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Ecological systems can undergo sudden, catastrophic changes
known as critical transitions. Anticipating these critical transitions
remains challenging in systems with many species because the
associated early warning signals can be weakly present or even
absent in some species, depending on the system dynamics.
Therefore, our limited knowledge of ecological dynamics may
suggest that it is hard to identify those species in the system
that display early warning signals. Here, we show that, in mu-
tualistic ecological systems, it is possible to identify species that
early anticipate critical transitions by knowing only the system
structure—that is, the network topology of plant-animal interac-
tions. Specifically, we leverage the mathematical theory of struc-
tural observability of dynamical systems to identify a minimum set
of “sensor species,” whose measurement guarantees that we can
infer changes in the abundance of all other species. Importantly,
such a minimum set of sensor species can be identified by using
the system structure only. We analyzed the performance of such
minimum sets of sensor species for detecting early warnings using
a large dataset of empirical plant-pollinator and seed-dispersal
networks. We found that species that are more likely to be sensors
tend to anticipate earlier critical transitions than other species.
Our results underscore how knowing the structure of multispecies
systems can improve our ability to anticipate critical transitions.

critical transitions | observability | pollination | seed dispersal

he well-being of our species depends on maintaining the in-

tegrity of Earth’s ecological systems (1, 2). Still, these systems
can suffer abrupt, undesired, and possibly irreversible changes
known as “critical transitions” (3). Critical transitions occur when
the system state exhibits a fold bifurcation. Therefore, near the
bifurcation (i.e., tipping) point, a gradual change in external
conditions results in abrupt system responses. For example, in
plant-animal mutualistic systems, declining visitation rates (4)
or phenological mismatches (5) can decrease the mutualistic
benefits until the system undergoes a critical transition, causing
abrupt species extinctions (6-8). Fortunately, theoretical and
experimental works show that it is possible to anticipate critical
transitions because they can generate early warning signals be-
fore they occur (9-14). However, for systems with many species,
where it is unfeasible to monitor all of them, anticipating critical
transitions is more challenging because the early warning signals
can be absent (15) or weakly present (16) in some species. Indeed,
which and how early species display early warnings depend on
the dynamics of the whole system (17-19). This fact suggests that
our limited knowledge of ecological systems dynamics renders it
hard, if not impossible, to identify species that early anticipate a
critical transition.

Here, we focus on mutualistic ecological systems and char-
acterize conditions for identifying species that early anticipate
critical transitions by knowing only the system structure. The
structure of mutualistic systems is captured by a bipartite network
with nodes representing species (plants and animals) and bidirec-
tional edges connecting a plant species with an animal species
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if they have a mutualistic interaction (20, 21). Mapping the
network structure of a mutualistic system is more straightforward
than inferring its dynamics (22). Using the system structure, we
leveraged the structural observability theory (23-26) to identify
a minimum set of species whose measurement allows deducing
changes that occur in the abundance of all other species in the
system. We call this set a “minimum set of sensors” (MSS).
By construction, monitoring an MSS allows anticipating critical
transitions, as long as at least one species in the system displays
early warning signals.

In general, a system will have several different MSSs. Some
species may belong to all MSSs, indicating that their monitoring
is essential. Other species may not belong to any MSSs, indicating
that we do not need to monitor them directly. By analyzing 51
empirical plant—pollinator and seed-dispersal networks from the
Web of Life database (22), we show that species detecting earlier
the critical transition tend to appear more often in the MSS. We
analyze the implications of this result on our ability to identify
species that early anticipate critical transitions, assuming that all
we know about the system is its structure. Specifically, we study
the minimum number of species that we need to measure to
obtain the earliest warning of the transition and how early we can
anticipate the transition if we measure a single species. Overall,
our analysis shows that most species in these empirical systems
exhibit late or no warning of a critical transition, emphasizing
the necessity of a methodology to identify species that early
anticipate critical transitions in multispecies systems.

Significance

Ecological systems can undergo abrupt and often catastrophic
changes known as critical transitions. These critical transitions
can be preceded by early warnings that are useful to antici-
pate them. But anticipating critical transitions in systems with
many species is challenging because the early warnings can be
absent in some species. Here, we leverage the mathematical
formalism of “structural observability of dynamical systems”
to address this fundamental issue. In mutualistic ecological
systems, we show that “sensor species” that early anticipate
a critical transition can be identified by knowing only the
structure of plant-animal interactions.
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Structure-Based Identification of Sensor Species in Mutualis-
tic Systems

To identify species that early anticipate a critical transition, we
leveraged the notion of “observability ” (Materials and Methods
and ST Appendix, section 1A). Let X = {1,2,--- , N} denote the
set of species in the system. The system is observable from a
subset S C X of species if it is possible to deduce the abundance
of all species by measuring the abundance of species in S only. If
the system is observable from S, we say that S is a set of “sensors.”
Therefore, by construction, monitoring a set of sensors allows for
anticipating a critical transition, as long as an early warning is
present in at least one species of the system.

Crucially, the structural observability theory shows that we can
generically identify sensors by knowing only the system structure
and the class of dynamics that the system can adopt (Materials
and Methods and SI Appendix, section 1B). That is, knowledge of
the parameters’ values of the system dynamics is not necessary.
Without loss of generality, we assume that the system structure
is a connected bipartite network. We also assume that the early
warning signals occur as small deviations of species’ abundances
from their stable equilibrium values (27-29), implying that the
system adopts approximately linear dynamics (30). Under these
assumptions, we prove that S C Y is (generically) a set of sensors
if and only if there is a node-disjoint path cover of the network,
where each path of length # 1 ends in a sensor (Materials and
Methods and SI Appendix, Theorem 2 of section 2). Note that if
S is a set of sensors, then any other larger set containing S is also
a set of sensors. We thus ask for a set of sensors with a minimum
number of species, which we call an MSS. Our characterization
of sensors allows for identifying MSSs (Materials and Methods
and SI Appendix, section 2E). A system can have several different
MSSs. Species appearing in most MSSs are essential to measure
according to the system structure, while those appearing only in
a few MSSs are not.

Fig. 14 illustrates the identification of sensors in a toy
system of N =3 species. Our characterization shows that this

system has two MSSs: S = {1}, corresponding to the path-
cover {2 — 3 — 1}, and S’ = {2}, corresponding to the path-
cover {1 — 3 — 2} (Fig. 1B). Species 3 alone cannot be an
MSS because the only path-cover {1 — 3,2 — 3} ending in that
species is not node-disjoint. To understand why species 3 alone
cannot be a sensor, we checked if this species can detect changes
in the abundance of the other two species. We thus perturbed
species 1 and 2, and then we checked if species 3 can detect
that such perturbation occurred. We simulated the effect of
these perturbations on the species abundance using a stochastic
differential equation model for plant-animal mutualism (31)
compatible with the network structure (SI Appendix, section 4A).
Fig. 1C shows a simultaneous perturbation to species 1 and 2
that remains undetected by species 3, confirming that species 3
alone is not a sensor. This situation occurs because the network
topology is such that the perturbations “cancel out” when they
meet in species 3. The fact that species 1 (or species 2) is an
MSS guarantees that, generically, there is no change in species
2 and species 3 (or species 1 and 3) that remains undetected
(Fig. 1D). SI Appendix, Figs. S1 and S2 illustrate our structure-
based identification of sensors in bigger mutualistic systems.

Results

Anticipating Critical Transitions using Sensor Species. We evaluated
the sensor’s ability to detect early warning signals of critical
transitions, starting with our toy example of Fig. 14. To generate
a critical transition, we consider the stochastic mutualistic
dynamics and slowly decrease the “mutualistic strength” ;1 > 0 of
the plant—pollinator interactions until a “critical value” ©* ~ 0.75
where no species survives (SI Appendix, sections 3C and 4A).
Consistent with the theory of early warning signals (32), the
species abundance shows a higher variance as the system
approaches the critical transition (Fig. 1E). But, although all
species show early warning signals, the variance increase is
stronger and occurs earlier in the species appearing in the MSS
(Fig. 1F). That is, species that anticipate the transition earlier
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Fig. 1. Detecting critical transitions in mutualistic systems by identifying a minimum set of their sensor species. (A) The bipartite network characterizing

the structure of a hypothetical mutualistic system of two plants {1, 2} and one pollinator {3} (i.e., N = 3 species). Edges represent bidirectional interactions.
(B) We show that S C X = {1, 2, 3} is a set of sensors if and only if there exists a node-disjoint path cover of the network, where each path of length # 1 ends
in S. Shown are the two possible node-disjoint path covers {1 — 3 — 2} and {2 — 3 — 1}, implying that either plant {1} or {2} can be a solo sensor. Species
{3} cannot be a sensor by itself because the only path cover that ends in that species {1 — 3,2 — 3} is not node-disjoint. (C and D) We tested the ability
of each species to detect perturbations in the system under stochastic mutualistic dynamics (see S/ Appendix, section 4A for equations). The system is first
allowed to reach its equilibrium. Then, a perturbation is applied by changing the abundance of the indicated species. In C, the simultaneous perturbation on
species {1} and {2} remains undetected by species {3}, confirming that it cannot be a sensor. Since species {1} or {2} are sensor species, there is no change
in the system that remains undetected by them. D illustrates this fact. (E) Using the mutualistic dynamics, we induced a critical transition in this toy system
by slowly decreasing the mutualistic interaction strength between plants and the pollinator, producing the collapse of all species. (F) As expected from
the theory of early warning signals of critical transitions, the abundance of species shows higher variance as the system approaches the critical transition.
However, the variance increase is sharper and occurs earlier in the sensor species, making their early warning signals stronger than in the nonsensor species.
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Table 1. Summary of variables

Name Symbol Definition
Sensor score si€[0,1] Probability that species i is in an MSS
Early warning score w; € [p*, 00)  Maximum w such that Vare[x;(-; n)] > Vare[x;(-; p')] forall p < p’ <w

Earliest detection Wmax

Wmax = MaX;jcx W;, earliest detection of the critical transition

Early warning score ratio r(q) € [0, 1] r(q) = (maxjes, Wi)/Wmax, how early a set Sq C ¥ of gN species, q € [0, 1], anticipates the critical
transition compared to Wmax
Effective network structure ceR 0 = o (Smax, Skew({s;})), a function of smax = max; s; and the skewness Skew({s;}) of the sensor
scores
Deviations from equilibrium  p >0 p = ( [max¢ x;(t; p) — minex;(t; )] /(X;(t; 1))t )i, Quantifies species’ deviation from their equi-
librium abundances
Here, N is the number of species, ¥ = {1, - - - , N} is the set of species, * is the mutualistic strength at which the critical transition occurs, x;(t; 1) denotes

the abundance of species j at time t in a system with mutualistic strength 1, and (-), and Var,[-] denote average and variance with respect to parameters

p, respectively.

are also more essential to measure according to the system
structure.

To investigate the generality of the above findings, we studied
critical transitions happening in three larger empirical seed-
dispersal systems observed in Mount Missim (/N = 40), the
Genebra reserve (N = 25), and Calton (/N = 25), obtained from
the Web of Life database (22). We make our analysis quantitative
by calculating, for each species i € Y, its “sensor score” s; and its
“early warning score” w;, as defined in Table 1 (Fig. 2 4-C).
On the one hand, species with a high sensor score appear
more often in the MSS, implying that their measurement is
essential (Materials and Methods and SI Appendix, section 2F).
Note that the system structure is “poorly informative” when
all sensor scores are small (i.e., no species is essential to
measure). On the other hand, the early warning score w;
is the largest mutualistic strength at which species i detects
the critical transition. Species with a higher w; anticipate the
critical transition earlier, and species with w; = u* do not
anticipate the critical transition before it occurs. We calculated
the early warning score by simulating a critical transition using
a stochastic differential equation model of obligate mutualism
compatible with the system structure (Materials and Methods
and SI Appendix, section 3). In this model, we randomly choose
the species’ mortality and competition parameters, producing
different realizations of the system parameters (6). Across these
realizations and realizations of the stochastic dynamics, the three
systems undergo a remarkably similar critical transition, where
all species collapse when the mutualistic strength decreases
to " ~0 (Fig. 2 D-F). A substantial percentage of species
do not anticipate such transition (median of 22.5%, 12%, and
12% across realizations for Missim, Genebra, and Calton,
respectively). Note that the sensor score only depends on the
system structure (i.e., it can be calculated without knowing
the system dynamics and before the critical transition occurs).
By contrast, the early warning score depends on the system
dynamics.

We analyzed the performance of sensors for anticipating criti-
cal transitions by comparing the early warning and sensor scores
in the above three systems (Fig. 2 G-I). Starting with Missim,
species with a high early warning score tend to have a high
sensor score, implying that knowing this system structure allows
for identifying species that early anticipate the critical transition
(Fig. 2G). Consistent with previous analysis (6), species with a
high sensor score tend to be specialists (i.e., nodes with a low
degree in the network). Therefore, we reasoned that measuring
species one by one from high to low sensor score should soon
allow measuring a species with the earliest detection wmax of
the critical transition. To explore this hypothesis, for a fraction
q €10,1] of the system species, we define the “early warning
score ratio” r(g) as in Table 1. Higher values of r(g¢) imply that
measuring gN species allows for anticipating earlier the critical

Aparicio et al.
Structure-based identification of sensor species
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transition, with r(¢) = 1 if at least one measured species has the
earliest detection. We focus our analysis on the minimum fraction
q* of species that we need to measure for obtaining the earliest
detection and the ratio 7, = r(1//N ) quantifying how early we can
anticipate the transition by measuring a single species. A small
¢* indicates that we need to measure fewer species to obtain the
earliest detection. A higher 71 indicates that measuring a single
species detects the critical transition closer to Wmax.

Fig. 34 shows the early warning score ratio for Missim when
choosing species according to their sensor score (from high to
low), degree (from low to high), or randomly (Materials and Meth-
ods). In this system, choosing species by sensor score or degree is
similar because species with a high sensor score are specialists
(red in Fig. 2G). Compared to random, choosing species by
sensor score or degree decreased by a third the fraction of species
that we need to measure for obtaining the earliest detection
(median ¢* =~ 0.125, ¢* &~ 0.15, and ¢* = 0.425 when choosing
species by sensor score, degree, and randomly, respectively).
With probability 0.75, we obtained faster the earliest detection
when choosing species by sensor score compared to random
(Fig. 3 B, Left). Furthermore, choosing a single species by sensor
score or degree yielded an early warning score ratio two times
higher compared to choosing randomly (Fig. 3 B, Right). These
results confirm that knowing the structure of this system im-
proves our ability to identify species that early anticipate critical
transitions.

We obtained similar results when analyzing the Genebra re-
serve (Fig. 2B). Species with a high early warning score again
tended to have a large sensor score (Fig. 2H). Compared to
random, choosing species by sensor score or degree reduced
roughly by half the fraction of species that we need to measure for
obtaining the earliest detection (Fig. 3C; median ¢* ~ 0.24 and
¢* = 0.44 when choosing species by sensor score or degree and
randomly, respectively). With a probability of 0.66, we obtained
the earliest detection faster by choosing species using sensor
score or degree than when choosing randomly (Fig. 3 D, Left).
Choosing a single species by sensor score yields an early warning
score ratio two times higher compared to choosing randomly and
11% higher when compared to choosing by degree (Fig. 3 D,
Right; median r; = 0.56, = 0.45, and 1 = 0.27 when choosing
by sensor score, degree, and randomly, respectively). Note that
sensor score outperforms degree because, while species with a
high sensor score tend to be specialists, not all specialists have
a high sensor score. Indeed, from the five groups of specialists
in this system, group 1 has higher sensor and early warning
scores (Fig. 2H). This fact is also apparent in Fig. 2B because the
nodes in group 1 are greener and bigger compared to the other
specialist groups.

We finally turn to Calton, where neither specialists nor the
species with the highest sensor score tend to be the first to antic-
ipate the transition (Fig. 2 C, F, and I). Indeed, the first species

PNAS | 30f9
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Fig. 2. Sensor species anticipate critical transitions in multispecies mutualistic systems. (A-C) Three empirical seed-dispersal networks, Mount Missim (Papua
New Guinea), Genebra reserve (Brazil), and Calton (Great Britain), obtained from the Web of Life database. We calculated the sensor score of each species
(i.e., the probability that such a species belongs to an MSS). Species with a higher sensor score are those whose measurement is essential (green color). Then,
we simulated a critical transition in each system to calculate the species’ early warning score (node size represents the median early warning score calculated
from 20 realizations of the system parameters using the nominal values of S/ Appendix, Table S3). Specialists are marked with black edges. Specialists belong
to the same group if they interact with the same species. Species with a higher early warning score (green) anticipate earlier the critical transition (bigger
nodes), showing how knowing the system structure allows identifying species that early anticipate critical transitions. (D-F) As the mutualistic interaction
strength p decreases, the three systems undergo a critical transition at p* =~ 0, where all species go extinct. Lines represent different species colored by
their sensor score. Panels represent one realization obtained by using the nominal parameter values. The critical transition is similar in the three systems,
but the informativeness of their structure for identifying species that early anticipate critical transitions is different (colors). (G-/) Sensor score vs. median
early warning score calculated for 20 realizations of the system parameters. Missim and Genebra contain species with a high sensor score, and those species
have a high early warning score. In Calton, no species has a high sensor score, indicating that the network structure is not informative about which species
is essential to measure. In this system, neither specialists nor the species with the highest sensor score are the first to anticipate the transition. The species

with the second-highest median early warning score has the highest sensor score.

to anticipate the critical transition changes drastically across
realizations of the system parameters (SI Appendix, Fig. S4). This
is expected because the sensor-score distribution is closer to zero
and has a lower maximum value than in Missim and Genebra,
indicating that there are no species that are essential to measure
according to the system structure. Consequently, the early warn-
ing score ratio is similar when choosing species by sensor score,
degree, or randomly (Fig. 3 E and F).

The above results illustrate that having a large maximum
sensor score indicates that the system structure is informative
about which species are best to measure for anticipating critical
transitions. And when the structure is informative, species with a
high sensor score tend to anticipate earlier the critical transition.
However, when is the system structure informative enough? We
next address this question using a large dataset of empirical
networks, helping us probe the performance of sensors across
diverse systems.

Validation of Sensors in a Large Dataset of Empirical Networks. We
analyzed a dataset of 51 empirical systems containing all plant—
pollinator and seed-dispersal networks from the Web of Life

40f9 | PNAS
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database with N <80 species (SI Appendix, section 3A). The
MSS size is heterogeneous across these systems, requiring us to
measure between 3% and 73% of their species depending on the
system structure (median of 44%; SI Appendix, Fig. S64). The
MSS size increases in systems with a higher disparity between
the number of plants and animals (Spearman’s p = 0.9668,
P <2.9415 x 107%; SI Appendix, Fig. S6B). This result can be
explained as follows. Since empirical networks tend to be nested,
increasing the disparity increases the number of specialists (33).
Therefore, the MSS size increases because systems with more
specialists require measuring more species. We also confirmed
that species with a high sensor score tend to be specialists,
but not all specialists have a high sensor score (SI Appendix,
Fig. S7).

We simulated a critical transition in these systems as be-
fore to calculate the early warning score of each species
(SI Appendix, section 3C). We found that most species in these
systems do not show early warnings of the critical transition, and
very few species provide early detection (Fig. 44). Specifically,
across networks and their realizations, the median proportion
of species that provide the earliest detection wmax is only 3.8%.

Aparicio et al.
Structure-based identification of sensor species
for anticipating critical transitions
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Fig. 3. Measuring species with a high sensor score improves our ability to anticipate critical transitions. Results are for the three empirical systems of
Fig. 2. (A) Early warning score ratio r(q) as a function of the fraction q € [0, 1] of species, quantifying how early we can anticipate the critical transition by
measuring g species compared to the earliest detection Wi = maxjcs w;. Recall that r(q) = 1 if the measured species contain the earliest detection. The
panel shows the results for three methods of choosing species: by sensor score (from high to low; green), by degree (from low to high; pink), and at random
(gray). Thick lines denote the median across realizations of the system parameters and choice of species with equal sensor score or degree (Materials and
Methods). See SI Appendix, Fig. S5 for upper and lower quantiles. Choosing species by sensor score or degree significantly outperforms choosing species at
random, indicating that the network structure contains useful information to anticipate critical transitions. B, Left shows the distribution for the fraction g*
of species needed to obtain the earliest detection of the critical transition (i.e., r(g*) = 1), compared to random (lower values mean better performance).
B, Right shows the distribution for the early warning score ratio r; = r(1/N) of choosing a single species, compared to random (higher values mean better
performance). Distributions were built by using 1,000 repetitions of choosing species over the 20 realizations obtained for different system parameters. Dots
mark the median of the distribution and lines the lower and upper quantiles. Numbers below (respectively, above) each distribution are the probability that
q* is lower than random (respectively, ry higher than random). (C and E) Same as in A, but for Genebra and Calton, respectively. (D and F) Same as in B, but
for Genebra and Calton, respectively.

A median of 21.42% of the species has a score w; > 0.5wma,  choosing it randomly and 20% earlier compared to choosing it by
implying that only one-fifth of the species provide “good” early  degree (median r; = 0.48, r, = 0.39, and r; = 0.22 when choos-
warnings in the sense that they anticipate the transition before  ing species by sensor score, degree, and randomly, respectively).
the mutualistic strength drops below half of the earliest warning. = Choosing one species by sensor score outperforms choosing it
Moreover, a substantial fraction of species cannot detect the randomly or by degree in 88.23% and 74.5% of the systems, re-
critical transition before it occurs (a median of 14.28% of the  spectively. These results show that the sensor score improves our
species have w; = pu*, but for some systems and realizations,  ability to identify species that early anticipate critical transitions
this percentage is as high as 87.5%). These findings underscore =~ when all we know is the system structure, especially when we can
again the need for a methodology to identify species that early  only measure one or a few species.
anticipate critical transitions in multispecies systems, indicating
that finding such species is challenging because they representa  Characterizing the Performance of Sensors. Here, we characterize
tiny fraction of all species. the systems where sensors perform better than random in the
Next, we compared the early warning and sensor scores of — sense that ¢* — g, 4 is positive and large and 71 — 7, 1,nq IS
species across these empirical networks (1,855 species in total;  negative and large (white area in Fig. 4C). Our analysis shows
Fig. 4B). We found again that species with a high early warning  that the performance of sensors can be explained by using only
score tend to have a large sensor score, also confirming that those ~ two covariates: the “effective network structure” ¢ and the mag-
species represent a tiny fraction of all species (Fig. 4 B, Left). nitude p > 0 of species’ “deviations from equilibrium” (see def-
By contrast, species showing late or no detection of the critical  initions in Table 1 and SI Appendix, section 4E for details). The
transition are common, and they tend to have a low sensor score  effective network structure is a function of the maximum smax and
(Fig. 4 B, Right). skewness of the sensor-score distribution (Fig. 4D). As its name
To quantify the implications of the above result, we calcu- indicates, o summarizes how informative the system structure is
lated ¢* and 7 for each system, comparing their values when  for identifying species that early anticipate critical transitions.
choosing species by sensor score, degree, and randomly (Fig. 4C).  In contrast to o, which only depends on the system structure,
Compared to random, choosing species by sensor score typically  p also depends on the system dynamics. That is, as two systems
decreases by half the fraction of species that we need to measure  with identical structures approach a critical transition, the early
for obtaining the earliest detection, slightly improving the per-  warning signals can produce deviations from the species’ equi-
formance when choosing by degree (median ¢* = 0.2244, ¢* =  librium with different magnitude depending on its dynamics. In
0.2307, and ¢* = 0.46 when choosing species by sensor score, this sense, p summarizes the effect of the system dynamics on
degree, and randomly, respectively). In 92.11% of the systems, sensors’ ability to anticipate critical transitions. Note that p can be
choosing species by sensor score outperforms choosing species  calculated from time-series data of species abundances without
at random (white area in Fig. 4C), and in 60.78%, choosing  knowing the dynamics that generated it.
species by degree. One species chosen by sensor score typically Using the above two covariates, two nonlinear regression mod-
anticipates the critical transition twice as early compared to  elscan predict the performance of sensors, indicating that sensors
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Fig. 4. Performance of sensors for anticipating critical transitions in a large dataset of empirical networks. Panels show the results of inducing a critical
transition in our dataset of 51 empirical networks (26 pollinator and 25 seed-dispersal networks; S/ Appendix, section 3A) with nominal parameters
(S Appendix, Table S3). (A) Distributions for the fraction of species with the best (i.e., w; = Wp,ax), up to 50% of the best (i.e., w; > 0.5wp,4), and no early
warning (i.e., w; = p*). Black dots and lines indicate the median and upper/lower quantiles, respectively, across empirical networks and their realizations.
Histograms show the distribution. Species early anticipating the critical transition represent a tiny fraction of all species. (B) Density distribution of normalized
early warning score w;/Wmax Vs. sensor score s; for all the species in our dataset. Species are separated into three groups (panels) according to their normalized
early warning score: the left group has 143 species, the center group has 1,104 species, and the right group has 608 species. Species with high early warning
scores tend to have a large sensor score. (C) Fraction g* of measured species needed to obtain the transition’ earliest detection (Upper) and early warning
score ratio r; when measuring a single species (Lower). Points show the median of these two quantities across the 51 empirical networks. Green lines
show the upper and lower quantiles for choosing species by sensor score. Gray denotes systems in which choosing species by sensor score is worse than
choosing at random. Networks are ordered by g*, obtained when choosing species by sensor score. (D) We applied a nonlinear dimensional reduction to
calculate the effective network structure o, a one-dimensional variable capturing how informative is the system structure for identifying species that early
anticipate critical transitions. This variable depends on the maximum smax and the skewness of the sensor-score distribution. Shown are the level curves of
o with colors corresponding to values indicated by the numbers on top of each level curve. (E and F) Nonlinear regression models predicting the median
sensor performance g* — g5, (@djusted R? = 0.76, MSE = 0.029) and r; — I rand (adjusted R? = 0.67, MSE = 0.046), respectively, using the effective network
structure o and the magnitude p of species abundance deviations from their equilibrium. In both panels, background colors correspond to model predictions.
Sensors perform better than chance in regions colored with stronger green. Both models indicate that sensors perform better as o — 0 and p — 0. Circles

correspond to the 51 empirical systems, colored according to the true sensor performance.

perform better as ¢ — 0 and p— 0 (Fig. 4 E and F). This
result makes sense. On the one hand, smaller deviations p better
satisfy our assumption of linear dynamics. On the other hand,
a large positive o occurs when smax is high and the skewness is
strongly negative, corresponding to a sensor-score distribution
concentrated at high values with a large maximum. In this case,
sensors perform as random because the structural observability
theory predicts that it is essential to measure all species. A
large negative o occurs when smax is small and the skewness
is near zero, corresponding to a sensor-score distribution that
is symmetric and has a small maximum. In this case, sensors
perform as random because the structural observability theory
predicts that no species is essential to measure.

Robustness Against Changes in the System Dynamics. We end by
analyzing the performance of sensors to changes in the sys-
tem parameters, including changes in the maximum interspecific
competition strength within animals or plants, the mutualistic
tradeoff, the baseline mutualistic strength, the handling time in
the functional response of the mutualistic benefit, and the noise
intensity (SI Appendix, sections 4F and 4G). Increasing the max-
imum competition strength decreases the deviation’s magnitude
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of species from their equilibrium, improving the performance
of sensors (SI Appendix, Fig. S84). Sensors perform better with
small values of the mutualistic tradeoff (S Appendix, Fig. S8B).
The handling time strongly affects the early warning score and
the deviation’s magnitude (SI Appendix, Fig. S8D). In particular,
with a small handling time, sensors fail because no species in the
system anticipates the transition.

A small baseline mutualistic strength makes it easier to
anticipate critical transitions (SI Appendix, section 4G and Figs.
S10-S12). More precisely, species have a high and very similar
early warning score for small values of this parameter. Therefore,
in this case, anticipating the critical transition is relatively
easy because most species detect it very early. Consistent with
previous results (7, 34), in this case, some species may go extinct
before the community’s complete collapse. Such species tend
to have a high sensor score. On the other hand, increasing the
baseline mutualistic strength decreases the species’ early warning
score until some fail to anticipate the critical transition. Here,
reducing the mutualistic interaction strength produces a single
critical transition where most species go extinct. In this case,
species with a high sensor score tend to have a large early warning
score, anticipating earlier the critical transition.
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The performance of sensors is similar when using au-
tocorrelation or variance to build the early warning sig-
nal (SIAppendix, section 4H). In addition, changes in the
noise intensity have little effect on the sensors’ performance
(SI Appendix, Fig. S8E). Sensors also perform similarly when
noise is multiplicative instead of additive, but, as found in
previous works (6), the early warning signals must be con-
structed by using autocorrelation or the coefficient of variation
(SI Appendix, section 41).

Discussion

Our analysis supports previous studies indicating that critical
transitions are challenging to anticipate in multispecies systems
(15, 16): About 14% of the species in a mutualistic system may
not show any warning, and an additional 65% of species may show
“late” warnings of the critical transition (i.e., less than half of the
earliest warning). We expect these percentages to be higher in
more detailed ecological dynamics models and natural ecological
systems.

Responding to the above challenge, we leveraged the structural
observability theory to show that the structure of plant-animal
interactions in mutualistic systems can provide information to
identify sensor species that early anticipate critical transitions.
In particular, our work justifies why specialists tend to early
anticipate critical transitions in mutualistic systems (6). Namely,
specialists tend to be essential from the structural observability
viewpoint, meaning that they condense information to deduce
changes happening in all other species of the system. Importantly,
not all specialists are equally essential to measure. That is, from
the set of all specialists, those who anticipate earlier a critical
transition tend to have a high sensor score, as we illustrated in
Genebra. Sensor species are different from “indicator species,”
which are sensitive to environmental parameters (35).

Some system structures are more informative for identifying
sensors. This result is expected, as some system structures, such
as a complete bipartite network, render all species equivalent.
Our analysis shows that the information that a system structure
has for identifying species that early anticipate critical transitions
can be quantified by the effective network structure o. A system
structure is more informative as ¢ — 0 (¢ — —oo for a complete
bipartite network). Our analysis also shows that sensors perform
better as the deviations p of species abundance from their equi-
librium decreases. In particular, sensors perform better when the
early warning dynamics are closer to linear. Small deviations are
more likely to occur in mutualistic systems with a large handling
time and stronger competition within plants and animals. In
general, given a system structure and its corresponding o value,
the two regression models we built could be used to predict the
range of deviations from equilibrium p, where we expect that
sensors perform better than chance.

The predictions of the structural theory of dynamical systems
have already been experimentally validated in other problems
(36, 37). Similarly, the “structural stability” theory has shown how
the structure of ecological systems can inform about their dynam-
ical behavior (31, 38-40). Note that there is a so-called “duality”
between structural observability and structural controllability for
systems with linear dynamics (23, 25). A system is controllable
from the species A C Y. if we can steer the complete system to any
desired state by directly influencing species in 4 only (41). Since
the structure of mutualistic systems has bidirectional edges, the
duality implies that a mutualistic system is structurally observable
if and only if it is structurally controllable. Therefore, when
the system structure is informative, we conjecture that directly
influencing species with a high sensor score could help control
critical transitions by delaying or producing them.

Our study has two significant limitations: It only considers
mutualistic systems and assumes that their early warning dy-
namics are approximately linear. The generality of the structural
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theory of dynamical systems suggests that these two limitations
could be overcome. For example, the general linear structural
observability theory (23) could be applied to characterize sensors
when species interactions are not necessarily mutualistic. If the
early warnings dynamics is nonlinear, the structural theory could
be used to analyze the observability of a general class of nonlinear
dynamics (25, 42). For instance, in food chains with arbitrary
nonlinear dynamics, the structural observability theory predicts
that it is necessary to monitor all species in the lowest trophic
level (25). This prediction agrees with experimental works (10).
These extensions would be necessary for validating our approach
with experimental data, underscoring how knowing the structure
of multispecies systems allows better monitoring, especially when
their dynamics remain uncertain and difficult to infer.

Materials and Methods

Observability and Sensor Species. Consider mutualistic systems with n
plant and m animal species. Let x(t) = (x1(t),---,xn(t)) € R, and

y(t) = (y1(t), - - -, ym(t)) € RZ, denote the abundance of plant and animal
species at time t > 0, respectively. Here, x; and y; denote the abundance
of the i-th plant and j-th animal species, respectively. Let ¥ = {1,2,--- ,N}
denote the set of all species (N = m + n, where the first n species are plants).
Consider that the system dynamics can be approximated by a Stochastic

Differential Equation (SDE)

dx(t) = f(x(t), y(t))dt + w dW(t),

1
dy () = g(x(1), y(1))dt + w dW(2), .

with initial species abundances (x(0), y(0)) € RZ, x RZ,. Above, f:R" x
R™ — R" and g : R” x R™ — R™ are functions determining the system pop-
ulation dynamics. W(t) is a vector of independent Wiener processes with
adequate dimension, and w > 0 characterizes the noise intensity.

We assume that the early warning signals of a critical transition occur
as small deviations of species’ abundances from their (deterministic) stable
equilibrium values (x*, y*) € R, x RZ (9, 27-29). This assumption implies
that the dynamics of such deviations are approximately linear, conforming
with the Hartman-Grobman Theorem (30, 43). Therefore, the early warning
signal’s dynamics is well-approximated by using Eq. 1 with

fxy)=AXx—x")+B(y—y")

. . [2]
gxy)=C(x—=x")+D(y—y").

The matrices A € R"*", B€ R"*™, C ¢ R™*", and D € R™*™ are calculated
as A= 0f /0x, B= 9f /9y, C = 8g/dx, and D = 9g/dy, with partial deriva-
tives evaluated at (x*, y™*).

To identify species that anticipate critical transitions, we use the notion
of observability, a cornerstone concept in control theory (see, e.g., refs. 44
and 45 and S/ Appendix, section 1A). Consider a species subset S C X and let

z=Fx + Hy, [3]

denote the measured output containing the abundance of speciesin S, z €
R?, with P = |S| being the number of species that S contains. Here, F € RPX"
and H € RPX™ characterize the measured species. Specifically, fij # 0 if the
j-th plant species is in S, and hy # 0 if the k-th animal species is in S.
The system of Eqgs. 1-3 is observable from S if the abundance of all
species (x(t), y(t)) at any time t > 0 can be deduced from knowing only
the abundance of the measured species z(t) up to time t (S/ Appendix,
Definition 1 in section 1A). If the system is observable from S, we say that S
is a set of sensors. Given the matrices (A, B, C, D) and (F, H), Kalman’s rank
observability criterion gives necessary and sufficient conditions that a set
of sensors needs to satisfy (S/ Appendix, section 1A). If S is a set of sensors,
and all matrices are known, we can optimally estimate the abundance of
all species from the output using the Kalman-Bucy filter (ref. 46, p. 136).
Therefore, by construction, a set of sensors can anticipate a critical transition
happening in any part of the system if at least one species shows early
warnings of this transition.

Structure-Based Identification of Sensors in Mutualistic Systems. Identifying
sensor species is challenging because of our limited knowledge of the
functions f and g in Eq. 1. This limitation renders the matrices (A, B, C, D)
of Eq. 2 uncertain, so Kalman’s rank criterion cannot be used to probe
observability.

To circumvent the above challenge, we take a structuralist approach,
showing that it is possible to generically identify sensors by knowing only the
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structure of plant-animal mutualistic interactions (S/ Appendix, section 2).
This structure is captured by a bipartite network B(X, E), where nodes X
represent species, and edges E C X x X represent plant-animal (bidirec-
tional) interactions (31, 38, 39). We assume that this network is connected.
Note that this bipartite network encodes the zero pattern of the matrices
(B, €) in Eq. 2. That s, the structure encodes the presence (b; # 0, ¢j; # 0) or
absence (bj; = 0, ¢;; = 0) of plant-animal interactions, but it does not provide
information about their magnitude (i.e., the values of b; and ¢; are un-
known). Importantly, knowing the structure of a mutualistic system gives no
information about the matrices A and D (i.e., about the interactions within
animals or plants). Above, the word “generically” means that sensors render
the system observable for all values of the nonzero parameters, excepting
a zero Lebesgue-measure set. See S/ Appendix, Definition 6 in section 2E for
the formal statement.

Given the system mutualistic structure captured by the bipartite net-
work B(X,E), we prove that SC X is generically a set of sensors for
all possible values of (A,D) if and only if there is a node-disjoint
path cover of the network where each path of length # 1 ends in S
(S Appendix, Theorem 2 of section 2). If the conditions of this theorem are
satisfied, then the sensors guarantee their generic observability, regardless
of the within-animals and within-plants interactions that may exist. Recall
that a “path” is a sequence of nodes of the form {vi v, —--- — vp}
with v; € ¥ and (vj_1,v;) €E for i=1,2,...,£. The node v, is the end
node of this path. The length of a path is the number of edges it contains.
An isolated node {v;} is a trivial path of zero length. A “path cover” of
a network is a collection of paths where each node belongs to at least
one path. A path cover is “node-disjoint” if each node belongs to exactly
one path. Our criterion for sensors follows from three facts: first, the
classic characterization of structural observability for linear systems (ref. 23
and S/ Appendix, section 1B). Second, the structure of mutualistic systems
is described by bipartite networks. Finally, adding edges to a system (in
this case, interactions within animals or within plants) cannot damage its
structural observability (ref. 25 and S/ Appendix, Lemma 1 in section 1B).

MSS and Sensor Score. Using S/ Appendix, Theorem 2 of section 2, it is pos-
sible to identify one MSS by calculating a maximum matching on an aug-
mented bipartite network (S/ Appendix, section 2E).

In general, a system has more than one MSS. Given a bipartite network
characterizing the system structure, the sensor score s; of the i-th species
is the probability that species j is in an MSS. Our characterization of sensors
impliesthats; < 1foralli(i.e., nospecies appearinall MSSs). Indeed, s; = 1if
and only if species i had a single incoming edge (which is impossible because
all edges in B are bidirectional). Note also that in a fully connected bipartite
network, any species is a solo MSS. In this case, the sensor score iss; = 1/N
for all species, and the system structure does not contain any information to
decide which species is better to monitor.

In SI Appendix, section 2F, we introduce a random sampling method to
estimate the sensor score. We validated the accuracy of this method by
comparing the estimated sensor score with the exact sensor score obtained
by calculating all maximum matchings (47). Calculating all maximum match-
ings is computationally infeasible in large networks. Our random sampling
method estimates the sensor score for networks of about N = 80 species in
70 s with a relative error < 0.1% on a laptop computer.

Simulating Critical Transitions. \We used the model introduced in ref. 31 to
simulate the dynamics of mutualistic systems with n plants and m animals.
The model reads as Eq. 1 with

P
S v
—_—
1+h2j”;1u'yi5- )Y/

A
Sy xi
14+hY0 K x;
+hY g w Xi

n
fiy) =x [ =380 x+
k=1
[4]
A) N A
g y) =y [o® =3 8% v+
k=1

Above, fi(x,y) and gj(x, y) denote the i-th row and j-th row of the vectors
f(x,y) and g(x, y), respectively. The superscripts (A) and (P) refer to animals
and plants, respectively. The parameters «; are the intrinsic growth rates.
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The parameters (3 > 0 represent the intraspecific competition strengths
within plants and within animals when i =k and the interspecific com-
petition strengths when i # k. Plants and animals experience mutualistic
benefits modeled by using a saturating functional response with handling
time h > 0. The parameter 1 > 0 scales the mutualistic interaction strength
across all species, and ~;; > 0 characterizes the strength of the mutualistic
benefit between species j and species i. If species i and j do not have a
mutualistic interaction, then ~;; = ~;; = 0. Otherwise, these parameters are
given by

W =0/ deg(x)’, v =0/ deg(y))°.

Here, deg(x;) and deg(y;) denote the degree (number of edges) of the i-th
plant species and j-th animal species in the bipartite network B, respectively.
Above, v > 0 is the baseline (or basal) mutualistic benefit, and 6 > 0 is the
mutualistic tradeoff (34).

We studied three sets of parameter values for the above model
(S Appendix, section 3C and Table S3). Each parametrization follows (6).
The results presented in Validation of Sensors in a Large Dataset of Em-
pirical Networks and Characterizing the Performance of Sensors consider
the “nominal” parameter values. S/ Appendix, section 4F shows the perfor-
mance of sensors for the other two parameter sets, with “low” and “high”
values. Additionally, S/ Appendix, section 4G analyses the case when the
mutualistic strength is reduced more significantly.

To induce a critical transition, we decreased . from =1 to 1 = 0 using
70 equal steps. We ran our simulations for 5,000 time steps before every
change, discarded the first 200 samples to avoid transients, and recorded
every species’ abundance for the remaining time steps. Following ref. 6,
we used only feasible realizations of the randomly chosen parameters and
solutions of the SDE where every variable in Eq. 1 has a positive equilibrium.

Early Warning Score. To calculate the early warning score w; for speciesiin a
particular system, we first computed the variance of its abundance at each of
the 70 steps described above. Then, we used a rolling window of 30% of the
data points to perform a linear regression (see S/ Appendix, section 3D for
details). We interpret the regression slope as the change rate of the variance
over the corresponding window. A positive slope represents a variance
increase at that particular value of u, and a negative slope represents a
variance decrease. We estimate the early warning score of species i as w;
if the variance increases monotonically for all © < w;.

Early Warning Score Ratio when Choosing Species by Sensor Score, Degree, or
Randomly. Let Y; and X4 denote the species set X ordered from high to low
sensor score and from low to high degree, respectively. If two or more species
have identical sensor scores or degrees, we order those species randomly,
producing different realizations of the species order in such a case. Let X, ;¢
be a random permutation of X. To calculate the early warning score ratio
r(q) for a given fraction q € [0, 1] of species, as defined in Table 1, when
choosing species by sensor score (respectively, by degree or randomly), we
build the set Sq C X choosing the first |gN| species in X5 (respectively, X4
or X;and)- Therefore, r(q) is a random variable depending on the realization
of the system dynamics and the realization of the species order (see details
in SI Appendix, section 3E).

Data Availability. Data and code to reproduce our results and calculate
the sensor score and effective network structure is archived in GitHub
(https://github.com/SyntheticDynamics/SensorSpecies).

Previously published data were used for this work. This work has used the
Web of Life dataset (https://www.web-of-life.es).
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