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Abstract—Direct-to-Satellite IoT allows devices on the Earth
surface to directly reach Low-Earth Orbit (LEO) satellites
passing over them. Although an appealing approach towards a
truly global IoT vision, scalability issues as well as highly dynamic
topologies ask for dedicated protocol adaptations supported
by novel models. This paper contributes to this research by
introducing estimators and a transmission probability function
to dynamically control the contending set of devices on a
framed slotted Aloha model compatible with the LoRaWAN
specification. In particular, we discuss techniques that account for
particularities in the dynamics of sparse DtS-IoT constellations.
Simulation analyses of a realistic case study show that >86% of
the theoretical throughput is achievable in practice.

Index Terms—MAC, Direct-to-Satellite IoT, LoRaWAN.

I. INTRODUCTION

The internet of things (IoT) is just around the corner. Emerg-
ing standards such as 5G are designed to accommodate large
numbers of machine-to-machine (M2M) communications [1]
leveraging novel Low Power Wide Area (LPWA) technologies
such as LoRaWAN, LR-FHSS and NB-IoT [2, 3, 4, 5]. Appli-
cations ranging from agriculture to smart grid, environmental
monitoring, emergency management, among others can be
unblocked by enabling the transmission of small amounts of
information from long distances (100s km, at <50 Kbps) [6].
By 2023, it is expected that more than 14 billion connections
–50% of all network connections– will involve massive, cheap
and power-efficient IoT devices [7]. A global IoT service
will thus be crucial to uphold the IoT trend. In this context,
constellations of Low-Earth Orbit (LEO) satellites are central
to support this ambitious goal [8].

The so-called Direct-to-Satellite IoT (DtS-IoT) paradigm
constitutes the holy grail of satellite-based IoT [9]. The
core idea is to succeed in connecting resource-constrained
devices on ground directly to LEO satellites without rely-
ing on intermediate gateways [10]. DtS-IoT is particularly
attractive in regions where deploying infrastructure is difficult,
economically uninteresting (i.e., about half of the inhabited
area of the planet [11]), or impossible due to disaster condi-
tions. Recent in-orbit demonstration of the LoRaWAN-based
LacunaSat-1 nano-satellite evidenced the practical feasibility
and commercial attractiveness of the DtS-IoT concept [12].
Furthermore, recent work showed that DtS-IoT services can
already be provided with just a dozen of satellites acting as
opportunistic data mules [9] (a.k.a. sparse constellations, in
contrast to resource-hungry mega-constellations).

The problem of DtS-IoT is that satellites orbiting in LEO
move at more than 25,000 km/h, and so does their area
coverage on the Earth surface. Furthermore, at altitudes in
the order of 500 km, a LEO satellite completes a pass over a
serviced region in less than 10 minutes. Besides the challenge
of coordinating the service to potentially thousands of IoT
devices at the sight of the passing-by LEO satellite, the overall
network dynamics of DtS-IoT are far from the use cases that
are motivated by traditional terrestrial IoT protocols.

In this work, we tackle the medium access control chal-
lenges of sparse DtS-IoT. First, we propose a framed slotted
Aloha [13] model that can be materialized with standard
beacon-based LoRaWAN devices and gateways [14]. Sec-
ondly, we deal with the scalability aspect by providing an
estimator of the successful extraction rate for a given amount
of contending nodes. Based on this, we derive a Transmission
Probability Function (TPF) that, by beaconing the resulting
value, enables an accurate control of the cardinality of the con-
tending set during the frame, Thirdly, we uncover a non trivial
problem in frame-based sparse DtS-IoT. Devices might receive
the beacon but the fast-paced LEO satellite dynamics could
leave them out-of-sight by the time an uplink transmission
is scheduled. Since sparse constellations might not provide
an immediate new satellite over the horizon, we propose
two practical solutions to mitigate this issue: i) throttling the
estimator to compensate, and ii) empower perceptive devices
to account for trajectory information. Finally, we present
a realistic DtS-IoT scenario with thousands of devices to
evaluate and assess the proposed approaches.

The remainder of this paper is organized as follows: Sec-
tion II introduces the framed slotted Aloha DtS-IoT model.
The TPF function, estimators and waste transmission mitiga-
tion schemes are introduced in Section III. Section IV presents
a realistic case study where the methods are evaluated by
means of simulations. Conclusions are drawn in Section V.

II. DTS-IOT MODEL

A. Framed Slotted Aloha DtS-IoT

Our DtS-IoT model, illustrated in Fig. 1, assumes that the
communication between the satellite and the IoT devices on
ground is organized in frames. The IoT gateway payload on
the satellite transmits a periodic beacon to mark the beginning
of a frame. A device that decodes the beacon is assumed to
have the satellite in line of sight while enjoying good enough
channel conditions to reach the gateway back. Thus, an uplink
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Fig. 1. DtS-IoT framed slotted ALOHA model

transmission could occur immediately after the beacon with at
least the most robust modulation and coding scheme available.

This model can be, for instance, materialized by standard
LoRaWAN Class-B mode [2], where the beacon is modulated
by the most robust spreading factor (SF12), while devices use
any SF7-12 for the uplink, depending on the measured channel
conditions. As discussed in [9], the absence of a passing-by
satellite for a period of no more than 2 hours (i.e., beacon-
less period) is enough to keep a network-wide synchronization,
enabling sparse LoRa-based and power-effective DtS-IoT con-
stellations. In a LoRaWAN-based DtS-IoT, the design of the
frame size an d structure will depend on the downlink duty
cycle α, and the maximum devices’ clock drift ∆m. Assuming
a satellite pass time Tp over a device with f packets to send
over f frames (i.e., 1 packet to 1 frame ratio), the frame
duration Tf is constrained by

Tb
α
≤ Tf ≤

Tp + Tb −∆m

f + 1
. (1)

Indeed, the frame length has to be longer than Tb

α , where
Tb denotes the beacon duration. Also, the frame has to be
short enough for a device to transmit f times in f different

frames, considering the maximum clock drift between two
satellite passes. In compliance with LoRaWAN Class-B, a
beacon period Tf of 120 seconds is feasible, rendering a duty
cycle of nearly 1% assuming SF12 (airtime 1.32 seconds, at
20 Bytes and coding rate 4/5).

In our DtS-IoT model, each frame consists of a fixed number
w of slots (echoing a well-studied slotted ALOHA variant for
LoRaWAN [14]). Each slot is a time episode in which an IoT
device can choose to perform an uplink transmission. It picks
one of the slots in the current frame with uniform probability
to then schedule a packet in such time period, provided it has
successfully decoded the beacon and indeed has data ready
for uplink. As a result, packets with airtime up to the slot
duration can be sent to the satellite; however, adequate safe-
guard margins should be considered. For instance, the slant
range with a LEO over the horizon can be as large as 2,000 km,
which implies a ∼7 ms device-to-gateway propagation delay.

If more than one devices pick the same slot, destructive
interference or a collision occurs, rendering all colliding mes-
sages unusable (we disregard the so-called capture effect [15]).
Thus, slots can be classified as idle (not used), extracted (a sin-
gle transmission that made it to the gateway on the satellite) or
collided (two or more collided transmissions lost) [16]. Since
for the satellite, many IoT devices willing to transmit might
be in view at the same time (comprising the so-called collision
set), the likelihood of collisions in DtS-IoT is typically higher
than in traditional less-crowded ground IoT deployments. In
particular, if there are more transmitting devices than slots
in the frame, collisions are guaranteed, unless some devices
were refraining from participating in the frame. Our focus is
therefore the investigation of a means to limit the number of
contending devices (deriving a transmission set, a subset of
the collision set), while considering the LEO dynamics.

a) Collision Set Cardinality Estimation: In order to con-
trol the cardinality of the transmission set k, the cardinality
of the collision set n needs to be estimated upfront. Early
DtS-IoT deployments will likely allow operators to exploit a
priori knowledge of the position and traffic shape of serviced
IoT devices. This information can be uploaded to the satellite
in advance so that the number of reachable and contending
devices can be determined for each frame. However, more
automated and dynamic approaches are also conceivable. For
instance, the satellite operator might build in machine learning
techniques based on patterns recorded from previous passes
over the same region (especially applicable for Earth-repeat
orbits [17]). On the other hand, well-studied collision set
estimation techniques for dynamic frame-length Aloha proto-
cols [18] can be enhanced. Among these, efficient estimators
are available [16] which can be adapted to the time-evolving
collision set as observed from the passing-by DtS-IoT satellite.
The DtS-IoT collision cardinality learning/estimation is thus
possible, but the specific means to achieve them are out of the
scope of this paper. We do assume that the satellite can profit
from such an estimate to beacon derived relevant information
to the IoT devices on ground.



III. TRANSMISSION PROBABILITY FUNCTION

Knowing the collision set cardinality does, in principle,
allow the construction of an explicit schedule assigning a
dedicated slot to each device with data to send. Nevertheless,
such a coordination would be prohibitive to compute, to
maintain, and costly to roll out (wrt. both bandwidth and
power), thereby reducing the DtS-IoT network flexibility and
scalability. Instead, relevant information related to the collision
set cardinality can be included in the beacon with the aim at
yielding better performance than plain slotted Aloha. To this
end, we design a Transmission Probability Function, TPF, that
maps the number of competing nodes to the probability of
indeed contending in the current frame. With the collision set
cardinality n and the TPF routine available at the satellite, the
resulting transmission probability p can be broadcast on each
beacon, giving the satellite some degree of control over the
cardinality k of the transmission set as a function of n. Then,
devices participate in the frame (i.e., select one of its w slots
and transmit data on it) with this probability. The remainder
of this work formalizes and evaluates the value of using TPF
in DtS-IoT networks based on framed slotted Aloha.

Our overall goal is to maximize the expected number of
successful messages that can be decoded at the gateway. We
introduced p as the transmission probability, n as the number
of IoT devices on the collision set, and k as the size of
the transmission set. Since k depends on the transmission
probability p, we assign a random variable K that indicates
this size. Furthermore, we denote the number of successfully
extracted transmissions as S, which is also a random variable.
In the following, we will derive an expression for the expected
value E[S] in relation to p (or E[S | p]). This will give us an
estimator E(p) of the expected packet extraction performance,
depending on how we set the transmit probability.

First, we fix K = k, as this case is straightforward
to analyze: Let X1, . . . , Xk be random variables, such that
Xi = 1 if the i-th device has a unique slot, and 0 otherwise.
Looking at an individual device, we get

P [Xi = 1] =

(
1− 1

w

)k−1
= E[Xi], (2)

since all of the k− 1 other devices need to pick a slot that is
different from the one picked by device i. As these random
variables are 1 with the aforementioned probability and 0
otherwise, this probability is equal to their expected value.
From these indicator variables, we can derive the expected
value of successes E[S], since the expected value is linear:

E
[
S
∣∣ K = k

]
= E

[
k∑
i=1

Xi

]
=

k∑
i=1

E[Xi] = k·
(

1− 1

w

)k−1
Of course, this holds only in the case where the size of the
transmission set is exactly k. Since the cases for different k are
disjoint, however, we can get the combined value of E[S] by
weighting these disjoint cases with their respective probability.

All nodes decide independently whether they should com-
pete, based on p. Therefore, K follows a binomial distribution,

and we can express the probability for an individual transmis-
sion set cardinality k as

P [K = k] =

(
n

k

)
· pk · (1− p)n−k,

which we can then apply as described above to find E[S]:

E[S] =

n∑
k=0

E
[
S
∣∣ K = k

]
· P [K = k]

=

n∑
k=0

(
n

k

)
· pk · (1− p)n−k · k ·

(
1− 1

w

)k−1
This rather complicated expression for the estimator can be
simplified as follows (proof included in the appendix):

E[S] = np
(

1− p

w

)n−1
=: E(p) (3)

This value only depends on the slot count w, the collision
set cardinality n, and on the transmission probability p. The
former is known and n can be assumed to be estimated
as described above. We can therefore pick p such that the
estimator is maximized. To find this maximum, take the
derivative of E by p and look at the roots:

dE
dp

(p) =
n

w

(
1− p

w

)n−2
· (w − np)

Indeed, we find a root at p = w/n, which indicates a global
maximum: It holds that E is continuous, E(0) = 0 = E(w),
and E(p) > 0 for 0 < p < w. Thus, the expected success rate
E[S] is maximized if p = w/n. Of course, if w is greater
than n, this maximum is outside the valid range [0, 1] for p.
In these cases, the highest expected number of successes we
can achieve is at p = 1.

The transmit probability p that our TPF should return, given
a collision set of n nodes and a frame length of w slots can
thus be calculated with the following expression:

TPF(n) = arg max
p∈(0,1)

E(p) = min
(

1,
w

n

)
A. Wasted Transmissions

There is a specific phenomenon from the LEO satellite pass
dynamics that is not properly represented in our model so far, a
time-evolving variant of what is known as the hidden-terminal
effect. Consider an IoT device that can see the satellite as it
passes over the horizon as illustrated in Fig. 2.

Since the satellite moves along its orbit, it might only
stay visible for the device for a shorter time than the frame
duration Tf . If a new frame begins in this situation, the final
slots of the frame will occur after the satellite has dropped
below the horizon. Assuming that this is not known to the
device, it might, according to the presented frame slotted
Aloha protocol, decide to transmit without the satellite being
at sight. These wasted transmissions would never be observed
by the satellite, and consequently account for neither a success
nor a collision.

In order to improve the accuracy of the transmission set car-
dinality estimation in this condition, we study two approaches
of concrete practical value, as we discuss in Section IV.
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Fig. 2. Useful and wasted slots. Mountains illustrate the horizon of visibility
(a.k.a. elevation profile) for the device in blue. Other devices will have a
different one, and thus another proportion of useful and wasted slots for the
same frame.

a) Estimator Throttling: As we will discuss below, the
simulator tool introduced in Section IV enables us to quantify
that the relative proportion of wasted transmissions is inde-
pendent from the transmission probability p (see in Fig. 4 that
wasted is a linear expression of p). Since a fixed percentage
of senders waste their messages regardless of the transmit
probability, we might as well consider this fixed percentage as
non-contending devices in the first place. For instance, at the
top of Fig. 4, four sample frames f = 1, 2, 3, 4 with collision
set cardinality nf of 137, 287, 268 and 179 are presented
with their resulting wasted transmissions for different p values.
Since Wc=38% of the 287 devices in the second frame waste
their transmissions, the throttled estimator ET (p) would run
the original one with collision set cardinality n = 177, which
is 62% of the total amount of participating devices. In other
words, this approach corrects the estimator to maximize the
extraction ratio, by ignoring wasted packets. But IoT devices
are still performing useless transmissions after the satellite
hides behind their individual horizon.

b) Perceptive Devices: To save energy on constrained
IoT devices, transmissions when no satellite is at sight should
directly be avoided. To this end, we change the devices’
behavior to only pick slots where devices can see the satellite.
Indeed, we assume some kind of trajectory information is
made available to the device via the beacon or other means,
an approach already proven practical in Lacuna DtS-IoT satel-
lites [12]. This makes it impossible for wasted transmissions
to occur, but it also invalidates the assumption that all slots
are picked with equal probability. Therefore, applying E(p)
to perceptive devices might deliver a sub-optimal extraction
ratio.

IV. EVALUATION

In this section we evaluate the applicability of the presented
model and TPF approaches in a realistic DtS-IoT use case.

A. Case Study Setup

We evaluate a DtS-IoT scenario comprised of 1500 IoT
devices deployed uniformly over a circular region on the
surface of the planet. We consider a LEO satellite configured
with a polar orbit at 600 km altitude, an inclination of 98◦,
a right ascension of the ascending node (RAAN) of 20◦,

and an argument of perigee of 0◦ (epoch set to 1/1/2021
00:00:00). The resulting trajectory is computed using the Two-
Body propagator included in the Systems Toolkit (STK) from
AGI. The resulting dynamics are illustrated in Fig. 3.

We study two coverage configurations regarding the IoT
gateway the spacecraft is equipped with. One of them assumes
a beamwidth of 90◦, the other of 120◦. Each antenna is facing
the nadir direction, and the 90◦ antenna can at any time serve
only a subset of the devices in the 120◦ configuration.

A simulator that reads the fixed Earth-Center Inertial (ECI)
position of the orbital trajectories and IoT devices was devel-
oped1. The tool is written in RUST, delivering competitive
performance and memory safety guarantees while keeping
the code clean and readable. For the devices, we included
an embedded LUAJIT runtime environment. This enables
flexible comparisons across different device behaviors, which
we implement in LUA, without recompiling the simulator. We
spawn one co-routine per device, and provide an interface to
define device’s actions, which can dynamically react to other
events within the simulation.

We set the frame length to 120 slots of one second each. In
the provided scenario, this gives us four useful frames for the
90◦ case, and six for the 120◦ one. Each of the IoT devices in
the evaluated scenario will attempt an uplink on every frame,
an aggressive configuration for IoT, convenient to stress the
TPF evaluation.

B. Results

For every possible p in frames in the 90◦ and 120◦ cases, we
study the successful extracted messages and the lost messages,
comprising collisions and wasted transmissions (only for non-
perceptive devices). These results are collected for simulations
with and without perceptive devices (50 seeds for each p for
a total of 20k simulations), as well as the expected value of
the estimator with and without throttling. Plots are presented
in Fig. 4, and described in the caption.

In general, initial and final frames of the two evaluated
passes (i.e., frames at the edge of the circular serviced region)
present a reduced number of nodes in the collision set n
compared to central frames. Indeed, central frames of the 120◦

case pose the highest challenge in terms of scalability, with
n3 = 940 and n4 = 931 collision set cardinality contending
for the 120 slots in the third and fourth frame. Thus, while
most congested frames achieve the optimal transmission suc-
cess with p < 0.2, initial and final frames are used optimally
if p > 0.8 values are beaconed.

While the estimators theoretically approach the slotted
Aloha maximum throughput, simulations not always follow.
In particular, estimators for earlier frames at the beginning
of the pass provide accurate values, and simulations reach
the optimal extraction rates. But as the satellite flies into the
service region, more devices start to go out of sight of the
gateway and wasted messages become predominant towards
the end of the pass. The distribution of devices in these frames

1https://dgit.cs.uni-saarland.de/kai/dts-iot-sim/
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Fig. 4. Evaluation metrics for extraction and lost messages in the 90◦ and 120◦ coverage scenarios comprising four (top) and six (bottom) useful frames
respectively. Plots can be read as a time evolution of the satellite pass from left to right. Simulation and estimator metrics are presented for every possible
p for each frame to evaluate the consequences of the p selection. Averaged percentage of the theoretical throughput and percentage of lost transmissions
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The amount of devices reachable in the beacon of frame f (and considered for the beaconed p at that moment) are noted as nf . Also, the min and max
nodes reachable in all slots of the frame (nmin and nmax) are indicated. Note that nmax may be larger than nf , since new nodes come into view as the
satellite moves in orbit. These nodes did not observe the beacon and are thus not part of the collision set.

is also skewed such that only very few nodes can use the late
slots: For instance, in the 90◦ case, the number of participants
in frame 3 drops from initially 287 (beacon n3) to 65, and
in frame 5 the count goes down from initially 179 (beacon
n5) to 7 for the very last slot. Note that despite nmin are
267 and 269 for those frames, only 65 and 7 were able to
pick up the beacon at the beginning. Indeed, the number of
participating devices for which the satellite has not yet passed
the horizon can only exhibit a monotonous decrease. This is
because devices that are just coming into view did not observe

the beacon, and are thus unable to transmit while others are
moving out of sight. Since the estimators assume all slots to
be equally likely and usable, their accuracy is lowered. This
effect is especially pronounced for the later frames where the
relative drop is more significant.

a) Estimator Throttling: We still observe the best packet
delivery in all frames with the non-perceptive devices, at the
transmit probability given by the throttled estimator (86% and
89% of the theoretical throughput). However, this comes with a
cost in terms of wasted messages. Since these accumulate with



collisions to account for the total packet loss, we can conclude
that such extraction rates are obtained at the price of energy
losses. The throttled approach is however suitable for a multi-
gateway setup on which another satellite has already entered
the service region and is in conditions of picking up those
otherwise wasted packets. Although multi-gateway approaches
are part of the LoRaWAN IoT specification, their study for
DtS-IoT based on TPF is left as future work.

b) Perceptive Devices: On the other hand, the perceptive
devices completely avoid the waste effect, at the expense of
a higher collision rates (at the end of the pass, where more
devices will compete for the earlier slots of the last frame)
and a slightly sub-optimal extraction ratio (75% and 83%).
In both throttled estimator and perceptive devices approaches,
the obtained metrics outperform the baseline (i.e., p = 1).

V. CONCLUSION

A global Internet of Things is possible if Direct-to-Satellite
IoT via LEO satellites can be realized. To this end, existing
IoT protocols need to be adapted to cope with unprecedented
scale due to the large satellite coverage combined with a fast-
paced network dynamics imposed by the passing-by gateway
in LEO. In this work, we approached the challenge with a
framed slotted Aloha model implementable by means of minor
adaptations of the LoRaWAN standard. We proposed specific
collision cardinality estimators and derived solutions to control
the contention of devices under coverage even in demanding
LEO dynamics. Simulation results on a realistic case study
proved that 87% of the theoretical throughout can be achieved
in practice, although with 38% of useless transmissions. A
perceptive device with enhanced intelligence on the satellite
trajectory delivered 79% of optimality at a lower overhead
of 34% lost packets. Future work includes expanding the
estimator to model the waste phenomenon, which could be
approached by changing the Xi in Equation 2 to not count
transmissions that would be wasted. Improvements on the
perceptive approach where the slot selection probability might
be twisted to favoring late vs. early slots to counter the skew
in slot usability are on also on the roadmap.

APPENDIX

Proof of Equation 3: We can start counting at 1 because the
first term of the sum is zero:

n∑
k=1

(
n

k

)
· pk · (1− p)n−k · k ·

(
1− 1

w

)k−1

We apply
(
n
k

)
· k =

(
n−1
k−1
)
· n

= n ·
n∑
k=1

(
n− 1

k − 1

)
· pk · (1− p)n−k

(
1− 1

w

)k−1

Now we perform an index shift (j = k − 1)

=n ·
n−1∑
j=0

(
n− 1

j

)
· p(j+1) · (1− p)n−(j+1)

(
1− 1

w

)j

=np ·
n−1∑
j=0

(
n− 1

j

)(
p ·
(

1− 1

w

))j
· (1− p)(n−1)−j

Finally, we apply the binomial theorem

= np ·

(
p ·
(

1− 1

w

)
+ (1− p)

)n−1
= np

(
1− p

w

)n−1
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[10] J. A. Fraire, S. Céspedes, and N. Accettura, “Direct-to-satellite iot: A
survey of the state of the art and future research perspectives,” 6 2019,
pp. 1–12.

[11] ITU, “Itu global and regional ict data,” 11 2020.
[12] The Things Network Global Team, LoRa World

Record Broken, 2020 (accessed May 28, 2021).
[Online]. Available: https://www.thethingsnetwork.org/article/
lorawan-world-record-broken-twice-in-single-experiment-1

[13] L. Kleinrock and S. S. Lam, “Packet switching in a multiaccess broad-
cast channel: Performance evaluation,” IEEE Trans. Commun., vol. 23,
no. 4, pp. 410–423, 1975.

[14] L. Beltramelli, A. Mahmood, P. Osterberg, and M. Gidlund, “Lora
beyond aloha: An investigation of alternative random access protocols,”
IEEE Transactions on Industrial Informatics, 2020.
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