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Covid-19 Mitigation by Digital Contact Tracing and Contact Prevention (App-Based Social Exposure Warnings)

A plethora of measures are being combined in the attempt to reduce SARS-CoV-2 spread. Due to its sustainability, contact tracing is one of the most frequently applied interventions worldwide, albeit with mixed results. We evaluate the performance of digital contact tracing for different infection detection rates and response time delays. We also introduce and analyze a novel strategy we call contact prevention, which emits high exposure warnings to smartphone users according to Bluetooth-based contact counting. We model the effect of both strategies on transmission dynamics in SERIA, an agent-based simulation platform that implements population-dependent statistical distributions. Results show that contact prevention remains effective in scenarios with high diagnostic/response time delays and low infection detection rates, which greatly impair the effect of traditional contact tracing strategies. Contact prevention could play a significant role in pandemic mitigation, especially in developing countries where diagnostic and tracing capabilities are inadequate. Contact prevention could thus sustainably reduce the propagation of respiratory viruses while relying on available technology, respecting data privacy, and most importantly, promoting community-based awareness and social responsibility. Depending on infection detection and app adoption rates, applying a combination of digital contact tracing and contact prevention could reduce pandemic-related mortality by 20%-56%.

Introduction

The COVID-19 pandemic has challenged health authorities around the world since December 2019. Many governments immediately implemented physical distancing and self-isolation measures, ranging from simple "stay-at-home" recommendations to strict lock-downs [START_REF] Hale | Oxford covid-19 government response tracker[END_REF] . Although straightforward, fast and effective in controlling the propagation of the virus, rigorous lock-downs are emergency measures which imply profound economical and social consequences, and cannot be sustained over long periods of time, specially in underdeveloped and developing countries. Sustainable and widely applied nonpharmaceutical interventions such as effectively communicating prevention measures, cancellation of large-scale public gatherings, widespread/mandatory mask utilization, and travel restrictions have proved to be insufficient to contain viral spread in many countries [START_REF] Bedford | Covid-19: towards controlling of a pandemic[END_REF] .

In this context, Contact Tracing (CT) has been extensively used to attempt to control outbreaks [START_REF] Braithwaite | Automated and partly automated contact tracing: a systematic review to inform the control of covid-19[END_REF] by identifying and isolating close contacts of diagnosed patients as soon as possible, to prevent further transmission. However, the efficiency of the approach in diminishing COVID-19 propagation strictly depends on how quickly, broadly, and accurately the contact tracing process is [START_REF] Hellewell | Feasibility of controlling covid-19 outbreaks by isolation of cases and contacts[END_REF] . In particular, it is crucial to minimize delays in diagnostics, contact determination and detection, as well as the subsequent isolation of all possibly infected individuals [START_REF] Kretzschmar | Impact of delays on effectiveness of contact tracing strategies for covid-19: a modelling study[END_REF] . This argues in favor of so-called digital CT, where smartphones automatically store and report contact information [START_REF] Braithwaite | Automated and partly automated contact tracing: a systematic review to inform the control of covid-19[END_REF] using mainly Bluetooth Low Energy (BLE) technology for proximity detection between devices [START_REF] Lee | Interrupting transmission of covid-19: lessons from containment efforts in singapore[END_REF] . The effectiveness of CT has been enhanced by embracing this technology in several countries [START_REF] Lin | Policy decisions and use of information technology to fight coronavirus disease, taiwan[END_REF][START_REF] Garg | A case for participatory disease surveillance of the covid-19 pandemic in india[END_REF][START_REF] Wymant | The epidemiological impact of the nhs covid-19 app[END_REF] , although not free of data privacy concerns, among other controversies [START_REF] Kind | Exit through the app store?[END_REF][START_REF] Klenk | Ethics of digital contact tracing and covid-19: who is (not) free to go?[END_REF] .

Both manual and digital CT evidenced a common disadvantage intrinsic to the very nature of this reactive strategy: it depends largely on the percentage of infected individuals which are successfully and quickly diagnosed with COVID-19. However, this issue has been scarcely documented and noted by the community, even though infection detection rates are estimated to be below 12% for most countries, and 16% or less even for developed countries such as the United States of America, Canada, China, Sweden and The United Kingdom [START_REF] Villalobos | Sars-cov-2 infections in the world: An estimation of the infected population and a measure of how higher detection rates save lives[END_REF] . Accordingly, an analysis for the city of New York estimates an Infection Detection Rate (IDR) of 15-20% [START_REF] Yang | Estimating the infection-fatality risk of SARS-CoV-2 in new york city during the spring 2020 pandemic wave: a model-based analysis[END_REF] . Undetected infections are a key characteristic of the COVID-19 pandemic that severely impacts CT strategies, as no contact tracing is possible without diagnosis, which is most generally triggered by symptom onset. We argue this CT limitation is the main reason for observing satisfactory results only when combined with other policies such as detection and isolation via enhanced/random testing or contact avoidance via household quarantine [START_REF] Aleta | Modelling the impact of testing, contact tracing and household quarantine on second waves of covid-19[END_REF] .

In this work, we analyze the impact of different IDRs and time delays on the effectiveness of CT. With the aim of reducing the dependency on these factors, while improving data privacy, we introduce community-based Contact Prevention (CP). CP is a novel strategy that attempts to diminish viral transmission by warning users from infection risks due to their current social activity. To quantitatively assess CT and CP in realistic COVID-19 scenarios, a detailed COVID-19 simulation model based on agents, which we named SERIA, is presented. This model leverages several COVID-19 statistical distributions such as social and household contact profiles, IDRs, population age, viral latency period, and fatality rates. We then evaluate and compare the effect of CP and CT strategies on final epidemic size (FES) and mortality (deceased agents as a percentage of the total simulated population).

Methods

SERIA is a Monte Carlo agent-based model that reproduces the essential aspects of social and household contacts in the context of COVID-19 (SERIA is open-source and publicly available at https://bitbucket.org/juanfraire/seria). The model includes all agents of the well-known SEIR models [START_REF] Kaddar | A comparison of delayed sir and seir epidemic models[END_REF] and adds an asymptomatic agent, a fundamental component of the COVID-19 pandemic [START_REF] Li | Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (sars-cov-2)[END_REF] . We have used SERIA to simulate a population that has common mitigation measures in place, such as bans on large-scale gatherings, mandatory face masks, and limitations on the size of social gatherings.

To this end, we have parameterized the amount of daily close contacts, as well as the probability of transmission upon their occurrence, so that SERIA averages an effective R of 1.5. Based on this scenario, we evaluate the theoretical performance of CT and CP in terms of FES and mortality rate, according to varying degrees of diagnostic/isolation delays, app adoption and IDRs. Results presented here for each set of parameters correspond to the average of 60 simulations of 1 × 10 5 agents. Social and household transmission are handled separately. Essential aspects of the model are summarized below; detailed explanations, algorithms and validation analysis are given in the Supplementary Information.

Agents We use age as the main defining feature for agents, since it affects all other agent features. For instance, lethality amongst infected, as given by the Infection Fatality Rate (IFR) (see figure S4), and social contact patterns S7. Age is assigned randomly to each agent following a probability distribution given by P age , shown in figure 1. This function was fitted from the latest Argentinian census conducted in 2011, but could be adjusted to any other population age. In SERIA, we divide infected agents into two categories, symptomatic (poly-symptomatic, which present multiple symptoms compatible with Covid-19, and are therefore subsequently tested) and asymptomatic (whether truly asymptomatic or oligosymptomatic, which present none or mild symptoms, and thus are not tested). Symptomatic agents are assumed to self-isolate on symptom onset. We also assume all agents have equal transmission probability upon close contact with a susceptible agent. While some meta-analysis studies have found lower secondary attack rates for asymptomatic subjects [START_REF] Buitrago-Garcia | Occurrence and transmission potential of asymptomatic and presymptomatic sars-cov-2 infections: A living systematic review and meta-analysis[END_REF] , a recent study found similar viral load and infectiousness for PAMS (pre-symptomatic, asymptomatic, and mildly-symptomatic) subjects [START_REF] Jones | Estimating infectiousness throughout sars-cov-2 infection course[END_REF] , and no significant differences have been found in some recent contact tracing studies [START_REF] Hu | Infectivity, susceptibility, and risk factors associated with sars-cov-2 transmission under intensive contact tracing in hunan, china[END_REF] . Also, the same distribution of symptomatic and asymptomatic infections is used in all simulations. This distribution depends on agent age and coincides with the function that describes IDR2 in figure 1 (estimated from Poletti s results [START_REF] Poletti | Association of Age With Likelihood of Developing Symptoms and Critical Disease Among Close Contacts Exposed to Patients With Confirmed SARS-CoV-2 Infection in Italy[END_REF] ). As observed in the graph, the probability of symptomatic infection increases with age.

Time Periods Once infected, agents sequentially transit the latency and infectious periods, being able to spread the virus only in the latter. The length of the latency period is assigned randomly to each agent, obeying a log-normal distribution that varies between 1 and 20 days [START_REF] Lauer | The incubation period of coronavirus disease 2019 (covid-19) from publicly reported confirmed cases: estimation and application[END_REF] , with a median of 4 days [START_REF] Flaxman | Report 13: Estimating the number of infections and the impact of non-pharmaceutical interventions on covid-19 in 11 european countries[END_REF] . The infectious period begins when the latency period ends, with a fixed length of 14 days. Transmissibility was assumed to correlate with viral load [START_REF] Kawasuji | Transmissibility of covid-19 depends on the viral load around onset in adult and symptomatic patients[END_REF] and is modeled as a log-normal distribution following experimental determination of viral load kinetics [START_REF] Jang | Viral kinetics of sars-cov-2 over the preclinical, clinical, and postclinical period[END_REF] . Transmissibility peaks at day 1.5 post-latency period (before symptom onset) [START_REF] Benefield | Sars-cov-2 viral load peaks prior to symptom onset: a systematic review and individual-pooled analysis of coronavirus viral load from 66 studies[END_REF] and then decreases rapidly (see function f 3 in figure S5). Functions controlling these periods are given in figure S5.

Households Household sizes from 1 to 8 are built associating agents so that a given distribution of household sizes and age classes per household is fulfilled. Again, the distribution corresponds to the Argentinian census conducted in 2011. The proportion of homes with 1 to 8+ members are: 18%, 23%, 20%, 18%, 10%, 6%, 2% and 3%, correspondingly. Children, adults and elderly distributions in households are given in figure S6.

Household interactions Household interactions are modeled by simulating daily close contacts between all household members.This results in household cohabitants having an infection probability which is 2.4 times higher than for social contacts.

Social interactions Three fundamental aspects emerge from experimentally observed social contact patterns 26 :
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Viral transmission If an infected (symptomatic or asymptomatic) and a susceptible agent get in contact, transmission occurs with probability P ctg . The latter changes during the infectious period, following a log-normal distribution [START_REF] He | Temporal dynamics in viral shedding and transmissibility of covid-19[END_REF] , peaking at 1.5 days post-latency period, approximately 1 day before symptom onset. P ctg is multiplied by 0.1 in case the infected agent is isolated. This is to account for the fact that perfect self-isolation is not realistic, but also that most violations observed are infrequent and constitute low risk activities [START_REF] Smith | Adherence to the test, trace, and isolate system in the uk: results from 37 nationally representative surveys[END_REF][START_REF] Hills | Factors associated with non-adherence to social distancing rules during the covid-19 pandemic: a logistic regression analysis[END_REF] .

IDR scenarios

In order to make a direct comparison between the performance of CT and CP strategies for different IDR scenarios, the same proportion of symptomatic (poly-symptomatic) and asymptomatic (oligosymptomatic and proper asymptomatic) was considered in all the simulations performed (see agents section above). IDR impacts directly on CT performance since tracing and isolation are only triggered by detected cases. Because symptomatic individuals are more likely to get tested, and the proportion of symptomatic infections increases with age, the IDR also increases with age. Finally, IDR also relies on testing capacity. Although still debated, some studies estimate IDR can be as low as 10% for youngsters and 40% for the elderly even in resource rich cities within highly developed countries as is the case of New York city [START_REF] Yang | Estimating the infection-fatality risk of SARS-CoV-2 in new york city during the spring 2020 pandemic wave: a model-based analysis[END_REF] . To analyze scenarios with low, medium, and high detection capability, three IDR curves were considered: . 1. IDR 1 : (13% on average) Corresponds to the median IDR estimated for 91 countries [START_REF] Villalobos | Sars-cov-2 infections in the world: An estimation of the infected population and a measure of how higher detection rates save lives[END_REF] . We model this scenario by detecting only half of poly-symptomatic cases. Consequently, only half of poly-symptomatic agents trigger contact tracing, the other half is not tested/detected despite being self-isolated.

2. IDR 2 : (26% on average) This IDR is only reported for 18 out of the 91 countries [START_REF] Villalobos | Sars-cov-2 infections in the world: An estimation of the infected population and a measure of how higher detection rates save lives[END_REF] . In SERIA, corresponds to detecting all symptomatic agents.

3. IDR 3 : (37% on average) Very few countries are estimated to have IDRs above 37% as of June 2020 [START_REF] Villalobos | Sars-cov-2 infections in the world: An estimation of the infected population and a measure of how higher detection rates save lives[END_REF] , although testing capacity has greatly improved in most countries since then. We model this scenario by detecting all symptomatic as well as 15% of asymptomatic and oligosymptomatic infections, which are randomly selected. Contact Tracing SERIA comprises manual contact tracing (mCT), which is applied to all detected cases and digital contact tracing (dCT), which only applies to those with an installed smartphone app [START_REF] Montanari | Devising and evaluating wearable technology for social dynamics monitoring[END_REF][START_REF] Danquah | Use of a mobile application for ebola contact tracing and monitoring in northern sierra leone: a proof-of-concept study[END_REF] . Household and non-household contacts are traced equally. While the extent of mCT strictly depends on the IDR, dCT also depends on the app adoption rate (A). Manual and digital CT have different close contact detection probabilities: For mCT, we assumed that a 40% of the close contacts of a detected case are traced and isolated. For dCT, in order to be detected, both agents in close contact have to have the app installed on their devices. Even in such a case, the wireless beacon (i.e., BLE) emitted by the device might not be successfully detected and interpreted as a close contact by the other end. In this work we consider an accuracy of 85% for detecting close contacts, which corresponds to typical values reported in the literature [START_REF] Montanari | Devising and evaluating wearable technology for social dynamics monitoring[END_REF] . Therefore, the actual close contact detection probability for dCT is A 2 × 0.85. Furthermore, our model assumes that testing information of diagnosed cases is made available to the health authority directly by the laboratory (i.e., users are not reporting the test diagnosis via the app). This event then triggers mCT or dCT for every agent diagnosed as positive for SARS-CoV-2. Both mCT and dCT are affected by the time delay D, which corresponds to the days from testing to the isolation of a positive case and its contacts. Symptomatic agents are tested and isolated upon symptom onset. In the case of IDR 3 , 15% of oligosymptomatic and asymptomatic agents are detected, isolated and also trigger CT. Close contacts are isolated D days after testing of the index case, regardless of the index case category (symptomatic or asymptomatic).

We consider both one-step contact tracing as well as recursive contact tracing (rCT), where not only direct contacts of positive cases are traced, but also contacts of contacts (also known as two-step contact tracing) [START_REF] Bradshaw | Bidirectional contact tracing is required for reliable covid-19 control[END_REF][START_REF] Kojaku | The effectiveness of contact tracing in heterogeneous networks[END_REF] . We assume 100% sensitivity and specificity for PCR testing, and unlimited CT resources/facilities. Contact Prevention CP is possible only using digital means; thus, like dCT, the close contact detection probability is A 2 × 0.85, where A is the app adoption rate. In contrast with CT, where contacts must be able to be linked to an identity, CP contacts only need to be counted. The average number of daily contacts of each user is then compared with the close contact threshold C max recommended by the authorities through the app. If it is higher, a warning message is sent.

The resulting impact of CP on the contact frequency of the affected population (which depends on app adoption rate) is shown in the Supporting Information. We can briefly describe the population response to the app warning as follows: Upon app warning 5% of agents decrease their contact frequency to the 0%-25% range, 25% of the population decreases contact frequency to the 25%-50% range, 45% of the population decreases contact frequency to the 50%-75% range, and the remaining 25% of the population decreases their contact frequency to the 75%-100% range. This attempts to realistically consider both adherence and capability of agents to reduce their daily close contact frequencies.

The latter was studied for C max from 40% to 90% the maximum average of daily close contacts among age groups (1.5 to 3.5 contacts per day, correspondingly). Each household contact is fractionally counted to avoid members of large households reaching the threshold with few social contacts. In the rCP strategy, the app can also count indirect contacts and warn their users if they reach a recursive close contact threshold rC max . 

Results

To assess the effectiveness of each strategy in diminishing viral propagation, we perform 365 days of SERIA simulation with initial R e =1.5, and assess the percentage of the population infected at the end of said simulations (FES). R e =1.5 is an estimated R e for populations that are implementing mandatory mask use, have closed places of worship, schools and universities, banned social gatherings of more than 10 people and implemented protocols for restaurants, bars and gymnasiums. Scenarios analyzed are organized following the aforementioned IDRs distributions, namely 13%, 26% and 37% (overall percentages). For each scenario, the performance of CT and CP strategies are compared for different delays (D) and close contact thresholds (C max ), respectively. The effects of app adoption rates (A) are also studied together with the implementation of a combined CT+CP strategy.

Effect of IDR and delay on CT and rCT

Figure 2 presents the impact of app adoption rates and delays on the effectiveness of CT for each of the IDR scenarios.

The most significant result is the strong effect of IDR on CT effectiveness. For the IDR 1 scenario, CT hardly reduces viral propagation, even for high app adoption rates and low delays. Therefore, adequate diagnostic testing is a requirement for effective CT. CT effectiveness increases for IDR 2 , and most notably, for IDR 3 . These results could explain the limited success observed for digital CT techniques in reducing the spread of COVID-19 in the first half of 2020 [START_REF] Sachdev | Outcomes of contact tracing in san francisco, california-test and trace during shelter-in-place[END_REF] , when diagnostic capabilities were still low (with IDRs similar to, or even lower than, IDR 1 ). The impact of time delays on rCT effectiveness is lower than for CT. At low delays, however, both CT and rCT show practically the same performance for different app adoptions. Thus, rCT may result particularly convenient in cases with high diagnostic/isolation delays.

CT versus CP and combined strategies

Figure 3 shows the performance of CT, CP and CT+CP strategies for IDR 1 , IDR 2 and IDR 3 scenarios. To this end, we have fixed parameters to a delay of 3 days in CT and a close contact threshold of C max = 3.1 in CP. The rather low value of D is quite optimistic, while the value of C max corresponds to 80% of the maximum close contact frequency. As expected, the no strategy (none) and mCT FES values are constant for all app adoption rates. However, detecting a higher percentage of infections (higher IDRs) increases the effectiveness of mCT, resulting in lower FES values for IDR 2 and IDR 3 . At zero app adoption, CP and CT strategies are as efficient as mCT. For IDR 1 , CT is almost insensitive to app adoption rates, achieving similar FES values to mCT. However, CP reduces FES by up to 20% compared with mCT, which suggests that CP is significantly more effective at reducing viral propagation when diagnostic testing is deficient. On the other hand, CT effectiveness increases when detecting all symptomatic agents (IDR 2 ) and most notably, when 15% of asymptomatic agents are also identified (IDR 3 ). Nevertheless, CP outperforms CT in all scenarios, and the combined CT+CP strategy proves to be remarkably effective reducing FES from 47-55% to 26-42%.

To ensure that these results are not restricted to these particular IDR scenarios, we analyze the effectiveness of CT, CP and CT+CP under varying values of IDR, as shown in figure 4. Results confirm that low testing efficiency greatly impairs CT, while CP shows clear improvements with respect to mCT even at low app adoption rates (40%). High IDRs allows mCT to have significant effectiveness in reducing viral spread, although it should be noted we are assuming unlimited mCT resources. As a result, CT+CP achieves a FES reduction of 23% with respect to mCT (for A = 60% and IDR = 44%).

Finally, Table 1 summarizes FES, mortality rate, and effective basic reproduction number (R e ) for the evaluated IDR scenarios. Without applying any mitigation strategy (none), our simulations estimate a FES of 57% for IDR 1 and IDR 2 and 56% for IDR 3 , suggesting that massive testing has little to no effect without contact tracing. Being insensitive to IDR, CP is 

Discussion

Although a COVID-19 vaccine is expected to soon be available worldwide as of December 2020 and transmission mitigation will need to persist until herd immunity is achieved, many countries are still seeing increasing amounts of infections. Here we present SERIA, a model which we use to assess CT and CP effectiveness, by contemplating heterogeneous mixing, intricated social interaction patterns and many age-dependant factors such as symptomatic fraction of infections. Our results can offer explanations as to why CT strategies produce conflicting results in different countries, as well as providing compelling evidence that CP is an appealing complimentary approach to control respiratory viruses such as COVID-19. Our results confirm that long time delays hinder CT effectiveness [START_REF] Kretzschmar | Impact of delays on effectiveness of contact tracing strategies for covid-19: a modelling study[END_REF] , but more importantly, they reveal the strong dependency of CT on infection detection rates (IDR), showing very limited effectiveness in low IDR scenarios. This is especially relevant since more than half of countries are estimated to have IDR values similar or inferior to IDR 1 [START_REF] Villalobos | Sars-cov-2 infections in the world: An estimation of the infected population and a measure of how higher detection rates save lives[END_REF] which renders CT almost completely ineffective. Improving IDR implies increasing diagnostic capacity through infrastructure and sufficiently trained personnel, which requires time as well as large economic investments. For underdeveloped and developing countries, this option may not be plausible.

We developed an alternative mitigation strategy, which circumvents these deficiencies, and could be implemented with low economic requirements, which we named contact prevention (CP). Aimed at promoting community self-awareness, self-control and social responsibility, CP leverages digital assets to inform app users regarding their social contact frequency, warning when social behaviour leads to increased infection/transmission risk.

In contrast to the limitations of CT analyzed above, CP proved to remain effective even for low IDRs, which makes it a particularly interesting strategy for countries with limited testing resources. While FES of CT approaches 55% for low IDRs and 47% for high IDRs, CP achieves FES in the order of 42-26% (at 60% app adoption). Moreover, the combined implementation of CT+CP resulted in ∼25% FES reduction, bringing mortality down by 28%-56% depending on IDR and app adoption rates. CT and CP techniques proved to be rather orthogonal in their contributions to reduce FES. We explain this by the fact that CT excels at quickly isolating detected symptomatic cases and their close contacts, while CP is able to significantly reduce transmission provoked by asymptomatic and pre-symptomatic carriers. Thus, a joint implementation of CT and CP is an appealing approach to mitigate the effects of respiratory virus pandemics.

Moreover, CP presents two further qualitative benefits over CT. One is enhanced privacy of app users, which depending on the CP app configuration (i.e., identify repeated contacts with the same person in rCP) could range from high to full anonymity. The second is long-term game-based habit formation and social conduct modification. The informative notifications from the CP app could provoke profound habit changes that could additionally reduce FES in the long-term, by sustainably making users aware of the risks associated with certain behaviours. Finally, as vaccines are rolled-out, the flexibility of the C max parameter can be conveniently and controllably increased as the population approaches herd immunity.

As on-going work, a prototype for such a CT+CP application is in development by these authors (and others) in the frame of the ContactAR project.

Figure S5

. Top: Latency period distribution f lat . A random latency period length is assigned to each agent following such distribution. Bottom: Infectiousness profile over time, since the end of the latency period (left). Function f 3 indicates the relative probability of transmission for a certain day with respect to the maximum value (reached at 1.5 days post-latency period, while the median time for symptom onset is 2.5 days post-latency period). The actual probability is given by the product m Ω f 3 , where m is the maximum probability of transmission. A random value of m with a probability distribution given by f 4 (right) is assigned to each agent to account for heterogeneity in contagiousness amongst infected individuals. with age) such that

P soc (x i , x j ) = f 1 (x i ) f 1 (x j ) f 2 (x i j , ∆x) (1) 
∆x = |x j -x i | (2) 
where x i and x j are the ages of agents in possible contact, x i j their age average, and ∆x their absolute age difference. Using the above equations the following algorithm is applied: i) Two agents i and j are drawn and the corresponding P soc (x i , x j ) is calculated.

ii) A random number r ∈ [0, 1] is generated.

iii) If r < P soc , the i-j contact is accepted, otherwise is rejected.

This procedure is repeated until a given number of contacts N c is reached. N c is also used as a metric of time. In a scenario with 1 × 10 5 agents and 3.0 average contacts per day per agent, N c is the equivalent of the number of contacts in an hour for that scenario. Since the number of contacts needed for N agents to have an average of 1 contact per agent is N/2, we get:

N c = 3.0 × 1 × 10 5 2 × 24 (3)
giving a value of N c = 6250 contacts per hour. The fitting of functions f 1 and f 2 is shown in figure S7. Using the contact matrices of Mossong's study [START_REF] Mossong | Social contacts and mixing patterns relevant to the spread of infectious diseases[END_REF] , we processed the data to obtain the frequency of contacts per age relative to the maximum frequency per age. This was done both for ages and for age differences. The fitting of these two resulted in f * 1 and f * 2 , respectively. They correspond to a scenario with opened schools. Since we focus in a scenario with schools closed, we modified them by reducing values for f * 1 and increasing them for f * 2 , in both cases only for ages below 20 years. This results in functions f 1 and f 2 , shown as dashed lines in figure S7. 

Viral transmission

If an infected (I or A) and a susceptible agent get in contact, transmission can occur. The probability that agent i infects agent j is given by P ctg (i) and is assumed to be proportional to the infectiousness of i. The transmission probability P ctg ∈ [0; 1] is controlled by functions f 3 and parameters m and Q by:

P ctg (i, d) = m(i) f 3 (d) Q(i) (4) 
f 3 (d) = 2.821 d exp - [log(d) -0.97] 2 1.125 (5) 
f 4 (m) = exp -ln 60(m -0.08) 2 (6) 
where d are days. While f 3 determines the profile of transmission probability over time, m ∈ [0; 1] determines its scale. Therefore, if m = 0.1, the transmission probability P ctg will have the profile of f 3 with a maximum value of 0.1 (10% chance). The parameter m is assigned randomly to each agent with a log-normal distribution given by f 4 using the same procedure as the one used for age assignment. Functions f 3 and f 4 are shown in figure S5. Function f 3 was fitted using an estimation of the infectiousness profile of SARS-CoV-2 [START_REF] He | Temporal dynamics in viral shedding and transmissibility of covid-19[END_REF] . Function f 4 was constructed following the observation that a few individuals presented much larger viral load than the average, and it was calibrated to give a reproductive number R e = 1.5. The parameter Q distinguishes between isolated and not isolated agents, being Q = 0.1 in the former case and Q = 1 in the latter. In this way, isolated agents have a 10% chance to infect or get infected with respect to non-isolated agents. In comparison with scenarios in which isolation is perfectly hermetic, this is a more realistic approach. In SERIA, symptomatic agents are self-isolated after symptoms onset, while asymptomatic agents are isolated only if tested and diagnosed positive (which is how 15% of asymptomatic are detected in scenario IDR 3 and only there).

In summary, the probability of transmission P ctg (i) depends on how contagious is the agent i (controlled by m), in which stage of the infectious period it is in (controlled by function f 3 ), and if it is isolated or not (given by parameter Q).

IDR Scenarios

Three IDR scenarios were considered. They all share the same proportion of symptomatic agents, as obtained from Poletti s results [START_REF] Poletti | Association of Age With Likelihood of Developing Symptoms and Critical Disease Among Close Contacts Exposed to Patients With Confirmed SARS-CoV-2 Infection in Italy[END_REF] . The only difference between them is whether the actual detected cases are below, the same, or above that proportion. In the former case not all symptomatic cases are reported; in the latter all symptomatic plus some asymptomatic cases (by massive testing) are detected.

1. IDR 1 : (13% on average) Corresponds to the median IDR estimated for 91 countries [START_REF] Villalobos | Sars-cov-2 infections in the world: An estimation of the infected population and a measure of how higher detection rates save lives[END_REF] . We model this scenario by detecting only half of the symptomatic cases.

2. IDR 2 : (26% on average) This IDR is only reported for 18 out of the 91 countries [START_REF] Villalobos | Sars-cov-2 infections in the world: An estimation of the infected population and a measure of how higher detection rates save lives[END_REF] . In SERIA, corresponds to detecting all symptomatic agents.

3. IDR 3 : (37% on average) Only Australia, Russia, Puerto Rico, Thailand, South Korea and Israel are estimated to have IDRs above 37% [START_REF] Villalobos | Sars-cov-2 infections in the world: An estimation of the infected population and a measure of how higher detection rates save lives[END_REF] . We model this scenario by detecting all symptomatic and 15% of the asymptomatic (assumes massive testing).

As stated above, only detected cases can trigger CT. The following algorithm explains how agents are selected to do so:

• IDR 1 : From 0 to 10 days after symptoms onset of agent i (depending on the diagnostic/isolation delay) a random number r ∈ [0; 1] is drawn. If r < 0.5 , symptomatic agent i is detected and CT can proceed from it.

• IDR 2 : CT is enabled from all symptomatic agents with a given delay.

• IDR 3 : Idem IDR 2 . On top of this, a random number r ∈ [0; 1] is drawn for asymptomatic cases. If r < 0.15 such agents are detected.

Symptomatic agents

The percentage of symptomatic infections by age (x) each age is given by the probability P sym (x) which is exactly the same as function IDR 2 (x), shown in figure 1. This function, fitted from Poletti's results [START_REF] Poletti | Association of Age With Likelihood of Developing Symptoms and Critical Disease Among Close Contacts Exposed to Patients With Confirmed SARS-CoV-2 Infection in Italy[END_REF] , is used as follows:

i) At the beginning of the simulation a random number r ∈ [0; 1] is generated for each agent.

ii) If r < P sym (x), where x is the agent age, such agents will develop symptoms if they get infected, otherwise, they will be asymptomatic.

Contact Tracing

The close contact detection probability for mCT and dCT is 40% and 85%, respectively. In practise this implies that:

i) For each contact of an index case, a random number r ∈ [0; 1] is generated.

ii) If r < 0.4 (for mCT), or if r < 0.85 (for dCT), such a contact will be detected and isolated, otherwise it will not.

The same procedure is applied to contacts of index cases in recursive CT. Digital CT depends on the parameter A, which is the percentage of the population that downloaded the CT app. To implement this: i) At the beginning of the simulation a random number r ∈ [0; 100] is generated for each agent.

ii) Agents in which r < A download the app, the rest do not.

iii) Only contacts between agents that have the app are considered. The chances of actually detecting them is 85%, as explained above.

Contact Prevention

The app adoption parameter A is also used for CP. Only contacts with the app are counted and with an effectiveness of 85%. The important difference with CT is that contacts are only counted (the identities of the agents in contact are not stored). Nevertheless, CP apps might profit from identifying household members, which are counted differently in the application. The average number of daily contacts (C) of each user is compared with the close contact threshold (C max ) recommended by the authorities through the app. If C > C max a warning message is sent. In principle, C could be obtained by adding social and household contacts for each agent, but this will result unfair for large households since their members will reach the contact threshold even without social contacts. To solve this we define C as:

C(i) = C soc (i) +C f ml (i) (7) C f ml (i) = F(n)C max (i) (8) F(n) = 0.03 n(i) (9) 
where C soc and C f ml are the average number of daily social contacts and daily household contacts, respectively; n(i) the number of cohabitants of agent i, and F a factor. Equation 8indicates that household contacts are considered always as a fraction of the the contact threshold. This fraction is given by F which increases with the household size (through n). Table S1 shows all possible values of F in this study. One way of interpreting the above equations is that the more people within the household, the smaller the number of social contacts needed to reach the contact threshold. For example, agents with 4 cohabitants (in 5-member household) will reach the threshold at 88% the social contacts required for agents without cohabitants. F(n) 0 0.03 0.06 0.09 0.12 0.15 0.18 0.21

Table S1. Factor F as a function of the number of cohabitants n for all household sizes considered in this work.

App warning response Agents may reduce their contact frequency, or not, according to the non-adherence parameter d a ∈ [0, 1], which moderates the forthcoming contacts after the warning is received (i.e., d a = 0.6 implies a 60% of the regular contact rate). Once the average close contact count gets below C max , the warning expires and the user returns to its social habits. This is implemented in SERIA in the following way i) After a contact between i and j has been accepted as explained above, the probability W (i, j) = w(i) w( j) is calculated, where w(i) = d a (i) if the agent has received the app warning, and w(i) = 1 otherwise. Therefore W (i, j) is the probability that i and j actually meet after receiving the app warning.

ii) A random number r ∈ [0; 1] is generated.

iii) If r < W (i, j) that contact actually takes place, otherwise it does not. Still, this avoided contact is counted only for purposes of time tracking (it adds to N c as explained above).

Parameter d a is assigned randomly following a Gaussian distribution P d given by

P d = exp -12.(d a -d 0 ) 2 (10) 
where d 0 ∈ [0, 1] determines the distribution of response to the App warning in the population. The higher d 0 , the lower the adherence. A few examples of response distributions P d are shown in figure S9a. In this work we choose to d 0 = 0.6. As shown in figure S9b, the corresponding distribution implies that among all the users receiving the warning, only 30% will get in contact with less than half their habitual number of contacts, while 70% will get in contact with more than half that number.

Direct contact threshold CP is affected by the close contact threshold suggested by the authorities (C max ). The actual threshold suggested by the app is C 1 defined as

C 1 = 0.85 AC max ( 11 
)
where A is the app adoption threshold. If all the population had the app and detection effectiveness was 100%, C 1 and C max would coincide. In a simulation with 3.0 average daily contacts per agent, the maximum number of daily contacts is 3.9. To analyze a wide variety of cases, we study the performance of CP for C max from 40% to 90% that value (1.5 to 3.5 contacts). As an example, figure S10 shows how the number of direct contacts change in the population by applying the CP strategy. Results correspond to the direct close contact threshold C max = 3.1, which is 80% the frequency contact of the most social agents. A substantial reduction of contacts is observed. Nonetheless, a few cases are observed above the direct contact threshold. These cases correspond to agents which only slightly alter their social habits after the app warning, either due to non-compliance, or due to non-work contacts representing only a small fraction of their daily total contacts. In CP no limit is established for indirect contacts (contacts of contacts). Still, because the number of direct contacts was reduced, so did the indirect contacts (see figure S10 top panel).

Recursive Contact Prevention In addition, the CP app can also count indirect contacts (contacts of contacts) and warn their users if they reach an indirect close contact threshold rC max . This is the so-called recursive contact prevention strategy (rCP). In contrast with CP, where household member contact count is modulated, in rCP, all social and household contacts of a direct contact are counted. If the sum of indirect contacts surpass a given recommended value for recursive contacts rC max , another warning is send to app users to which they respond with the same adherence probability explained above. Figure S10 shows how the number of indirect contacts change when applying rCP. Taking the CP strategy as a reference, we observed that rCP reduces further the number of contacts. In this work, we chose rC max to be close and below the maximum value of indirect contacts corresponding to applying CP, as shown in the above example. In general, the rCP approach plays the role of a second barrier to those agents that did not obey the warning.

Results

CP vs CT

Figure S11 shows the FES with varying app adoption A and direct close contact thresholds C max for CP and rCP strategies. IDR 1 , IDR 2 and IDR 3 are compared. To ease the comparison we also show the corresponding results applying CT and rCT. By and its integral (γ d ) scaled so that γ d (1) = 1. This integral gives the percentage of the population with a non-adherence parameter up to d a . For instance, the graph point (0.5;0.3) indicates that 30% of the population has a non-adherence parameter equal to 0.5 or less. This indicates that 30% of users receiving the app warning will reduce their contacts to less than half their usual number of social contacts; the other 70% will contact more than half their usual social contacts.

comparing FES for the same app adoption we observe that CP outperforms CT in all scenarios tested here. In fact, CP at low IDRs outperforms CT at high IDRs. The improvement of rCP respect to CP is subtle and manifests more clearly at low A and high C max .
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Basic reproductive number

Figure S12 compares the R e in scenarios IDR 1 , IDR 2 and IDR 3 for all the mitigation strategies studied here, with an app adoption of 60%. In comparison with no strategy (none), CT fails to lower R e in appreciable terms. Although a noticeable drop is observed at day 20, it is still insufficient to significantly reduce R e . In contrast, CP enables a reduced R e right from the first days, starting with lower values ( 1.4 compared to 1.6). CP also shows a drop of similar magnitude than CT at day 20. Similar trends are observed for the combined CT+CP strategy. 

Figure 1 .

 1 Figure 1. Age distribution function P age and IDR as a function of age for the three scenarios considered in this work: one in which half of symptomatic cases are detected (IDR 1 ), one in which all of them are (IDR 2 ), and one in which all the symptomatic and 15% of the asymptomatic/oligosymptomatic cases (for each age) are detected (IDR 3 ). Ref.1: 13 and ref.2: 20 .

Figure 2 .

 2 Figure 2. Final epidemic size shown as a heatmap, as a function of CT app adoption and delay (days from symptom onset to contact isolation). The performance of CT (above) and rCT (below) are compared for the three IDR scenarios detailed in figure 1. Contour lines for different FES values are shown. Greater delays, low app adoption, and low IDRs result in high FES values, which indicate low CT effectiveness.

Figure 3 .Figure 4 .

 34 Figure 3. Final epidemic size for CT, CP, and combined CT+CP strategies in three IDR scenarios for varying app adoption percentages. IDR 1 , IDR 2 and IDR 3 correspond to 13%, 26% and 37% overall infections detected. We also plot no strategy (none) or only manual CT (mCT) scenarios as dotted lines for reference. Darker and lighter colored areas show the standard deviation and highest/lowest values obtained from 60 simulations of 1×10 5 agents per point. Results correspond to maximum number of direct close contacts C max = 3.1 for CP and a delay of D = 3 days since symptoms onset for CT.

Figure S6 .

 S6 Figure S6. Age class distribution in household sizes from 1 to 8 members. The sum of all the bars for each group gives 100%. Therefore, this graph can also be interpreted as the probability of finding children, adults, and elderly in households from 1 to 8 members. Children, adult, and elderly correspond to agents of up to 20, from 21 to 65, and older than 65 years old, respectively.

Figure S7 .

 S7 Figure S7. Fitting of functions f * 1 (a) and f * 2 (b) using ref.1[START_REF] Mossong | Social contacts and mixing patterns relevant to the spread of infectious diseases[END_REF] . These functions are later processed to represent the cases of schools closed, resulting in functions f 1 and f 2 . The former indicates the relative frequency of contact by age, and the latter indicates the relative probability of contact by age difference (which also changes with age). f 1 and f 2 give shape to the probability of social contact P soc , employed to model social contact patterns.

Figure S8 .

 S8 Figure S8. Average close contacts per day (corresponding to the last 7 days) as a function of agent age in a scenario with no CT or CP (no restriction is imposed on the close contact frequency) for a single simulation with 1 × 10 5 agents.

Figure S9 .

 S9 Figure S9. (a) Different response distribution functions (A-D). A random value of non-adherence d a is assigned to each agent following one of these distributions. In this work we used distribution C (P d ). (b) Response distribution used in this work (P d )and its integral (γ d ) scaled so that γ d (1) = 1. This integral gives the percentage of the population with a non-adherence parameter up to d a . For instance, the graph point (0.5;0.3) indicates that 30% of the population has a non-adherence parameter equal to 0.5 or less. This indicates that 30% of users receiving the app warning will reduce their contacts to less than half their usual number of social contacts; the other 70% will contact more than half their usual social contacts.

Figure S10 .

 S10 Figure S10. Average of total (social and household) daily contacts as a function of age for each agent. For simplicity, only 4000 points are shown. Direct and indirect contacts (contacts of contacts) are shown separately. Direct and indirect close contact thresholds (C max and rC max , respectively) are shown as horizontal lines. (a) Comparison between not applying any mitigation strategy (none) and applying contact prevention (CP). (b) Comparison between the last two strategies (non and CP) and recursive contact prevention (rCP).

Figure S11 .

 S11 Figure S11. Final epidemic size (FES) of the three IDR scenarios detailed in figure 1 under CP and CT strategies. Contour lines for different FES values are shown. These results correspond to 60 simulations per point (8400 simulations for the 12 graphs). (a-f) CP and rCP performance with varying app adoption and direct close contact thresholds C max . (g-l) CT and rCT performance with varying app adoption and delay D.

Figure S12 .

 S12 Figure S12. Basic reproductive number (R e ) during the first 120 days of the simulated pandemic. CT, CP, and combined CT+CP mitigation strategies are compared. The case of not applying any strategy (none) and only mCT are also shown as a reference. Results correspond scenarios IDR 1 (a), IDR 2 (b) and IDR 3 (c) at 60% of app adoption with a delay of 3 days (for CT) and a direct contact threshold of 3.1 (for CP).

  Figures Figures were generated using xmGrace version 5.1.22 (https://plasma-gate.weizmann.ac.il/Grace/), and GIMP version 2.10.24 (https://www.gimp.org/).

Table 1 .

 1 Final

	Scenario	A	Strategy FES [%] M [%]	R e
		0%	none mCT	57 55	0.39 0.36	1.52 1.50
			CT	54	0.35	1.49
	IDR 1	40%	CP	48	0.31	1.38
			CT+CP	47	0.31	1.38
			CT	53	0.34	1.46
		60%	CP	44	0.29	1.36
			CT+CP	42	0.28	1.31
		0%	none mCT	57 55	0.39 0.36	1.52 1.50
			CT	51	0.33	1.44
	IDR 2	40%	CP	45	0.29	1.36
			CT+CP	43	0.29	1.35
			CT	49	0.32	1.42
		60%	CP	40	0.27	1.32
			CT+CP	38	0.25	1.29
		0%	none mCT	56 47	0.37 0.30	1.51 1.40
			CT	43	0.28	1.37
	IDR 3	40%	CP	39	0.25	1.31
			CT+CP	35	0.23	1.28
			CT	40	0.25	1.33
		60%	CP	34	0.22	1.27
			CT+CP	26	0.17	1.21

epidemic size (FES), mortality rate (M) and effective basic reproductive number (R e ) for three IDR scenarios (average IDR values are given in brackets). Values for different transmission mitigation strategies and different app adoption rates (A) are compared. FES and mortality rates are calculated at the end of each simulation, while R e values are estimated as averages for days 20 to 25 of each simulation.
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Prevention (App-Based Social Exposure Warnings)

Validation SEIR Model SERIA is capable of reproducing well-known deterministic Susceptible-Exposed-Infected-Removed (SEIR) analytical models [START_REF] Kermack | A contribution to the mathematical theory of epidemics[END_REF] . A comparison between SEIR and SERIA simulations show negligible differences (see figure S1). However, most of the features of SERIA (i.e., age-dependency, household grouping, contact tracing, prevention, testing, etc.) had to be disabled for this analysis. In other words, SERIA matches and extends SEIR models in the social and transmission dynamics aspect. As a result, contact tracing logic runs "on top" of a well validated model. If no restrictions are applied (all contacts between agents are accepted), the ADIC metric follows a rather smooth distribution, as shown in figure S2a. A gradient of cases is observed from younger to older agents, only due to their larger quantity in the simulation. A completely different pattern is obtained if the probability of contacts is modulated through the probability P soc , as shown in figure S2b. In this case, three distinctive diagonal lines can be observed. The central diagonal corresponds to similar-age contacts such as spouses, siblings, work and social contacts. The top diagonal corresponds mainly to parents infecting children, while the bottom diagonal corresponds mainly to descendants infecting parents. Moreover, diagonals are not symmetric. Instead, more cases are accumulated in the top diagonal, pointing towards a greater chance of adults infecting children than the other way around. Naturally, this trend could be reversed if schools were open. Overall, this transmission pattern obtained from SERIA is in close agreement with reported metrics from two states of India, involving more than half a million individuals [START_REF] Laxminarayan | Epidemiology and transmission dynamics of covid-19 in two indian states[END_REF] . It also resembles estimated spreading patterns of viruses by social contacts [START_REF] Mossong | Social contacts and mixing patterns relevant to the spread of infectious diseases[END_REF] .

In conclusion, the regulation of contacts through the probability P soc allows SERIA to succeed in mimicking the essential age-dependant aspects of social transmission during the COVID-19 pandemic, which adds to the SEIR model validation presented before. 

Methods

Agents

There are six agent states in SERIA: Susceptible S (have not been infected), exposed E (infected, but transits the latency period during which they can not transmit the virus), symptomatic I and asymptomatic A (both can spread the virus during the infectious period), recovered R (immune after surviving the disease) and deceased D. Transitions between states are triggered by agent interaction, as detailed in figure S3.

Age This is the most important agent feature since all others are directly or indirectly dependent of it. Age is assigned randomly to each agent following a probability given by P age , as follows: 
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i) An age x from 0 to 105 is randomly drawn.

ii) Another random number r ∈ [0; 1] is generated.

iii) If r < P age (x), the value of x is accepted, otherwise the procedure is repeated until the condition is fulfilled.

Figure 1 shows the function P age used in this work, which was fitted from the latest Argentinian census conducted in 2011.

State transitions A diagram of agents interactions and state transitions is given in figure S3. Transitions occur under the following circumstances: If I or A contact S, then S can become E. Then, after an latency period t inc , E can either become A or I following a symptomatic proportion given by IDR 2 (see main article). A spreads the virus during the entire infectious period, while I does it only up to symptoms onset, after which it is self-isolated. After the infectious period, A always evolve to R, while I agents can either recover, or die as a consequence of the disease (D). The latter is governed by the Infection Fatality Rate (IFR) ∈ [0, 1], displayed in figure S4. The IFR used in this work was fitted from Argentinean metrics. In practice: i) Right after the infectious period of agent i of age x, a random number r ∈ [0; 1] is generated.

ii) If r < IFR(x), agent i dies, otherwise, it recovers and gains immunity. 

Time Periods

The time window during which an infected agent is not contagious, is referred to as the latency period. The infectious period is the time window in which the agent can spread the virus. The incubation period is defined as the time window from infection to symptom onset. In some cases, as it is the case of SARS-CoV-2, the infectious period starts before the incubation period ends. This means pre-symptomatic transmission is highly probable. Incubation, latency, and infectious periods are sketched in figure S3. The latency period t lat varies in-between 2 and 20 days [START_REF] Lauer | The incubation period of coronavirus disease 2019 (covid-19) from publicly reported confirmed cases: estimation and application[END_REF] , with a peak at around 4 days [START_REF] Flaxman | Report 13: Estimating the number of infections and the impact of non-pharmaceutical interventions on covid-19 in 11 european countries[END_REF] . A random period with a log-normal probability distribution given by f lat (see figure S5) was assigned to each agent, with the same procedure as the one used to assign ages. A constant length of 14 days was assumed for the infectious period t in f , with contagiousness following a similar distribution to what has been determined for viral load, peaking at day 1.5 (before symptom onset) and then decreasing rapidly (see function f 3 in figure S5).

Household simulation Households from 2 to 8 members are built associating agents so that a given distribution of household sizes and age classes per household is fulfilled. In SERIA, agents corresponding to the same household are associated, and are forced to meet each other once a day. In this case, the household distribution corresponds to the Argentinian census conducted in 2011. The proportion of homes with 1 to 8+ household members are: 18%, 23%, 20%, 18%, 10%, 6%, 2% and 3%, correspondingly. Age classes distributions (children, adults, elderly) are given in figure S6.

Interactions

Social interactions Functions f 1 and f 2 control the social contact probability function. The former indicates the relative frequency of contact by age, and the latter indicates the relative probability of contact by age difference (which also changes