) = 0, and formula (86) implies

∂

∂x
u(t, L) = e−αLγtu′0(L) < 0.
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5 Numerical simulations

In this section, we illustrate the different theoretical results and investigate the convergence errors
of the reconstruction formulae.

• Illustration of Theorem 5: We show on Figure 1 the profile of the estimated kernel κest(t)
defined in formula (54), for γ = α = 1, for four different kernels κ and for different times t.
For each plot, the kernel κ is displayed in an inset on the upper right. The initial condition
µ0 is a highly peaked gaussian centered at x = 1 and the numerical solution µt used to build
κest(t) is obtained using a numerical scheme with a time step ∆t = 0.01. We observe that
the estimate κest(t) is valid for early time points: indeed, at the naked eye, κest(t) and κ look
alike. As time goes by, the size distribution is driven towards the stationary state and the
information on the kernel is lost.
On Figure 2 Left, we illustrate the estimate (55) and show that the time evolution of the error

eTV (t) =
∥∥∥κest(t)− κ

∥∥∥
TV

increases linearly with time t for the same four kernels κ considered in Figure 1 and for an
initial condition µ0 very close to δ(x = 1). We observe that the slope of t → eTV (t) is small
for kernels of erosion type (κ(0) ̸= 0), and large for kernels producing daughter particles of
similar sizes. This may be linked to a larger constant in (55) for more peaked kernels; this
provides us with an interesting direction for future work.

• Illustration of Corollary 3 In Figure 2 Right, we draw the curves of the error eTV (t) for
three initial conditions µ0 given by (truncated) gaussians of standard deviation σ = 0.01,
σ = 0.1 and σ = 0.2 and for the kernel κ in black on the left figure. As seen on the formula
(61), the increase of eTV (t) is linear with respect to time t, but an extra constant error ε is
added, related to the distance between δ1 and µ0. We notice that a small error term ε was
already observed in Figure 2, Left, due to the distance between δ(x = 1) and its numerical
approximation on a discrete grid. For large standard deviations (e.g. σ = 0.2), the error ε
becomes so large that the estimate in Total Variation norm is no more meaningful: we see the
interest to turn to the Bounded Lipshitz norm.
In Figure 3, we display the shape of the estimated kernel κest(t) for a small value of t, for a ker-
nel κ of erosion type and with three initial conditions being gaussians with various spreading.
It can be observed at the naked eye that the thiner the gaussian is, the better the approx-
imation κest(t) is as well. We observe how the estimated kernel κest is differently impacted
around x = 0 and around x = 1: this gives interesting hints on how the kernel symmetry
could be used to improve the theoretical estimates.

• Illustration of Theorem 6: In Fig 4, we display the error

eBL(t) = ∥κest(t)− κ∥BL

as a function of time for a two-peaked gaussian kernel κ, for a gaussian initial condition µ0
of variance σ2 and for a noise ε0 on the measurement of the initial data µ0 and a noise ε1 on
the measurement of the solution µt used in the calculation of κest(t). The standard deviation
σ thus plays the role of q in Theorem 6. To simulate the noise on the solution observed,
we add a multiplicative uniform noise on [−0.5εi,+0.5εi] to the simulation. Numerically, we
approximate the BL norm by the Wasserstein distanceW1, since 1/it is easier to compute using
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the monotone rearrangement theorem, 2/the BL norm is close to the Wasserstein distance
between two measures of approximately same mass and whose supports are not too far. The
error eBL(t) first decreases and then increases, as expected by Remark 5. In the inset, we
superimposed the kernel κ (in red) with the best estimated κ, namely κest(t∗) (in blue) taken
at the optimal time where the error reaches its minimum.

• Illustration of Remark 5 In Figure 5, we investigated how the minimal error and the optimal
time, i.e. the time displaying the minimal error (drawn on Figs. 4 as the red asterisk), evolve
with respect to the noise level. To do so, we take an equal level of noise for the three noise
sources ε0, ε1 and q (with q = σ the standard deviation of the gaussian taken for the initial
size distribution). We ran fifty simulations - to take into account the fact that the noise
we simulate is random - and we draw the optimal time (blue asterisks in Fig. 5) giving the
optimal error (green asterisks in Fig. 5). We then compare the mean curves over these fifty
simulations, and compare it with the curve x 7→

√
x. We observe a good qualitative agreement

with the expected rate of convergence.

• Illustration of Corollary 5 We illustrate how we recover the variances of the 6 different
typical fragmentation kernels described in Table 1. We recall that the variance and standard
deviation are given by

V ar =V ar
[κ
2

]
=

1

2
K(3)− 1

4
, SD =

√
V ar,

and we define the estimated variance of the kernel as,V arest(t,∆t) =
1

2
Kest(3, t,∆t)− 1

4
, if

1

2
Kest(3, t,∆t)− 1

4
> 0

V arest(t,∆t) = 0, else.

where the formula for Kest is given in Definition 4. Let us recall that the estimation of
the variance V arest is not a priori the variance of the estimated kernel κest. We also define
SDest(t,∆t) =

√
V arest(t,∆t). In Figure 2, we assume γ = α = 1, we consider the six kernels

κ described in Table 1 and the initial condition is a peaked gaussian centered at x = 2. We
plot the relative error on the standard deviation defined as

Relative Error on the Standard Deviation =
|SDest(0,∆t)− SD|

SD

as a function of ∆t. We observe that for large values of ∆t the relative error is saturated
and equal to 1 for the kernels in blue, red and yellow, corresponding to kernels with small
variances. For these kernels, the estimated variance becomes negative from a certain value for
∆t, so that V arest is then SDest are taken to be zero. The worst estimation of the relative
standard deviation we have is for the kernel in blue, i.e. for the kernel with a very small
standard deviation (SD=0.1001): the estimation of the standard deviation SDest is zero, and
then the relative error is equal to 1. For α∆t = 0.1, we are able to have a good idea of the
ordering of standard deviations of the six kernels.
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Figure 1: Profile of the estimated kernel κest(t) for γ = α = 1. Upper-right inset, light blue:
the kernel κ. Blue: κest(t) for t = 0.1. Red: κest(t) for a large value of t. Black: κest(t) for
intermediate times t.
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Figure 2: Time evolution of the distance in the Total Variation norm between the
fragmentation kernel and its first order estimate given by κest, departing from u0 = δ1
(Left) or departing from a Gaussian curve centered at x = 1 with a standard deviation σ = 0.01,
σ = 0.1 and σ = 0.2 respectively (Right). Left: the corresponding kernel is displayed on the inset
with the same colour as the error curve. Right: the fragmentation kernel is the one in Fig 1 bottom
left (in blue on the inset of the left figure). The corresponding initial condition is displayed on the
inset with the same colour as the error curve.
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Table 1: Variance and Standard Deviation for 6 typical fragmentation kernels.
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Figure 3: Estimation of the fragmentation kernel κest(t) at various times t (black curves),
first time point in blue, latest time point in red. Upper left: for an initial data µ0 with variance
σ = 0.2, Upper Right: with variance σ = 0.1, Bottom Left: with variance σ = 0.01. In dotted pink
is what is truly estimated, namely the convolution w0 ∗ κ (see notations of Corollary 3). Bottom
Right: Superimposition of the three estimates κest(t) at an early time point t = 0.01 t = 0.01
corresponding to the three initial conditions of respective variance σ = 0.01, σ = 0.1 and σ = 0.2.
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Figure 4: Time evolution of the error estimate in BL norm (approximated here by the W1−
distance) between the fragmentation kernel κ and its estimate κest(t), for ϵ0 = ϵ1 = 0.1 and for
q = 0.01 (Left), q = 0.1 (Right). The insets display the best estimate κest(t0), obtained at the
timepoint t0 where the W1 distance is minimal.
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[IMPAMathematical Publications]. Instituto Nacional de Matemática Pura e Aplicada (IMPA),
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